液压油缸设计.(DOC)
液压缸的设计
目录一、设计要求——————————————————————-1 题目—————————————————————————1二、各零部件的设计及验算————————————————-51、缸筒设计———————————————————————52、法兰设计———————————————————————143、活塞设计———————————————————————194、活塞杆设计——————————————————————21•一、设计一单活塞杆液压缸,工作台快进时采用差动联接,快进、快退速度为5m/min。
当工作进给时外负载为25×103N,背压为0.5MPa,已知泵的公称流量为25L/min,公称压力为6.3MPa,工作行程L=100mm。
•要求:(1)确定活塞和活塞杆直径。
(2)如缸筒材料的[σ]=5×107N/m2,计算筒壁厚。
1、主要设计参数:•(1)外载F=25×103N,背压P2=0.5MPa•(2)工进、快退速度V1= 5m/min。
•(3)泵的公称流量q=25L/min,公称压力为P1=6.3MPa •(4)工作行程L=100mm•(5)缸筒材料的自选(教材仅作参考)2、设计提要①、液压油缸主要参数给定在设计要求中已经提到的参数这里就不再赘述,下面只给出此次设计中液压油缸主要部件的其他参数:缸内径:D=100mm;缸外径:D=116mm;1壁厚: =8mm;极限推力:F=25KN;max活塞杆直径:d=70mm;活塞外推流量(快退):q2 =0.20L/min,快进:q1=0.39L/min说明:液压缸的效率油缸的效率η:本设计不考虑效率②、法兰安装方式螺纹连接③、缓冲机构的选用一般承压在10MP以上应当选用缓冲机构,本次设计中,工作压力为3.5MP,因此缓冲机构从略。
④、密封装置选用选用Y型密封圈.⑤、工作介质的选用因为工作在常温下,所以选用普通的是油型液压油即可。
液压油缸毕业设计
液压油缸毕业设计液压油缸毕业设计:力与控制的完美结合引言:液压技术是一种利用液体传递能量的技术,广泛应用于各个领域,尤其在机械工程中扮演着重要的角色。
而液压油缸作为液压系统的核心部件之一,其设计与性能对整个系统的运行和效率起着至关重要的作用。
本文将探讨液压油缸的毕业设计,旨在展示力与控制的完美结合。
一、液压油缸的基本原理液压油缸是一种将液压能转化为机械能的装置。
其基本原理是利用液体的压力传递力量,通过液体在密闭容器内的压力变化来实现运动。
液压油缸由缸体、活塞和密封元件组成,通过控制液体进出油缸来实现运动的控制。
二、液压油缸的设计要素液压油缸的设计要素包括工作压力、工作力、行程、速度、密封和材料等。
在设计中,需要根据具体的应用需求和工作环境来选择合适的参数和材料,以确保油缸的性能和可靠性。
三、液压油缸的性能提升为了提升液压油缸的性能,可以从以下几个方面进行改进:1. 材料选择:选择高强度、耐磨损和耐腐蚀的材料,以提高油缸的使用寿命和可靠性。
2. 密封设计:采用高性能的密封元件,确保油缸在高压和高温环境下的密封性能,避免液体泄漏和能量损失。
3. 控制系统:采用先进的液压控制系统,实现对油缸运动的精确控制和调节,提高系统的响应速度和稳定性。
4. 液体选择:选择适合工作环境的液压油,以确保油缸在各种工作条件下的正常运行。
5. 结构优化:通过优化油缸的结构设计,减少摩擦和能量损失,提高油缸的效率和性能。
四、液压油缸的应用领域液压油缸广泛应用于各个领域,包括工程机械、冶金设备、船舶、航空航天、汽车工业等。
在这些领域中,液压油缸承担着举升、推拉、定位和控制等重要任务,为各种机械设备的运行提供强大的动力支持。
五、液压油缸的未来发展趋势随着科技的进步和工业的发展,液压油缸也在不断发展和改进。
未来,液压油缸的设计将更加注重节能、环保和智能化。
例如,采用高效的液压系统、智能化的控制技术和新型材料,以实现油缸的高效能量转换、精确控制和可持续发展。
液压油缸的主要设计技术参数
液压油缸的主要设计技术参数
真实
一、安装和机械
1、安装
在安装液压油缸时应考虑如下因素:
(1)确定油缸的中心位置;
(2)确定油缸的正确位置,以便便于操作和维护;
(3)清楚理解油缸安装的物理限制,以便充分发挥油缸的机动性能;
(4)液压油缸的支架安装要紧固,以保证液压油缸稳定可靠;
(5)液压油缸的安装位置应尽量避免受污染;
(6)支撑架应具有良好的抗震性能;
(7)液压油缸的支架安装位置不应有明显裂缝;
(8)液压油缸安装的支架应考虑温度和机动性能;
2、轴座
(1)液压油缸的轴座是油缸安装和固定的重要部件,如果不进行正
确的轴座设计,可能会导致油缸工作不正常。
(2)液压油缸的轴座可以采用多种不同的材料,如钢板、木材、铝
合金、铁材等,依据实际情况选择。
(3)液压油缸的轴座不仅要考虑抗静态荷载的问题,还要设计具有可靠的抗振性能,以保证液压油缸能够正常工作。
(4)液压油缸的轴座设计时应考虑表面处理问题,严禁使用油污、焊渣等粗糙的表面处理方法,以保证液压油缸的精度和寿命。
工程液压油缸方案
工程液压油缸方案一、设计原则在设计工程液压油缸方案时,需要考虑以下几个方面的原则:1.性能要求:根据工程机械的具体应用需求,确定液压油缸的工作压力、推拉力、行程等性能指标。
2.安全可靠:液压油缸的设计应保证在正常工作条件下,能够安全可靠地完成工作任务,并具有一定的过载能力。
3.结构合理:液压油缸的结构应尽可能简单、紧凑,以提高其可靠性和使用寿命。
4.易维护:在设计液压油缸时,应考虑其易于维护和保养,尽量减少故障率。
5.环保节能:液压油缸的设计应符合环保要求,尽量减少液压油的使用量,提高能源利用率。
二、工作原理液压油缸是利用压力液体(一般为液压油)的压力来产生直线运动的力,从而推动机械装置进行工作。
它的工作原理主要包括:1.液压缸内的压力液体由液压泵输送至液压缸内的腔室。
液压缸的工作腔室内装有活塞和活塞杆。
2.当液压缸内压力液体加压时,液压缸的活塞受液压力的作用会沿着腔室内壁直线运动。
3.活塞通过活塞杆将运动力传给机械装置,从而推动机械装置完成相应的工作。
4.当压力液体从液压缸内排出时,活塞会回到初始位置,从而完成一个完整的往复运动。
三、结构特点工程液压油缸的主要结构特点包括:1.油缸壳体:一般采用钢板精密焊接而成,具有较高的承载能力和耐压性能。
2.活塞和活塞杆:活塞和活塞杆是液压油缸的核心部件,一般由合金钢或不锈钢材料制成,表面经过表面处理,具有较高的硬度和耐磨性。
3.密封件:密封件是液压油缸的重要部件,可以有效防止液压油泄漏,一般采用耐磨耐压的橡胶密封圈。
4.缓冲装置:为了减小液压缸的冲击力,常常在其内部装有缓冲装置,一般为缓冲弹簧或缓冲气囊。
5.液压管路:液压管路用于将液压泵输送的压力液体输送至液压缸内,一般由耐高压、耐腐蚀的橡胶管或金属管组成。
四、工程应用工程液压油缸广泛应用于工程机械领域,其主要应用包括:1.起重机械:液压油缸用于起重机械的起升、伸缩、平移等运动部件的推拉作用。
2.挖掘机械:液压油缸用于挖掘机械的铲斗、臂架、履带等运动部件的推拉和转动作用。
液压油缸设计标准
液压油缸设计标准1. 结构和材料液压油缸的主要结构应设计为耐高压、高强度和耐疲劳的结构。
缸体应采用高强度材料,如铸钢、合金钢或不锈钢。
对于关键部位,如活塞和活塞环,应选择耐磨、耐腐蚀的材料,如不锈钢或高强度合金钢。
2. 密封和防泄漏液压油缸的密封系统应设计为防止内部和外部泄漏。
活塞和活塞环之间应采用高性能的密封圈或密封环,以防止液压油的泄漏。
此外,缸盖和缸体之间也应采用密封圈或密封环,以确保缸体的密封性。
3. 性能要求液压油缸应具有良好的性能,包括推力、速度、精度和稳定性。
推力应足够大,以适应各种应用场景的需要。
速度应可调,以满足不同操作速度的要求。
精度应高,以实现精确的控制。
稳定性应强,以确保在各种操作条件下都能保持稳定的工作状态。
4. 安装和维护液压油缸的安装和维护应简单易行。
在安装过程中,应确保各部件的正确安装和调整,避免因安装不当而引起的泄漏或损坏。
在维护过程中,应定期检查液压油的清洁度和浓度,以及各部件的磨损情况,及时进行更换或维修。
5. 表面处理和涂层液压油缸的表面处理和涂层应能够抵抗腐蚀和磨损。
缸体和活塞等部件应进行防腐蚀处理,如镀锌、喷涂防腐涂料等。
此外,为了提高耐磨性,活塞环等摩擦表面应进行耐磨涂层处理。
6. 环境和安全要求液压油缸的设计应考虑环境和安全要求。
在操作过程中,液压油缸可能会产生热量和压力,因此应确保液压油缸能够安全地承受这些条件。
此外,在设计和制造过程中,应考虑到环境保护的要求,尽可能减少对环境的影响。
7. 测试和检验液压油缸在出厂前应进行严格的测试和检验。
测试应包括性能测试、密封性测试、耐压测试等。
检验应包括外观检验、尺寸检验等。
只有经过合格的测试和检验,液压油缸才能被视为符合设计标准。
8. 标记和文档液压油缸应有清晰的标记和完整的文档。
标记应包括产品名称、型号、规格、生产日期等基本信息。
文档应包括设计图纸、使用说明书、维护手册等。
这些标记和文档应易于理解和使用,以便于用户正确地使用和维护液压油缸。
液压油缸设计手册
液压油缸设计手册第一章:液压油缸的工作原理和结构设计1.1 液压油缸的工作原理液压油缸是一种将液压能转换为机械能的装置,它利用压力油作为工作介质,通过将液压能转化为机械能来实现工作。
液压油缸的工作原理是通过液压力作用在活塞上,从而驱动活塞做直线运动。
1.2 液压油缸的结构设计液压油缸主要由缸体、活塞、密封件、油口、活塞杆等部分组成。
在设计液压油缸结构时,需要考虑工作压力、工作温度、工作环境等因素,以选择合适的材料和结构设计方案,确保液压油缸能够稳定可靠地工作。
第二章:液压油缸的选型和性能参数计算2.1 液压油缸的选型在选型时需要考虑液压油缸的工作压力、推力、速度、工作温度等因素,根据实际工作条件来选择最适合的液压油缸型号和规格。
2.2 液压油缸的性能参数计算液压油缸的性能参数包括工作压力、推力、速度等,需要通过相关公式和计算方法来确定,确保液压油缸在工作时能够满足设计要求。
第三章:液压油缸的材料选择和密封件设计3.1 液压油缸的材料选择液压油缸的材料选择直接影响着其使用寿命和性能稳定性,需要根据工作条件选择合适的材料,例如缸体和活塞可采用优质的合金钢或不锈钢材料,活塞杆则选择具有高强度和耐磨性的材料。
3.2 液压油缸的密封件设计液压油缸的密封件起着密封作用,保证液压油缸的正常工作,需要根据工作环境和工作压力设计合适的密封结构和材料,以确保液压油缸具有良好的密封性能和使用寿命。
第四章:液压油缸的安装和维护4.1 液压油缸的安装在安装液压油缸时,需要确保其与其他部件的配合精确,活塞杆的外部装配与液压机械部件的连接可靠,同时还要注意安装过程中的油污和杂质。
4.2 液压油缸的维护液压油缸在工作过程中需要定期进行维护,保持液压油清洁,检查密封件是否有磨损或老化,以确保液压油缸的正常使用和延长使用寿命。
结语液压油缸作为重要的液压传动元件,其设计、选型和维护都对液压系统的工作稳定性和可靠性起着至关重要的作用。
液压油缸设计资料
液压油缸主要几何尺寸的计算:上图中各个主要符号的意义: — 液压缸工作腔的压力(Pa ) — 液压缸回油腔的压力(Pa ) —液压缸无杆腔工作面积 —液压缸有杆腔工作面积 D —液压缸内径 d —活塞杆直径F — 液压缸推力 (N ) v —液压缸活塞运动速度 液压缸内径D 的计算根据载荷力的大小和选定的系工作统压力来计算液压缸内径D 。
液压缸内径D 和活塞杆直径d 可根据最大总负载和选取的工作压力来定,对单杆缸而言,无杆腔进油并不考虑机械效率时:()21212124F d p D p p p p π=---有杆腔进油并不考虑机械效率时:()22112124F d p D p p p p π=+--一般情况下,选取回油背压 ,这时,上面两式便可简化,即无杆腔进油时D =有杆腔进油时:D =设计调高油缸为无杆腔进油。
所以,216.91D mm ===,按照GB/T2348-2001对液压缸内径进行圆整,取mm D 250=,即缸内径可以取为mm 250。
2.2活塞杆直径d 的计算在液压油缸的活塞往复运动速度有一定要求的情况下,活塞杆的直径d 通常根据液压缸速度比21v vv =λ的要求已经缸内径D 来确定。
其中,活塞杆直径与缸内径和速度比之间的关系为:d = 式中 D —液压缸内径 d —活塞杆直径 v λ—往复速度比液压缸的往复运动速度比v λ,一般有2、1.46、1.33、1.25和1.15等几种下表给出了不同往复速度比v λ时活塞杆直径d 和液压缸内径D 的关系。
v λ1.15 1.25 1.33 1.46 2 d0.36D0.45D0.5D0.56D0.71D液压缸往复速度比v λ推荐值如下表所示:由于此采煤机的调高油缸的工作压力为30MPa ,因此选择往复速度比2=v λ,计算得:mm D d 5.17725071.071.0=⨯==。
计算所得的活塞杆直径应圆整为标准系列。
按GB/T2348-2001标准进行圆整后,取 d = 160mm ,即活塞杆直径为160mm 。
液压油缸性能参数设计
液压油缸性能参数设计(1) 液压缸内径根据公式有:214D P F ∏= 所以有: 14P F D ∏=上述公式中:1p ——液压缸工作压力。
由任务书知1p =25MPaF ——液压缸的最大负载。
由任务书知F=5000KN ,由于本设计采用双缸故F1=F/2=2500KN将数据代入上述公式得: mm MP KN D a3572514.300254≈⨯⨯= 圆整为标准系列直径D=360㎜。
(摘自GB/T2348-1993)(2) 活塞杆直径因为主缸的工作压力为25MPa ,查相关资料选取d/D=0.7活塞杆直径:249.9mm 357mm 0.7d =⨯=圆整为标准系列直径d=250mm 。
(摘自GB/T2348-1993)(3)主缸壁厚的确定壁厚计算公式:[]σδ2D P Y ≥ 式中:δ——液压缸缸筒的厚度Y P ——实验压力。
工作压力MPa P 16≥时,Y P =1.25PD ——液压缸内径[]σ——缸体材料许用应力。
对于锻钢[]MPa 120~110=σ 铸钢[]MPa 110~100=σ无缝钢管[]MPa 110~100=σ 铸铁[]MPa 60=σ由于该液压机负载较大,故主缸缸体材料选用无缝钢管45。
[]MPa 110=σ 所以有: mm 2.51110236025.125=⨯⨯⨯≥δ 故液压缸缸体外径外D 有:mm D 2.4621.5123602D =⨯+=+≥δ外圆整为标准系列直径外D =480㎜。
(4)缸盖(底)厚度计算缸盖厚度计算公式:[]σY p Dh 433.0≥式中:h ——缸盖(底)的厚度D ——液压缸内径Y P ——试验压力 []σ——缸盖材料的许用应力。
此次选用35钢[]MPa 100=σ将数据代入上述公式得:mm h 1.8710025.125360433.0≈⨯⨯⨯≥ 查相关资料取标准系列缸盖厚度h=90mm 。
(5)主缸最小导向长度计算计算公式:220D L H +≥ 式中:L ——液压缸最大行程 D ——液压缸内径代入数据有:mm H 2302360201000=+≥为了保证最小导向长度,必要时可以在缸盖和活塞之间增加一个隔套来增加最小导向长度。
液压油缸设计手册
液压油缸设计手册第一章:液压油缸概述1.1 液压油缸的定义和作用液压油缸是一种常用的液压执行元件,利用液压油在缸体中的压力变化,产生线性运动或者转动,用于实现各种机械装置的动作控制。
液压油缸广泛应用于冶金、石化、建筑、造船、机械制造等领域。
1.2 液压油缸的结构和工作原理液压油缸通常由缸体、活塞、密封件、进出油口、安装支架等组成。
其工作原理是通过控制油液的流入和流出,使得油缸内部产生一定的压力,从而驱动活塞做直线运动或旋转运动。
第二章:液压油缸设计原理2.1 液压油缸的选型原则在设计液压油缸时,应考虑载荷大小、工作环境、运动速度、活塞行程等因素,选择适合的型号和规格的液压油缸。
2.2 液压油缸的密封性能设计密封性是液压油缸的重要性能指标,设计时应考虑密封件的选择、布局和工作条件,以确保液压油缸的密封可靠性。
2.3 液压油缸的安全性设计在设计液压油缸时,应考虑其在工作过程中可能遇到的过载、压力变化、温度变化等情况,设计相应的安全保护装置和控制系统,以确保液压油缸的安全可靠运行。
第三章:液压油缸的结构设计3.1 缸体和活塞的材料选择液压油缸的缸体和活塞通常由优质碳素钢、合金钢或不锈钢制成,设计时需考虑材料的强度、刚性、耐磨性和耐腐蚀性等性能。
3.2 活塞杆的设计活塞杆是液压油缸的重要部件,设计时需考虑其长度、直径、表面硬度和表面光洁度等参数,以确保活塞杆的工作可靠性和寿命。
3.3 密封件的设计液压油缸的密封件包括活塞密封、杆密封、缸体密封等,设计时需选择适合的密封材料和结构,以确保液压油缸具有良好的密封性能。
第四章:液压油缸的应用和维护4.1 液压油缸的应用范围液压油缸广泛应用于各种工程机械、航空航天、船舶、起重装备、冶金设备等领域,可实现各种复杂机械动作的控制。
4.2 液压油缸的维护和保养液压油缸在使用过程中需要定期检查和维护,包括液压油的更换、密封件的检查、活塞杆的清洁和润滑等,以保证液压油缸的正常工作。
油缸(液压缸)设计指导书
液压缸设计指导书温馨推荐您可前往百度文库小程序享受更优阅读体验不去了立即体验一、设计目的油缸是液压传动系统中实现往复运动和小于360°回摆运动的液压执行元件。
具有结构简单,工作可靠,制造容易以及使用维护方便、低速稳定性好等优点。
因此,广泛应用于工业生产各部门。
其主要应用有:工程机械中挖掘机和装载机的铲装机构和提升机构,起重机械中汽车起重机的伸缩臂和支腿机构,矿山机械中的液压支架及采煤机的滚筒调高装置,建筑机械中的打桩机,冶金机械中的压力机,汽车工业中自卸式汽车和高空作业车,智能机械中的模拟驾驶舱、机器人、火箭的发射装置等。
它们所用的都是直线往复运动油缸,即推力油缸。
所以进一步研究和改进液压缸的设计制造,提高液压缸的工作寿命及其性能,对于更好的利用液压传动具有十分重要的意义。
通过学生自己独立地完成指定的课程设计任务,提高理论联系实际、分析问题和解决问题的能力,学会查阅参考书和工具书的方法,提高编写技术文件的能力,进一步加强设计计算和制图等基本技能的训练,为毕业后成为一名出色的机械工程师打好基础。
二、设计要求1、每个参加课程设计的学生,都必须独立按期完成设计任务书所规定的设计任务。
2、设计说明书和设计计算书要层次清楚,文字通顺,书写工整,简明扼要,论据充分。
计算公式不必进行推导,但应注明公式中多符号的意义,代入数据得出结果即可。
3、说明书要有插图,且插图要清晰、工整,并选取适当此例。
说明书的最后要附上草图。
4、绘制工作图应遵守机械制图的有关规定,符合国家标准。
5、学生在完成说明书、图纸后,准备进行答辩,最后进行成绩评定。
三、设计任务设计任务由指导教师根据学生实际情况及所收集资料情况确定。
四、设计依据和设计步骤油缸是液压传动的执行元件,它与主机及主机的工作结构有着直接的联系。
不同的机型和工作机构对油缸则有不同的工作要求。
因此在设计油缸之前,首先应了解下列这些作为设计原始依据的主要内容。
主机的用途和工作条件,工作机构的结构特点,负载值,速度,行程大小和动作要求,液压系统所选定的工作压力和流量等。
液压油缸设计手册
液压油缸设计手册摘要:1.液压油缸设计概述2.液压油缸的组成部分3.液压油缸的设计原则与方法4.液压油缸的性能参数5.液压油缸的应用领域6.液压油缸的选用与安装7.液压油缸的维护与故障排除8.液压油缸的设计案例分析正文:一、液压油缸设计概述液压油缸作为液压传动系统的重要组成部分,广泛应用于各种工程机械、自动化设备和工业领域。
液压油缸的设计涉及到力学、材料科学、热处理技术等多个方面,合理的設計可以提高液压油缸的使用寿命、工作效率和安全性。
二、液压油缸的组成部分液压油缸主要由缸体、活塞、密封装置、导向装置、驱动装置等组成。
各部分之间相互配合,完成液压油的吸入、压力传递、动作控制等功能。
三、液压油缸的设计原则与方法1.设计原则:液压油缸设计应满足使用要求,确保安全可靠,力求结构简单、紧凑,降低成本。
2.设计方法:根据液压油缸的使用条件,确定其主要尺寸、材料、密封形式等,进行结构设计,然后校核强度、刚度、稳定性等性能。
四、液压油缸的性能参数液压油缸的性能参数主要包括工作压力、行程、活塞面积、承载能力等。
设计时应根据实际工况,合理选择性能参数,使之满足使用要求。
五、液压油缸的应用领域液压油缸在工程机械、冶金设备、汽车制造、航空航天、船舶等领域有着广泛的应用。
不同领域的液压油缸有着不同的使用要求和技术特点。
六、液压油缸的选用与安装1.选用液压油缸时,应根据使用条件选择合适的结构形式、材料、密封形式等。
2.安装液压油缸时,要注意安装位置、方向、支撑结构等,确保液压油缸能正常工作。
七、液压油缸的维护与故障排除1.定期检查液压油缸的密封性能、油液质量、活塞运动情况等,及时更换密封件、添加油液。
2.遇到故障时,可通过外观检查、拆卸检查、试验等方法,找出故障原因,并进行排除。
八、液压油缸的设计案例分析通过对实际工程中的液压油缸设计案例进行分析,探讨液压油缸设计中应注意的问题,为液压油缸设计提供参考。
液压油缸设计手册
液压油缸设计手册摘要:一、液压油缸设计手册概述二、液压油缸的工作原理与分类1.液压油缸的工作原理2.液压油缸的分类三、液压油缸的主要参数与设计1.液压油缸的主要参数2.液压油缸的设计流程四、液压油缸的结构设计与材料选择1.液压油缸的结构设计2.液压油缸的材料选择五、液压油缸的性能分析与测试1.液压油缸的性能分析2.液压油缸的测试方法六、液压油缸的设计实例与应用领域1.液压油缸的设计实例2.液压油缸的应用领域正文:一、液压油缸设计手册概述液压油缸设计手册是一本详细介绍液压油缸设计原理、方法、结构、材料选择以及性能分析的专业工具书。
本书旨在为广大液压油缸设计人员提供一套系统、完整的设计指南,以提高液压油缸的设计质量和效率。
二、液压油缸的工作原理与分类(一)液压油缸的工作原理液压油缸是一种将液压能转换为机械能的装置,主要通过压缩液压油来驱动活塞进行往复运动。
液压油缸的工作原理可以概括为:在液压油的作用下,活塞在缸筒内进行往复运动,从而实现对负载的支撑和驱动。
(二)液压油缸的分类1.按照运动方式分类:液压油缸可分为单杆液压油缸和双杆液压油缸。
2.按照安装方式分类:液压油缸可分为耳轴安装式、法兰安装式、轴心安装式等。
3.按照工作压力分类:液压油缸可分为低压、中压、高压液压油缸。
三、液压油缸的主要参数与设计(一)液压油缸的主要参数1.缸径:液压油缸的有效工作直径。
2.缸长:液压油缸的有效工作行程。
3.工作压力:液压油缸正常工作的压力值。
4.安装方式:液压油缸的安装形式。
(二)液压油缸的设计流程1.确定设计参数:根据实际需求,确定液压油缸的缸径、缸长、工作压力等参数。
2.选择结构形式:根据安装方式和使用环境,选择合适的结构形式。
3.进行材料分析:根据工作压力和安装方式,分析并选择合适的材料。
4.设计密封结构:根据工作压力和安装方式,设计合适的密封结构。
5.校核强度和刚度:根据设计参数和材料性能,校核液压油缸的强度和刚度。
液压缸设计步骤和液压缸计算方法档
液压缸设计步骤和液压缸计算方法档液压缸(油缸)设计步骤:1.确定液压缸的工作参数:包括工作压力、负荷要求、行程长度、作用力、运动速度等。
这些参数可以根据设备的应用需求来确定。
2.选择液压缸的类型:有单作用和双作用两种,单作用液压缸只能在一个方向上产生推或拉力,而双作用液压缸可以在两个方向上产生推拉力。
3.计算活塞直径和活塞杆直径:活塞直径和活塞杆直径是根据负荷要求和工作压力来计算的。
一般来说,活塞直径越大,液压缸的承载能力越大,但也会增加摩擦阻力和油液消耗量。
4.确定液压缸筒体和活塞杆材料:根据工作环境的要求和负荷的性质选择合适的材料,一般常用的材料有铸铁、钢等。
5.完成液压缸内部部件的设计:包括密封件、液压缸密封结构、液压缸的阻尼装置等。
密封结构的设计需要考虑到液压缸的工作环境和工作温度。
6.进行液压缸的强度计算:计算液压缸各个部件的强度,包括活塞杆、筒体和密封结构等。
强度计算需要考虑到工作压力和作用力等参数。
7.进行液压缸的动态计算:根据液压缸的运动速度和所需的加速度等参数,进行液压缸的动态计算。
1.计算缸体容积:液压缸的容积可以通过下式计算得到:V=π/4*D^2*L其中,V为缸体容积,D为活塞直径,L为活塞行程长度。
2.计算活塞面积:根据活塞直径计算活塞面积,可以通过下式计算得到:A=π/4*D^2其中,A为活塞面积,D为活塞直径。
3.计算活塞杆面积:根据活塞杆直径计算活塞杆面积,可以通过下式计算得到:A'=π/4*D'^2其中,A'为活塞杆面积,D'为活塞杆直径。
4.计算推力:根据工作压力和活塞面积计算液压缸的推力,可以通过下式计算得到:F=P*A其中,F为液压缸的推力,P为工作压力,A为活塞面积。
5.计算液压缸的速度:液压缸的速度可以通过可控阀门来调节,一般使用油流量来计算液压缸的速度,可以通过下式计算得到:V=Q/A其中,V为液压缸的速度,Q为油流量,A为活塞面积。
液压油缸的设计内容和步骤
液压油缸的设计内容和步骤液压油缸是一种广泛应用于机械、工程和农业等领域的装置,通过利用液体的压力将机械能转化为液压能,并实现力的放大和方向的改变。
液压油缸的设计涉及多个主要内容和步骤,下面将详细介绍。
一、液压油缸设计前的准备工作1.确定应用环境:液压油缸的设计应该先明确所处的工作环境和工作条件,包括温度、湿度、压力要求等。
2.确定工作要求:确定液压油缸需要承受的最大负荷和所需的运动速度、力的输出方向等。
3.选择液压油缸类型:根据应用的具体要求,选择合适的液压油缸类型,例如单作用液压油缸、双作用液压油缸等。
二、液压油缸设计步骤1.计算负荷:根据液压油缸的工作要求,计算液压油缸所需承受的最大负荷。
这可以通过计算受力分析和力的分解来实现。
2.计算液压缸行程:液压油缸的行程是指活塞从一个极端位置到另一个极端位置的线性位移量。
根据工作要求,计算液压缸的行程。
3.计算活塞面积:液压油缸的活塞面积是指活塞所覆盖的面积。
根据负荷和压力要求,计算出活塞面积。
4.选择密封件:为保证液压缸的密封性,选择合适的密封件材料和形状,并按照密封性能计算具体尺寸。
5.计算液压油缸尺寸:根据活塞面积、行程和密封件尺寸,计算液压油缸的具体尺寸,包括外径、内径、长度等。
6.选择材料:根据工作环境和负荷要求,选择合适的液压油缸材料,例如铸铁、碳钢、不锈钢等。
7.设计活塞杆:液压油缸的活塞杆是负责传递力量的部分,根据需求选择合适的活塞杆材料和直径。
8.计算液压油缸的稳定性:通过计算液压油缸的稳定性,确定液压油缸的最小稳定直径,以确保其在工作过程中不会发生扭转。
9.计算液压油缸的工作压力:根据所需负荷和活塞面积,计算液压油缸所需的工作压力。
10.设计油缸壳体:根据液压油缸的尺寸、行程和工作压力,设计油缸的壳体结构,保证其足够强度和刚度。
11.进行液压油缸的组装:根据设计要求和步骤,对液压油缸的各个组成部分进行组装。
通过以上这些步骤,液压油缸的设计过程可以得以实现。
液压油缸设计手册
液压油缸设计手册摘要:1.液压油缸概述2.液压油缸的设计原则3.液压油缸的组成部分4.液压油缸的设计步骤5.液压油缸的性能优化6.液压油缸的安装与维护7.液压油缸的应用领域正文:一、液压油缸概述液压油缸是一种将液体压力能转换为机械能的设备,广泛应用于各种工程机械、自动化设备和工业领域。
它主要由缸体、活塞、密封装置、缓冲装置等组成,通过输入高压油液驱动活塞往复运动,实现输出力和速度的要求。
二、液压油缸的设计原则1.根据实际工况和性能要求,选择合适的液压油缸类型,如单杆、双杆、多级等。
2.确保液压油缸的主要参数,如工作压力、行程、安装尺寸等,与整个液压系统的匹配。
3.考虑液压油缸的材料、工艺和结构,使其具有良好的强度、耐磨性和稳定性。
三、液压油缸的组成部分1.缸体:承受油压和容纳油液的部分,通常采用无缝钢管或铸铁材料制成。
2.活塞:通过液压油驱动往复运动的部件,与缸体构成密封空间。
3.密封装置:防止油液泄漏和保持活塞与缸体之间密封的关键部分。
4.缓冲装置:减小活塞运动过程中的冲击和振动,保护液压油缸和液压系统。
5.导向装置:引导活塞在缸体内运动,保证运动平稳和定位准确。
四、液压油缸的设计步骤1.确定液压油缸的类型和主要参数。
2.选择合适的材料和工艺。
3.设计液压油缸的结构,包括缸体、活塞、密封装置等。
4.校核液压油缸的强度、稳定性及密封性能。
5.绘制液压油缸零件图和总装图。
五、液压油缸的性能优化1.提高液压油缸的材料性能,降低重量和提高强度。
2.优化密封装置和缓冲装置,减小泄漏和冲击。
3.采用先进的加工和装配工艺,保证液压油缸的尺寸和形位公差。
4.采用智能化技术,实现液压油缸的自动控制和故障诊断。
六、液压油缸的安装与维护1.液压油缸的安装应严格按照图纸和说明书进行,确保各部件连接牢固。
2.定期检查液压油缸的油液质量和油位,及时更换油液和清洗油箱。
3.检查密封装置和缓冲装置的磨损情况,及时更换磨损部件。
液压油缸的一般设计步骤手册
液压油缸的一般设计步骤液压油缸的一般设计步骤1)掌握原始资料和设计依据,主要包括:主机的用途和工作条件;工作机构的结构特点、负载状况、行程大小和动作要求;液压系统所选定的工作压力和流量;材料、配件和加工工艺的现实状况;有关的国家标准和技术规范等。
2)根据主机的动作要求选择液压缸的类型和结构形式。
3)根据液压缸所承受的外部载荷作用力,如重力、外部机构运动磨擦力、惯性力和工作载荷,确定液压缸在行程各阶段上负载的变化规律以及必须提供的动力数值。
4)根据液压缸的工作负载和选定的油液工作压力,确定活塞和活塞杆的直径。
5)根据液压缸的运动速度、活塞和活塞杆的直径,确定液压泵的流量。
6)选择缸筒材料,计算外径。
7)选择缸盖的结构形式,计算缸盖与缸筒的连接强度。
8)根据工作行程要求,确定液压缸的最大工作长度L,通常L>=D,D为活塞杆直径。
由于活塞杆细长,应进行纵向弯曲强度校核和液压缸的稳定性计算。
9)必要时设计缓冲、排气和防尘等装置。
10)绘制液压缸装配图和零件图。
11)整理设计计算书,审定图样及其它技术文件。
液压缸工作时出现爬行现象的原因及排除方法1)缸内有空气侵入,应增设排气装置或使液压缸以最大行程快速运动,强迫排除空气。
2)液压缸的端盖处密封圈压得太紧或太松,应调整密封圈使之有适当的松紧度,保证活塞杆能用手来回平稳地拉动而无泄漏。
3)活塞与活塞杆同轴度不好,应校正、调整。
4)液压缸安装后与导轨不平行,应进行调整或重新安装。
5)活塞杆弯曲,应校直活塞杆。
6)活塞杆刚性差,加大活塞杆直径。
7)液压缸运动零件之间间隙过大,应减小配合间隙。
8)液压缸的安装位置偏移,应检查液压缸与导轨的平行度,并校正。
9)液压缸内径直线性差(鼓形、锥形等),应修复,重配活塞。
10)缸内腐蚀、拉毛,应去锈蚀和毛刺,严重时应镗磨。
11)双出杆活塞缸的活塞杆两端螺帽摒得太紧,使其同心不良,应略松螺帽,使活塞处于自然状态。
液压缸的调整包括哪些方面1)排气装置调整。
液压缸设计
第一章液压系统设计液压缸动作过程3150KN热压成型机液压系统属于中高压液压系统,涉及快慢速切换、多级调压、保压补压等多个典型的液压回路。
工作过程为电机启动滑块快速下行滑块慢速下行保压预卸滑块慢速回程滑块快速回程推拉缸推出推拉缸拉回循环结束。
按液压机床类型初选液压缸的工作压力为28Mpa,根据快进和快退速度要求,采用单杆活塞液压缸。
液压系统设计参数〔1〕合模力;〔2〕最大液压压28Mp;〔3〕主缸行程700㎜;〔4〕主缸速度υ快=38㎜/s、υ慢=4.85㎜/s。
分析负载〔一〕外负载压制过程中产生的最大压力,即合模力。
〔二〕惯性负载设活塞杆的总质量m=100Kg,取△(三)阻力负载活塞杆竖直方向的自重活塞杆质量m≈1000Kg,同时设活塞杆所受的径向力等于重力。
静摩擦阻力动摩擦阻力由此得出液压缸在各个工作阶段的负载如表****所示。
表*** 液压缸在各个工作阶段的负载F工况负载组成负载值F工况负载组成负载值F 启动981保压3150×103加速537补压3150×103快速491快退+G10301按上表绘制负载图如图***所示。
F/N v/mm s-1537 491981 384.850 l/mm 0 l/mm-491 -981由已知速度υ快=38㎜/s、υ慢=4.85㎜/s和液压缸行程s=700mm,绘制简略速度图,如图***所示。
液压缸的计算〔一〕液压缸承受的合模力为3150KN,最大压力p1=28Mp。
鉴于整个工作过程要完成快进、快退以及慢进、慢退,因此液压缸选用单活塞杆式的。
在液压缸活塞往复运动速度有要求的情况下,活塞杆直径d根据液压缸工作压力选取。
由合模力和负载计算液压缸的面积。
将这些直径按GB/T 2348—2001以及液压缸标准圆整成就近标准值,得:由此得液压缸两腔的实际有效面积〔二〕确定液压缸壁厚根据公式计算液压缸壁厚。
式中:δ=管壁厚 mmP=最大压力 kg/cm2D=液压缸内径 mm许用应力,[]=,n为安全系数,此处取n=5。
液压油缸的主要设计技术参数.doc
液压油缸的主要设计技术参数一、液压油缸的主要技术参数:1.油缸直径;油缸缸径,内径尺寸。
2.进出口直径及螺纹参数3.活塞杆直径;4.油缸压力;油缸工作压力,计算的时候经常是用试验压力,低于 16MPa 乘以,高于 16 乘以5.油缸行程;6.是否有缓冲;根据工况情况定,活塞杆伸出收缩如果冲击大一般都要缓冲的。
7.油缸的安装方式;达到要求性能的油缸即为好,频繁出现故障的油缸即为坏。
应该说是合格与不合格吧好和合格还是有区别的。
二、液压油缸结构性能参数包括: 1.液压缸的直径; 2.活塞杆的直径; 3.速度及速比; 4.工作压力等。
液压缸产品种类很多,衡量一个油缸的性能好坏主要出厂前做的各项试验指标,油缸的工作性能主要表现在以下几个方面:1.最低启动压力:是指液压缸在无负载状态下的最低工作压力,它是反映液压缸零件制造和装配精度以及密封摩擦力大小的综合指标;2.最低稳定速度:是指液压缸在满负荷运动时没有爬行现象的最低运动速度,它没有统一指标,承担不同工作的液压缸,对最低稳定速度要求也不相同。
3.内部泄漏:液压缸内部泄漏会降低容积效率,加剧油液的温升,影响液压缸的定位精度,使液压缸不能准确地、稳定地停在缸的某一位置,也因此它是液压缸的主要指标之。
液压油缸常用计算公式液压油缸常用计算公式项目公式符号意义液压油缸面积 (cm 2 ) A = π D 2 /4 D :液压缸有效活塞直径 (cm) 液压油缸速度 (m/min) V=Q/A Q :流量 (l / min)V :速度 (m/min)液压油缸需要的流量 (l/min) Q=V × A/10=A× S/10t S :液压缸行程 (m)t :时间 (min)液压油缸出力 (kgf) F = p × Ap :压力 (kgf /cm 2 ) F = (p×-A)(p× A)( 有背压存在时 )q :泵或马达的几何排量 (cc/rev) 泵或马达流量 (l/min) Q = q × n / 1000n :转速( rpm )泵或马达转速 (rpm) n = Q / q× 1000 Q :流量 (l / min)泵或马达扭矩T = q × p / 20 π液压所需功率 (kw) P = Q × p / 612管内流速 (m/s) v = Q × / d 2 d :管内径 (mm)U :油的黏度 (cst)S :油的比重管内压力降 (kgf/cm 2 ) △ P=× USLQ/d 4 L :管的长度 (m)Q :流量 (l/min)d :管的内径 (cm)液压常用计算公式项目公式符号意义D:液壓缸有效活塞直液壓缸面積 (cm2) A =πD2/4徑 (cm)液壓缸速度V = Q / A Q:流量 (l / min)(m/min)V:速度 (m/min)液壓缸需要的流Q=V×A/10=A×S:液壓缸行程(m)量 (l/min)S/10tt:時間 (min)F = p × AF = (p × A)-(p液壓缸出力 (kgf)p:壓力 (kgf /cm2)×A)(有背壓存在時 )q:泵或马达的幾何排泵或馬達流量Q = q × n /量(cc/rev)(l/min) 1000n:转速( rpm)泵或馬達轉速n = Q / q ×1000 Q:流量 (l / min)(rpm)泵或馬達扭矩T = q × p / 20π液壓所需功率P = Q × p / 612(kw)管內流速 (m/s) v = Q × / d2 d:管內徑 (mm)U:油的黏度 (cst)S:油的比重管內壓力降△ P=×USLQ/d4 L:管的長度 (m)(kgf/cm2)Q:流量 (l/min)d:管的內徑 (cm)非标液压、机电、试验、工控设备开发研制。
(完整word版)液压缸设计规范
液压缸的设计计算标准目录 : 一、液压缸的根本参数1、液压缸内径及活塞杆外径尺寸系列2、液压缸行程系列〔GB2349-1980〕二、液压缸种类及安装方式1、液压缸种类2、液压缸安装方式三、液压缸的主要零件的结构、资料、及技术要求1、缸体2、缸盖〔导向套〕3、缸体及联接形式4、活塞头5、活寒杆6、活塞杆的密封和防尘7、缓冲装置8、排气装置9、液压缸的安装联接局部〔GB/T2878〕四、液压缸的设计计算1、液压缸的设计计算部骤2、液压缸性能参数计算3、液压缸几何尺寸计算4、液压缸结构参数计算5、液压缸的联接计算一、液压缸的根本参数1.1 液压缸内径及活塞杆外径尺寸系列液压缸内径系列〔GB/T2348-1993〕810121620253240506380〔90〕 100〔110〕125〔140〕 160〔180〕 200220〔250〕〔280〕 320〔360〕 400450500括号内为优先采用尺寸活塞杆外径尺寸系列〔 GB/T2348-1993〕456810121416182022252832364045505663708090100110125 140160 180200 220250280 320360活塞杆连接螺纹型式按细牙,规格和长度查有关资料。
1.2 液压缸的行程系列〔 GB2349-1980〕第一系列255080100125160200250320400500 63080010001250160020002500320040001.2.1 第二系列406390110140180 220280360 45055070090011001400180022002800 3600二、液压缸的种类和安装方法2.1 液压缸的种类对江东机械公司而言双作用式活塞式液压缸单作用式柱塞式液压缸2.2 液压缸的安装方式对江东机械公司而言对柱塞式头部法兰对活塞式螺纹联接在梁上三、液压缸主要零件的结构、资料、技术要求3.1 缸体缸体资料A 焊接缸头缸底等,采用 35 钢粗加工后调质B 一般情况采用45钢HB241 -285C 铸钢采用ZG310-57[D 球墨铸铁〔江东厂采用〕QT50-7[E 无缝纲管调质〔 35 号 45 号〕[缸体技术要求[[ σ ] =110MPaσ] =120MPa σ] =100MPa σ] = 80-90MPa σ] =110MPaA内径 H8 H9 B 内径圆度精度9-11 级粗糙度〔垳磨圆柱度 8级〕缸盖(导向套)缸盖资料A可选 35,45 号锻钢B可采用 ZG35,ZG45铸钢C可采用 HT200 HT300 HT350 铸铁D当缸盖又是导导游时选铸铁缸盖技术要求A 直径 d( 同缸内径 ) 等各种辗转面 ( 不含密封圈 ) 圆柱度按9 、10、11 级精度B 内外圆同轴度公差C与油缸的配合端面⊥按7 级D导向面表面粗糙度联接形式多种可按图13活塞头(耐磨)A 资料灰铸铁 HT200 HT300 钢 35 、45B技术要求外径 D(缸内径 ) 与内孔 D1↗按 7、8 级外径 D的圆柱度9 、10、11 级端面与内孔 D1的⊥按 7 级C活塞头与活塞杆的联接方式按图 3形式D活塞头与缸内径的密封方式V 型组合搬动局部柱寒缸40MPa以下Yx 型搬动局部活塞缸32MPa以下用O“型静止局部32MPa以下用“活塞杆A端部结构按江东厂常用结构图17、18B活塞杆结构空心杆实心杆C资料实心杆 35、45 钢空心杆 35、45 无缝缸管D技术要求粗加工后调质 HB229-285 可高频淬火 HRC45-55外圆圆度圆柱度公差按 9、10、11按 8 级级精度两外圆↗为端面⊥按 7 级工作表面粗糙度<〔江东镀铬深度〕渡后抛光3.2.6 活塞杆的导向、密封、和防尘A 导向套结构图9〔江东常用〕导向杆资料可用铸铁、球铁导向套技术要求内径 H8/f8 、H8/f9 表面粗糙度B活塞杆的密封与防尘柱塞缸 V 型组合搬动局部活塞缸Yx搬动局部“O〞型〔静止密封〕防尘,毛毡圈〔江东常用〕3.2.7 液压缸缓冲装置多路节流形式缓冲参照教科书3.2.8 排气装置采用排气螺钉液压缸的安装联接局部的型式及尺寸可用螺纹联接〔细牙〕油口部位可用法兰压板联接油口部位液压缸安装可按图84液压缸的设计计算液压缸的设计计算部骤依照主机的运动要求定缸的种类选择安装方式依照主机的动力解析和运动解析确定液压缸的主要性能参数和主要尺寸如推力速度作用时间内径行程杆径注:负载决定了压力。
液压油缸设计手册
液压油缸设计手册摘要:1.液压油缸的概述2.液压油缸的设计原理3.液压油缸的主要部件4.液压油缸的设计步骤5.液压油缸的安装与维护6.液压油缸在我国的应用与发展正文:液压油缸是一种将液压能转换为机械能的机械装置,广泛应用于工程机械、汽车、飞机等行业。
本文将详细介绍液压油缸的设计原理、主要部件、设计步骤以及安装与维护。
一、液压油缸的概述液压油缸是将液压能转换为机械能的执行元件,主要由缸体、活塞、密封件、导向套等部件组成。
根据结构形式,液压油缸可分为单杆式和双杆式两种。
二、液压油缸的设计原理液压油缸的工作原理是利用液体在封闭的管道内传递压力,通过活塞上的密封件产生压力差,从而推动活塞产生位移。
液压油缸的设计需要考虑负载、速度、行程、安装空间等因素。
三、液压油缸的主要部件1.缸体:液压油缸的主体部分,承受油压和机械负荷。
2.活塞:在液压油作用下产生位移的部件。
3.密封件:防止液压油泄漏的部件,包括活塞环、缸筒环等。
4.导向套:引导活塞运动,防止活塞与缸体发生摩擦的部件。
5.缓冲装置:吸收液压冲击,保护液压油缸和设备的部件。
四、液压油缸的设计步骤1.确定液压油缸的工作压力、行程、安装方式等参数。
2.选择合适的缸体材料和尺寸。
3.设计活塞及密封件,确定其材料和尺寸。
4.设计导向套,确定其材料和尺寸。
5.设计缓冲装置,确定其类型和参数。
6.根据安装和使用条件,进行强度计算和校核。
7.绘制液压油缸的总装图、零件图和材料清单。
五、液压油缸的安装与维护1.安装前,应对液压油缸进行清洗和检查,确保无损坏和杂质。
2.安装时,应保证各部件的安装位置准确,避免安装误差。
3.使用过程中,应定期检查液压油缸的运行状况,及时更换损坏的密封件和缓冲装置。
4.维护时,应根据使用条件和厂家要求,进行定期保养。
六、液压油缸在我国的应用与发展液压油缸在我国工程机械、汽车、飞机等行业得到了广泛应用,推动了我国相关产业的发展。
随着科技的进步,液压油缸将朝着轻量化、高效率、低噪音、长寿命等方向发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液压油缸主要几何尺寸的计算:上图中各个主要符号的意义:错误!未找到引用源。
—液压缸工作腔的压力(Pa)错误!未找到引用源。
—液压缸回油腔的压力(Pa)错误!未找到引用源。
—液压缸无杆腔工作面积错误!未找到引用源。
—液压缸有杆腔工作面积D—液压缸内径d—活塞杆直径F —液压缸推力(N)v—液压缸活塞运动速度液压缸内径D的计算根据载荷力的大小和选定的系工作统压力来计算液压缸内径D。
液压缸内径D 和活塞杆直径d可根据最大总负载和选取的工作压力来定,对单杆缸而言,无杆腔进油并不考虑机械效率时:D=有杆腔进油并不考虑机械效率时:D=一般情况下,选取回油背压 ,这时,上面两式便可简化,即无杆腔进油时D =有杆腔进油时:D =设计调高油缸为无杆腔进油。
所以,216.91D mm ==,按照GB/T2348-2001对液压缸内径进行圆整,取错误!未找到引用源。
,即缸内径可以取为mm 250。
2.2活塞杆直径d 的计算在液压油缸的活塞往复运动速度有一定要求的情况下,活塞杆的直径d 通常根据液压缸速度比21v vv =λ的要求已经缸内径D 来确定。
其中,活塞杆直径与缸内径和速度比之间的关系为:d = 式中 D —液压缸内径 d —活塞杆直径 v λ—往复速度比液压缸的往复运动速度比v λ,一般有2、1.46、1.33、1.25和1.15等几种下表给出了不同往复速度比v λ时活塞杆直径d 和液压缸内径D 的关系。
v λ1.15 1.25 1.33 1.46 2 d0.36D0.45D0.5D0.56D0.71D液压缸往复速度比v λ推荐值如下表所示:由于此采煤机的调高油缸的工作压力为30MPa ,因此选择往复速度比2=v λ,计算得:mm D d 5.17725071.071.0=⨯==。
计算所得的活塞杆直径应圆整为标准系列。
按GB/T2348-2001标准进行圆整后,取 d = 160mm ,即活塞杆直径为160mm 。
2.3液压缸活塞行程s 的确定调高油箱位于牵引部底部,两端分别与牵引部和截割部铰接。
通过活塞杆的伸缩,实现摇臂的摆动。
液压缸行程s ,直接影响采煤机摇臂的摆动范围,进而影响采煤机的采高。
设计参数(摇臂摆角范围):上46.06°,下17.77°设计分析实例的已知数据如下: 1L —摇臂长度2L —摇臂回转中心到调高油箱前铰接点的距离 3L —摇臂回转中心到调高油箱后铰接点的距离液压缸工作压力P (MPa ) 10 1.25~20 >20 往复速度比v λ1.331.46~221Φ—摇臂上摆角度 2Φ—摇臂下摆角度其中 06.461=Φ, 77.172=Φ,mm L 7302=。
由上图可求出液压缸活塞近似行程:mm L S 772)277.1706.46sin(7302)2sin(2212=+⨯⨯=Φ+Φ≈液压缸活塞行程s ,主要依据机构的运动要求而定。
但为了简化工业工艺成本,应尽量采用标准值。
按GB/T2349-2001选择活塞行程系列的标准值,取mm S 800=,即活塞行程为800mm 。
3液压缸的结构设计3.1缸筒的结构、材料的选取以及强度给定 3.1.1缸筒结构的选择缸体端部与缸盖的连接形式与工作压力、缸体材料以及工作条件有关。
主要连接形式有法兰连接、内螺纹连接、外螺纹连接、外半环连接、内半环连接、拉杆连接、焊接以及钢丝连接。
a 、法兰连接:优点:结构比较简单,易加工,易装卸;缺点:重量比螺纹连接的大,但比拉杆连接的小,外径较大。
b、螺纹连接:优点:重量较轻,外径较小;缺点:端部结构比较复杂,装卸需要专门的工具,拧端部时,有可能把密封圈拧扭。
c、外半环连接:优点:重量比拉杆连接的轻;缺点:缸体外径要加工,半环槽削弱了缸体,相应的要加大缸体厚度。
d、内半环连接:优点:结构紧凑,重量轻;缺点:安装时,端部进入缸体较深,密封圈有可能比进油孔边缘处擦伤。
e、拉杆连接:优点:缸体最易加工,最易装卸,结构通用性大;缺点:重量较重,外形尺寸较大。
f、焊接:优点:结构简单,尺寸小;缺点:缸体有可能变形。
g、钢丝连接:优点:结构简单,重量轻,尺寸小。
比较各种连接形式,采用法兰连接3.1.2缸筒主要技术要求:1)有足够的强度,能长期承受最高工作压力及短期动态实验压力而不致产生永久性变形;2)有足够的刚度,能承受活塞阀向力和安装的反作用力而不致于产生弯曲;3)内表面与活塞密封件及导向环的摩擦力作用下,能长期工作而磨损少,有高的几何精度,足以保证活塞密封件的密封性;4)有几种结构的钢筒还要求有良好的可焊性,以便在焊上法兰或管接头后不致于产生裂纹或过大的变形。
3.1.3缸筒材料的选取及强度给定1)缸筒的材料⑴无缝钢管若能满足要求,可以采用无缝钢管作缸筒毛坯。
一般常用调质的45号钢。
需要焊接时,常用焊接性能较好的20-35号钢,机械粗加工后再调质。
⑵铸件对于形状复杂的缸筒毛坯,可以采用铸件。
灰铸铁铸件常用HT200至HT350之间的几个牌号,要求较高者,可采用球墨铸铁QT450-10、QT500-7、QT600-3等。
此外还可以采用铸钢ZG230-450、ZG270-500、ZG310-570等。
⑶锻件对于特殊要求的缸筒,应采用锻钢。
此处选取无缝钢管,由于调高油缸处的工作压力较大,因此采用MnVn15,材料的屈服强度500s MPaσ=;缸筒材料的抗拉强度750b MPaσ=;缸筒材料的许用应力[]150MPaσ=。
2)缸筒的加工要求缸筒内径D采用H7级配合,表面粗糙度aR为0.16,需要进行研磨;热处理:调制,240≥HB;缸筒内径D的圆度、锥度、圆柱度不大于内径公差的一半;缸筒直线度不大于0.03mm;油口的孔口及排气口必须有倒角,不能有飞边、毛刺;在缸内表面镀铬,外表面刷防腐油漆。
缸盖的材料、技术要求缸盖与缸底常用45号钢锻造或铸造毛坯。
需要焊接结构的,采用焊接性能较好的35号钢。
中低压缸可用HT200、HT250、HT300等灰口铸铁材料。
此处选择缸盖和缸底的材料为MnVn15。
缸盖内孔一般尺寸公差采用H7、H8的精度等级、表面粗糙度通常取为m Ra μ2.3~6.1。
缸盖内孔与凸缘止口外径的圆度、圆柱度误差不大于直径尺寸公差的一半。
内孔和凸缘止口的同轴度允差不大于0.03mm ,相关端面对内孔轴线的圆跳动在直径100mm 上不大于 0.04mm 。
缸盖和缸底采用法兰连接的方式与缸筒相连接,所选螺栓为224⨯M ,材料为30CrMo ,材料的屈服强度MPa s 785=σ,抗拉强度MPa b 930=σ。
3.7活塞杆 3.7.1活塞杆结构活塞杆有实心杆和空心杆两种。
一般情况下多用实心杆,空心杆多用于一下几种情况:1、缸筒运动的液压缸,用来导通油路;2、大型液压缸的活塞杆(或柱塞杆)为了减轻重量;3、为了增加活塞杆的抗弯能力;4、d/D 比值较大或杆心需安装如位置传感器等机构的情况。
此处选择活塞杆的结构为实心杆。
由于调高油缸工作时轴线摆动,杆外端采用光杆耳环,其基本尺寸设计如下图:3.7.2常用材料活塞杆一般用优质碳素结构钢制成。
对于有腐蚀性气体场合采用不锈钢制造。
活塞杆一般用棒料,现在大部采用冷拉棒材。
为了提高硬度、耐磨性和耐腐蚀性,活塞杆的材料通常要求表面淬火处理,淬火深度为0.5~1mm ,硬度通常为 HRC50~60,然后表面再镀硬铬,镀层厚度为 0.03~0.05mm 。
此处活塞杆的材料选用45号钢。
3.7.3 技术要求⑴ 活塞杆外径尺寸公差多为f8,也有采用f7、f9的。
⑵ 每100mm 直线度≤0.02。
⑶ 圆度等几何精度误差一般不大于外径公差的一半。
⑷ 与活塞内孔配合的轴颈与外圆的同轴度允差不能大于0.01~0.02mm ;安装活塞的轴肩与活塞杆轴线的垂直度允差每100mm 不大于 0.04mm 。
⑸ 活塞杆端部的卡键槽、螺纹及缓冲柱塞与杆径同轴度允差不大于0.01~0.02mm 。
缓冲柱塞最好采用活塞杆本身的端头部。
⑹ 表面粗糙度一般为m R a μ63.0~16.0,精度要求高时,取为m R a μ2.0~1.0≤。
3.8活塞3.2.1 活塞的材料无导向环(支承环)的活塞选用高强度铸铁300~200HT ,有导向环(支承环)的活塞选用碳素钢20号、35号及45号。
3.2.2 活塞的技术要求采用无密封件的间隙密封式活塞常取为f6; 采用活塞环密封时常取为f6或f7;采用橡胶、塑料密封件时,常取为f7、f8及f9; 与活塞杆配合的活塞内孔公差等级一般取为H7;活塞外圆的表面粗糙度要不差于 m R a μ32.0,内孔的表面粗糙度要不差于m R a μ8.0。
活塞外径、内孔的圆度,圆柱度误差不大于尺寸公差的一半。
活塞外径对内孔及密封沟槽的同轴度允差不大0.02mm 。
端面对轴线的垂直度允差每100mm 不大于 0.04mm 。
2)活塞与活塞杆的连接结构活塞与活塞杆的连接结构可分为整体式和装配式,装配式又有螺纹连接、半环连接、弹簧挡圈连接和锥销连接等类型。
液压缸在一般工作条件下,活塞与活塞杆采用螺纹连接。
但当工作压力较高或载荷较大、活塞杆直径又较小的情况下,活塞杆的螺纹可能过载。
另外工作机械振动较大时,固定活塞的螺母有可能振动,因此需要采用非螺纹连接,采用半环连接。
3)活塞与缸体的密封结构活塞与缸体之间既有相对运动,又需要使液压缸两腔之间不漏油,因此在结构之上应慎重考虑,选择密封圈密封。
3.2活塞杆导向部分的结构及密封活塞杆导向部分的结构,包括活塞杆与端盖或导向套的结构,以及密封、防尘和锁紧装置等。
导向套的结构可以做成端盖整体式直接导向,也可做成与端盖分开的导向套结构,后者导向套磨损后便于更换,所以应用较普遍。
导向套的位置可安装在密封圈的内侧,也可以装在外侧,工程机械中一般采用装在内侧的结构,有利于导向套的润滑;而油压机常采用装在外侧的结构,在高压下工作时,使密封圈有足够的油压将唇边张开,以提高密封性能。
a、端盖直接导向:端盖与活塞杆直接接触导向,结构简单,但磨损后只能更换整个缸盖;端盖与活塞杆的密封常用O型,Y型等密封圈,防尘圈用无骨架的防尘圈。
b、导向套导向:导向套与活塞杆接触支承导向,磨损后便于更换,导向套也可用耐磨材料;端盖与活塞杆的密封常用Y型等密封装置,密封可靠,适用于中高压液压缸;防尘方式常用J型或三角形防尘装置。
利用导向套导向,在导向套磨损后便于更换,因此选用与端盖分开的导向套结构。
活塞杆与端盖之间通过密封圈和防尘圈来防止油的泄露和防尘的。
缸内泄漏会引起容积效率下降,达不到所需的工作压力;缸外泄露则造成工作介质的浪费和环境的污染。
因此活塞杆与端盖之间的密封通过格来圈来实现。
对于活塞杆外伸部分来说,它容易把脏物带入液压缸,使油液受污染,密封件被磨损,因此活塞杆和缸盖之间采用Z形Turcon防尘圈。