2020年江苏省连云港市中考数学试卷(含解析)
2020年江苏省连云港市中考数学试卷和答案解析
2020年江苏省连云港市中考数学试卷和答案解析一、选择题(本大题共有8小题,每小题3分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)3的绝对值是()A.﹣3B.3C.D.解析:根据绝对值的意义,可得答案.参考答案:解:|3|=3,故选:B.点拨:本题考查了实数的性质,利用绝对值的意义是解题关键.2.(3分)如图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是()A.B.C.D.解析:找到从几何体的正面看所得到的图形即可.参考答案:解:从正面看有两层,底层是两个小正方形,上层的左边是一个小正方形.故选:D.点拨:此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.3.(3分)下列计算正确的是()A.2x+3y=5xy B.(x+1)(x﹣2)=x2﹣x﹣2C.a2•a3=a6D.(a﹣2)2=a2﹣4解析:分别根据合并同类项法则,多项式乘多项式的运算法则,同底数幂的乘法法则以及完全平方公式逐一判断即可.参考答案:解:A.2x与3y不是同类项,所以不能合并,故本选项不合题意;B.(x+1)(x﹣2)=x2﹣x﹣2,故本选项符合题意;C.a2•a3=a5,故本选项不合题意;D.(a﹣2)2=a2﹣4a+4,故本选项不合题意.故选:B.点拨:本题主要考查了合并同类项,同底数幂的乘法,多项式乘多项式以及完全平方公式,熟记相关公式与运算法则是解答本题的关键.4.(3分)“红色小讲解员”演讲比赛中,7位评委分别给出某位选手的原始评分.评定该选手成绩时,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,这两组数据一定不变的是()A.中位数B.众数C.平均数D.方差解析:根据平均数、中位数、众数、方差的意义即可求解.参考答案:解:根据题意,从7个原始评分中去掉1个最高分和1个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,不变的是中位数.故选:A.点拨:本题考查了平均数、中位数、众数、方差的意义.平均数是指在一组数据中所有数据之和再除以数据的个数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一组数据中出现次数最多的数据叫做众数;一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.5.(3分)不等式组的解集在数轴上表示为()A.B.C.D.解析:先求出不等式组的解集,再在数轴上表示出来即可.参考答案:解:解不等式2x﹣1≤3,得:x≤2,解不等式x+1>2,得:x>1,∴不等式组的解集为1<x≤2,表示在数轴上如下:故选:C.点拨:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(3分)如图,将矩形纸片ABCD沿BE折叠,使点A落在对角线BD上的A'处.若∠DBC=24°,则∠A'EB等于()A.66°B.60°C.57°D.48°解析:由矩形的性质得∠A=∠ABC=90°,由折叠的性质得∠BA'E =∠A=90°,∠A'BE=∠ABE=(90°﹣∠DBC)=33°,即可得出答案.参考答案:解:∵四边形ABCD是矩形,∴∠A=∠ABC=90°,由折叠的性质得:∠BA'E=∠A=90°,∠A'BE=∠ABE,∴∠A'BE=∠ABE=(90°﹣∠DBC)=(90°﹣24°)=33°,∴∠A'EB=90°﹣∠A'BE=90°﹣33°=57°;故选:C.点拨:本题考查了矩形的性质、折叠的性质以及直角三角形的性质;熟练掌握矩形的性质和折叠的性质是解题的关键.7.(3分)10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,A、B、C、D、E、O均是正六边形的顶点.则点O是下列哪个三角形的外心()A.△AED B.△ABD C.△BCD D.△ACD解析:根据三角形外心的性质,到三个顶点的距离相等,进行判断即可.参考答案:解:∵三角形的外心到三角形的三个顶点的距离相等,∴从O点出发,确定点O分别到A,B,C,D,E的距离,只有OA=OC=OD,∴点O是△ACD的外心,故选:D.点拨:此题主要考查了正多边形、三角形外心的性质等知识;熟练掌握三角形外心的性质是解题的关键.8.(3分)快车从甲地驶往乙地,慢车从乙地驶往甲地,两车同时出发并且在同一条公路上匀速行驶.图中折线表示快、慢两车之间的路程y(km)与它们的行驶时间x(h)之间的函数关系.小欣同学结合图象得出如下结论:①快车途中停留了0.5h;②快车速度比慢车速度多20km/h;③图中a=340;④快车先到达目的地.其中正确的是()A.①③B.②③C.②④D.①④解析:根据题意可知两车出发2小时后相遇,据此可知他们的速度和为180(km/h),相遇后慢车停留了0.5h,快车停留了1.6h,此时两车距离为88km,据此可得慢车的速度为80km/h,进而得出快车的速度为100km/h,根据“路程和=速度和×时间”即可求出a 的值,从而判断出谁先到达目的地.参考答案:解:根据题意可知,两车的速度和为:360÷2=180(km/h),相遇后慢车停留了0.5h,快车停留了1.6h,此时两车距离为88km,故①结论错误;慢车的速度为:88÷(3.6﹣2.5)=80(km/h),则快车的速度为100km/h,所以快车速度比慢车速度多20km/h;故②结论正确;88+180×(5﹣3.6)=340(km),所以图中a=340,故③结论正确;(360﹣2×80)÷80=2.5(h),5﹣2.5=2.5(h),所以慢车先到达目的地,故④结论错误.所以正确的是②③.故选:B.点拨:本题考查了一次函数的应用,行程问题中数量关系的运用,函数图象的意义的运用,解答时读懂函数图象,从图象中获取有用信息是解题的关键.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)我市某天的最高气温是4℃,最低气温是﹣1℃,则这天的日温差是5℃.解析:先用最高气温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上它的相反数”计算.参考答案:解:4﹣(﹣1)=4+1=5.故答案为:5.点拨:本题主要考查了有理数的减法,熟记运算法则是解答本题的关键.10.(3分)“我的连云港”APP是全市统一的城市综合移动应用服务端.一年来,实名注册用户超过1600000人.数据“1 600 000”用科学记数法表示为 1.6×106.解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.参考答案:解:数据“1600000”用科学记数法表示为1.6×106,故答案为:1.6×106.点拨:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(3分)如图,将5个大小相同的正方形置于平面直角坐标系中,若顶点M、N的坐标分别为(3,9)、(12,9),则顶点A的坐标为(15,3).解析:由图形可得MN∥x轴,MN=9,BN∥y轴,可求正方形的边长,即可求解.参考答案:解:如图,∵顶点M、N的坐标分别为(3,9)、(12,9),∴MN∥x轴,MN=9,BN∥y轴,∴正方形的边长为3,∴BN=6,∴点B(12,3),∵AB∥MN,∴AB∥x轴,∴点A(15,3)故答案为(15,3).点拨:本题考查了正方形的性质,坐标与图形性质,读懂图形的意思,是本题的关键.12.(3分)按照如图所示的计算程序,若x=2,则输出的结果是﹣26.解析:把x=2代入程序中计算,当其值小于0时将所得结果输出即可.参考答案:解:把x=2代入程序中得:10﹣22=10﹣4=6>0,把x=6代入程序中得:10﹣62=10﹣36=﹣26<0,∴最后输出的结果是﹣26.故答案为:﹣26.点拨:本题借助程序框图考查了有理数的混合运算,读懂程序框图是解题的关键.13.(3分)加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=﹣0.2x2+1.5x﹣2,则最佳加工时间为 3.75 min.解析:根据二次函数的性质可得.参考答案:解:根据题意:y=﹣0.2x2+1.5x﹣2,当x=﹣=3.75时,y取得最大值,则最佳加工时间为3.75min.故答案为:3.75.点拨:本题主要考查二次函数的应用,利用二次函数的性质求最值问题是解题的关键.14.(3分)用一个圆心角为90°,半径为20cm的扇形纸片围成一个圆锥的侧面,这个圆锥的底面圆半径为5cm.解析:设这个圆锥的底面圆半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后解关于r的方程即可.参考答案:解:设这个圆锥的底面圆半径为r,根据题意得2πr=,解得r=5(cm).故答案为:5.点拨:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15.(3分)如图,正六边形A1A2A3A4A5A6内部有一个正五边形B1B2B3B4B5,且A3A4∥B3B4,直线l经过B2、B3,则直线l与A1A2的夹角α=48°.解析:设l交A1A2于E、交A4A3于D,由正六边形的性质得出∠A1A2A3=∠A2A3A4=120°,由正五边形的性质得出∠B2B3B4=108°,则∠B4B3D=72°,由平行线的性质得出∠EDA3=∠B4B3D=72°,再由四边形内角和即可得出答案.参考答案:解:设l交A1A2于E、交A4A3于D,如图所示:∵六边形A1A2A3A4A5A6是正六边形,六边形的内角和=(6﹣2)×180°=720°,∴∠A1A2A3=∠A2A3A4==120°,∵五边形B1B2B3B4B5是正五边形,五边形的内角和=(5﹣2)×180°=540°,∴∠B2B3B4==108°,∴∠B4B3D=180°﹣108°=72°,∵A3A4∥B3B4,∴∠EDA3=∠B4B3D=72°,∴α=∠CED=360°﹣∠A1A2A3﹣∠A2A3A4﹣∠EDA3=360°﹣120°﹣12﹣°﹣72°=48°,故答案为:48.点拨:本题考查了正六边形的性质、正五边形的性质、平行线的性质等知识;熟练掌握正六边形和正五边形的性质是解题的关键.16.(3分)如图,在平面直角坐标系xOy中,半径为2的⊙O与x 轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y=x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为2.解析:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.首先证明点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.求出MN,当点C与C′重合时,△C′DE的面积最小.参考答案:解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN 于C′.∵直线y=x﹣3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,﹣3),∴OD=4,OE=3,∴DE==5,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴=,∴=,∴MN=,当点C与C′重合时,△C′DE的面积最小,最小值=×5×(﹣1)=2,故答案为2.点拨:本题考查三角形的中位线定理,三角形的面积,一次函数的性质等知识,解题的关键是学会添加常用辅助线,构造三角形的中位线解决问题,属于中考常考题型.三、解答题(本大题共11小题,共102分.请在答题卡上指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤)17.(6分)计算(﹣1)2020+()﹣1﹣.解析:先计算乘方、负整数指数幂、立方根,再计算加减可得.参考答案:解:原式=1+5﹣4=2.点拨:本题主要考查实数的运算,解题的关键是掌握乘方的定义、负整数指数幂的规定及立方根的定义.18.(6分)解方程组解析:把组中的方程②直接代入①,用代入法求解即可.参考答案:解:把②代入①,得2(1﹣y)+4y=5,解得y=.把y=代入②,得x=﹣.∴原方程组的解为.点拨:本题考查了二元一次方程组的解法.掌握二元一次方程组的代入法是解决本题的关键.19.(6分)化简÷.解析:直接利用分式的性质进行化简进而得出答案.参考答案:解:原式=•=•=.点拨:此题主要考查了分式乘除运算,正确化简分式是解题关键.20.(8分)在世界环境日(6月5日),学校组织了保护环境知识测试,现从中随机抽取部分学生的成绩作为样本,按“优秀”“良好”“合格”“不合格”四个等级进行统计,绘制了如下尚不完整的统计图表.测试成绩统计表等级频数(人数)频率优秀30a良好b0.45合格240.20不合格120.10合计c1根据统计图表提供的信息,解答下列问题:(1)表中a=0.25,b=54,c=120;(2)补全条形统计图;(3)若该校有2400名学生参加了本次测试,估计测试成绩等级在良好以上(包括良好)的学生约有多少人?解析:(1)根据合格的频数和频率可以求得本次调查的人数,然后即可得到a、b、c的值;(2)根据(1)中b的值,可以将条形统计图补充完整;(3)根据频数分布表中的数据,可以计算出测试成绩等级在良好以上(包括良好)的学生约有多少人.参考答案:解:(1)本次抽取的学生有:24÷0.20=120(人),a=30÷120=0.25,b=120×0.45=54,c=120,故答案为:0.25,54,120;(2)由(1)知,b=54,补全的条形统计图如右图所示;(3)2400×(0.45+0.25)=1680(人),答:测试成绩等级在良好以上(包括良好)的学生约有1680人.点拨:本题考查条形统计图、频数分布表、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.(10分)从2021年起,江苏省高考采用“3+1+2”模式:“3”是指语文、数学、外语3科为必选科目,“1”是指在物理、历史2科中任选1科,“2”是指在化学、生物、思想政治、地理4科中任选2科.(1)若小丽在“1”中选择了历史,在“2”中已选择了地理,则她选择生物的概率是;(2)若小明在“1”中选择了物理,用画树状图的方法求他在“2”中选化学、生物的概率.解析:(1)在“2”中已选择了地理,从剩下的化学、生物,思想品德三科中选一科,可得选择生物的概率;(2)用树状图表示所有可能出现的结果数,进而求出相应的概率.参考答案:解:(1)在“2”中已选择了地理,从剩下的化学、生物,思想品德三科中选一科,因此选择生物的概率为;故答案为:;(2)用树状图表示所有可能出现的结果如下:共有12种可能出现的结果,其中选中“化学”“生物”的有2种,∴P(化学生物)==.点拨:本题考查树状图法求随机事件发生的概率,列举出所有可能出现的结果数是解决问题的关键.22.(10分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.解析:(1)证△MOD≌△NOB(AAS),得出OM=ON,由OB=OD,证出四边形BNDM是平行四边形,进而得出结论;(2)由菱形的性质得出BM=BN=DM=DN,OB=BD=12,OM=MN=5,由勾股定理得BM=13,即可得出答案.参考答案:(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM是平行四边形,∵MN⊥BD,∴四边形BNDM是菱形;(2)解:∵四边形BNDM是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,在Rt△BOM中,由勾股定理得:BM===13,∴菱形BNDM的周长=4BM=4×13=52.点拨:本题考查了菱形的判定与性质、平行四边形的判定与性质、全等三角形的判定与性质、勾股定理等知识;熟练掌握菱形的判定与性质,证明三角形全等是解题的关键.23.(10分)甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司共捐款100000元,乙公司共捐款140000元.下面是甲、乙两公司员工的一段对话:(1)甲、乙两公司各有多少人?(2)现甲、乙两公司共同使用这笔捐款购买A、B两种防疫物资,A种防疫物资每箱15000元,B种防疫物资每箱12000元.若购买B种防疫物资不少于10箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A、B两种防疫物资均需购买,并按整箱配送).解析:(1)设甲公司有x人,则乙公司有(x+30)人,根据乙公司的人均捐款数是甲公司的倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买A种防疫物资m箱,购买B种防疫物资n箱,根据总价=单价×数量,即可得出关于m,n的二元一次方程组,再结合n≥10且m,n均为正整数,即可得出各购买方案.参考答案:解:(1)设甲公司有x人,则乙公司有(x+30)人,依题意,得:×=,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+30=180.答:甲公司有150人,乙公司有180人.(2)设购买A种防疫物资m箱,购买B种防疫物资n箱,依题意,得:15000m+12000n=100000+140000,∴m=16﹣n.又∵n≥10,且m,n均为正整数,∴,,∴有2种购买方案,方案1:购买8箱A种防疫物资,10箱B种防疫物资;方案2:购买4箱A种防疫物资,15箱B种防疫物资.点拨:本题考查了分式方程的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出二元一次方程.24.(10分)如图,在平面直角坐标系xOy中,反比例函数y=(x >0)的图象经过点A(4,),点B在y轴的负半轴上,AB交x 轴于点C,C为线段AB的中点.(1)m=6,点C的坐标为(2,0);(2)若点D为线段AB上的一个动点,过点D作DE∥y轴,交反比例函数图象于点E,求△ODE面积的最大值.解析:(1)根据待定系数法即可求得m的值,根据A点的坐标即可求得C的坐标;(2)根据待定系数法求得直线AB的解析式,设出D、E的坐标,然后根据三角形面积公式得到S△ODE=﹣(x﹣1)2+,由二次函数的性质即可求得结论.参考答案:解:(1)∵反比例函数y=(x>0)的图象经过点A (4,),∴m==6,∵AB交x轴于点C,C为线段AB的中点.∴C(2,0);故答案为6,(2,0);(2)设直线AB的解析式为y=kx+b,把A(4,),C(2,0)代入得,解得,∴直线AB的解析式为y=x﹣;∵点D为线段AB上的一个动点,∴设D(x,x﹣)(0<x≤4),∵DE∥y轴,∴E(x,),∴S△ODE=x•(﹣x+)=﹣x2+x+3=﹣(x﹣1)2+,∴当x=1时,△ODE的面积的最大值为.点拨:本题考查了反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,二次函数的性质,根据三角形面积得到二次函数的解析式是解题的关键.25.(12分)筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水轮赋)中写道:“水能利物,轮乃曲成”.如图,半径为3m 的筒车⊙O按逆时针方向每分钟转圈,筒车与水面分别交于点A、B,筒车的轴心O距离水面的高度OC长为2.2m,筒车上均匀分布着若干个盛水筒.若以某个盛水筒P刚浮出水面时开始计算时间.(1)经过多长时间,盛水筒P首次到达最高点?(2)浮出水面3.4秒后,盛水筒P距离水面多高?(3)若接水槽MN所在直线是⊙O的切线,且与直线AB交于点M,MO=8m.求盛水筒P从最高点开始,至少经过多长时间恰好在直线MN上.(参考数据:cos43°=sin47°≈,sin16°=cos74°≈,sin22°=cos68°≈)解析:(1)如图1中,连接OA.求出∠AOC的度数,以及旋转速度即可解决问题.(2)如图2中,盛水筒P浮出水面3.4秒后,此时∠AOP=3.4×5°=17°,过点P作PD⊥OC于D,解直角三角形求出CD即可.(3)如图3中,连接OP,解直角三角形求出∠POM,∠COM,可得∠POH的度数即可解决问题.参考答案:解:(1)如图1中,连接OA.由题意,筒车每秒旋转360°×÷60=5°,在Rt△ACO中,cos∠AOC===.∴∠AOC=43°,∴=27.4(秒).答:经过27.4秒时间,盛水筒P首次到达最高点.(2)如图2中,盛水筒P浮出水面3.4秒后,此时∠AOP=3.4×5°=17°,∴∠POC=∠AOC+∠AOP=43°+17°=60°,过点P作PD⊥OC于D,在Rt△POD中,OD=OP•cos60°=3×=1.5(m),2.2﹣1.5=0.7(m),答:浮出水面3.4秒后,盛水筒P距离水面0.7m.(3)如图3中,∵点P在⊙O上,且MN与⊙O相切,∴当点P在MN上时,此时点P是切点,连接OP,则OP⊥MN,在Rt△OPM中,cos∠POM==,∴∠POM=68°,在Rt△COM中,cos∠COM===,∴∠COM=74°,∴∠POH=180°﹣∠POM﹣∠COM=180°﹣68°﹣74°=38°,∴需要的时间为=7.6(秒),答:盛水筒P从最高点开始,至少经过7.6秒恰好在直线MN上.点拨:本题考查解直角三角形的应用,切线的性质等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.26.(12分)在平面直角坐标系xOy中,把与x轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线L1:y=x2﹣x﹣2的顶点为D,交x轴于点A、B(点A在点B左侧),交y轴于点C.抛物线L2与L1是“共根抛物线”,其顶点为P.(1)若抛物线L2经过点(2,﹣12),求L2对应的函数表达式;(2)当BP﹣CP的值最大时,求点P的坐标;(3)设点Q是抛物线L1上的一个动点,且位于其对称轴的右侧.若△DPQ与△ABC相似,求其“共根抛物线”L2的顶点P的坐标.解析:(1)由题意设抛物线L2的解析式为y=a(x+1)(x﹣4),利用待定系数法求出a即可解决问题.(2)由题意BP=AP,如图1中,当A,C,P共线时,BP﹣PC 的值最大,此时点P为直线AC与直线x=的交点.(3)由题意,顶点D(,﹣),∠PDQ不可能是直角,第一种情形:当∠DPQ=90°时,①如图3﹣1中,当△QDP∽△ABC时.②如图3﹣2中,当△DQP∽△ABC时.第二种情形:当∠DQP=90°.①如图3﹣3中,当△PDQ∽△ABC时.②当△DPQ∽△ABC时,分别求解即可解决问题.参考答案:解:(1)当y=0时,x2﹣x﹣2=0,解得x=﹣1或4,∴A(﹣1,0),B(4,0),C(0,2),由题意设抛物线L2的解析式为y=a(x+1)(x﹣4),把(2,﹣12)代入y=a(x+1)(x﹣4),﹣12=﹣6a,解得a=2,∴抛物线的解析式为y=2(x+1)(x﹣4)=2x2﹣6x﹣8.(2)∵抛物线L2与L1是“共根抛物线”,A(﹣1,0),B(4,0),∴抛物线L1,L2的对称轴是直线x=,∴点P在直线x=上,∴BP=AP,如图1中,当A,C,P共线时,BP﹣PC的值最大,此时点P为直线AC与直线x=的交点,∵直线AC的解析式为y=﹣2x﹣2,∴P(,﹣5)(3)由题意,AB=5,CB=2,CA=,∴AB2=BC2+AC2,∴∠ACB=90°,CB=2CA,∵y=x2﹣x﹣2=(x﹣)2﹣,∴顶点D(,﹣),由题意,∠PDQ不可能是直角,第一种情形:当∠DPQ=90°时,①如图3﹣1中,当△QDP∽△ABC时,==,设Q(x,x2﹣x﹣2),则P(,x2﹣x﹣2),∴DP=x2﹣x﹣2﹣(﹣)=x2﹣x+,QP=x﹣,∵PD=2QP,∴2x﹣3=x2﹣x+,解得x=或(舍弃),∴P(,).②如图3﹣2中,当△DQP∽△ABC时,同法可得PQ=2PD,x﹣=x2﹣3x+,解得x=或(舍弃),∴P(,﹣).第二种情形:当∠DQP=90°.①如图3﹣3中,当△PDQ∽△ABC时,==,过点Q作QM⊥PD于M.则△QDM∽△PDQ,∴==,由图3﹣3可知,M(,),Q(,),∴MD=8,MQ=4,∴DQ=4,由=,可得PD=10,∵D(,﹣)∴P(,).②当△DPQ∽△ABC时,过点Q作QM⊥PD于M.同法可得M(,﹣),Q(,﹣),∴DM=,QM=1,QD=,由=,可得PD=,∴P(,﹣).点拨:本题属于二次函数综合题,考查了相似三角形的判定和性质,解直角三角形等知识,解题的关键是理解题意,学会用分类讨论的思想解决问题,属于中考压轴题.27.(12分)(1)如图1,点P为矩形ABCD对角线BD上一点,过点P作EF∥BC,分别交AB、CD于点E、F.若BE=2,PF=6,△AEP的面积为S1,△CFP的面积为S2,则S1+S2=12;(2)如图2,点P为▱ABCD内一点(点P不在BD上),点E、F、G、H分别为各边的中点.设四边形AEPH的面积为S1,四边形PFCG的面积为S2(其中S2>S1),求△PBD的面积(用含S1、S2的代数式表示);(3)如图3,点P为▱ABCD内一点(点P不在BD上),过点P 作EF∥AD,HG∥AB,与各边分别相交于点E、F、G、H.设四边形AEPH的面积为S1,四边形PGCF的面积为S2(其中S2>S1),求△PBD的面积(用含S1、S2的代数式表示);(4)如图4,点A、B、C、D把⊙O四等分.请你在圆内选一点P(点P不在AC、BD上),设PB、PC、围成的封闭图形的面积为S1,PA、PD、围成的封闭图形的面积为S2,△PBD的面积为S3,△PAC的面积为S4,根据你选的点P的位置,直接写出一个含有S1、S2、S3、S4的等式(写出一种情况即可).解析:(1)如图1中,求出△PFC的面积,证明△APE的面积=△PFC的面积即可.(2)如图2中,连接PA,PC,在△APB中,因为点E是AB的中点,可设S△APE=S△PBE=a,同理,S△APH=S△PDH=b,S△PDG=S△=S△PBF=d,证明S四边形AEPH+S四边形PFCG=S四边形PGC=c,S△PFC=S1+S2,推出S△ABD=S平行四边形ABCD=S1+S2,根PEBF+S四边形PHDG据S△PBD=S△ABD﹣(S1+S△PBE+S△PHD)=S1+S2﹣(S1+a+S1﹣a)=S2﹣S1.可得结论.(3)如图3中,由题意四边形EBGP,四边形HPFD都是平行四边形,利用平行四边形的性质求解即可.(4)分四种情形:如图4﹣1中,结论:S2﹣S1=S3+S4.设线段PB,线段PA,弧AB围成的封闭图形的面积为x,线段PC,线段PD,弧CD的封闭图形的面积为y.由题意:S1+x+S4=S1+y+S3,推出x﹣y=S3﹣S4,由题意S1+S2+x+y=2(S1+x+S4),可得S2﹣S1=x﹣y+2S4=S3+S4.其余情形同法可求.参考答案:解:(1)如图1中,过点P作PM⊥AD于M,交BC于N.∵四边形ABCD是矩形,EF∥BC,∴四边形AEPM,四边形MPFD,四边形BNPE,四边形PNCF都是矩形,∴BE=PN=CF=2,S△PFC=×PF×CF=6,S△AEP=S△APM,S△PEB=S△PBN,S△PDM=S△PFD,S△PCN=S△PCF,S△ABD=S△BCD,∴S矩形AEPM=S矩形PNCF,∴S1=S2=6,∴S1+S2=12,故答案为12.(2)如图2中,连接PA,PC,在△APB中,∵点E是AB的中点,∴可设S△APE=S△PBE=a,同理,S△APH=S△PDH=b,S△PDG=S△PGC=c,S△PFC=S△PBF=d,∴S四边形AEPH+S四边形PFCG=a+b+c+d,S四边形PEBF+S四边形PHDG=a+b+c+d,∴S四边形AEPH+S四边形PFCG=S四边形PEBF+S四边形PHDG=S1+S2,∴S△ABD=S平行四边形ABCD=S1+S2,∴S△PBD=S△ABD﹣(S1+S△PBE+S△PHD)=S1+S2﹣(S1+a+S1﹣a)=S2﹣S1.(3)如图3中,由题意四边形EBGP,四边形HPFD都是平行四边形,∴S四边形EBGP=2S△EBP,S四边形HPFD=2S△HPD,∴S△ABD=S平行四边形ABCD=(S1+S2+2S△EBP+2S△HPD)=(S1+S2)+S△EBP+S△HPD,∴S△PBD=S△ABD﹣(S1+S△EBP+S△HPD)=(S2﹣S1).(4)如图4﹣1中,结论:S2﹣S1=S3+S4.理由:设线段PB,线段PA,弧AB围成的封闭图形的面积为x,线段PC,线段PD,弧CD的封闭图形的面积为y.由题意:S1+x+S4=S1+y+S3,∴x﹣y=S3﹣S4,∵S1+S2+x+y=2(S1+x+S4),∴S2﹣S1=x﹣y+2S4=S3+S4.同法可证:图4﹣2中,有结论:S1﹣S=S3+S4.图4﹣3中和图4﹣4中,有结论:|S1﹣S2|=|S3﹣S4|.点拨:本题属于圆综合题,考查了矩形的性质,平行四边形的性质,圆的有关知识等知识,解题的关键是理解题意,学会利用参数解决问题,学会用分类讨的思想思考问题,属于中考压轴题.。
2020年江苏省连云港市中考数学试卷【含答案;word版本试题;可编辑】
1 / 132020年江苏省连云港市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1. 3的绝对值是( ) A.−3B.3C.√3D.132. 如图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是( )A. B. C. D.3. 下列计算正确的是( ) A.2x +3y =5xy B.(x +1)(x −2)=x 2−x −2 C.a 2⋅a 3=a 6D.(a −2)2=a 2−44. “红色小讲解员”演讲比赛中,7位评委分别给出某位选手的原始评分.评定该选手成绩时,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,这两组数据一定不变的是( ) A.中位数B.众数C.平均数D.方差5. 不等式组{2x −1≤3,x +1>2 的解集在数轴上表示为( )A.B.C.D.6. 如图,将矩形纸片ABCD 沿BE 折叠,使点A 落在对角线BD 上的A ′处.若∠DBC =24∘,则∠A ′EB 等于( )A.66∘B.60∘C.57∘D.48∘7. 10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,A 、B 、C 、D 、E 、O 均是正六边形的顶点.则点O 是下列哪个三角形的外心( )A.△AEDB.△ABDC.△BCDD.△ACD8. 快车从甲地驶往乙地,慢车从乙地驶往甲地,两车同时出发并且在同一条公路上匀速行驶.图中折线表示快、慢两车之间的路程y(km)与它们的行驶时间x(ℎ)之间的函数关系.小欣同学结合图象得出如下结论: ①快车途中停留了0.5ℎ;②快车速度比慢车速度多20km/ℎ; ③图中a =340; ④快车先到达目的地. 其中正确的是( )A.①③B.②③C.②④D.①④二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9. 我市某天的最高气温是4∘C,最低气温是−1∘C,则这天的日温差是________∘C.10. “我的连云港”APP是全市统一的城市综合移动应用服务端.一年来,实名注册用户超过1600000人.数据“1 600 000”用科学记数法表示为________.11. 如图,将5个大小相同的正方形置于平面直角坐标系中,若顶点M、N的坐标分别为(3, 9)、(12, 9),则顶点A的坐标为________.12. 按照如图所示的计算程序,若x=2,则输出的结果是________.13. 加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=−0.2x2+1.5x−2,则最佳加工时间为 3.75min.14. 用一个圆心角为90∘,半径为20cm的扇形纸片围成一个圆锥的侧面,这个圆锥的底面圆半径为5cm.15. 如图,正六边形A1A2A3A4A5A6内部有一个正五边形B1B2B3B4B5,且A3A4 // B3B4,直线l经过B2、B3,则直线l与A1A2的夹角α=________∘.16. 如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B 是⊙O上一动点,点C为弦AB的中点,直线y=34x−3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为________.三、解答题(本大题共11小题,共102分.请在答题卡上指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤)17. 计算(−1)2020+(15)−1−√643.2 / 13。
2020年江苏省连云港市中考数学试题附解析
2020年江苏省连云港市中考数学试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,梯子(长度不变)跟地面所成的锐角为A ,关于A ∠的三角函数值与梯子的倾斜程度之间,叙述正确的是( )A .sin A 的值越大,梯子越陡B .cos A 的值越大,梯子越陡C .tan A 的值越小,梯子越陡D .陡缓程度与A ∠的函数值无关 2.如图所示的两同心圆中,大圆的半径 OA 、OB 、oO 、OD 分别交小圆于E 、F 、G 、H , ∠AOB =∠GOH ,则下列结论错误的是( )A .EF=GHB .⌒EF = ⌒GHC .∠AOG=∠BOD D . ⌒AB =⌒GH 3.若∠AOB=50°,∠BOC=20°,则∠AOC 的度数是 ( )A .30°B .70°C .30°或 70°D .100° 4.下列说法:①代数式21a +的值永远是正的;②代数式2a b +中的字母可以是任何数;③代数式2a b +只代表一个值;④代数式2x x-中字母x 可以是 0 以外的任何数. 其中正确的有( ) A .1 个 B .2 个 C .3 个 D .4 个二、填空题5.右图是某物体的三视图,那么物体形状是 .6.王浩在 A 处的影子为AB ,AB=lm ,A 到电线杆的距离AO=2m ,王浩从A 点出发绕0点转一圈(以 OA 为半径),如图所示,则王浩的影子“扫”过的面积为 m 2.7.小明将一把钥匙放进自己家中的抽屉中,他记不清到底放进三个抽屉中的哪个抽屉里了,那么他一次选对的抽屉的概率是 .8.两名同学玩“石头、剪刀、布”的游戏,如果两人都是等可能性地出石头、剪刀、布三个策略,那么一个回合就能决 胜负的概率是 . 9.若582=+b b a ,则ba =_______________. 10.如图,已知△ACP ∽△ABC ,AC = 4,AB = 2,则AP 的长为 .11.如图,DE ∥AC ,BE :EC=2:1,AC=12,则DE= . 12.已知⊙O 的半径为5㎝,弦AB 的长为8㎝,则圆心O 到AB 的距离为 ㎝.13.已知二次函数y =x 2-2x -3的图象与x 轴交于A,B 两点,在x 轴上方的抛物线上有一点C,且△ABC 的面积等于10,则点C 的坐标为_________________.(4,5)或(-2,5)14.若反比例函数1y x=-的图象上有两点A (1,y 1),B (2,y 2),则y 1______ y 2(填“>”或“=”或“<”). 15.如图,一张矩形纸片沿BC 折叠;顶点A 落在A ′处,第二次过A ′再折叠,使折痕 DE ∥BC ,若AB=2,AC=3,则梯形BDEC 的面积为 .16.如图,将一副三角板折叠放在一起,使直角的顶点重合于点O ,则AOC DOB ∠+∠= .17.某音像社对外出租光盘的收费方法是:每张光盘在租出后的前两天每天收0.8元,以后每天收0.5元.若一张光盘租出n 天(n 是大于2的自然数),应收租金 元.18.2007(1)-= ,20070= ,4(0.1)-= .三、解答题19.一口袋中装有四根长度分别为1cm ,3cm ,4cm 和5cm 的细木棒,小明手中有一根长度为3cm 的细木棒,现随机从袋内取出两根细木棒与小明手中的细木棒放在一起,回答下列问题:(1)求这三根细木棒能构成三角形的概率;(2)求这三根细木棒能构成直角三角形的概率;(3)求这三根细木棒能构成等腰三角形的概率.20.如图,画出下列立体图形的俯视图.21.如图,花丛中有一路灯灯杆 AB,在灯光下,小明在D点处的影长 DE= 3m,沿 BD 方向行走到达G点,DG= 5m,这时小明的影长GH= 5m .如果小明的身高为 1.7m,求路灯灯杆AB 的高度(精确到0.1 m).22.有分别写着 1、2、3、4、5、6 中一个数字的 6张卡片,求下列各事件的概率.(1)从中任抽一张,上面的数是 3 的倍数;(2)从中任抽两张,上面的两个数的轵是奇数;(3)从中任抽两张,上面的两个数的和是 6.23.巳知直线y=kx+b经过点A(3,0),且与抛物线y=ax2相交于B(2,2)和C两点.(1)求直线和抛物线的函数解析式,并确定点C的坐标;(2)在同一直角坐标系内画出直线和抛物线的图象;(3)若抛物线上的点D,满足S△OBD=2S△OAD,求点D的坐标.24.已知点A(8,0),点P是第一象限内的点,P的坐标为(x,y),且2x+y=10,设△OPA的面积为S,求S与x之间的函数解析式,并求当x=3时,S的值.25.“一方有难,八方支援”.四川汶川大地震牵动着全国人民的心,我市某医院准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士支援汶川.(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果;(2)求恰好选中医生甲和护士A的概率.26.如图,已知BE=CF,AB=CD,∠B=∠C,则AF=DE吗?请说明理由.27.用七巧板可以拼出许多独特且有意义的图案,如图是用七巧板拼出的航天飞机图案,请你用七巧板再设计一个图案,并写上一句贴切、诙谐的解说词.28.小张把压岁钱按定期一年存入银行,当时一年定期存款的年利率为1.98%,利息税的税率为20%,到期支取时,扣除利息税后,小明实得本利和为l015.84元,问小明存入银行的压岁钱有多少元?29.利用计算器,按如图流程操作:(1)若首次输入的正奇数为ll,则按流程图操作的变化过程,可表示为:ll→17→13→5→1.请用类似的方法分别表示首次输入的正奇数为9、19时,按流程图操作的变化过程;(2)自己选几个正奇数按流程图操作,并写出变化过程,看看是否有同样的结果;(3)根据你的操作结果,给出一个猜想,并清楚地叙述你的猜想.30.用代数式表示图中阴影部分的面积,并计算 x=10,y=14时的面积.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.D3.C4.B二、填空题5.圆柱6.5π 7.138. 239. 52- 10. 811.812.313.14.<15.916.180°17.0.50.6n+18.-1,0,0.0001三、解答题19.解:用枚举法或列表法,可求出从四根细木棒中取两根细木棒的所有可能情况共有6种.枚举法:(1,3)、(1,4)、(1,5)、(3,4)、(3,5)、(4,5)共有6种.(1)P(构成三角形)=4263=; (2)P(构成直角三角形)=16;(3)P(构成等腰三角形)=36=12.20.21.设 AB=x, BD=y,△ABE中,CD∥AB,∴1.733x y=+△ABH中,∵FG∥AB,∴1.7510x y=+,解得 x=5.95()即路灯杆 AB 的高度约为 6.0 m.22.(1)3 的倍数是3、6,∴2163P⋅== (2)∴积是奇数只有6种,61305P == (3)和是6 只有4种,423015P ==. 23.(1) y =-2x +6, y =12x 2,C(-6,18); (2)略;(3)D 1(-1, 12 ),D 2 (12 ,18). 24.(1)S=40-8x(O<x<5);(2)1625.解:(1)用列表法或树状图表示所有可能结果如下: ① 列表法 ②树状图(2)P (恰好选中医生甲和护士A )=16 26. 利用SAS 说明△ABF ≌△DCE 27.略 28.1000元29.(1) 9→7→11→17→13→5→1 19→29→11→17 →13→5→1(2)略 (3)猜想:任何正奇数按流程图操作,最终变成 1. 30.19()2y y x --;12 A B 甲(甲,A) (甲,B) 乙(乙,A) (乙,B) 丙(丙,A) (丙,B) 护 士 医 生。
2020年江苏省连云港市中考数学试卷A卷附解析
2020年江苏省连云港市中考数学试卷A 卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,两个转盘进行“配紫色”游戏,配得紫色的概率是( ) A .14B .17C .18D .1162.如图,△ABC 中,D 为AC 边上一点,DE ⊥BC 于E ,若AD=2DC ,AB=4DE ,则sinB 的值为( ) A .21 B .37 C .773 D .43 3.如图,为了绿化环境,在矩形空地的四个角划出四个半径为1•的扇形空地进行绿化,则绿化的总面积是( ) A .2π B .π C .2π D .4π4.二次函数2()(0)y a x m m a =++≠,无论m 取什么实数,图象的顶点必在( ) A . 直线y=x 上 B .直线y= 一x 上 C . x 轴上 D .y 轴上 5.一个正方形的对称轴共有( )A .1条B .2条C .4条D .无数条6.如图,△ABC 为正三角形,∠ABC ,∠ACB 的平分线相交于点0,OE ∥AB 交BC 于点E ,OF ∥AC 交BC 于点F ,图中等腰三角形共有 ( ) A .6个B .5个C .4个D .3个7.直三棱柱、多面体和棱柱之间的包含关系,可以用图形表示为()A.B.C. D.8.下列说法中,错误的是()A.等边三角形是特殊的等腰三角形B.等腰三角形底边上的中线是等腰三角形的对称铀C.有一个角为 45°的直角三角形是等腰直角三角形D.等腰三角形的顶角可以是锐角、直角或钝角9.我们知道,等腰三角形是轴对称图形,下列说法中,正确的是()A.等腰三角形顶角的平分线所在的直线是它的对称轴B.等腰三角形底边上的中线所在的直线是它的对称轴C.等腰三角形底边上的高线所在的直线是它的对称轴D.以上都对10.在△ABC中,∠A=1O5°,∠B-∠C=15°,则∠C的度数为()A. 35°B.60°C.45°D.30°11.将一圆形纸片对折后再对折,得到右图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()A B C D12.如图,由△ABC平移而得的三角形有()A. 8个B. 9个C. 10个D. 16个13.在一个袋子里,装有 6 个红球,3 个白球和3 个黑球,每个球除颜色外都相同,任意摸出一个球,被摸到的可能性最大的球是()A.红球B.白球C.黑球D.无法确定14.下列计算正确的是()A.(2|2--=-=+D.|5|5 --=B.(3)3--=-C.|4|4二、填空题15.直角三角形的两条直角边长分别为 3cm 和4 cm,则它的外接圆半径是 cm,内切圆半径是 cm.16.如图,已知△ACP∽△ABC,AC = 4,AB = 2,则AP的长为.17.P(2,a),Q(b,-3)关于x轴对称,则a= ,b= .18.一项工作甲、乙单独做各需a天、2a天,若两人合作,则需要天.19.将下列代数式按要求分类:a,1x,15,223xx--,239x y+,213xx+,234a bπ.整式:;分式:.20.某市房产开发公司向中国建设银行贷年利率分别为 6% 和 8% 的甲、乙两种款共 500万元,一年后利息共 34 万元. 求两种贷款的数额各是多少?设甲、乙两种贷款分别为x万元,y 万元,根据题意可得方程组:.解答题21.如图所示,已知AB=DE,BE=CF,AC=DF.请说明∠A=∠D的理由,并完成说理过程.解:∵BE=CF( ).∴BE+EC=CF+ ,即 = .在△ABC与△DEF中,AB=DE( ),= (已证), = (已知),∴△ABC≌△DEF( ).∴∠A=∠D( ).22.把编号为 1、2、3、4、…的若干盆花按如图所示摆放,花盆中的花按红、黄、蓝、紫的颜色依次循环排列,则第8行从左边数第 6盆花的颜色为色.23.关于x的方程22220x ax a b++-=的根为.三、解答题24.下面三张卡片上分别写有一个整式,把它们背面朝上洗匀,小明闭上眼睛,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张.第一次抽取的卡片上的整式做分子,第二次抽取的卡片上的整式做分母,用列表法或树形图法求能组成分式的概率是多少?25.若关于x的不式组22321x mx m->⎧⎨-<-⎩无解, 求m的取值范围.26.如图,A、F、C、D四点在一条直线上,AF=CD,∠D =∠A,且AB=DE,试说明BC=EF的理由.27.如图,请你用三种方法把左边的小正方形分别平移到右边的三个图形中,使它成为轴对称图形.28.在一幅比例尺为l:9000000的位置图上,高雄市到基隆市的距离是35 mm,则高雄市到基隆市的距离是多少km?29.如图所示,一张三个内角都相等的三角形纸片ABC,∠CBP=20°(图①).现将纸片沿射线BP折叠成图②的形状,BP交AC于点E,BC′交AC于点D.求图②中∠ADC′,∠AEC′的度数.30.某种子培育基地用A ,B ,C ,D 四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C 型号种子的发芽率为95%,根据实验数据绘制了图1和图2两幅尚不完整的统计图. (1)D 型号种子的粒数是 ; (2)请你将图2的统计图补充完整;(3)通过计算说明,应选哪一个型号的种子进行推广.A 35%B 20%C 20%D各型号种子数的百分比图1图2A B C D 型号800 600400 200630 370 470发芽数/粒【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.B4.B5.C6.B7.A8.B9.D10.D11.C12.B13.A14.D二、填空题 15. 2.5,116.817.3,218.32a19. a ,15,239x y +,234a b π;1x ,223x x --,213xx +20.5006%8%34x y x y +=⎧⎨+=⎩21. 已知,EC ,BC ,EF ,已知,BC ,EF ,AC ,DF ,SSS ,全等三角形对应角相等22.黄23.a b -+或a b --三、解答题 24.解:树形图:第一张卡片上的整式 x 1x - 2第二张卡片上的整式 1x - 2 x 2 x 1x - 所有可能出现的结果1x x - 2x 1x x - 12x - 2x 21x -∴P(能组成分式)42 63 ==.25.由题意,得22123m m+-≥,∴m≤8.26.因为 AF=CD,所以AF+FC=CD+FC ,即AC=DF.因为∠D=∠A,且AB =DE,所以△ABC ≌△DEF,所以BC = EF27.如图:28.315 km29.∠ADC′=80°,∠AEC′=20°30.解:(1)500;(2)如图;(3)A型号发芽率为90%,B型号发芽率为92.5%,D型号发芽率为94%,C型号发芽率为95%.∴应选C型号的种子进行推广.800600400200630370470发芽数/粒380。
2020年江苏省连云港市中考数学试卷及答案
A.
B.
C.
D.
3. 下列计算正确的是( ).
A. 2x 3y 5xy
B. (x 1)(x 2) x2 x 2
C. a2 a3 a6
D. (a 2)2 a2 4
4. “红色小讲解员”演讲比赛中,7 位评委分别给出某位选手的原始评分.评定该选手成绩时,从 7 个原始 评分中去掉一个最高分、一个最低分,得到 5 个有效评分.5 个有效评分与 7 个原始评分相比,这两组数据 一定不变的是( ).
最大值.
25. 筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水轮赋》中写道:“水能利物,轮乃曲成”.如
图,半径为
3
m
的筒车
O
按逆时针方向每分钟转
5 6
圈,筒车与水面分别交于点
A
、
B
,筒车的轴心
O
距
离水面的高度 OC 长为 2.2 m ,简车上均匀分布着若干个盛水筒.若以某个盛水筒 P 刚浮出水面时开始计
其中正确的是( )
②快车速度比慢车速度多 20km/ h ;
④快车先到达目的地.
A. ①③
B. ②③
C. ②④
D. ①④
二、填空题(本大题共有 8 小题,每小题 3 分,共 24 分.不需写出解答过程,请把答案直接 填写在答题卡相应位置上)
9. 我市某天的最高气温是 4℃,最低气温是 1℃,则这天的日温差是________℃.
等级
频数(人数) 频率
优秀
30
a
良好
b
0.45
合格
24
0.20
不合格 12
0.10
合计
c
1
根据统计图表提供的信息,解答下列问题:
2020年江苏省连云港市中考数学试题(解析版)
连云港市2020年高中段学校招生统一文化考试数 学 试 题说明:1本卷共四大题,27小题,全卷满分120分,考试时间为150分钟。
2,本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分。
(请考生在答题卡上作答)注意事项:1.考试时间为120分钟.本试卷共6页,28题.全卷满分150分. 2.请在答题卡上规定区域内作答,在其他位置作答一律无效.3.答题前,请考生务必将自己的姓名、准考证号和座位号用0.5毫米黑色墨水签字笔填写在答题卡及试题指定位置,并认真核对条形码上的姓名及考试号.4.选择题答案必须用2B 铅笔填涂在答题卡的相应位置上,如需改动,用橡皮擦干净后再重新填涂.参考公式:抛物线y =ax 2+bx +c ( a ≠0 )的顶点坐标为(—b 2a ,4ac —b 24a ).一、选择题(本大题共有8个小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选择项前的字母代号填涂在答题卡相应位置.......上) 1.2的相反数是A .2B .-2C . 2D .12A .2B .-2C . 2D .12【答案】B 。
【考点】相反数。
【分析】根据相反数意义,直接求出结果。
2.a 2·a 3等于A .a 5B .a 6C .a 8D .a 9 【答案】A 。
【考点】指数乘法运算法则。
【分析】根据指数乘法运算法则,直接求出结果:23235a a a a a +⋅==。
3.计算 (x +2) 2的结果为x 2+□x +4,则“□”中的数为A .-2B .2C .-4D .4 【答案】D 。
【考点】完全平方公式。
【分析】根据完全平方公式,直接求出结果。
4.关于反比例函数y =4x图象,下列说法正确的是A .必经过点(1,1)B .两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D .两个分支关于原点成中心对称 【答案】D 。
2020年江苏省连云港中考数学试卷-答案
2020年江苏省连云港市初中学业水平考试数学答案解析一、 1.【答案】B【解析】3的绝对值是3.故选:B . 【考点】绝对值的定义 2.【答案】D【解析】从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为D . 【考点】三视图的知识 3.【答案】B【解析】A 、2x 与3y 不是同类项不能合并运算,故错误;B 、多项式乘以多项式,运算正确;C 、同底数幂相乘,底数不变,指数相加,235a a a ⋅=,故错误;D 、完全平方公式,22(2)44a a a -=-+,故错误.故选:B .【考点】合并同类项,同底数幂相乘,多项式乘以多项式,完全平方公式 4.【答案】A【解析】根据题意,从7个原始评分中去掉1个最高分、1个最低分,得到5个有效评分,7个有效评分与5个原始评分相比,最中间的一个数不变,即中位数不变.故选:A . 【考点】中位数的定义 5.【答案】C 【解析】解:21312x x -≤⎧⎨+>⎩①②,解不等式得2x ≤,解不等式得1x >,故不等式的解集为12x <≤,在数轴上表示如图:,故选C .【考点】不等式组的求解 6.【答案】C 【解析】四边形ABCD 是矩形,90ABC ︒∴=△,,9066ABD DBC ︒︒∴=∠=△,将矩形纸片ABCD 沿BE 折叠,使点A 落在对角线BD 上的A '处,1332EBA ABD '︒∴==△△,9057A EB EBA '︒'︒∴∠=-=△,故选C .【考点】矩形内的角度求解 7.【答案】D【解析】因为三角形的外心到三角形的三个顶点的距离相等,所以由正六边形性质可知,点O 到,,,,A B C D E 的距离中,只有OA OC OD ==.故选:D .【考点】三角形外心的性质 8.【答案】B【解析】当 2 h t =时,表示两车相遇,2-2.5时表示两车都在休息,没有前进,2.5-3.6时,其中一车行驶,其速度88080 km /h 3.6 2.5-=-,设另一车的速度为x ,依题意得()280360x +=,解得100 km / h x =,故快车途中停留了3.62 1.6 h -=,①错误;快车速度比慢车速度多20km/h ,②正确; 5 h t =时,慢车行驶的路程为(50.5)80360 km -⨯=,即得到目的地,比快车先到,故①错误;5 h t =时,快车行驶的路程为(5 1.6)100340 km -⨯=,故两车相距340 m ,故②正确;故选B .【考点】一次函数的应用 二、 9.【答案】5【解析】解:根据题意得:415--=().故答案为:5. 【考点】有理数减法10.【答案】61.610⨯【解析】1 600 000用科学记数法表示应为:61.610⨯,故答案为:61.610⨯. 【考点】科学记数法的表示方法 11.【答案】()15,3【解析】解:设正方形的边长为a ,则由题设条件可知:3123a =-,解得:3a =.∴点A 的横坐标为:12315+=,点A 的纵坐标为:9323-⨯=,故点A 的坐标为(15,3).故答案为:(15,3).【考点】平面直角坐标系 12.【答案】26-【解析】解:当2x =时,2210=10260x --=>,故执行“否”,返回重新计算,当6x =时,2210=106260x --=-<,执行“是”,输出结果:26-.故答案为:26-.【考点】代数式求值、有理数的混合运算 13.【答案】3.75 【解析】解:20.2 1.52y x x =-+-的对称轴为 1.53.75(min)22(0.2)b x a =-=-=⨯-,故:最佳加工时间为3.75 min ,故答案为:3.75. 【考点】二次函数性质的应用 14.【答案】5的【解析】设这个圆锥的底面圆的半径为 cm R ,由题意,9020=2180R ππ⨯,解得: 5 cm R =.故答案为:5.【考点】圆锥的侧面展开图 15.【答案】48 【解析】多边形123456A A A A A A 是正六边形,多边形12345B B B B B 是正五边形,123234234180(62)180(52)120,10865A A A A A A B B B ︒︒︒︒⨯-⨯-∴∠=∠==∠==.3434A A B B ∥,34234108B MA B B B ︒∴∠=∠=,3318010872B MA ︒︒︒∴∠=-=,22123234333603601201207248A NB A A A A A A A MB α∠=∠=︒-∠-∠-∠=︒-︒-︒-︒=︒,故答案为:48.【考点】正多边形内角的求法,平行线的性质定理 16.【答案】2 【解析】如图,点B 是O 上一动点,点C 为弦AB 的中点,C ∴点的运动轨迹是以()1,0F 为圆心、半径为1的圆,过F 点作AH DE ⊥,交F 于点'C ,直线DE 的解析式为334y x =-,令0x =,得3y =-,故()03E -,,令0y =,得4x =,故()4,0D ,3OE ∴=,4OD =,5DE ==,∴设FH 的解析式为43y x b =-+,把()1,0F 代入43y x b =-+得4 03b =-+,解得43b =,FH ∴的解析式为4433y x =-+,联立3344433y x y ⎧=-⎪⎪⎨⎪=-+⎪⎩,解得52253625x y ⎧=⎪⎪⎨⎪=-⎪⎩,故5236,2525H ⎛⎫- ⎪⎝⎭,95FH ∴==,94C H 155'∴=-=,故此时CDE △面积114'52225=DE C H=⨯⨯⨯=,故答案为:2.【考点】圆的综合问题 三、17.【答案】解:原式1542=+-=.【解析】先根据乘方运算、负整数指数幂、开方运算进行化简,再计算加减即可.具体解题过程参照答案. 【考点】运算 18.【答案】解:2451x y x y +=⎧⎨=-⎩①②,将②代入①中得2(1)45y y -+=.解得32y =.将32y =代入②,得12x =-.所以原方程组的解为1232x y ⎧=-⎪⎪⎨⎪=⎪⎩.【解析】根据题意选择用代入法解答即可.具体解题过程参照答案. 【考点】二元一次方程组 19.【答案】解:原式23(3)1(1)a a a a a ++=÷-- 23(1)1(3)a a a a a +-=⋅-+, 1aa-=. 【解析】首先把分子分母分解因式,把除法变为乘法,然后再约分后相乘即可.具体解题过程参照答案. 【考点】分式的乘除法 20.【答案】(1)0.25 54 120(2)如下图:(3)测试成绩等级在良好以上(包括良好)的学生()24000.250.451680=⨯+=(人).答:测试成绩等级在良好以上(包括良好)的学生约有1680人. 【解析】(1)依据频率=频数总数,先用不合格的人数除以不合格的频率即可得到总频数(人数)c ,再依次求出a 、b .样本的总频数(人数)=120.1=120c ÷(人),其中:“优秀”等次的频率30==0.25120a ,“良好”等次的频数=1200.45=54b ⨯(人).故答案为:0.25,54,120; (2)根据(1)良好人数即可补全条形统计图.(3)全校2400名乘以“优秀”和“良好”两个等级的频率和即可得到结论.具体解题过程参照答案. 【考点】频率统计表,条形统计图 21.【答案】(1)13(2)列出树状图如图所示:由图可知,共有12种可能结果,其中选化学、生物的有2种,所以,P (选化学、生物)21126==.答:小明同学选化学、生物的概率是16. 【解析】(1)小丽在“2”中已经选择了地理,还需要从剩下三科中进行选择一科生物,根据概率公式计算即可.(2)小明在“1”中已经选择了物理,可直接根据画树状图判断在4科中选择化学,生物可能情况有2种,再根据一共有12种情况,通过概率公式求出答案即可. 【考点】等可能概率事件 22.【答案】(1)AD BC ∥,CBD ADB ∴∠=∠.MN 是对角线BD 的垂直平分线,OB OD ∴=,MB MD =.在BON △和DOM △中,CBD ADB OB ODBON DOM ∠=∠⎧⎪=⎨⎪∠=∠⎩,()BON DOM ASA ∴△≌△,MD NB ∴=,∴四边形BNDM 为平行四边形.又MB MD =,∴四边形BNDM 为菱形.(2)四边形BNDM 为菱形,24BD =,10MN =.1190,12,522BOM OB BD OM MN ︒∴∠=====.在Rt BOM △中,13BM ===.∴菱形BNDM周长441352BM ==⨯=.【解析】(1)先证明BON DOM ≌△△,得到四边形BNDM 为平行四边形,再根据菱形定义证明即可.具体解题过程参照答案.(2)先根据菱形性质求出OB OM 、、再根据勾股定理求出BM ,问题得解.具体解题过程参照答案. 【考点】菱形判定与性质定理23.【答案】(1)设乙公司有x 人,则甲公司有(30)x -人,由题意得1000007140000306 x x⨯=-,解得180x =.经检验,180x =是原方程的解.30150x ∴-=.答:甲公司有150人,乙公司有180人.(2)设购买A 种防疫物资m 箱,购买B 种防疫物资n 箱,由题意得1500012000100000140000 m n +=+,整理得4165m n =-.又因为10n ≥,且m 、n 为正整数,所以810m n =⎧⎨=⎩,415m n =⎧⎨=⎩.答:有2种购买方案:购买8箱A 种防疫物资、10箱B 种防疫物资,或购买4箱A 种防疫物资、15箱B 种防疫物资.【解析】(1)设乙公司有x 人,则甲公司有(30)x -人,根据对话,即可得出关于x 的分式方程,解之经检验后即可得出结论,具体解题过程参照答案.(2)设购买A 种防疫物资m 箱,购买B 种防疫物资n 箱,根据甲公司共捐款100 000元,公司共捐款140 000元.列出方程,求解出4165m n =-,根据整数解,约束出m n 、的值,即可得出方案.具体解题过程参照答案.【考点】分式方程的应用,方案问题,二元一次方程整数解问题 24.【答案】(1)6(2,0)(2)设直线AB 对应的函数表达式为y kx b =+.将34,2A ⎛⎫⎪⎝⎭,(2,0)C 代入得34220k b k b ⎧+=⎪⎨⎪+=⎩,解的3432k b ⎧=⎪⎪⎨⎪=-⎪⎩.所以直线AB 对应的函数表达式为3342y x =-.因为点D 在线段AB 上,可设33,(04)42D a a a ⎛⎫- ⎪⎝⎭<≤,因为//DE y 轴,交反比例函数图像于点E .所以6,E a a ⎛⎫ ⎪⎝⎭.所以221633333273(1)2428488ODE S a a a a a a ⎛⎫=⋅⋅-+=-++=--+ ⎪⎝⎭△.所以当1a =时,ODE △面积的最大值为278. 【解析】(1)把点34,2A ⎛⎫ ⎪⎝⎭代入反比例函数(0)m y x x=>,得:324m=,解得:6m =,A 点横坐标为:4,B 点横坐标为0,故C 点横坐标为:4022+=,故答案为:6,(2,0). (2)由AC 两点坐标求出直线AB 的解析式为3342y x =-,设D 坐标为33,(04)42D a a a ⎛⎫- ⎪⎝⎭<≤,则6,E a a ⎛⎫⎪⎝⎭,进而得到2327(1)88ODE S a =--+△,即可解答.具体解题过程参照答案.【考点】函数与几何综合25.【答案】(1)如图1,由题意得,筒车每秒旋转53606056︒︒⨯÷=.连接OA ,在Rt ACO △中,2.211cos 315OC AOC OA ∠===,所以43AOC ︒∠=.所以1804327.45-=(秒).答:盛水筒P 首次到达最高点所需时间为27.4秒.(2)如图2,盛水筒P 浮出水面3.4秒后,此时 3.4517AOP ︒︒∠=⨯=.所以431760POC AOC AOP ︒︒︒∠=∠+∠=+=.过点P 作PD OC ⊥,垂足为D ,在Rt POD △中,1cos603 1.52OD OP ︒=⋅=⨯=.2.2 1.50.7-=.答:此时盛水筒P 距离水面的高度0.7m . (3)如图3,因为点P 在O 上,且MN 与O 相切,所以当P 在直线MN 上时,此时P是切点.连接OP ,所以OP MN ⊥.在Rt OPM △中,3cos 8OP POM OM ∠==,所以68POM ︒∠=.在Rt OCM △中, 2.211cos 840OC COM OM ∠===,所以74COM ︒∠=.所以180180687438POH POM COM ︒︒︒︒︒∠=-∠-∠=--=.所以需要的时间为387.65=(秒).答:从最高点开始运动,7.6秒后盛水筒P 恰好在直线MN 上.【解析】(1)先根据筒车筒车每分钟旋转的速度计算出筒车每秒旋转的速度,再利用三角函数确定43AOC ︒∠=,最后再计算出所求时间即可.具体解题过程参照答案.(2)先根据时间和速度计算出AOP ∠,进而得出POC ∠,最后利用三角函数计算出OD ,从而得到盛水筒P 距离水面的高度.具体解题过程参照答案.(3)先确定当P 在直线MN 上时,此时P 是切点,再利用三角函数得到68POM ︒∠=,74COM ︒∠=,从而计算出38POH ︒∠=,最后再计算出时间即可.具体解题过程参照答案.【考点】切线的性质,锐角三角函数,旋转 26.【答案】解:(1)当0y =时,2132022x x --=,解得11x =-,24x =.()()()1,04,00,2A B C ∴--、、.由题意得,设2L 对应的函数表达式为(1)(4)y a x x =+-,又2L 经过点(2,12)-,12(21)(24)a =+-∴-,2a =,2L ∴对应的函数表达式为22(1)(4)268y x x x x =+-=--.(2)12L L 、与x 轴交点均为(1,0)A -、(4,0)B ,12L L ∴、的对称轴都是直线32x =.点P 在直线32x =上.BP AP ∴=.如图1,当A 、C 、P 三点共线时,BP CP -的值最大,此时点P 为直线AC 与直线32x =的交点.由(1,0)A -、(0,2)C -可求得,直线AC 对应的函数表达式为22y x =--.∴点3,52P ⎛⎫- ⎪⎝⎭.(3)由题意可得,5AB =,CB =CA =ABC △中,222AB BC AC =+,故90,2ACB CB CA ︒∠==.由22131325222228y x x x ⎛⎫=--=-- ⎪⎝⎭,得顶点325,28D ⎛⎫- ⎪⎝⎭.因为2L 的顶点P 在直线32x =上,点Q 在1L 上,PDQ ∴∠不可能是直角.第一种情况:当90DPQ ︒∠=时,如图2,当QDP ABC △∽△时,则得12QP AC DP BC ==.设213,222Q x x x ⎛⎫-- ⎪⎝⎭,则2313,2222P x x ⎛⎫-- ⎪⎝⎭,2213251392228228DP x x x x ⎛⎫⎛⎫∴=----=-+ ⎪ ⎪⎝⎭⎝⎭,32QP x =-.由12QP DP =得213923228x x x -=-+,解得12113,22x x ==.32x =时,点Q 与点P 重合,不符合题意,∴舍去,此时339,28P ⎛⎫⎪⎝⎭.如图3,当DQP ABC △∽△时,则得12DP AC QP BC ==.设213,222Q x x x ⎛⎫-- ⎪⎝⎭,则2313,2222P x x ⎛⎫--⎪⎝⎭.2213251392228228DP x x x x ⎛⎫⎛⎫∴=----=-+ ⎪ ⎪⎝⎭⎝⎭,32QP x =-.由12DP QP =得239324x x x -=-+,解得1253,22x x ==(舍),此时321,28P ⎛⎫- ⎪⎝⎭.第二种情况:当90DQP ︒∠=时,如图4,当PDQ ABC △∽△时,则得12PQ AC DQ BC ==.过Q 作QM PD ⊥交对称轴于点M ,QDM PDQ △∽△.12QM PQ DM DQ ∴==.由图2可知3391139,,,2828M Q ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,8,4MD MQ ==.QD ∴=QD PD DM DQ =,代入得10PD =.点325,28D ⎛⎫- ⎪⎝⎭,∴点355,28P ⎛⎫⎪⎝⎭.如图5,当DPQ ABC △∽△时,则12DQ AC PQ BC ==.过Q 作QM PD ⊥交对称轴于点M ,QDM PDQ △∽△,则2QM PQ DM DQ ==.由图3可知321,28M ⎛⎫- ⎪⎝⎭,521,28Q ⎛⎫- ⎪⎝⎭,12MD =,1MQ =,2QD ∴=.又QD PD DM DQ =,代入得52PD =.点325,28D ⎛⎫- ⎪⎝⎭,∴点35,28P ⎛⎫- ⎪⎝⎭,综上所述,1339,28P ⎛⎫ ⎪⎝⎭或2321,28P ⎛⎫- ⎪⎝⎭或3355,28P ⎛⎫ ⎪⎝⎭或435,28P ⎛⎫- ⎪⎝⎭.【解析】(1)由“共根抛物线”定义可知抛物线2L 经过抛物线1L 与x 轴交点,故根据抛物线1L 可求AB 两点坐标进而由交点式设2L 为(1)(4)y a x x =+-,将点(2,12)-代入,即可求出解.具体解题过程参照答案.(2)由抛物线对称性可知PA PB =,BP CP AP CP ∴-=-,根据三角形两边之差小于第三边可知当当A 、C 、P 三点共线时,BP CP -的值最大,而P 点在对称轴为32x =上,由此求出点P 坐标.具体解题过程参照答案.(3)根据点ABC 坐标可证明ABC △为直角三角形,DPQ 与ABC △相似,分两种情况讨论:当90DPQ ︒∠=、90DQP ︒∠=时,分别利用对应边成比例求解即可.具体解题过程参照答案.【考点】二次函数的综合题,根据待定系数法求解析式,二次函数图象上点的坐标特征,以及相似三角形的性质解答。
2020年江苏省连云港市中考数学测试试卷附解析
2020年江苏省连云港市中考数学测试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1. 如图,⊙O 的直径 AB 与弦 AC 的夹角为35°,过C 点的切线 PC 与 AB 的延长线交于点 P ,那么∠P 等于( ) A .15°B .20°C .25°D .30°2.均匀的正四面体的各面上依次标有1,2,3,4四个数字,同时抛掷两个这样的正四面体,着地的一面数字之和为5的概率是( ) A .163B .41C .681D .1613.如图,⊙O 1和⊙O 2内切,它们的半径分别为3和1,过O 1作⊙O 2的切线,切点为A ,则O 1A 的长为( ) A .2 B .4C 3D 54.在边长3和4的矩形中挖去一个半径为r 的圆,剩余部分的面积为s ,则s 关于r 的函数解析式为( ) A .s =7-πr 2B .s =12-πr 2C .s =(3―r )(4―r )D .=12-r 25.用长度一定的绳子围成一个矩形,如果矩形的一边长 x (m )与面积 y (m 2)满足函数2(12)144y x =--+,当边长 x 1,、x 2、x 3满足123<12x x x <<时,其对应的面积yl 、y2、y 3的大小关系是( ) A .123y y y << B .123y y y >> C .213y y y >> D .132y y y <<6.以不共线的三点为平行四边形的其中三个顶点作平行四边形,•一共可作平行四边形的个数是( ) A .2个 B .3个 C .4个 D .5个 7.口ABCD 的周长为36 cm ,AB=BC=2cm ,则AD ,CD 的长度分别为( ) A .12 cm ,6 cm B .8 cm ,10 cmC .6 cm ,12 cmD .10 cm ,8 cm8.下列分解因式正确的是( )A .32(1)x x x x -=-B .26(3)(2)m m m m +-=+-C .2(4)(4)16a a a +-=- D .22()()x y x y x y +=+-9.下列多项式中,含有因式1y +的多项式是( ) A .2223y xy x --B .22(1)(1)y y +--C .22(1)(1)y y +-- D . 2(1)2(1)1y y ++++10.若AD 是△ABC 的中线,则下列结论中,错误的是( ) A .AD 平分∠BAC B .BD =DC C .AD 平分BC D .BC =2DC 11.33422232481632a bc a b c a b c +-在分解因式时,应提取的公因式是( ) A .316s a bcB .2228a b cC . 228a bcD .2216a bc12.使分式221a aa ++的值为零的a 的值是( )A .1B .-1C .0D .0 或-113.下面的图表是护士统计的一位病人一天的体温变化情况:时间 6:00 10:00 14:00 18:00 22:00 体温/℃37.638.338.039.137.9通过图表,估计这个病人下午16:00时的体温是( ) A .38.0℃ B .39.1℃ C .37.6℃ D .38.6℃ 14.将代数式()a b c --去括号,得( )A .a b c -+B .a b c -+-C .a b c ++D .a b c --二、填空题15.如图所示是 体的展开图.16.袋中共有 5 个大小相同的红球和自球,任意摸出一球为红球的概率是25,则袋中红球有个,白球有 个,任意模出两个球均为红球的概率是 .17.二次函数y=x2+x-5取最小值时,自变量x的值是 .18.如图所示,AB ∥CD ,那么∠1+∠2+∠3+∠4= .19.若点P(a+b ,-8)与Q(-1,2a-b)关于原点对称,则ab 的值为 . 20.不等式3(1)53x x +≥-的正整数解是 .21.在一次质检抽测中,随机抽取某摊位20袋食盐,测得各袋的质量分别为(单位:g):492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499根据以上抽测结果,任买一袋该摊位的食盐,质量在497.5g ~501.5g 之间的概率为 .三、解答题22.如图,由小正方形组成的L 及T 字形的图形中,而且他们都是正方体展开图的一部分,请你用三种方法分别在图中添画一个正方形使它成为轴对称图形.23.某居民区一处圆形下水管破裂,修理人员准备更换一段新管道,如图所示,污水水面宽度为60 cm ,水面至管道顶部距离为 10 cm ,问修理人员应准备内径多大的管道?24.△ABC 在平面直角坐标系中的位置如图.(1)请画出△ABC 关于y 轴对称的111A B C ∆;(2)将△ABC 向下平移 3 个单位长度,画出平移后的222A B C ∆.25.在10个试验田中对甲、乙两个早稻品种作了对比试验,两个品种在试验田的亩产量如下(单位:kg):甲802808802800795801798797798799乙810814804788785801795800769799(1)用计算器分别计算两种早稻的平均亩产量;(2)哪种早稻的产量较为稳定?(3)在高产、稳产方面,哪种早稻品种较为优良?26.用如图所示的纸片,取其两片,可以拼合成几种不同形状的长方形?画出示意图,并写出所拼的长方形的面积.27.如图,在网格中有一个四边形图案ABCO.(1)请你画出此图案绕点O顺时方向旋转90°,l80°,270°的图案,你会得到一个美丽的图案,千万不要将阴影位置涂错;(2)若网格中每个小正方形的边长为l,旋转后点A的对应点依次为A1,A2,A3,求四边形AA1A2A3的面积;28.如图所示,已知△ABD≌△ACE,AD=6 cm,AC=4 cm,∠ABD=50°,∠E=30°.求BE的长和∠COD的度数.29.如图是某大型超市一年中三种洗发用品的销售情况统计图. (1)哪种洗发用品的销售量最大?(2)这三种洗发用品的销售份额的百分比之和是多少?(3)若已知A 种洗发用品的销售量为2300瓶,请计算一下这个超市一年中三种洗发用品的销售总量.(4)若你是这家超市的销售部门经理,根据这个统计图,在下一次定货时,你会怎样分配定货比例?30.计算下列各题:(1)()2523-⨯- (2) 4211(10.5)[2(3)]3---⨯⨯--(3)—4÷0.52+(—1.5)3×(32)2【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.C4.B5.A6.B7.B8.B9.C10.A11.D12.D13.D14.A二、填空题 15. 六棱锥16.2,3,11017.-1218.540°19.-620.1,2,321. 14三、解答题 22. 如图:23.过点O 作AB 的垂线OE 与圆交点P ,连结OB ,且OP=OB ,∵OE ⊥AB ,∴.AE=BE(垂径定理),设半径为 x ,则 OE=x —10,由勾股定理得22230(10)x x +-=,x=50cm ,答:内径应为100 cm.24.略25.(1)800x=甲kg,796.5x=乙kg;(2)甲的产量较为稳定;(3)甲种早稻较为优良26.略.27.(1)图略;(2)3428.BE=2 cm,∠COD=20°29.(1)C种;(2) 100%;(3)230020%11500÷=(瓶);(4)根据三种流发水的销售情况统计图,知三种洗发水应接 A:B:C=4:3:13 的比例进货30.(1)-47;(2)16;(3)-17.5。
江苏省连云港市2020年数学中考试题及答案
所以 (秒).
答:盛水筒 首次到达最高点所需时间为27.4秒.
(2)如图2,盛水筒 浮出水面3.4秒后,此时 .
所以 .
过点 作 ,垂足为 ,在 中, .
.
答:此时盛水筒 距离水面的高度 .
(3)如图3,因为点 在 上,且 与 相切,
所以当 在直线 上时,此时 是切点.
连接 ,所以 .
(1)若抛物线 经过点 ,求 对应的函数表达式;
(2)当 的值最大时,求点 的坐标;
(3)设点 是抛物线 上的一个动点,且位于其对称轴的右侧.若 与 相似,求其“共根抛物线” 的顶点 的坐标.
27.(1)如图1,点 为矩形 对角线 上一点,过点 作 ,分别交 、 于点 、 .若 , , 的面积为 , 的面积为 ,则 ________;
“良好”等次的频数 (人).
故答案为:0.25,54,120;
(2)如下图;
(3)试成绩等级在良好以上(包括良好) 学生= (人).
答:测试成绩等级在良好以上(包括良好)的学生约有1680人.
21.(1) ;
(2)列出树状图如图所示:
由图可知,共有12种可能结果,其中选化学、生物的有2种,
所以, (选化学、生物) .
又∵
∴
∴
(2)如图,连接 、 ,
在 中,因为点E是 中点,
可设 ,
同理, ,
所以 ,
.
所以 ,
所以 ,所以 .
.
(3)易证四边形 、四边形 是平行四边形.
所以 , .
所以 ,
.
(4)
答案不唯一,如:
如图1或图2,此时 ;
如图3或图4,此时 .
21.从2021年起,江苏省高考采用“ ”模式:“3”是指语文、数学、外语3科为必选科目,“1”是指在物理、历史2科中任选科,“2”是指在化学、生物、思想政治、地理4科中任选2科.
2020年江苏省连云港市中考数学必修综合测试试题附解析
2020年江苏省连云港市中考数学必修综合测试试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.若tan(α+10°)=3,则锐角α的度数是()A.20°B.30°C.35°D.50°2.用弧长为8π的扇形做成一个圆锥的侧面,那么这个圆锥的底面的半径是().A.4πB.8πC.4 D.83.如图8,Rt△ABC中,∠C=90°,斜边AB的垂直平分线交AB于点D,交BC于点E,AE平分∠BAC,那么下列关系式中不成立的是()A.∠B=∠CAE B.∠DEA=∠CEA C.∠B=∠BAE D.AC=2EC4.已知m是整数,且满足210521mm->⎧⎨->-⎩,则关于x的方程2242(2)34mx x m x x--=+++的解为()A.12x=-,23 2x=-B.12x=,23 2x=C.67x=-D.12x=-,232x=-或67x=-5.如图,AB∥CD,则∠α,∠β,∠γ之间的关系为()A.∠α+∠β+∠γ=360°B.∠α-∠β+∠γ=180°C.∠α+∠β-∠γ=180°D.∠α+∠β+∠γ=180°6.下列各不等式中,变形正确的是()A.36102x x+>+变形得54x> B.121163x x-+<,变形得612(21)x x--<+C.3214x x-<+变形得3x<- D.733x x+>-,变形得5x<7.将直角三角形的三边都扩大3倍后,得到的三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.无法确定8.如图,要使 a∥b,则∠2 与∠3 满足条件()A.∠2=∠3 B.∠2+∠3=90°C.∠2+∠3=180°D.无法确定9.以12x y =-⎧⎨=⎩为解的二元一次方程组( ) A . 有且只有一个 B . 有且只有两个 C . 有且只有三个 D . 有无数个10.以下列各组线段的长为边,能构成三角形的是( )A .4 cm ,5 cm ,6 cmB .2 cm ,3 cm ,5 cmC .4 cm ,4 cm 。
2020年江苏省连云港市中考数学原题试卷附解析
2020年江苏省连云港市中考数学原题试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.二次函数c bx ax y ++=2的图象如图所示,则下列关系式不正确的是( )A .a <0B .abc >0C .c b a ++>0D .ac b 42->0 2.如图,若将正方形分成k 个全等的长方形,其中上下各横排两个,中间竖排若干个,则k 的值为( )A .6B .8C .10D .123.下列命题中,是真命题的是( )A .相等的两个角是对顶角B .在同一平面内,垂直于同一条直线的两直线平行C .任何实数的平方都是正实数D .有两边和其中一边的对角分别对应相等的两个三角形全等4.由123=-y x ,可以得到用x 表示y 的式子( ) A . 322-=x y B . 3132-=x y C .232-=x y D .322xy -=5.计算23(2)a -的结果是( )A .56a -B .66a -C .58a -D .68a - 6.在5×5方格纸中将图①中的图形N 平移后的位置如图②所示,那么下面的平移中正确的是( )A .先向下移动l 格,再向左移动l 格B .先向下移动l 格,再向左移动2格C .先向下移动2格,再向左移动l 格D .先向下移动2格,再向左移动2格7.四个各不相等的整数 a 、b 、c 、d ,它们的积9a b c d ⋅⋅⋅=,那么a b c d +++的值是( )A .0B .3C .4D . 不能确定二、填空题8.在前100个正整数中,4的倍数出现的频率是_________.9.将一个有80个数据的一组数分成四组,绘出频数分布直方图,已知各小长方形的高的比为2:4:3:1,则第一小组的频率为,第三小组的频数为 .. 10.若x=0是方程0823)2(22=-+++-m m x x m 的解,则m= .11.已知点P(x ,y)位于第二象限,并且y ≤x+4,x 、y 为整数,写出一个符合上述条件的点P 的坐标 .12.某校男子足球队22名队员的年龄如下表所示,则这些队员的平均年龄为 岁(精确到1岁).年龄(岁)14 15 16 17 18 19 人数(人) 2 1 3 6 7 313.如图,∠A=36°,∠DBC=36°,∠C=72°,则图中的等腰三角形分别是 .14.如图,∠1与∠2是两条直线被AC 所截形成的内错角,那么这两条直线为与 .15.如图,AE=AD ,请你添加一个条件: ,使△ABE ≌△ACD (图形中不再增加其他字母).16.如图所示,点O 是直线AB 上的点,OC 平分∠AOD ,∠BOD =30°,则∠AOC=______.17.已知x=-2是关于x 的一元一次方程42124x x a +++-=的解,则a= . 18.把139500 四舍五人取近似数,保留 3 个有效数字是 .19.如图是某市晚报记者在抽样调查了一些市民用于读书、读报、参加“全民健身运动”等休闲娱乐活动的时间后,绘制的频率分布直方图(共六组),已知从左往右前五组的频率之和为0.94,如果第六组有12个数,则此次抽样的样本容量是 .三、解答题20.某电脑公司现有A 、B 、C 三种型号的甲品牌电脑和D 、E 两种型号的乙品牌电脑,希 望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么 A 型号电脑被选中的概率是多少?21.某校团委准备举办学生绘画展览,为美化画面,在长为30cm 、宽为20的矩形画面四周镶上宽度相等的彩纸,并使彩纸的面积恰好与原画面面积相等(如图),求彩纸的宽度.22. 如图,已知直线1l ∥2l ,△ABC 的面积与△DBC 的面积相等吗?若相等请说明理由. 并在直线1l 与2l 之间画出其他与△ABC 面积相等的三角形.23. 四张大小、质地均相同的卡片上分别标有数字1,2,3,4,5,6,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张卡片(不放回),再从桌子上剩下的5张中随机抽取第二张卡片.2 1 E D CB A (1)用画状图的方法,列出前后两次抽得的卡片上所标数字的所有可能情况;(2)计算抽得的两张卡片上的数字之积为奇数的概率是多少?24.如图在长为a-1的长方形纸片中,剪去一个边长为1的正方形,•余下的面积为ab+a-b-2,求这个长方形的宽.25. 如图,已知在△ABC 中,BE 和CD 分别为∠ABC 和∠ACB 的平分线,且BD=CE ,∠1=∠2.说明BE=CD 的理由.26.如图,将△ABC 先向上平移5格得到△A ′B ′C ′,再以直线MN 为对称轴,将△A ′B ′C ′作轴对称变换,得到△A ″B ″C ″,作出 △A ′B ′C ′和△A ″B ″C ″.27.海水受日月的引力而产生潮汐现象,早晨海水上涨叫做潮,黄昏海水上涨叫做汐,合称潮汐.潮汐与人类的生活有着密切的联系. 下面是某港口从0时到 12时的水深情况统计图.(1)6时水深 米,12时水深 米;(2)大约 时港口的水最深,深度约是 米;(3)大约 时港口的水最浅,深度约是 米;(4)根据该折线统计图,说一说这个港口从 0时到12时水深的变化情况.28.互为余角的两个角的差为 40°,求较小角的补角的度数.29.如图,直线a 、b 、c 两两相交,∠1=2∠3,∠2=65°,求∠4.30.计算下列各式:(1)4+3×(-2)3+33 (2) 11(37)()(3)88-⨯---⨯(3)200532(1)(3)4(8)9-+-⨯--÷- (4) 2008200945()()54⨯-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.B4.C5.D6.C7.A二、填空题8.0.259.0.2,2410.-411.(-2,2)(答案不唯一)112.1713.△ABD ,△CBD,△ABC14.AB ,CD15.答案不唯一,如AB =AC16.75°17.18.1.40×10519.200三、解答题20.(1)有6种结果:(A ,D),(A ,E),(B ,D),(E, E:) , (C,1)) , (C,E).(2)A 型号被选中概率13. 21.解:设彩纸的宽为x cm ,根据题意,得(302)(202)23020x x ++=⨯⨯,整理,得2251500x x +-=,解之,得15x =,230x =-(不合题意,舍去),答:彩纸的宽为5cm .22.ABC DBC S S ∆∆=,由同底等高的两三角形面积相等可得;在2l 上任意取一点E ,连结BE 、CE ,则BEC ABC S S ∆∆=23.(1)略 (2)1524.b+125.BE 和CD 分别为∠ABC 和∠ACB 的平分线,可得∠ABC=2∠1,∠ACB=2∠2, 由于∠1=∠2,∴∠ABC=∠ACB,△BCD ≌△CBE(AAS),∴BE=CD .26.略27.(1) 5,5; (2) 3,8; (3) 9,2;(4)午夜,0时至3时海水上涨,从3时至9时海水连续下降(退潮),从9时至 12时海水又上涨28.设较小的角为x ,则这个角的余角为 90°-x .于是有90°-x =40°,∴x =25°,因此这个角的补角为 180°- 25°= 155°. 答:较小角的补角为 15529.32.5°30.(1)7;(2)5;(3)193;(4)54-。
江苏省连云港市2020年中考数学试题(Word版,含答案与解析)
江苏省连云港市2020年中考数学试卷一、选择题(共7题;共14分)1.3的绝对值是().A. -3B. 3C. √3D. 13【答案】B【考点】绝对值及有理数的绝对值【解析】【解答】解:3的绝对值是3.故答案为:B【分析】根据绝对值的概念进行解答即可.2.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.【答案】 D【考点】简单组合体的三视图【解析】【解答】解:从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为D【分析】根据主视图定义,由此观察即可得出答案.3.下列计算正确的是().A. 2x+3y=5xyB. (x+1)(x−2)=x2−x−2C. a2⋅a3=a6D. (a−2)2=a2−4【答案】B【考点】同底数幂的乘法,多项式乘多项式,完全平方公式及运用,合并同类项法则及应用【解析】【解答】解:A、2x与3y不是同类项不能合并运算,故错误;B、多项式乘以多项式,运算正确;C、同底数幂相乘,底数不变,指数相加,a2⋅a3=a5,故错误;D、完全平方公式,(a−2)2=a2−4a+4,故错误故答案为:B【分析】根据合并同类项、多项式乘以多项式,同底数幂相乘,及完全平方公式进行运算判断即可.4.“红色小讲解员”演讲比赛中,7位评委分别给出某位选手的原始评分.评定该选手成绩时,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,这两组数据一定不变的是( ).A. 中位数B. 众数C. 平均数D. 方差【答案】 A【考点】平均数及其计算,中位数,方差,众数【解析】【解答】根据题意,从7个原始评分中去掉1个最高分、1个最低分,得到5个有效评分, 7个有效评分与5个原始评分相比,最中间的一个数不变,即中位数不变.故答案为::A【分析】根据题意,由数据的数字特征的定义,分析可得答案.5.不等式组 {2x −1≤3x +1>2的解集在数轴上表示为( ). A.B. C.D. 【答案】 C【考点】在数轴上表示不等式组的解集,解一元一次不等式组【解析】【解答】解 {2x −1≤3①x +1>2②解不等式①得x≤2,解不等式②得x >1故不等式的解集为1<x≤2在数轴上表示如下:故答案为:C.【分析】先求出各不等式的解集,再找到其解集,即可在数轴上表示.6.如图,将矩形纸片 ABCD 沿 BE 折叠,使点A 落在对角线 BD 上的 A ′ 处.若 ∠DBC =24° ,则 ∠A ′EB 等于( ).A. 66°B. 60°C. 57°D. 48°【答案】 C【考点】矩形的性质,翻折变换(折叠问题),直角三角形的性质【解析】【解答】∵四边形ABCD 是矩形,∴∠ABC=90°,∴∠ABD=90°- ∠DBC=66°,∵将矩形纸片ABCD沿BE折叠,使点A落在对角线BD上的A′处,∴∠EBA’= 1∠ABD =33°,2∴∠A′EB=90°-∠EBA’= 57°,故答案为:C.【分析】先根据矩形的性质得到∠ABD=66°,再根据折叠的性质得到∠EBA’=33°,再根据直角三角形两锐角互余即可求解.7.快车从甲地驶往乙地,慢车从乙地驶往甲地,两车同时出发并且在同一条公路上匀速行驶.图中折线表示快、慢两车之间的路程y(km)与它们的行驶时间x(h)之间的函数关系.小欣同学结合图像得出如下结论:①快车途中停留了0.5h;②快车速度比慢车速度多20km/ℎ;③图中a=340;④快车先到达目的地.其中正确的是()A. ①③B. ②③C. ②④D. ①④【答案】B【考点】函数的图象【解析】【解答】当t=2h时,表示两车相遇,=80km/h,2-2.5h表示两车都在休息,没有前进,2.5-3.6时,其中一车行驶,其速度为88−03.6−2.5设另一车的速度为x,依题意得2(x+80)=360,解得x=100km/h,故快车途中停留了3.6-2=1.6h,①错误;快车速度比慢车速度多20km/ℎ,②正确;t=5h时,慢车行驶的路程为(5-0.5)×80=360km,即得到目的地,比快车先到,故④错误;t=5h时,快车行驶的路程为(5-1.6)×100=340km,故两车相距340m,故③正确;故答案为:B.【分析】根据函数图像与路程的关系即可求出各车的时间与路程的关系,依次判断.二、填空题(共8题;共8分)8.我市某天的最高气温是4℃,最低气温是−1℃,则这天的日温差是________℃.【答案】5【考点】有理数的减法【解析】【解答】解:根据题意得:4−(−1)=5.故答案为:5【分析】根据最高气温减去最低气温列出算式,即可做出判断.9.“我的连云港” APP是全市统一的城市综合移动应用服务端.一年来,实名注册用户超过1600000人.数据“1600000”用科学记数法表示为________.【答案】1.6×106【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:1600000用科学记数法表示应为:1.6×106,故答案为:1.6×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.10.如图,将5个大小相同的正方形置于平面直角坐标系中,若顶点M、N的坐标分别为(3,9)、(12,9),则顶点A的坐标为________.【答案】(15,3)【考点】坐标与图形性质【解析】【解答】解:设正方形的边长为a,则由题设条件可知:3a=12−3解得:a=3∴点A的横坐标为:12+3=15,点A的纵坐标为:9−3×2=3故点A的坐标为(15,3).故答案为:(15,3).【分析】先根据条件,算出每个正方形的边长,再根据坐标的变换计算出点A的坐标即可.11.按照如图所示的计算程序,若x=2,则输出的结果是________.【答案】-26【考点】有理数的加减乘除混合运算,代数式求值【解析】【解答】解:当x=2时,10−x2=10−22=6>0,故执行“否”,返回重新计算,当x=6时,10−x2=10−62=−26<0,执行“是”,输出结果:-26.故答案为:-26.【分析】首先把x=2代入10−x2计算出结果,判断是否小于0,若小于0,直到输出的结果是多少,否则将计算结果再次代入计算,直到小于0为止.12.加工爆米花时,爆开且不糊的颗粒的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=−0.2x2+1.5x−2,则最佳加工时间为________ min.【答案】3.75【考点】二次函数的其他应用【解析】【解答】解:∵y=−0.2x2+1.5x−2的对称轴为x=−b2a =− 1.52×(−0.2)=3.75(min),故:最佳加工时间为3.75min,故答案为:3.75.【分析】根据二次函数的对称轴公式x=−b2a直接计算即可.13.用一个圆心角为90°,半径为20cm的扇形纸片围成一个圆锥的侧面,这个圆锥的底面圆半径为________ cm.【答案】5【考点】圆锥的计算【解析】【解答】设这个圆锥的底面圆的半径为Rcm,由题意,90π×20180=2πR,解得R=5(cm).故答案为:5【分析】设这个圆锥的底面圆的半径为Rcm,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题.14.如图,正六边形A1A2A3A4A5A6内部有一个正五形B1B2B3B4B5,且A3A4//B3B4,直线l经过B2、B3,则直线l与A1A2的夹角α=________ °.【答案】48【考点】圆内接正多边形【解析】【解答】∵多边形A1A2A3A4A5A6是正六边形,多边形B1B2B3B4B5是正五边形∴∠A1A2A3=∠A2A3A4=180°×(6−2)6=120°,∠B2B3B4=180°×(5−2)5=108°∵A3A4//B3B4∴∠B3MA4=∠B2B3B4=108°∴∠B3MA3=180°−108°=72°∠α=∠A2NB2=360°−∠A1A2A3−∠A2A3A4−∠A3MB3=360°−120°−120°−72°=48°故答案为:48【分析】已知正六边形A1A2A3A4A5A6内部有一个正五形B1B2B3B4B5,可得出正多边形的内角度数,根据A3A4//B3B4和四边形内角和定理即可得出α的度数.15.如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y=34x−3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为________.【答案】2【考点】坐标与图形性质,一次函数的图象,两一次函数图象相交或平行问题【解析】【解答】如图,∵点B是⊙O上一动点,点C为弦AB的中点,∴C点的运动轨迹是以F(1,0)为圆心、半径为1的圆,过F 点作AH ⊥DE ,交 ⊙ F 于点C’,∵直线DE 的解析式为 y =34x −3 ,令x=0,得y=-3,故E (0,-3),令y=0,得x=4,故D (4,0),∴OE=3,OD=4,DE= √(4−0)2+(−3−0)2=5 ,∴设FH 的解析式为y= −43 x+b ,把F (1,0)代入y= −43 x+b 得0= −43 +b ,解得b= 43 ,∴FH 的解析式为y= −43 x+ 43 ,联立 {y =34x −3y =−43+43, 解得 {x =5225y =−3625 , 故H ( 5225 , −3625 ),∴FH= √(5225−1)2+(−3625−0)2=95 , ∴C’H= 95−1=45 ,故此时 △CDE 面积= 12DE ×C ′H = 12×5×45=2 ,故答案为:2.【分析】根据题意可知C 点的运动轨迹是以F (1,0)为圆心、半径为1的圆,过F 点作AH ⊥DE ,与 ⊙ F 的交点即为C 点,此时 △CDE 中DE 边上的高为C’H=FH -1,根据直线DE 的解析式及F 点坐标可求出FH 的解析式,联立DE 的解析式即可求出H 点坐标,故可求出FH ,从而得解. 三、解答题(共11题;共103分)16.计算 (−1)2020+(15)−1−√643.【答案】 解:原式 =1+5−4=2.【考点】实数的运算【解析】【分析】先根据乘方运算、负整数指数幂、开方运算进行化简,再计算加减即可.17.解方程组 {2x +4y =5x =1−y. 【答案】 解: {2x +4y =5①x =1−y ② ,将②代入①中得2(1−y)+4y =5 .解得 y =32 .将 y =32 代入②,得 x =−12 .所以原方程组的解为 {x =−12y =32. 【考点】解二元一次方程组【解析】【分析】根据题意选择用代入法解答即可.18.化简 a+31−a÷a 2+3a a 2−2a+1 . 【答案】 解:原式 =a+31−a ÷a(a+3)(1−a)2 ,=a+31−a ⋅(1−a)2a(a+3) ,=1−a a .【考点】分式的混合运算【解析】【分析】首先把分子分母分解因式,把除法变为乘法,然后再约分后相乘即可.19.在世界环境日(6月5日),学校组织了保护环境知识测试,现从中随机抽取部分学生的成绩作为样本,按“优秀”“良好”“合格”“不合格”四个等级进行统计,绘制了如下尚不完整的统计图表.测试成绩统计表根据统计图表提供的信息,解答下列问题:(1)表中a=________,b=________,c=________;(2)补全条形统计图;(3)若该校有2400名学生参加了本次测试,估计测试成绩等级在良好以上(包括良好)的学生约有多少人?【答案】(1)0.25;54;120(2)解:如下图;(3)解:试成绩等级在良好以上(包括良好)的学生= 2400×(0.25+0.45)=1680(人).答:测试成绩等级在良好以上(包括良好)的学生约有1680人.【考点】用样本估计总体,频数与频率,条形统计图【解析】【解答】解:(1)样本的总频数(人数)c=12÷0.1=120(人),其中:“优秀”等次的频率a=30120=0.25,“良好”等次的频数b=120×0.45=54(人).故答案为:0.25,54,120;【分析】(1)依据频率= 频数总数,先用不合格的人数除以不合格的频率即可得到总频数(人数)c,再依次求出a、b;(2)根据(1)良好人数即可补全条形统计图;(3)全校2400名乘以“优秀”和“良好”两个等级的频率和即可得到结论.20.从2021年起,江苏省高考采用“ 3+1+2”模式:“3”是指语文、数学、外语3科为必选科目,“1”是指在物理、历史2科中任选科,“2”是指在化学、生物、思想政治、地理4科中任选2科.(1)若小丽在“1”中选择了历史,在“2”中已选择了地理,则她选择生物的概率是________;(2)若小明在“1”中选择了物理,用画树状图的方法求他在“2中选化学、生物的概率.【答案】(1)13(2)解:列出树状图如图所示:由图可知,共有12种可能结果,其中选化学、生物的有2种,所以,P(选化学、生物)=212=16.答:小明同学选化学、生物的概率是16.【考点】列表法与树状图法,概率公式【解析】【分析】(1)小丽在“2”中已经选择了地理,还需要从剩下三科中进行选择一科生物,根据概率公式计算即可.(2)小明在“1”中已经选择了物理,可直接根据画树状图判断在4科中选择化学,生物的可能情况有2种,再根据一共有12种情况,通过概率公式求出答案即可.21.如图,在四边形ABCD中,AD//BC,对角线BD的垂直平分线与边AD、BC分别相交于M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.【答案】(1)证明;∵AD//BC,∴∠CBD=∠ADB.∵MN是对角线BD的垂直平分线,∴OB=OD,MB=MD.在△BON和△DOM中,{∠CBD=∠ADB OB=OD∠BON=∠DOM,∴△BON≌△DOM(ASA),∴MD=NB,∴四边形BNDM为平行四边形.又∵MB=MD,∴四边形BNDM为菱形.(2)解:∵四边形BNDM为菱形,BD=24,MN=10.∴∠BOM=90°,OB=12BD=12,OM=12MN=5.在Rt△BOM中,BM=√OM2+BO2=√52+122=13.∴菱形BNDM的周长=4BM=4×13=52.【考点】平行线的性质,三角形全等及其性质,菱形的性质,菱形的判定,三角形全等的判定(ASA)【解析】【分析】(1)先证明△BON≌△DOM,得到四边形BNDM为平行四边形,再根据菱形定义证明即可;(2)先根据菱形性质求出OB、OM、再根据勾股定理求出BM,问题的得解.22.甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司共捐款100000元,公司共捐款140000元.下面是甲、乙两公司员工的一段对话:(1)甲、乙两公司各有多少人?(2)现甲、乙两公司共同使用这笔捐款购买A、B两种防疫物资,A种防疫物资每箱15000元,B种防疫物资每箱12000元.若购买B种防疫物资不少于10箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A、B两种防疫物资均需购买,并按整箱配送).【答案】(1)解:设乙公司有x人,则甲公司有(x−30)人,由题意得100000 x−30×76=140000x,解得x=180.经检验,x=180是原方程的解.∴x−30=150.答:甲公司有150人,乙公司有180人.(2)解:设购买A种防疫物资m箱,购买B种防疫物资n箱,由题意得15000m+12000n=100000+140000,整理得m=16−45n.又因为n≥10,且m、n为正整数,所以{m=8n=10,{m=4n=15.答:有2种购买方案:购买8箱A种防疫物资、10箱B种防疫物资,或购买4箱A种防疫物资、15箱B 种防疫物资.【考点】二元一次方程的应用,分式方程的实际应用【解析】【分析】(1)设乙公司有x人,则甲公司有(x−30)人,根据对话,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买A种防疫物资m箱,购买B种防疫物资n箱,根据甲公司共捐款100000元,公司共捐款140000元.列出方程,求解出m=16−45n,根据整数解,约束出m、n的值,即可得出方案.23.如图,在平面直角坐标系xOy中,反比例函数y=mx (x>0)的图像经过点A(4,32),点B在y轴的负半轴上,AB交x轴于点C,C为线段AB的中点.(1)m = ________,点 C 的坐标为________;(2)若点D 为线段 AB 上的一个动点,过点D 作 DE //y 轴,交反比例函数图像于点E ,求 △ODE 面积的最大值. 【答案】 (1)6;(2,0)(2)解:设直线 AB 对应的函数表达式为 y =kx +b .将 A(4,32) , C(2,0) 代入得 {4k +b =322k +b =0,解得 {k =34b =−32 .所以直线 AB 对应的函数表达式为 y =34x −32 .因为点 D 在线段 AB 上,可设 D(a,34a −32)(0<a ≤4) , 因为 DE //y 轴,交反比例函数图像于点E.所以 E(a,6a ) .所以 S △ODE =12⋅a ⋅(6a −34a +32)=−38a 2+34a +3=−38(a −1)2+278.所以当a=1时, △ODE 面积的最大值为278.【考点】一次函数的图象,待定系数法求一次函数解析式,待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征【解析】【解答】解:把点 A(4,32) 代入反比例函数 y =m x(x >0) ,得: 32=m4,解得:m=6,∵A 点横坐标为:4,B 点横坐标为0,故C 点横坐标为: 4+02=2 ,故答案为:6, (2,0) ;【分析】(1)将点 A(4,32) 代入反比例函数解析式求出m ,根据坐标中点公式求出点C 的横坐标即可;(2)由AC 两点坐标求出直线AB 的解析式为 y =34x −32 ,设D 坐标为 D(a,34a −32)(0<a ≤4) ,则 E(a,6a ) ,进而得到 S △ODE =−38(a −1)2+278,即可解答24.筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水轮赋》中写道:“水能利物,轮乃曲成”.如图,半径为 3m 的筒车 ⊙O 按逆时针方向每分钟转 56 圈,筒车与水面分别交于点A 、B ,筒车的轴心 O 距离水面的高度 OC 长为 2.2m ,简车上均匀分布着若干个盛水筒.若以某个盛水筒 P 刚浮出水面时开始计算时间.(1)经过多长时间,盛水筒P首次到达最高点?(2)浮出水面3.4秒后,盛水筒P距离水面多高?(3)若接水槽MN所在直线是⊙O的切线,且与直线AB交于点M,MO=8m.求盛水筒P从最高点开始,至少经过多长时间恰好在直线MN上.(参考数据:cos43°=sin47°≈1115,sin16°=cos74°≈1140,sin22°=cos68°≈38)【答案】(1)解:如图1,由题意得,筒车每秒旋转360°×56÷60=5°.连接OA,在Rt△ACO中,cos∠AOC=OCOA =2.23=1115,所以∠AOC=43°.所以180−435=27.4(秒).答:盛水筒P首次到达最高点所需时间为27.4秒.(2)解:如图2,盛水筒P浮出水面3.4秒后,此时∠AOP=3.4×5°=17°.所以∠POC=∠AOC+∠AOP=43°+17°=60°.过点P作PD⊥OC,垂足为D,在Rt△POD中,OD=OP⋅cos60°=3×12=1.5.2.2−1.5=0.7.答:此时盛水筒P距离水面的高度0.7m.(3)解:如图3,因为点P在⊙O上,且MN与⊙O相切,所以当P在直线MN上时,此时P是切点.连接OP,所以OP⊥MN.在Rt△OPM中,cos∠POM=OPOM =38,所以∠POM=68°.在Rt△OCM中,cos∠COM=OCOM =2.28=1140,所以∠COM=74°.所以∠POH=180°−∠POM−∠COM=180°−68°−74°=38°.所以需要的时间为385=7.6(秒).答:从最高点开始运动,7.6秒后盛水筒P恰好在直线MN上.【考点】解直角三角形的应用【解析】【分析】(1)先根据筒车筒车每分钟旋转的速度计算出筒车每秒旋转的速度,再利用三角函数确定∠AOC=43°,最后再计算出所求时间即可;(2)先根据时间和速度计算出∠AOP,进而得出∠POC,最后利用三角函数计算出OD,从而得到盛水筒P距离水面的高度;(3)先确定当P在直线MN上时,此时P是切点,再利用三角函数得到∠POM=68°,∠COM=74°,从而计算出∠POH=38°,最后再计算出时间即可.25.在平面直角坐标系xOy中,把与x轴交点相同的二次函数图像称为“共根抛物线”.如图,抛物线L1:y=12x2−32x−2的顶点为D,交x轴于点A、B(点A在点B左侧),交y轴于点C.抛物线L2与L1是“共根抛物线”,其顶点为P.(1)若抛物线L2经过点(2,−12),求L2对应的函数表达式;(2)当BP−CP的值最大时,求点P的坐标;(3)设点Q是抛物线L1上的一个动点,且位于其对称轴的右侧.若△DPQ与△ABC相似,求其“共根抛物线” L2的顶点P的坐标.【答案】(1)解:当y=0时,12x2−32x−2=0,解得x1=−1,x2=4.∴A(−1,0)、B(4,0)、C(0,−2).由题意得,设L2对应的函数表达式为y=a(x+1)(x−4),又∵L2经过点(2,−12),∴−12=a(2+1)(2−4),∴a=2.∴L2对应的函数表达式为y=2(x+1)(x−4)=2x2−6x−8.(2)解:∵L1、L2与x轴交点均为A(−1,0)、B(4,0),∴L1、L2的对称轴都是直线x=32.∴点P在直线x=32上.∴BP=AP.如图1,当A、C、P三点共线时,BP−CP的值最大,此时点P为直线AC与直线x=32的交点.由A(−1,0)、C(0,−2)可求得,直线AC对应的函数表达式为y=−2x−2.∴点P(32,−5).(3)解:由题意可得,AB=5,CB=2√5,CA=√5,因为在△ABC中,AB2=BC2+AC2,故∠ACB=90°,CB=2CA.由y=12x2−32x−2=12(x−32)2−258,得顶点D(32,−258).因为L2的顶点P在直线x=32上,点Q在L1上,∴∠PDQ不可能是直角.第一种情况:当∠DPQ=90°时,①如图2,当△QDP∽△ABC时,则得QPDP =ACBC=12.设Q(x,12x2−32x−2),则P(32,12x2−32x−2),∴DP=(12x2−32x−2)−(−258)=12x2−32x+98,QP=x−32.由QPDP =12得2x−3=12x2−32x+98,解得x1=112,x2=32.∵x=32时,点Q与点P重合,不符合题意,∴舍去,此时P(32,398).②如图3,当△DQP∽△ABC时,则得DPQP =ACBC=12.设Q(x,12x2−32x−2),则P(32,12x2−32x−2).∴DP=(12x2−32x−2)−(−258)=12x2−32x+98,QP=x−32.由DPQP=12得x−32=x2−3x+94,解得x1=52,x2=32(舍),此时P(32,−218).第二种情况:当∠DQP=90°时,①如图4,当△PDQ∽△ABC时,则得PQDQ =ACBC=12.过Q作QM⊥PD交对称轴于点M,∴△QDM∽△PDQ.∴QMDM =PQDQ=12.由图2可知M(32,398),Q(112,398),∴MD=8,MQ=4.∴QD=4√5,又QDDM =PDDQ,代入得PD=10.∵点D(32,−258),∴点P(32,558).②如图5,当△DPQ∽△ABC时,则DQPQ =ACBC=12.过Q作QM⊥PD交对称轴于点M,∴△QDM∽△PDQ,则QMDM =PQDQ=2.由图3可知M(32,−218),Q(52,−218),∴MD=12,MQ=1,∴QD=√52.又QDDM=PDDQ,代入得PD=52.∵点D(32,−258),∴点P(32,−58),综上所述,P1(32,398)或P2(32,−218)或P3(32,558)或P4(32,−58).【考点】待定系数法求二次函数解析式,相似三角形的判定与性质,二次函数图象上点的坐标特征,二次函数y=ax^2+bx+c的性质【解析】【分析】(1)由“共根抛物线”定义可知抛物线L2经过抛物线L1与x轴交点,故根据抛物线L1可求AB两点坐标进而由交点式设L2为y=a(x+1)(x−4),将点(2,−12)代入,即可求出解;(2)由抛物线对称性可知PA=PB,∴BP−CP=AP−CP,根据三角形两边之差小于第三边可知当当A、C、P三点共线时,BP−CP的值最大,而P点在对称轴为x=32上,由此求出点P坐标;(3)根据点ABC坐标可证明△ABC为直角三角形,△DPQ与△ABC相似,分两种情况讨论:当∠DPQ= 90°、∠DQP=90°时,分别利用对应边成比例求解即可.26.(1)如图1,点P为矩形ABCD对角线BD上一点,过点P作EF//BC,分别交AB、CD于点E、F.若BE=2,PF=6,△AEP的面积为S1,△CFP的面积为S2,则S1+S2=________;(2)如图2,点P为▱ABCD内一点(点P不在BD上),点E、F、G、H分别为各边的中点.设四边形AEPH的面积为S1,四边形PFCG的面积为S2(其中S2>S1),求△PBD的面积(用含S1、S2的代数式表示);(3)如图3,点 P 为 ▱ABCD 内一点(点 P 不在 BD 上)过点 P 作 EF //AD , HG //AB ,与各边分别相交于点 E 、 F 、 G 、 H .设四边形 AEPH 的面积为 S 1 ,四边形 PGCF 的面积为 S 2 (其中 S 2>S 1 ),求 △PBD 的面积(用含 S 1 、 S 2 的代数式表示);(4)如图4,点 A 、 B 、 C 、 D 把 ⊙O 四等分.请你在圆内选一点 P (点 P 不在 AC 、 BD 上),设 PB 、 PC 、 BC⌢ 围成的封闭图形的面积为 S 1 , PA 、 PD 、 AD ⌢ 围成的封闭图形的面积为 S 2 , △PBD 的面积为 S 3 , △PAC 的面积为 S 4 .根据你选的点 P 的位置,直接写出一个含有 S 1 、 S 2 、 S 3 、 S 4 的等式(写出一种情况即可).【答案】 (1)12(2)解:如图,连接 PA 、 PC ,在 △APB 中,因为点E 是 AB 中点, 可设 S △APE =S △BPE =a ,同理, S △BPF =S △CPF =b,S △CPG =S △DFG =c,S △DPH =S △APH =d ,所以 S 四边形AEPH +S 四边形PFCG =S △APE +S △APH +S CPF +S △CPG =a +b +c +d ,S四边形EDFP +S四边形HPGD=S△BPE+S△BPF+S△DPH+S△DPH=a+b+c+d.所以S四边形EBFP+S四边形HPGD+S四边形AEPH+S四边形PFCG=S1+S2,所以S△ABD=12S▱ABCD=S1+S2,所以S△DPH=S△APH=S1−a.S△PBD=S△ABD−(S1+S△BPE+S△PDH)=(S1+S2)−(S1+a+S1−a)=S2−S1. (3)解:易证四边形EBGP、四边形HPFD是平行四边形.所以S四边形EDGP=2S△EBP,S四边形HPFD=2S△HPD.所以S△ABD=12S▱ABCD=12(S1+S2+2S△EBF+2S△HPD)=12(S1+S2)+S△EBP+S△HPD,S△FBD=S△ABD−(S1+S△EBP+S△HPD)=12(S2−S1). (4)解:答案不唯一,如:如图1或图2,此时|S1−S2|=S3+S4;如图3或图4,此时|S1−S2|=|S3−S4|.【考点】平行四边形的判定与性质,矩形的性质【解析】【解答】解:(1)过P点作AB∥MN,∵S矩形AEPM+S矩形DFPM=S矩形CFPN+S矩形DFPM=S矩形ABCD-S矩形BEPN ,又∵S△AEP=12S矩形AEPM,S△CFP=12S矩形CFPN,∴S△AEP=S△CFP=12×2×6=6,∴S1+S2=12.【分析】(1)过P点作AB的平行线MN,根据S矩形AEPM+S矩形DFPM=S矩形CFPN+S矩形DFPM=S矩形ABCD-S矩形BEPN从而得到,S矩形AEPM =S矩形CFPN进而得到△AEP与△CFP的关系,从而求出结果.(2)连接PA、PC,设S△APE=S△BPE=a,S△BPF=S△CPF=b,S△CPG=S△DFG=c,S△DPH=S△APH=d,根据图形得到S四边形EBFP +S四边形HPGD+S四边形AEPH+S四边形PFCG=S1+S2,求出S△ABD=S1+S2,S△DPH=S1−a,最终求出结果.(3)易知S四边形EDGP=2S△EBP,S四边形HPFD=2S△HPD,导出S△ABD=12(S1+S2)+ S△EBP+S△HPD,再由S△FBD=S△ABD−(S1+S△EBP+S△HPD)的关系,即可可求解.(4)连接ABCD的得到正方形,根据(3)的方法,进行分割可找到面积之间的关系.。
2020年江苏省连云港市中考数学基础试题A卷附解析
2020年江苏省连云港市中考数学基础试题A 卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.Rt △ABC 中,∠C= 90°,如图所示,D 为BC 上一点,∠DAC=30°,BD=2,AB=23,则AC 的长是( )A .3B .22C .3D .3222.圆的半径为13cm ,两弦AB CD ∥,24cm AB =,10cm CD =,则两弦AB CD ,的距离是( ) A .7cmB .17cmC .12cmD .7cm 或17cm3.我们知道矩形、菱形和正方形都是特殊的平行四边形,图中的椭圆和两个圆及它们的公共部分(即图中阴影部分)分别表示以上的四种四边形之间的关系,则图中的阴影部分所表示的四边形是( ) A .平行四边形B .矩形C .菱形D .正方形4.如图,在△ABC 中,∠ACB = 90°,BE 平分∠ABC ,DE ⊥AB 于D ,如果AC = 3cm ,BC = 2cm ,则AE+DE 的值为( ) A .2cmB .3cmC .4cmD .5cm5.下列说法中,错误的是( ) A .长方体、立方体都是棱柱 B .竖放的直三棱柱的侧面是三角形C .竖放的直六棱柱有六个侧面,侧面为长方形 C .球体的三种视图均为同样大小的图形6. 用代数式表示“x 的相反数的 4 次幂的 3 次方”,答案是( ) A .43()x -B . 43[()]x -C . 34[()]x -D .34()x -7.某班买电影票 55 张,共用了 85 元,其中甲种票每张2元,乙种票每张1元,设甲、乙两种票分别买了 x 张和y 张,则可列出方程组为( )A . 55285x y x y +=⎧⎨+=⎩B . 55201085x y x y +=⎧⎨+=⎩ C . 25585x y x y +=⎧⎨+=⎩D . 55285x y x y +=⎧⎨+=⎩8.某班共有学生 49 人. 一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半. 若设该班男生人数为 x (人),女生入数为 y (人),则下列方程组中,能正确计算出 x ,y 的是( ) A .492(1)x y y x -=⎧⎨=-⎩B . 492(1)x y y x +=⎧⎨=+⎩C . 492(1)x y y x -=⎧⎨=+⎩D . 492(1)x y y x +=⎧⎨=-⎩9.不改变代数式22a a b c --+的值,下列添括号错误..的是( ) A .2(2)a a b c +--+B .2(2)a a b c -+-C .2(2)a a b c --+D .2(2)()a a b c -+-+ 10.若25x a b 与30.2y a b -是同类项,则 x 、y 的值分别是( )A .3x =±,2y =±B .3x =,2y =C .3x =-,2y =-D .3x =,2y =-二、填空题11.由视点发出的线称为 ,看不到的地方称为 . 12.如图,弦 AB 垂直平分半径 OC ,则 ∠AOB= 度.13.已知二次函数222c x x y ++-=的对称轴和x 轴相交于点(0,m )则m 的值为__________.14.小明身上有 100 元. 若他每天用x 元,则可用y 天,因此y 与x 之间的函数关系式为 ,是 函数.15.小颖为了了解家里的用电量,在5月初连续8天同一时刻观察家里电表显示的数字,记 录如下: 日期(号)1 2 3 4 5 6 7 8 电表显示的数字(千瓦时) 117120124129135138142145估计小颖家5月份的总用电量是 千瓦时.解答题16.如图①、②所示,图①中y与x 函数关系;图②中y与x 函数关系(填“是”或“不是”).17.已知12=-yx,则用含x的代数式表示y的结果是y=_________.18.国家规定,人们在买房子时,不超过其价格50%的款项可以向银行贷款.陈老师想买一套房子,自己有l6.8万元,只够房价的60%,那么她应该向银行贷款.三、解答题19.如图,放在直角坐标系中的正方形ABCD的边长为4.现做如下实验:转盘被划分成4个相同的小扇形,并分别标上数字1,2,3.4,分别转动两次转盘,转盘停止后,指针所指向的数字作为直角坐标系中M点的坐标(第一次作横坐标,第二次作纵坐标),指针如果指向分界线上,则重新转动转盘.(1)请你用树状图或列表的方法,求M点落在正方形ABCD面上(含内部与边界)的概率;(2)将正方形ABCD平移整数个单位,则是否存在某种平移,使点M落在正方形ABCD面上的概率为34?若存在,指出一种具体的平移过程?若不存在,请说明理由.20.如图,在△AABC中,⊙0截△ABC的三条边所得的弦长相等,求证:0是△ABC的内心.21.如图,某幢大楼顶部有一块广告牌CD ,甲乙两人分别在相距8米的A 、B 两处测得D 点和C 点的仰角分别为45°°和60°,且A 、B 、E 三点在一条直线上,若BE=15米,求这块广告牌的高度.(取3≈1.73,计算结果保留整数)22.试判断命题:“若一条直线上的两点到另一条直线的距离相等,则这两条直线平行”的真假,并说明理由.23.已知01a a b x ≠≠=,,是方程2100ax bx +-=的一个解,求2222a b a b--的值.24. 已知关于x 的一次函数(22)1y m x m =-++的图象与y 轴的交点在x 轴的上方,且y 随x 的增大而减小,求整数m 的值.25.解不等式5122(43)x x --≤,并把它的解集在数轴上表示出来.26.如图,在四边形ABCD 中,AC ⊥BD 于点E ,BE=DE .已知AC=10cm ,BD=8cm ,求阴影部分的面积.1 2 30 1-2- 3-27.某校九年级(1)、(2)班联合举行毕业晚会. 组织者为了使晚会气氛热烈、有趣,策划时计划整场晚会以转盘游戏的方式进行:每个节目开始时,两班各派一人先进行转盘游戏,胜者获得一件奖品,负者表演一个节目.(1)班的文娱委员利用分别标有数字 1,2,3 和 4,5,6,7 的两个转盘(如图)设计了一种游戏方案:两人同时各转动一个转盘一次,将转到的数字相加,和为偶数时,(1)班代表胜,否则(2)班代表胜. 你认为该方案对双方是否公平?为什么?28.如图所示,△ABC≌△ADE,试说明BE=CD的理由.29.请分别将下面三个图形制成硬纸片,中间穿一根铁丝固定(如图),用两手抓住两端旋转,你知道它们各形成怎样的图形吗?30.化简下列各分式:(1)236sxy x y-; (2) 22699x x x -+-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.D3.D4.B5.B6.B .7.A8.D9.C10.B二、填空题11. 视线,盲区12.12013.114.00l y x=,反比例 15.12416.是,不是17.12-x 18.11.2万元三、解答题 19. (1)41164==P ;(2)先向右平移1个单位,再向上平移2个单位(答案不唯一). 20.作OD ⊥AB 于D ,OF ⊥BC 于E ,OF ⊥AC 于F . ∵⊙0截△ABC 的三条边所得的弦长相等,∴OD=0E=OF ∴点0在△ABC 和△ACB 的角平分线上,即0是AABC 的内心.21.解:∵AB =8,BE =15,∴AE =23,在Rt △AED 中,∠DAE =45° ∴DE =AE =23.在Rt △BEC 中,∠CBE =60°,∴CE =BE ·tan60°=∴CD =CE -DE =23≈2.95≈3 即这块广告牌的高度约为3米.22.假命题,如图所示,AB ⊥BD 于B ,CD ⊥BD 于D ,AB=CD ,但AC 不平行BD23.524.由题意得10220m m +>⎧⎨-<⎩,解得11m m >-⎧⎨<⎩,∴11m -<<.∴所求的整数m 的值为0.25.解:去括号,得51286x x --≤. 移项,得58612x x --+≤. 合并,得36x -≤. 系数化为1,得2x -≥. 不等式的解集在数轴上表示如下:20cm 27.公平, (1)班胜的概率是1612P =;(2)班胜的概率是2612P =,所以公平 28.略29.图①形成圆锥;图②形成圆台;图③形成圆柱30.(1)22y x -;(2)33x x -+12301-2-3-26.。
2020年江苏省连云港市中考数学试卷
2020年江苏省连云港市中考数学试卷题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.3的绝对值是()A. -3B. 3C.D.2.如图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是()A.B.C.D.3.下列计算正确的是()A. 2x+3y=5xyB. (x+1)(x-2)=x2-x-2C. a2•a3=a6D. (a-2)2=a2-44.“红色小讲解员”演讲比赛中,7位评委分别给出某位选手的原始评分.评定该选手成绩时,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,这两组数据一定不变的是()A. 中位数B. 众数C. 平均数D. 方差5.不等式组的解集在数轴上表示为()A. B.C. D.6.如图,将矩形纸片ABCD沿BE折叠,使点A落在对角线BD上的A'处.若∠DBC=24°,则∠A'EB等于()A. 66°B. 60°C. 57°D. 48°7.10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,A、B、C、D、E、O均是正六边形的顶点.则点O是下列哪个三角形的外心()A. △AEDB. △ABDC. △BCDD. △ACD8.快车从甲地驶往乙地,慢车从乙地驶往甲地,两车同时出发并且在同一条公路上匀速行驶.图中折线表示快、慢两车之间的路程y(km)与它们的行驶时间x(h)之间的函数关系.小欣同学结合图象得出如下结论:①快车途中停留了0.5h;②快车速度比慢车速度多20km/h;③图中a=340;④快车先到达目的地.其中正确的是()A. ①③B. ②③C. ②④D. ①④二、填空题(本大题共8小题,共24.0分)9.我市某天的最高气温是4℃,最低气温是-1℃,则这天的日温差是______℃.10.“我的连云港”APP是全市统一的城市综合移动应用服务端.一年来,实名注册用户超过1600000人.数据“1 600 000”用科学记数法表示为______.11.如图,将5个大小相同的正方形置于平面直角坐标系中,若顶点M、N的坐标分别为(3,9)、(12,9),则顶点A的坐标为______.12.按照如图所示的计算程序,若x=2,则输出的结果是______.13.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=-0.2x2+1.5x-2,则最佳加工时间为______min.14.用一个圆心角为90°,半径为20cm的扇形纸片围成一个圆锥的侧面,这个圆锥的底面圆半径为______cm.15.如图,正六边形A1A2A3A4A5A6内部有一个正五边形B1B2B3B4B5,且A3A4∥B3B4,直线l经过B2、B3,则直线l与A1A2的夹角α=______°.16.如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y=x-3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为______.三、计算题(本大题共1小题,共6.0分)17.解方程组四、解答题(本大题共10小题,共96.0分)18.计算(-1)2020+()-1-.19.化简÷.20.在世界环境日(6月5日),学校组织了保护环境知识测试,现从中随机抽取部分学生的成绩作为样本,按“优秀”“良好”“合格”“不合格”四个等级进行统计,绘制了如下尚不完整的统计图表.等级频数(人数)频率优秀30a良好b0.45合格240.20不合格120.10合计c1根据统计图表提供的信息,解答下列问题:(1)表中a=______,b=______,c=______;(2)补全条形统计图;(3)若该校有2400名学生参加了本次测试,估计测试成绩等级在良好以上(包括良好)的学生约有多少人?21.从2021年起,江苏省高考采用“3+1+2”模式:“3”是指语文、数学、外语3科为必选科目,“1”是指在物理、历史2科中任选1科,“2”是指在化学、生物、思想政治、地理4科中任选2科.(1)若小丽在“1”中选择了历史,在“2”中已选择了地理,则她选择生物的概率是______;(2)若小明在“1”中选择了物理,用画树状图的方法求他在“2”中选化学、生物的概率.22.如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.23.甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司共捐款100000元,乙公司共捐款140000元.下面是甲、乙两公司员工的一段对话:(1)甲、乙两公司各有多少人?(2)现甲、乙两公司共同使用这笔捐款购买A、B两种防疫物资,A种防疫物资每箱15000元,B种防疫物资每箱12000元.若购买B种防疫物资不少于10箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A、B两种防疫物资均需购买,并按整箱配送).24.如图,在平面直角坐标系xOy中,反比例函数y=(x>0)的图象经过点A(4,),点B在y轴的负半轴上,AB交x轴于点C,C为线段AB的中点.(1)m=______,点C的坐标为______;(2)若点D为线段AB上的一个动点,过点D作DE∥y轴,交反比例函数图象于点E,求△ODE面积的最大值.25.筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水轮赋)中写道:“水能利物,轮乃曲成”.如图,半径为3m的筒车⊙O按逆时针方向每分钟转圈,筒车与水面分别交于点A、B,筒车的轴心O距离水面的高度OC长为2.2m,筒车上均匀分布着若干个盛水筒.若以某个盛水筒P刚浮出水面时开始计算时间.(1)经过多长时间,盛水筒P首次到达最高点?(2)浮出水面3.4秒后,盛水筒P距离水面多高?(3)若接水槽MN所在直线是⊙O的切线,且与直线AB交于点M,MO=8m.求盛水筒P从最高点开始,至少经过多长时间恰好在直线MN上.(参考数据:cos43°=sin47°≈,sin16°=cos74°≈,sin22°=cos68°≈)26.在平面直角坐标系xOy中,把与x轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线L1:y=x2-x-2的顶点为D,交x轴于点A、B(点A在点B左侧),交y轴于点C.抛物线L2与L1是“共根抛物线”,其顶点为P.(1)若抛物线L2经过点(2,-12),求L2对应的函数表达式;(2)当BP-CP的值最大时,求点P的坐标;(3)设点Q是抛物线L1上的一个动点,且位于其对称轴的右侧.若△DPQ与△ABC 相似,求其“共根抛物线”L2的顶点P的坐标.27.(1)如图1,点P为矩形ABCD对角线BD上一点,过点P作EF∥BC,分别交AB、CD于点E、F.若BE=2,PF=6,△AEP的面积为S1,△CFP的面积为S2,则S1+S2=______;(2)如图2,点P为▱ABCD内一点(点P不在BD上),点E、F、G、H分别为各边的中点.设四边形AEPH的面积为S1,四边形PFCG的面积为S2(其中S2>S1),求△PBD的面积(用含S1、S2的代数式表示);(3)如图3,点P为▱ABCD内一点(点P不在BD上),过点P作EF∥AD,HG∥AB,与各边分别相交于点E、F、G、H.设四边形AEPH的面积为S1,四边形PGCF的面积为S2(其中S2>S1),求△PBD的面积(用含S1、S2的代数式表示);(4)如图4,点A、B、C、D把⊙O四等分.请你在圆内选一点P(点P不在AC、BD上),设PB、PC、围成的封闭图形的面积为S1,PA、PD、围成的封闭图形的面积为S2,△PBD的面积为S3,△PAC的面积为S4,根据你选的点P的位置,直接写出一个含有S1、S2、S3、S4的等式(写出一种情况即可).答案和解析1.【答案】B【解析】解:|3|=3,故选:B.根据绝对值的意义,可得答案.本题考查了实数的性质,利用绝对值的意义是解题关键.2.【答案】D【解析】解:从正面看有两层,底层是两个小正方形,上层的左边是一个小正方形.故选:D.找到从几何体的正面看所得到的图形即可.此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.3.【答案】B【解析】解:A.2x与3y不是同类项,所以不能合并,故本选项不合题意;B.(x+1)(x-2)=x2-x-2,故本选项符合题意;C.a2•a3=a5,故本选项不合题意;D.(a-2)2=a2-4a+4,故本选项不合题意.故选:B.分别根据合并同类项法则,多项式乘多项式的运算法则,同底数幂的乘法法则以及完全平方公式逐一判断即可.本题主要考查了合并同类项,同底数幂的乘法,多项式乘多项式以及完全平方公式,熟记相关公式与运算法则是解答本题的关键.4.【答案】A【解析】解:根据题意,从7个原始评分中去掉1个最高分和1个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,不变的是中位数.故选:A.根据平均数、中位数、众数、方差的意义即可求解.本题考查了平均数、中位数、众数、方差的意义.平均数是指在一组数据中所有数据之和再除以数据的个数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一组数据中出现次数最多的数据叫做众数;一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.5.【答案】C【解析】解:解不等式2x-1≤3,得:x≤2,解不等式x+1>2,得:x>1,∴不等式组的解集为1<x≤2,表示在数轴上如下:故选:C.先求出不等式组的解集,再在数轴上表示出来即可.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.【答案】C【解析】解:∵四边形ABCD是矩形,∴∠A=∠ABC=90°,由折叠的性质得:∠BA'E=∠A=90°,∠A'BE=∠ABE,∴∠A'BE=∠ABE=(90°-∠DBC)=(90°-24°)=33°,∴∠A'EB=90°-∠A'BE=90°-33°=57°;故选:C.由矩形的性质得∠A=∠ABC=90°,由折叠的性质得∠BA'E=∠A=90°,∠A'BE=∠ABE=(90°-∠DBC)=33°,即可得出答案.本题考查了矩形的性质、折叠的性质以及直角三角形的性质;熟练掌握矩形的性质和折叠的性质是解题的关键.7.【答案】D【解析】解:∵三角形的外心到三角形的三个顶点的距离相等,∴从O点出发,确定点O分别到A,B,C,D,E的距离,只有OA=OC=OD,∴点O是△ACD的外心,故选:D.根据三角形外心的性质,到三个顶点的距离相等,进行判断即可.此题主要考查了正多边形、三角形外心的性质等知识;熟练掌握三角形外心的性质是解题的关键.8.【答案】B【解析】解:根据题意可知,两车的速度和为:360÷2=180(km/h),相遇后慢车停留了0.5h,快车停留了1.6h,此时两车距离为88km,故①结论错误;慢车的速度为:88÷(3.6-2.5)=80(km/h),则快车的速度为100km/h,所以快车速度比慢车速度多20km/h;故②结论正确;88+180×(5-3.6)=340(km),所以图中a=340,故③结论正确;(360-2×80)÷80=2.5(h),5-2.5=2.5(h),所以慢车先到达目的地,故④结论错误.所以正确的是②③.故选:B.根据题意可知两车出发2小时后相遇,据此可知他们的速度和为180(km/h),相遇后慢车停留了0.5h,快车停留了1.6h,此时两车距离为88km,据此可得慢车的速度为80km/h,进而得出快车的速度为100km/h,根据“路程和=速度和×时间”即可求出a的值,从而判断出谁先到达目的地.本题考查了一次函数的应用,行程问题中数量关系的运用,函数图象的意义的运用,解答时读懂函数图象,从图象中获取有用信息是解题的关键.9.【答案】5【解析】解:4-(-1)=4+1=5.故答案为:5.先用最高气温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上它的相反数”计算.本题主要考查了有理数的减法,熟记运算法则是解答本题的关键.10.【答案】1.6×106【解析】解:数据“1600000”用科学记数法表示为1.6×106,故答案为:1.6×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.【答案】(15,3)【解析】解:如图,∵顶点M、N的坐标分别为(3,9)、(12,9),∴MN∥x轴,MN=9,BN∥y轴,∴正方形的边长为3,∴BN=6,∴点B(12,3),∵AB∥MN,∴AB∥x轴,∴点A(15,3)故答案为(15,3).由图形可得MN∥x轴,MN=9,BN∥y轴,可求正方形的边长,即可求解.本题考查了正方形的性质,坐标与图形性质,读懂图形的意思,是本题的关键.12.【答案】-26【解析】解:把x=2代入程序中得:10-22=10-4=6>0,把x=6代入程序中得:10-62=10-36=-26<0,∴最后输出的结果是-26.故答案为:-26.把x=2代入程序中计算,当其值小于0时将所得结果输出即可.本题借助程序框图考查了有理数的混合运算,读懂程序框图是解题的关键.13.【答案】3.75【解析】解:根据题意:y=-0.2x2+1.5x-2,当x=-=3.75时,y取得最大值,则最佳加工时间为3.75min.故答案为:3.75.根据二次函数的性质可得.本题主要考查二次函数的应用,利用二次函数的性质求最值问题是解题的关键.14.【答案】5【解析】解:设这个圆锥的底面圆半径为r,根据题意得2πr=,解得r=5(cm).故答案为:5.设这个圆锥的底面圆半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后解关于r的方程即可.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15.【答案】48【解析】解:延长A1A2交A4A3的延长线于C,设l交A1A2于E、交A4A3于D,如图所示:∵六边形A1A2A3A4A5A6是正六边形,六边形的内角和=(6-2)×180°=720°,∴∠A1A2A3=∠A2A3A4==120°,∴∠CA2A3=∠A2A3C=180°-120°=60°,∴∠C=180°-60°-60°=60°,∵五边形B1B2B3B4B5是正五边形,五边形的内角和=(5-2)×180°=540°,∴∠B2B3B4==108°,∵A3A4∥B3B4,∴∠EDA4=∠B2B3B4=108°,∴∠EDC=180°-108°=72°,∴α=∠CED=180°-∠C-∠EDC=180°-60°-72°=48°,故答案为:48.延长A1A2交A4A3的延长线于C,设l交A1A2于E、交A4A3于D,由正六边形的性质得出∠A1A2A3=∠A2A3A4=120°,得出∠CA2A3=∠A2A3C=60°,则∠C=60°,由正五边形的性质得出∠B2B3B4=108°,由平行线的性质得出∠EDA4=∠B2B3B4=108°,则∠EDC=72°,再由三角形内角和定理即可得出答案.本题考查了正六边形的性质、正五边形的性质、平行线的性质以及三角形内角和定理等知识;熟练掌握正六边形和正五边形的性质是解题的关键.16.【答案】2【解析】解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=x-3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,-3),∴OD=4,OE=3,∴DE==5,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴=,∴=,∴MN=,当点C与C′重合时,△C′DE的面积最小,最小值=×5×(-1)=2,故答案为2.如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.首先证明点C 的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.求出MN,当点C 与C′重合时,△C′DE的面积最小.本题考查三角形的中位线定理,三角形的面积,一次函数的性质等知识,解题的关键是学会添加常用辅助线,构造三角形的中位线解决问题,属于中考常考题型.17.【答案】解:把②代入①,得2(1-y)+4y=5,解得y=.把y=代入②,得x=-.∴原方程组的解为.【解析】把组中的方程②直接代入①,用代入法求解即可.本题考查了二元一次方程组的解法.掌握二元一次方程组的代入法是解决本题的关键.18.【答案】解:原式=1+5-4=2.【解析】先计算乘方、负整数指数幂、立方根,再计算加减可得.本题主要考查实数的运算,解题的关键是掌握乘方的定义、负整数指数幂的规定及立方根的定义.19.【答案】解:原式=•=•=.【解析】直接利用分式的性质进而化简进而得出答案.此题主要考查了分式乘除运算,正确化简分式是解题关键.20.【答案】0.25 54 120【解析】解:(1)本次抽取的学生有:24÷0.20=120(人),a=30÷120=0.25,b=120×0.45=54,c=120,故答案为:0.25,54,120;(2)由(1)知,b=54,补全的条形统计图如右图所示;(3)2400×(0.45+0.25)=1680(人),答:测试成绩等级在良好以上(包括良好)的学生约有1680人.(1)根据合格的频数和频率可以求得本次调查的人数,然后即可得到a、b、c的值;(2)根据(1)中b的值,可以将条形统计图补充完整;(3)根据频数分布表中的数据,可以计算出测试成绩等级在良好以上(包括良好)的学生约有多少人.本题考查条形统计图、频数分布表、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.【答案】【解析】解:(1)在“2”中已选择了地理,从剩下的化学、生物,思想品德三科中选一科,因此选择生物的概率为;故答案为:;(2)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中选中“化学”“生物”的有2种,∴P(化学生物)==.(1)在“2”中已选择了地理,从剩下的化学、生物,思想品德三科中选一科,可得选择生物的概率;(2)用列表法表示所有可能出现的结果数,进而求出相应的概率.本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果数是解决问题的关键.22.【答案】(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM是平行四边形,∵MN⊥BD,∴四边形BNDM是菱形;(2)解:∵四边形BNDM是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,在Rt△BOM中,由勾股定理得:BM===13,∴菱形BNDM的周长=4BM=4×13=52.【解析】(1)证△MOD≌△NOB(AAS),得出OM=ON,由OB=OD,证出四边形BNDM 是平行四边形,进而得出结论;(2)由菱形的性质得出BM=BN=DM=DN,OB=BD=12,OM=MN=5,由勾股定理得BM=13,即可得出答案.本题考查了菱形的判定与性质、平行四边形的判定与性质、全等三角形的判定与性质、勾股定理等知识;熟练掌握菱形的判定与性质,证明三角形全等是解题的关键.23.【答案】解:(1)设甲公司有x人,则乙公司有(x+30)人,依题意,得:×=,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+30=180.答:甲公司有150人,乙公司有180人.(2)设购买A种防疫物资m箱,购买B种防疫物资n箱,依题意,得:15000m+12000n=100000+140000,∴m=16-n.又∵n≥10,且m,n均为正整数,∴,,∴有2种购买方案,方案1:购买8箱A种防疫物资,10箱B种防疫物资;方案2:购买4箱A种防疫物资,15箱B种防疫物资.【解析】(1)设甲公司有x人,则乙公司有(x+30)人,根据乙公司的人均捐款数是甲公司的倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买A种防疫物资m箱,购买B种防疫物资n箱,根据总价=单价×数量,即可得出关于m,n的二元一次方程组,再结合n≥10且m,n均为正整数,即可得出各购买方案.本题考查了分式方程的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出二元一次方程.24.【答案】6 (2,0)【解析】解:(1)∵反比例函数y=(x>0)的图象经过点A(4,),∴m==6,∵AB交x轴于点C,C为线段AB的中点.∴C(2,0);故答案为6,(2,0);(2)设直线AB的解析式为y=kx+b,把A(4,),C(2,0)代入得,解得,∴直线AB的解析式为y=x-;∵点D为线段AB上的一个动点,∴设D(x,x-)(0<x≤4),∵DE∥y轴,∴E(x,),∴S△ODE=x•(-x+)=-x2+x+3=-(x-1)2+,∴当x=1时,△ODE的面积的最大值为.(1)根据待定系数法即可求得m的值,根据A点的坐标即可求得C的坐标;(2)根据待定系数法求得直线AB的解析式,设出D、E的坐标,然后根据三角形面积公式得到S△ODE=-(x-1)2+,由二次函数的性质即可求得结论.本题考查了反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,二次函数的性质,根据三角形面积得到二次函数的解析式是解题的关键.25.【答案】解:(1)如图1中,连接OA.由题意,筒车每秒旋转360°×÷60=5°,在Rt△ACO中,cos∠AOC===.∴∠AOC=43°,∴=27.4(秒).答:经过27.4秒时间,盛水筒P首次到达最高点.(2)如图2中,盛水筒P浮出水面3.4秒后,此时∠AOP=3.4×5°=17°,∴∠POC=∠AOC+∠AOP=43°+17°=60°,过点P作PD⊥OC于D,在Rt△POD中,OD=OP•cos60°=3×=1.5(m),2.2-1.5=1.7(m),答:浮出水面3.4秒后,盛水筒P距离水面1.7m.(3)如图3中,∵点P在⊙O上,且MN与⊙O相切,∴当点P在MN上时,此时点P是切点,连接OP,则OP⊥MN,在Rt△OPM中,cos∠POM==,∴∠POM=68°,在Rt△COM中,cos∠COM===,∴∠COM=74°,∴∠POH=180°-∠POM-∠COM=180°-68°-74°=38°,∴需要的时间为=7.6(秒),答:盛水筒P从最高点开始,至少经过7.6秒恰好在直线MN上.【解析】(1)如图1中,连接OA.求出∠AOC的度数,以及旋转速度即可解决问题.(2)如图2中,盛水筒P浮出水面3.4秒后,此时∠AOP=3.4×5°=17°,过点P作PD⊥OC 于D,解直角三角形求出CD即可.(3)如图3中,连接OP,解直角三角形求出∠POM,∠COM,可得∠POH的度数即可解决问题.本题考查解直角三角形的应用,切线的性质等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.26.【答案】解:(1)当y=0时,x2-x-2=0,解得x=-1或4,∴A(-1,0),B(4,0),C(0,2),由题意设抛物线L2的解析式为y=a(x+1)(x-4),把(2,-12)代入y=a(x+1)(x-4),-12=-6a,解得a=2,∴抛物线的解析式为y=2(x+1)(x-4)=2x2-6x-8.(2)∵抛物线L2与L1是“共根抛物线”,A(-1,0),B(4,0),∴抛物线L1,L2的对称轴是直线x=,∴点P在直线x=上,∴BP=AP,如图1中,当A,C,P共线时,BP-PC的值最大,此时点P为直线AC与直线x=的交点,∵直线AC的解析式为y=-2x-2,∴P(,-5)(3)由题意,AB=5,CB=2,CA=,∴AB2=BC2+AC2,∴∠ACB=90°,CB=2CA,∵y=x2-x-2=(x-)2-,∴顶点D(,-),由题意,∠PDQ不可能是直角,第一种情形:当∠DPQ=90°时,①如图3-1中,当△QDP∽△ABC时,==,设Q(x,x2-x-2),则P(,x2-x-2),∴DP=x2-x-2-(-)=x2-x+,QP=x-,∵PD=2QP,∴2x-3=x2-x+,解得x=或(舍弃),∴P(,).②如图3-2中,当△DQP∽△ABC时,同法可得QO=2PD,x-=x2-3x+,解得x=或(舍弃),∴P(,-).第二种情形:当∠DQP=90°.①如图3-3中,当△PDQ∽△ABC时,==,过点Q作QM⊥PD于M.则△QDM∽△PDQ,∴==,由图3-1可知,M(,),Q(,),∴MD=8,MQ=4,∴DQ=4,由=,可得PD=10,∵D(,-)∴P(,).②当△DPQ∽△ABC时,过点Q作QM⊥PD于M.同法可得M(,-),Q(,-),∴DM=,QM=1,QD=,由=,可得PD=,∴P(,-).【解析】(1)由题意设抛物线L2的解析式为y=a(x+1)(x-4),利用待定系数法求出a即可解决问题.(2)由题意BP=AP,如图1中,当A,C,P共线时,BP-PC的值最大,此时点P为直线AC与直线x=的交点.(3)由题意,顶点D(,-),∠PDQ不可能是直角,第一种情形:当∠DPQ=90°时,①如图3-1中,当△QDP∽△ABC时.②如图3-2中,当△DQP∽△ABC时.第二种情形:当∠DQP=90°.①如图3-3中,当△PDQ∽△ABC时.②当△DPQ∽△ABC时,分别求解即可解决问题.本题属于二次函数综合题,考查了相似三角形的判定和性质,解直角三角形等知识,解题的关键是理解题意,学会用分类讨论的思想解决问题,属于中考压轴题.27.【答案】12【解析】解:(1)如图1中,过点P作PM⊥AD于M,交BC于N.∵四边形ABCD是矩形,EF∥BC,∴四边形AEPM,四边形MPFD,四边形BNPE,四边形PNCF都是矩形,∴BE=PN=CF=2,S△PFC=×PF×CF=6,S△AEP=S△APM,S△PEB=S△PBN,S△PDM=S△PFD,S△PCN=S△PCF,S△ABD=S△BCD,∴S矩形AEPM=S矩形PNCF,∴S1=S2=6,∴S1+S2=12,故答案为12.(2)如图2中,连接PA,PC,在△APB中,∵点E是AB的中点,∴可设S△APE=S△PBE=a,同理,S△APH=S△PDH=b,S△PDG=S△PGC=c,S△PFC=S△PBF=d,∴S四边形AEPH+S四边形PFCG=a+b+c+d,S四边形PEBF+S四边形PHDG=a+b+c+d,∴S四边形AEPH+S四边形PFCG=S四边形PEBF+S四边形PHDG=S1+S2,∴S△ABD=S平行四边形ABCD=S1+S2,∴S△PBD=S△ABD-(S1+S△PBE+S△PHD)=S1+S2-(S1+a+S1-a)=S2-S1.(3)如图3中,由题意四边形EBGP,四边形HPFD都是平行四边形,∴S四边形EBGP=2S△EBP,S四边形HPFD=2S△HPD,∴S△ABD=S平行四边形ABCD=(S1+S2+2S△EBP+2S△HPD)=(S1+S2)+S△EBP+S△HPD,∴S△PBD=S△ABD-(S1+S△EBP+S△HPD)=(S2-S1).(4)如图4-1中,结论:S2-S1=S3+S4.理由:设线段PB,线段PA,AB围成的封闭图形的面积为x,线段PC,线段PD,弧CD的封闭图形的面积为y.由题意:S1+x+S4=S1+y+S3,∴x-y=S3-S4,∵S1+S2+x+y=2(S1+x+S4),∴S2-S1=x-y+2S4=S3+S4.同法可证:图4-2中,有结论:S1-S=S3+S4.图4-3中和图4-4中,有结论:|S1-S2|=|S3-S4|.(1)如图1中,求出△PFC 的面积,证明△APE 的面积=△PFC 的面积即可.(2)如图2中,连接PA ,PC ,在△APB 中,因为点E 是AB 的中点,可设S △APE =S △PBE =a ,同理,S △APH =S △PDH =b ,S △PDG =S △PGC =c ,S △PFC =S △PBF =d ,证明S 四边形AEPH +S 四边形PFCG =S 四边形PEBF +S 四边形PHDG =S 1+S 2,推出S △ABD =S 平行四边形ABCD =S 1+S 2,根据S △PBD =S △ABD -(S 1+S △PBE +S △PHD )=S 1+S 2-(S 1+a +S 1-a )=S 2-S 1.可得结论.(3)如图3中,由题意四边形EBGP ,四边形HPFD 都是平行四边形,利用平行四边形的性质求解即可.(4)分四种情形:如图4-1中,结论:S 2-S 1=S 3+S 4.设线段PB ,线段PA ,AB 围成的封闭图形的面积为x ,线段PC ,线段PD ,弧CD 的封闭图形的面积为y .由题意:S 1+x +S 4=S 1+y +S 3,推出x -y =S 3-S 4,由题意S 1+S 2+x +y =2(S 1+x +S 4),可得S 2-S 1=x -y +2S 4=S 3+S 4.其余情形同法可求.本题属于圆综合题,考查了矩形的性质,平行四边形的性质,圆的有关知识等知识,解题的关键是理解题意,学会利用参数解决问题,学会用分类讨的思想思考问题,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年江苏省连云港市中考数学试卷(考试时间:120分钟满分:150分)一、选择题(本大题共有8小题,每小题3分,共24分)1.3的绝对值是()A.﹣3 B.3 C.D.2.如图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是()A.B.C.D.3.下列计算正确的是()A.2x+3y=5xy B.(x+1)(x﹣2)=x2﹣x﹣2C.a2•a3=a6D.(a﹣2)2=a2﹣44.“红色小讲解员”演讲比赛中,7位评委分别给出某位选手的原始评分.评定该选手成绩时,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,这两组数据一定不变的是()A.中位数B.众数C.平均数D.方差5.不等式组的解集在数轴上表示为()A.B.C.D.6.如图,将矩形纸片ABCD沿BE折叠,使点A落在对角线BD上的A'处.若∠DBC=24°,则∠A'EB等于()A.66°B.60°C.57°D.48°7.10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,A、B、C、D、E、O均是正六边形的顶点.则点O是下列哪个三角形的外心()A.△AED B.△ABD C.△BCD D.△ACD8.快车从甲地驶往乙地,慢车从乙地驶往甲地,两车同时出发并且在同一条公路上匀速行驶.图中折线表示快、慢两车之间的路程y(km)与它们的行驶时间x(h)之间的函数关系.小欣同学结合图象得出如下结论:①快车途中停留了0.5h;②快车速度比慢车速度多20km/h;③图中a=340;④快车先到达目的地.其中正确的是()A.①③B.②③C.②④D.①④二、填空题(本大题共有8小题,每小题3分,共24分)9.我市某天的最高气温是4℃,最低气温是﹣1℃,则这天的日温差是℃.10.“我的连云港”APP是全市统一的城市综合移动应用服务端.一年来,实名注册用户超过1600000人.数据“1 600 000”用科学记数法表示为.11.如图,将5个大小相同的正方形置于平面直角坐标系中,若顶点M、N的坐标分别为(3,9)、(12,9),则顶点A的坐标为.12.按照如图所示的计算程序,若x=2,则输出的结果是.13.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=﹣0.2x2+1.5x﹣2,则最佳加工时间为min.14.用一个圆心角为90°,半径为20cm的扇形纸片围成一个圆锥的侧面,这个圆锥的底面圆半径为cm.15.如图,正六边形A1A2A3A4A5A6内部有一个正五边形B1B2B3B4B5,且A3A4∥B3B4,直线l经过B2、B3,则直线l 与A1A2的夹角α=°.16.如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y=x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为.三、解答题(本大题共11小题,共102分)17.(6分)计算(﹣1)2020+()﹣1﹣.18.(6分)解方程组19.(6分)化简÷.20.(8分)在世界环境日(6月5日),学校组织了保护环境知识测试,现从中随机抽取部分学生的成绩作为样本,按“优秀”“良好”“合格”“不合格”四个等级进行统计,绘制了如下尚不完整的统计图表.测试成绩统计表等级频数(人数)频率优秀30 a良好 b 0.45合格24 0.20不合格12 0.10合计 c 1根据统计图表提供的信息,解答下列问题:(1)表中a=,b=,c=;(2)补全条形统计图;(3)若该校有2400名学生参加了本次测试,估计测试成绩等级在良好以上(包括良好)的学生约有多少人?21.(10分)从2021年起,江苏省高考采用“3+1+2”模式:“3”是指语文、数学、外语3科为必选科目,“1”是指在物理、历史2科中任选1科,“2”是指在化学、生物、思想政治、地理4科中任选2科.(1)若小丽在“1”中选择了历史,在“2”中已选择了地理,则她选择生物的概率是;(2)若小明在“1”中选择了物理,用画树状图的方法求他在“2”中选化学、生物的概率.22.(10分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.23.(10分)甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司共捐款100000元,乙公司共捐款140000元.下面是甲、乙两公司员工的一段对话:(1)甲、乙两公司各有多少人?(2)现甲、乙两公司共同使用这笔捐款购买A、B两种防疫物资,A种防疫物资每箱15000元,B种防疫物资每箱12000元.若购买B种防疫物资不少于10箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A、B两种防疫物资均需购买,并按整箱配送).24.(10分)如图,在平面直角坐标系xOy中,反比例函数y=(x>0)的图象经过点A(4,),点B 在y轴的负半轴上,AB交x轴于点C,C为线段AB的中点.(1)m=,点C的坐标为;(2)若点D为线段AB上的一个动点,过点D作DE∥y轴,交反比例函数图象于点E,求△ODE面积的最大值.25.(12分)筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水轮赋)中写道:“水能利物,轮乃曲成”.如图,半径为3m的筒车⊙O按逆时针方向每分钟转圈,筒车与水面分别交于点A、B,筒车的轴心O距离水面的高度OC长为2.2m,筒车上均匀分布着若干个盛水筒.若以某个盛水筒P刚浮出水面时开始计算时间.(1)经过多长时间,盛水筒P首次到达最高点?(2)浮出水面3.4秒后,盛水筒P距离水面多高?(3)若接水槽MN所在直线是⊙O的切线,且与直线AB交于点M,MO=8m.求盛水筒P从最高点开始,至少经过多长时间恰好在直线MN上.(参考数据:cos43°=sin47°≈,sin16°=cos74°≈,sin22°=cos68°≈)26.(12分)在平面直角坐标系xOy中,把与x轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线L1:y=x2﹣x﹣2的顶点为D,交x轴于点A、B(点A在点B左侧),交y轴于点C.抛物线L2与L1是“共根抛物线”,其顶点为P.(1)若抛物线L2经过点(2,﹣12),求L2对应的函数表达式;(2)当BP﹣CP的值最大时,求点P的坐标;(3)设点Q是抛物线L1上的一个动点,且位于其对称轴的右侧.若△DPQ与△ABC相似,求其“共根抛物线”L2的顶点P的坐标.27.(12分)(1)如图1,点P为矩形ABCD对角线BD上一点,过点P作EF∥BC,分别交AB、CD于点E、F.若BE=2,PF=6,△AEP的面积为S1,△CFP的面积为S2,则S1+S2=;(2)如图2,点P为▱ABCD内一点(点P不在BD上),点E、F、G、H分别为各边的中点.设四边形AEPH 的面积为S1,四边形PFCG的面积为S2(其中S2>S1),求△PBD的面积(用含S1、S2的代数式表示);(3)如图3,点P为▱ABCD内一点(点P不在BD上),过点P作EF∥AD,HG∥AB,与各边分别相交于点E、F、G、H.设四边形AEPH的面积为S1,四边形PGCF的面积为S2(其中S2>S1),求△PBD的面积(用含S1、S2的代数式表示);(4)如图4,点A、B、C、D把⊙O四等分.请你在圆内选一点P(点P不在AC、BD上),设PB、PC、围成的封闭图形的面积为S1,PA、PD、围成的封闭图形的面积为S2,△PBD的面积为S3,△PAC的面积为S4,根据你选的点P的位置,直接写出一个含有S1、S2、S3、S4的等式(写出一种情况即可).参考答案与试题解析一、选择题1.【解答】解:|3|=3,故选:B.2.【解答】解:从正面看有两层,底层是两个小正方形,上层的左边是一个小正方形.故选:D.3.【解答】解:A.2x与3y不是同类项,所以不能合并,故本选项不合题意;B.(x+1)(x﹣2)=x2﹣x﹣2,故本选项符合题意;C.a2•a3=a5,故本选项不合题意;D.(a﹣2)2=a2﹣4a+4,故本选项不合题意.故选:B.4.【解答】解:根据题意,从7个原始评分中去掉1个最高分和1个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,不变的是中位数.故选:A.5.【解答】解:解不等式2x﹣1≤3,得:x≤2,解不等式x+1>2,得:x>1,∴不等式组的解集为1<x≤2,表示在数轴上如下:故选:C.6.【解答】解:∵四边形ABCD是矩形,∴∠A=∠ABC=90°,由折叠的性质得:∠BA'E=∠A=90°,∠A'BE=∠ABE,∴∠A'BE=∠ABE=(90°﹣∠DBC)=(90°﹣24°)=33°,∴∠A'EB=90°﹣∠A'BE=90°﹣33°=57°;故选:C.7.【解答】解:∵三角形的外心到三角形的三个顶点的距离相等,∴从O点出发,确定点O分别到A,B,C,D,E的距离,只有OA=OC=OD,∴点O是△ACD的外心,故选:D.8.【解答】解:根据题意可知,两车的速度和为:360÷2=180(km/h),相遇后慢车停留了0.5h,快车停留了1.6h,此时两车距离为88km,故①结论错误;慢车的速度为:88÷(3.6﹣2.5)=80(km/h),则快车的速度为100km/h,所以快车速度比慢车速度多20km/h;故②结论正确;88+180×(5﹣3.6)=340(km),所以图中a=340,故③结论正确;(360﹣2×80)÷80=2.5(h),5﹣2.5=2.5(h),所以慢车先到达目的地,故④结论错误.所以正确的是②③.故选:B.二、填空题9.【解答】解:4﹣(﹣1)=4+1=5.故答案为:5.10.【解答】解:数据“1600000”用科学记数法表示为1.6×106,故答案为:1.6×106.11.【解答】解:如图,∵顶点M、N的坐标分别为(3,9)、(12,9),∴MN∥x轴,MN=9,BN∥y轴,∴正方形的边长为3,∴BN=6,∴点B(12,3),∵AB∥MN,∴AB∥x轴,∴点A(15,3)故答案为(15,3).12.【解答】解:把x=2代入程序中得:10﹣22=10﹣4=6>0,把x=6代入程序中得:10﹣62=10﹣36=﹣26<0,∴最后输出的结果是﹣26.故答案为:﹣26.13.【解答】解:根据题意:y=﹣0.2x2+1.5x﹣2,当x=﹣=3.75时,y取得最大值,则最佳加工时间为3.75min.故答案为:3.75.14.【解答】解:设这个圆锥的底面圆半径为r,根据题意得2πr=,解得r=5(cm).故答案为:5.15.【解答】解:延长A1A2交A4A3的延长线于C,设l交A1A2于E、交A4A3于D,如图所示:∵六边形A1A2A3A4A5A6是正六边形,六边形的内角和=(6﹣2)×180°=720°,∴∠A1A2A3=∠A2A3A4==120°,∴∠CA2A3=∠A2A3C=180°﹣120°=60°,∴∠C=180°﹣60°﹣60°=60°,∵五边形B1B2B3B4B5是正五边形,五边形的内角和=(5﹣2)×180°=540°,∴∠B2B3B4==108°,∵A3A4∥B3B4,∴∠EDA4=∠B2B3B4=108°,∴∠EDC=180°﹣108°=72°,∴α=∠CED=180°﹣∠C﹣∠EDC=180°﹣60°﹣72°=48°,故答案为:48.16.【解答】解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=x﹣3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,﹣3),∴OD=4,OE=3,∴DE==5,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴=,∴=,∴MN=,当点C与C′重合时,△C′DE的面积最小,最小值=×5×(﹣1)=2,故答案为2.三、解答题17.【解答】解:原式=1+5﹣4=2.18.【解答】解:把②代入①,得2(1﹣y)+4y=5,解得y=.把y=代入②,得x=﹣.∴原方程组的解为.19.【解答】解:原式=•=•=.20.【解答】解:(1)本次抽取的学生有:24÷0.20=120(人),a=30÷120=0.25,b=120×0.45=54,c=120,故答案为:0.25,54,120;(2)由(1)知,b=54,补全的条形统计图如右图所示;(3)2400×(0.45+0.25)=1680(人),答:测试成绩等级在良好以上(包括良好)的学生约有1680人.21.【解答】解:(1)在“2”中已选择了地理,从剩下的化学、生物,思想品德三科中选一科,因此选择生物的概率为;故答案为:;(2)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中选中“化学”“生物”的有2种,∴P(化学生物)==.22.【解答】(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM是平行四边形,∵MN⊥BD,∴四边形BNDM是菱形;(2)解:∵四边形BNDM是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,在Rt△BOM中,由勾股定理得:BM===13,∴菱形BNDM的周长=4BM=4×13=52.23.【解答】解:(1)设甲公司有x人,则乙公司有(x+30)人,依题意,得:×=,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+30=180.答:甲公司有150人,乙公司有180人.(2)设购买A种防疫物资m箱,购买B种防疫物资n箱,依题意,得:15000m+12000n=100000+140000,∴m=16﹣n.又∵n≥10,且m,n均为正整数,∴,,∴有2种购买方案,方案1:购买8箱A种防疫物资,10箱B种防疫物资;方案2:购买4箱A种防疫物资,15箱B种防疫物资.24.【解答】解:(1)∵反比例函数y=(x>0)的图象经过点A(4,),∴m==6,∵AB交x轴于点C,C为线段AB的中点.∴C(2,0);故答案为6,(2,0);(2)设直线AB的解析式为y=kx+b,把A(4,),C(2,0)代入得,解得,∴直线AB的解析式为y=x﹣;∵点D为线段AB上的一个动点,∴设D(x,x﹣)(0<x≤4),∵DE∥y轴,∴E(x,),∴S△ODE=x•(﹣x+)=﹣x2+x+3=﹣(x﹣1)2+,∴当x=1时,△ODE的面积的最大值为.25.【解答】解:(1)如图1中,连接OA.由题意,筒车每秒旋转360°×÷60=5°,在Rt△ACO中,cos∠AOC===.∴∠AOC=43°,∴=27.4(秒).答:经过27.4秒时间,盛水筒P首次到达最高点.(2)如图2中,盛水筒P浮出水面3.4秒后,此时∠AOP=3.4×5°=17°,∴∠POC=∠AOC+∠AOP=43°+17°=60°,过点P作PD⊥OC于D,在Rt△POD中,OD=OP•cos60°=3×=1.5(m),2.2﹣1.5=1.7(m),答:浮出水面3.4秒后,盛水筒P距离水面1.7m.(3)如图3中,∵点P在⊙O上,且MN与⊙O相切,∴当点P在MN上时,此时点P是切点,连接OP,则OP⊥MN,在Rt△OPM中,cos∠POM==,∴∠POM=68°,在Rt△COM中,cos∠COM===,∴∠COM=74°,∴∠POH=180°﹣∠POM﹣∠COM=180°﹣68°﹣74°=38°,∴需要的时间为=7.6(秒),答:盛水筒P从最高点开始,至少经过7.6秒恰好在直线MN上.26.【解答】解:(1)当y=0时,x2﹣x﹣2=0,解得x=﹣1或4,∴A(﹣1,0),B(4,0),C(0,2),由题意设抛物线L2的解析式为y=a(x+1)(x﹣4),把(2,﹣12)代入y=a(x+1)(x﹣4),﹣12=﹣6a,解得a=2,∴抛物线的解析式为y=2(x+1)(x﹣4)=2x2﹣6x﹣8.(2)∵抛物线L2与L1是“共根抛物线”,A(﹣1,0),B(4,0),∴抛物线L1,L2的对称轴是直线x=,∴点P在直线x=上,∴BP=AP,如图1中,当A,C,P共线时,BP﹣PC的值最大,此时点P为直线AC与直线x=的交点,∵直线AC的解析式为y=﹣2x﹣2,∴P(,﹣5)(3)由题意,AB=5,CB=2,CA=,∴AB2=BC2+AC2,∴∠ACB=90°,CB=2CA,∵y=x2﹣x﹣2=(x﹣)2﹣,∴顶点D(,﹣),由题意,∠PDQ不可能是直角,第一种情形:当∠DPQ=90°时,①如图3﹣1中,当△QDP∽△ABC时,==,设Q(x,x2﹣x﹣2),则P(,x2﹣x﹣2),∴DP=x2﹣x﹣2﹣(﹣)=x2﹣x+,QP=x﹣,∵PD=2QP,∴2x﹣3=x2﹣x+,解得x=或(舍弃),∴P(,).②如图3﹣2中,当△DQP∽△ABC时,同法可得QO=2PD,x﹣=x2﹣3x+,解得x=或(舍弃),∴P(,﹣).第二种情形:当∠DQP=90°.①如图3﹣3中,当△PDQ∽△ABC时,==,过点Q作QM⊥PD于M.则△QDM∽△PDQ,∴==,由图3﹣1可知,M(,),Q(,),∴MD=8,MQ=4,∴DQ=4,由=,可得PD=10,∵D(,﹣)∴P(,).②当△DPQ∽△ABC时,过点Q作QM⊥PD于M.同法可得M(,﹣),Q(,﹣),∴DM=,QM=1,QD=,由=,可得PD=,∴P(,﹣).27.【解答】解:(1)如图1中,过点P作PM⊥AD于M,交BC于N.∵四边形ABCD是矩形,EF∥BC,∴四边形AEPM,四边形MPFD,四边形BNPE,四边形PNCF都是矩形,∴BE=PN=CF=2,S△PFC=×PF×CF=6,S△AEP=S△APM,S△PEB=S△PBN,S△PDM=S△PFD,S△PCN=S△PCF,S△ABD=S△BCD,∴S矩形AEPM=S矩形PNCF,∴S1=S2=6,∴S1+S2=12,故答案为12.(2)如图2中,连接PA,PC,在△APB中,∵点E是AB的中点,∴可设S△APE=S△PBE=a,同理,S△APH=S△PDH=b,S△PDG=S△PGC=c,S△PFC=S△PBF=d,∴S四边形AEPH+S四边形PFCG=a+b+c+d,S四边形PEBF+S四边形PHDG=a+b+c+d,∴S四边形AEPH+S四边形PFCG=S四边形PEBF+S四边形PHDG=S1+S2,∴S△ABD=S平行四边形ABCD=S1+S2,∴S△PBD=S△ABD﹣(S1+S△PBE+S△PHD)=S1+S2﹣(S1+a+S1﹣a)=S2﹣S1.(3)如图3中,由题意四边形EBGP,四边形HPFD都是平行四边形,∴S四边形EBGP=2S△EBP,S四边形HPFD=2S△HPD,∴S△ABD=S平行四边形ABCD=(S1+S2+2S△EBP+2S△HPD)=(S1+S2)+S△EBP+S△HPD,∴S△PBD=S△ABD﹣(S1+S△EBP+S△HPD)=(S2﹣S1).(4)如图4﹣1中,结论:S2﹣S1=S3+S4.理由:设线段PB,线段PA,AB围成的封闭图形的面积为x,线段PC,线段PD,弧CD的封闭图形的面积为y.由题意:S1+x+S4=S1+y+S3,∴x﹣y=S3﹣S4,∵S1+S2+x+y=2(S1+x+S4),∴S2﹣S1=x﹣y+2S4=S3+S4.同法可证:图4﹣2中,有结论:S 1﹣S=S3+S4.图4﹣3中和图4﹣4中,有结论:|S1﹣S2|=|S3﹣S4|.。