一、数控机床的精度检验(优选.)

合集下载

数控机床的精度检测与调整方法

数控机床的精度检测与调整方法

数控机床的精度检测与调整方法数控机床是现代制造业中不可或缺的一种设备,它的精度对于产品的质量和性能起着至关重要的作用。

本文将介绍数控机床的精度检测与调整方法,帮助读者更好地了解和应用这些技术。

一、精度检测方法1. 几何误差检测几何误差是数控机床精度的重要指标,包括直线度、平行度、垂直度、圆度等。

常用的几何误差检测方法有激光干涉仪、三坐标测量仪等。

通过这些设备,可以精确测量机床各个轴向的几何误差,并得出相应的数据。

2. 理论切削路径与实际切削路径对比在数控机床的加工过程中,理论切削路径与实际切削路径之间可能存在偏差。

通过对比理论切削路径与实际切削路径,可以判断数控机床的精度是否达标。

常用的方法是使用光学测量仪器,对切削路径进行高精度的测量和分析。

二、精度调整方法1. 机床结构调整数控机床的结构调整是提高其精度的重要手段。

首先,需要检查机床各个部件的紧固情况,确保机床的刚性和稳定性。

其次,根据几何误差的检测结果,对机床的导轨、滑块等部件进行调整,以减小误差。

2. 控制系统调整数控机床的控制系统对于其加工精度起着至关重要的作用。

通过调整控制系统的参数,可以改善机床的运动精度和定位精度。

常用的调整方法包括增加控制系统的采样频率、优化控制算法等。

3. 刀具与工件的匹配调整刀具与工件的匹配对于加工精度有很大影响。

在数控机床的加工过程中,需要根据工件的要求选择合适的刀具,并对刀具进行调整和校准。

同时,还需要对工件进行检测,确保其尺寸和形状与设计要求一致。

三、精度检测与调整的重要性数控机床的精度检测与调整是保证产品质量和性能的关键环节。

只有通过科学的检测方法,准确地了解机床的精度情况,才能及时采取相应的调整措施,提高机床的加工精度。

这对于提高生产效率、降低成本、提升产品竞争力具有重要意义。

四、未来发展趋势随着制造业的不断发展,数控机床的精度要求也越来越高。

未来,数控机床的精度检测与调整方法将更加精细化和智能化。

数控机床加工精度检测与校准方法

数控机床加工精度检测与校准方法

数控机床加工精度检测与校准方法在现代制造业中,数控机床是不可或缺的重要设备。

它的高效率、高精度和高稳定性使得加工过程更加精确和可靠。

然而,由于各种因素的影响,数控机床的加工精度可能会出现偏差。

因此,对数控机床的精度进行检测和校准是非常必要的。

一、加工精度检测方法1. 几何误差检测几何误差是数控机床加工精度的重要指标之一。

常见的几何误差包括直线度误差、平行度误差、垂直度误差和圆度误差等。

几何误差的检测可以使用光学测量仪器,如激光干涉仪、光学投影仪等。

通过将测量仪器与数控机床进行联动,可以实时监测数控机床的加工精度,并得出相应的误差数据。

2. 热误差检测热误差是数控机床加工精度的另一个重要指标。

由于加工过程中会产生热量,数控机床的温度会发生变化,从而导致加工精度的偏差。

为了检测热误差,可以使用温度传感器对数控机床进行监测。

通过实时记录数控机床的温度变化,并与加工精度进行对比,可以得出热误差的数据。

3. 振动误差检测振动误差是数控机床加工精度的另一个重要影响因素。

振动会导致数控机床的加工过程不稳定,从而影响加工精度。

为了检测振动误差,可以使用振动传感器对数控机床进行监测。

通过实时记录数控机床的振动情况,并与加工精度进行对比,可以得出振动误差的数据。

二、加工精度校准方法1. 机床调整机床调整是校准数控机床加工精度的常用方法之一。

通过调整数控机床的各项参数,如传动装置、导轨、滑块等,可以减小加工误差。

例如,可以通过调整导轨的平行度和垂直度来改善加工精度。

此外,还可以通过更换加工刀具、调整刀具固定方式等方式来提高加工精度。

2. 补偿技术补偿技术是校准数控机床加工精度的另一种常用方法。

通过对加工过程中的误差进行实时监测,并通过数学模型进行补偿,可以减小加工误差。

例如,可以通过在程序中添加补偿指令,根据误差数据进行补偿,从而提高加工精度。

3. 精度校准仪器精度校准仪器是校准数控机床加工精度的重要工具。

常见的精度校准仪器包括激光干涉仪、光学投影仪、三坐标测量机等。

数控卧式车床精度检验标准

数控卧式车床精度检验标准

数控卧式车床精度检验标准数控卧式车床是一种广泛应用于机械加工领域的设备,其加工精度直接影响到工件的质量和加工效率。

因此,对数控卧式车床的精度进行检验是非常重要的。

本文将介绍数控卧式车床精度检验的标准和方法,以便相关人员能够准确、全面地进行检验工作。

一、外观检验。

1. 数控卧式车床的外观应该整洁、无明显损伤和变形。

2. 床身、床板、滑架等零部件的连接应该紧固,无松动现象。

3. 各操作手柄、按钮应灵活、方便,无卡滞。

二、尺寸精度检验。

1. 对数控卧式车床的加工尺寸进行测量,与设计图纸进行对比,检验其尺寸精度是否符合要求。

2. 测量工件的圆度、圆柱度、平面度等尺寸精度指标,确保其在允许范围内。

三、定位精度检验。

1. 进行数控卧式车床的定位精度检验,包括工件的定位精度、夹具的定位精度等。

2. 检验数控卧式车床在进行定位加工时,工件的位置是否准确,夹具的夹持是否牢固。

四、运动精度检验。

1. 对数控卧式车床的各轴运动进行检验,包括X、Y、Z轴的定位精度、重复定位精度等。

2. 检验数控卧式车床在运动过程中,各轴的运动是否平稳、无抖动,定位精度是否稳定。

五、加工精度检验。

1. 进行数控卧式车床的加工精度检验,包括工件的表面粗糙度、加工尺寸偏差等。

2. 检验数控卧式车床在加工过程中,工件的表面质量是否达到要求,加工尺寸是否准确。

六、维护保养。

1. 对数控卧式车床的润滑系统、冷却系统等进行检查,确保其正常运转。

2. 定期清洁数控卧式车床的各部件,及时更换磨损的零部件,延长设备的使用寿命。

总结:数控卧式车床的精度检验是确保设备正常运行和加工质量的重要环节,只有通过严格的检验,才能保证数控卧式车床的稳定性和可靠性。

因此,相关人员在进行精度检验时,应严格按照标准和方法进行,确保检验结果的准确性和可靠性。

同时,定期维护保养数控卧式车床,也是保证其精度的重要措施,只有保持设备的良好状态,才能保证其精度和加工质量。

一、数控机床的精度检验

一、数控机床的精度检验

一、数控机床的精度检验数控机床的高精度最终是要靠机床本身的精度来保证,数控机床精度包括几何精度和切削精度。

另一方面,数控机床各项性能和性能检验对初始使用的数控机床及维修调整后机床的技术指标恢复是很重要的。

1. 几何精度检验几何精度检验,又称静态精度检验,是综合反映机床关键零部件经组装后的综合几何形状误差。

数控机床精度的检验工具和检验方法类似于普通机床,但检测要求更高。

几何精度检测必须在地基完全稳定、地脚螺栓处于压紧状态下进行。

考虑到地基可能随时间而变化,一般要求机床使用半年后,再复校一次几何精度。

在几何精度检测时,应注意测量方法及测量工具应用不当所引起的误差。

在检测时,应按国家标准规定,即机床接通电源后,在预热状态下,机床各坐标轴往复运动几次,主轴按中等转速运转十多分钟后进行。

常用的检测工具有精密水平仪、精密方箱、直角尺、平尺、平行光管、千分表、测微仪及高精度主轴心棒等。

检测工具的精度必须比所设的几何精度高一个等级。

以卧式加工中心为例,要对下列几何精度进行检验:1)X 、Y 、Z 坐标轴的相互垂直度;2)工作台面的平行度;3)X 、Z 轴移动时工作台面的平行度;4)主轴回转轴线对工作台面的平行度;5)主轴在Z 轴方向移动的直线度;6)X 轴移动时工作台边界与定位基准的平行度;7)主轴轴向及孔径跳动;8)回转工作台精度。

2. 定位精度的检验数控机床的定位精度是表明所测量的机床各运动部位在数控装置控制下,运动所能达到的精度。

因此,根据实测的定位精度数值,可以判断出机床自动加工过程中能达到的最好的工件加工精度。

(1)定位精度检测的主要内容机床定位精度主要检测内容如下:1) 直线运动定位精度(包括X 、Y 、Z 、U 、V 、W 轴);2) 直线运动重复定位精度;3) 直线运动轴机械原点的返回精度;4) 直线运动失动量的测定;5) 直线运动定位精度(转台A 、B 、C 轴);6) 回转运动重复定位精度;7) 回转轴原点的返回精度;8) 回转运动矢动量的测定。

数控机床精度检验内容

数控机床精度检验内容

数控机床精度检验内容数控机床是一种高精度、高效率的加工设备,其精度直接影响着加工零件的质量和精度。

因此,对数控机床的精度进行检验是非常重要的。

下面将介绍数控机床精度检验的内容。

首先,数控机床的精度检验包括几个方面,几何精度、运动精度和位置精度。

几何精度是指机床各轴线的几何误差,包括直线度、平行度、垂直度等;运动精度是指机床在运动过程中的动态精度,包括加工速度、加速度、减速度等;位置精度是指机床在停止状态下的定位精度,包括定位误差、重复定位精度等。

这些精度指标直接影响着数控机床加工零件的精度和表面质量。

其次,数控机床精度检验的方法主要包括几种,静态检验、动态检验和综合检验。

静态检验是指在机床停止状态下对各轴线的几何精度进行检测,可以通过测量仪器进行测量,如千分尺、角尺等;动态检验是指在机床运动状态下对运动精度进行检测,可以通过加工模拟零件进行加工,然后进行测量分析;综合检验是指将静态检验和动态检验相结合,对机床的整体精度进行评估。

另外,数控机床精度检验的标准主要包括国家标准和行业标准。

国家标准是指由国家相关部门颁布的针对数控机床精度的检验标准,如GB/T19001-2008《数控机床检验标准》等;行业标准是指由行业协会或企业制定的针对特定类型数控机床的检验标准,如《数控车床精度检验标准》等。

在进行数控机床精度检验时,需要严格按照相关标准进行检验,以确保检验结果的准确性和可靠性。

最后,数控机床精度检验的意义在于保证机床加工零件的精度和质量,提高加工效率和加工精度,降低加工成本,提高产品的竞争力。

通过定期对数控机床进行精度检验,可以及时发现机床的精度问题,进行调整和维护,确保机床的稳定性和可靠性,延长机床的使用寿命。

综上所述,数控机床精度检验内容包括几何精度、运动精度和位置精度,检验方法包括静态检验、动态检验和综合检验,检验标准包括国家标准和行业标准。

通过精度检验可以保证机床的加工精度和质量,提高产品的竞争力,具有重要的意义和价值。

数控机床的精度检测方法与标准

数控机床的精度检测方法与标准

数控机床的精度检测方法与标准数控机床是一种高精度的机床设备,广泛应用于制造业的各个领域。

为了确保数控机床的工作精度,需要进行精度检测。

本文将介绍数控机床的精度检测方法和标准,为读者提供参考。

一、数控机床精度检测方法1. 几何精度检测几何精度是指数控机床在工作过程中,工件表面形状、位置、尺寸等与理论位置之间的差异。

常用的几何精度检测方法包括:平行度检测、垂直度检测、直线度检测等。

这些检测方法可以通过使用测量仪器(例如投影仪、三坐标测量机等)进行测量和比较,以确定数控机床是否满足工作要求。

2. 运动精度检测运动精度是指数控机床在运动中达到的位置是否准确。

常用的运动精度检测方法包括:位置误差检测、重复定位精度检测、速度误差检测等。

这些检测方法可以通过使用激光干涉仪、激光漂测仪等测量设备进行测量,以确定数控机床的运动精度是否符合要求。

3. 刚度检测刚度是指数控机床在受力时的变形情况。

常用的刚度检测方法包括:静刚度检测、动刚度检测等。

静刚度可以通过在数控机床各个部位施加力并测量其变形情况来进行检测;动刚度可以通过在数控机床运动状态下进行控制并测量位移来进行检测。

二、数控机床精度检测标准为了统一数控机床的精度检测标准,国内外制定了相应的标准,其中最有代表性的是国家标准GB/T16857-1997《数控机床精度检验方法》。

该标准规定了数控机床的几何精度、运动精度和刚度等指标的检测方法和要求。

以几何精度为例,该标准包括对工件表面形状、位置、尺寸等几何误差的检测,在该标准中,提供了一系列的测量方法,包括投影法、三坐标法、机床内检测法等。

此外,该标准还规定了几何误差的允许值,即数控机床在工作过程中允许存在的误差范围。

除了国家标准,国际标准也对数控机床的精度检测进行了规范,例如ISO 230-1和ISO 230-2等,这些标准主要用于指导和规范制造商以及使用单位在数控机床精度检测方面的操作。

近年来,随着数控机床技术的不断发展,对精度的要求也越来越高。

数控机床精度要求、检测方法和验收

数控机床精度要求、检测方法和验收

数控机床精度要求、检测方法和验收一、几何精度工作台运动的真直度、各轴向间的垂直度、工作台与各运动方向的平行度、主轴锥孔面的偏摆、主轴中心与工作台面的垂直度等。

机床主体的几何精度验收工作通过单项静态精度检测工作来进行,其几何精度综合反映机床各关键零、部件及其组装后的综合几何形状误差。

在机床几何精度验收工作中,应注意以下几个问题。

①检测前,应按有关标准的规定,要求机床接通电源后,在预热状态下,使机床各坐标轴往复运动几次,主轴则按中等转速运转10~15min后,再进行具体检测。

②检测用量具、量仪的精度必须比所测机床主体的几何精度高1~2个等级,否则将影响到测量结果的可信度。

③检测过程中,应注意检测工具和检测方法可能对测量误差造成的影响,如百分表架的刚性、测微仪的重力及测量几何误差的方向(公差带的宽度或直径)等。

④机床几何精度中有较多项相互牵连,须在精调后一次性完成检测工作。

不允许调整一项检测一项,如果出现某一单项须经重新调整才合格的情况,一般要求应重新进行其整个几何精度的验收工作。

二、位置精度数控设备的位置精度是指机床各坐标轴在数控系统控制下运动时,各轴所能达到的位置精度(运动精度)。

数控设备的位置精度主要取决于数控系统和机械传动误差的大小。

数控设备各运动部件的位移是在数控系统的控制下并通过机械传动而完成的,各运动部件位移后能够达到的精度将直接反映出被加工零件所能达到的精度。

所以,位置精度检测是一项很重要的验收工作。

1.数控机床的位置精度主要包括以下几项:(1)定位精度;定位精度是指机床运行时,到达某一个位置的准确程度。

该项精度应该是一个系统性的误差,可以通过各种方法进行调整。

(2)重复定位精度;重复定位精度是指机床在运行时,反复到达某一个位置的准确程度。

该项精度对于数控机床则是一项偶然性误差,不能够通过调整参数来进行调整。

(3)反向误差反向误差是指机床在运行时,各轴在反向时产生的运行误差(4)原点复位精度2.检测方法(1)定位精度的检测对该项精度的检测一般在机床和工作台空载的条件下进行,并按有关国家(或国际)标准的规定,以激光测量为准。

数控机床的精度检验

数控机床的精度检验

移动横滑板在全工作行
滑板横向移 动对主轴轴 线的垂直度 G9 (同一滑板上 装有两个转 塔时,只检验 用于端面车
削的转塔 )
程上进行检验。 将 主 轴 旋 转 l80°,
再同样检一次。 误差以指示器两次测量 结果的代数和之半计。 检验用平盘的直径或平 尺长度的尺寸 W 如下 (mm):
D
≤36 0
360< D≤800
W 200
300
L=300:
将指示器固定在
a: 指 示 器 溜 板 上 , 使 其 测
0.015(向 和 检 验 头 分 别 触 及 固 定
溜 板 移 动 刀具偏) 棒
在主轴上的检验
对主轴轴线 b:0.02
棒表面:
的平行度:
a. 在 主 平 面 内 ;
G10 a. 在 主 平
b. 在 次 平 面 内 。
(三)定位精度
机床定位精度是指机床主要部件在运动终 点所达到的实际位置的精度。实际位置与预期位 置之间的误差称为定位误差。
对于主要通过试切和测量工件尺寸来确定运动部件 定位位置 的机床 ,如卧式车床、万能升降台铣床等普通 机床 , 对定位精度的要求并不太高。但对于依 靠机床 本身的测量装置、定位装置或自动控制系统来确定运动 部件定位位置的机床 ,如各种自动化机床、数控机床、 坐标测量机等 ,对定位精度必须有很高的要求。
螺距误差:
丝杠导程的实际值与理论值的偏差。例如PⅢ 级滚珠丝杠的螺距公差为0.012mm/300mm。
反向间隙:
即丝杠和螺母无相对转动时丝杠和螺母之间 的最大窜动。
由于螺母结构本身的游隙以及其受轴向载荷后的弹 性变形,滚珠丝杠螺母机构存在轴向间隙,该轴向间隙在丝 杠反向转动时表现为丝杠转动α角,而螺母未移动,则形成 了反向间隙。为了保证丝杠和螺母之间的灵活运动,必须有 一定的反向间隙。但反向间隙过大将严重影响机床精度。因 此数控机床进给系统所使用的滚珠丝杠副必须有可靠的轴向 间隙调节机构。图2所示为常用的双螺母螺纹调隙式结构, 它用平键限制了螺母在螺母座内的转动,调整时只要拧动调 整螺母4就能将滚珠螺母沿轴向移动一定距离,在将反向间 隙减小到规定的范围后,将其锁紧。

数控车床工作精度验证

数控车床工作精度验证

工件图
允差
尺寸 ﹤100 ﹤150 ﹤250 ﹤350 ﹤500
﹤750
范围1 0.008 0.010 0.015 — — — 0.010 0.003
范围2 — — — 0.020 0.025 0.035 0.020 0.005
谢谢观看/欢迎下载
BY FAITH I MEAN A VISION OF GOOD ONE CHERISHES AND THE ENTHUSIASM THAT PUSHES ONE TO SEEK ITS FULFILLMENT REGARDLESS OF OBSTACLES. BY FAITH I BY FAITH
轮廓的偏差检验方式
• 在数字控制下用一把单刃车刀车削试件的 轮廓。
工件图
• 所示的尺寸只适应于范围2:最大为 500。
• 对于范围1:最大为250机床的尺寸可 以由制造厂按比例缩小。
允差
• 范围1:最大为250的情况:0.030 • 范围2:最大为500的情况:0.045
基准半径的轮廓变化、直径的尺寸、 圆度误差检验方式
机床工作精度验证意义
• 数控机床完成以上的检验和调试后,实际 上已经基本完成独立各项指标的相关检验, 但是也并没有完全充分的体现出机床整体 的、在实际加工条件下的综合性能,而且 用户往往也非常关心整体的综合的性能指 标。所以还要完成工作精度的检验,以下 分别介绍数控车床的相关工作精度检验。
• 对于数控车床,根据GB/T 16462----1996 《数控卧式车床 精度检验》国家标准进行
工件图
范围1:最大为250 范围2:最大为500 Dmin=0.3L
允差
• 范围1:最大为250的情况:
– 圆度:0.003 – 切削加工直径的一致性:300长度上为0.020

数控机床精度检验内容

数控机床精度检验内容

数控机床精度检验内容数控机床是一种高精度、高效率的自动化加工设备,广泛应用于各种工业制造领域。

而数控机床的精度检验是确保其加工质量和稳定性的重要环节。

本文将围绕数控机床精度检验的内容展开讨论,以帮助读者更好地了解和掌握数控机床的精度检验方法和技术要点。

首先,数控机床的精度检验内容包括几个方面,几何精度、运动精度、定位精度和重复定位精度。

几何精度是指数控机床在工作时各轴线的几何位置精度,包括直线度、平行度、垂直度等。

而运动精度是指数控机床在运动时的加工精度,包括加工表面的光洁度、尺寸精度等。

定位精度是指数控机床在定位时的位置精度,包括定位误差、回零精度等。

重复定位精度是指数控机床在多次定位时的重复性精度,即同一位置的重复性定位误差。

其次,数控机床的精度检验方法主要包括几种,测量仪器法、几何误差补偿法、动态误差补偿法和工件检验法。

测量仪器法是通过使用各种测量仪器对数控机床进行几何精度、运动精度、定位精度和重复定位精度的检测。

几何误差补偿法是通过对数控机床的几何误差进行补偿,以提高其加工精度。

动态误差补偿法是通过对数控机床的动态误差进行补偿,以提高其运动精度。

工件检验法是通过对数控机床加工出的工件进行检验,以验证其加工精度和稳定性。

此外,数控机床精度检验的技术要点包括几个方面,一是要选择合适的测量仪器和测量方法,以确保检验结果的准确性和可靠性。

二是要及时对数控机床的几何误差和动态误差进行补偿,以提高其加工精度和运动精度。

三是要定期对数控机床进行精度检验和校准,以确保其加工质量和稳定性。

四是要严格控制数控机床的使用环境和工艺参数,以减小外部因素对其精度的影响。

综上所述,数控机床的精度检验内容涉及几何精度、运动精度、定位精度和重复定位精度,其检验方法包括测量仪器法、几何误差补偿法、动态误差补偿法和工件检验法,而技术要点包括选择合适的测量仪器和测量方法、及时进行误差补偿、定期检验和校准、严格控制使用环境和工艺参数。

数控机床精度检验

数控机床精度检验

数控机床精度检测数控机床的高精度最终是要靠机床本身的精度来保证,数控机床精度包括几何精度和切削精度。

另一方面,数控机床各项性能的好坏及数控功能能否正常发挥将直接影响到机床的正常使用。

因此,数控机床精度检验对初始使用的数控机床及维修调整后机床的技术指标恢复是很重要的。

1、检验所用的工具、水平仪水平:1000mm扭曲:0.02mm/1000mm水平仪的使用和读数水平仪是用于检查各种机床及其它机械设备导轨的直线度、平面度和设备安装的水平性、垂直性。

使用方法:测量时使水平仪工作面紧贴在被测表面,待气泡完全静止后方可读数。

水平仪的分度值是以一米为基长的倾斜值,如需测量长度为L的实际倾斜值可以通过下式进行计算:实际倾斜值=分度值×L×偏差格数水平仪的读数:水平仪读数的符号,习惯上规定:气泡移动方向和水平移动方向相同时读数为正值,相反时为负值。

、千分表、莫氏检验棒2、检验内容、相关标准(例)➢加工中心检验条件第2部分:立式加工中心几何精度检验JB/➢加工中心检验条件第7部分:精加工试件精度检验JB/➢加工中心检验条件第4部分:线性和回转轴线的定位精度和重复定位精度检验JB/ ➢机床检验通则第2部分:数控轴线的定位精度和重复定位精度的确定JB/加工中心技术条件JB/T8801-1998、检验内容精度检验内容主要包括的几何精度、定位精度和切削精度。

2.2.1、数控机床几何精度的检测机床的几何精度是指机床某些基础零件本身的几何形状精度、相互位置的几何精度及其相对运动的几何精度。

机床的几何精度是综合反映该设备的关键机械零部件和组装后几何形状误差。

数控机床的基本性能检验与普通机床的检验方法差不多,使用的检测工具和方法也相似,每一项要独立检验,但要求更高。

所使用的检测工具精度必须比所检测的精度高一级。

其检测项目主要有:直线度一条线在一个平面或空间内的直线度,如数控卧式车床床身导轨的直线度。

部件的直线度,如数控升降台铣床工作台纵向基准T形槽的直线度。

数控机床的精度检验PPT课件

数控机床的精度检验PPT课件

数控机床几何精度的检验
1、导轨直线度、单导轨 1)平尺拉表法
数控机床几何精度的检验
数控机床几何精度的检验
数控机床几何精度的检验
• 二、平行度的检查 例1:车床中的溜板移动对主轴线的平行度:
数控机床几何精度的检验
数控机床几何精度的检验
• 垂直度检测 • 例2:钻床、镗床、铣镗床立柱导轨与底座
围内旋转,并能以正反两个方向上测量,
更适宜对孔、凹槽等难以测量的地方进行
数控机床精度检验常用的工具
数控机床精度检验常用的工具
七、块规
具有精密计量标定的标准块
八、游标尺及千分尺
测试不同公差范围的测量器,如长度、外径 、内径等。 返回
数控机床几何精度的检验
• 考核一台数控机床等级的精度组成一般来 讲分为三类:
用的锥柄和一个作为测量基准的圆柱体, 它们用淬火和经温定性处理的钢制成。

2.3.2对于锥,如莫氏检验棒,检验棒
在锥孔中是自锁的;带有一段螺纹,以供
装上螺母从孔内抽出检验棒。
数控机床精度检验常用的工具
四、角尺

4.1主要用来测量轴线间的垂直度公差
及轴线运动的平行度误差。

4.2分类。主要有普通角尺、圆柱角尺
讲师:XXXXXX XX年XX月XX日
和矩形角尺。•Fra bibliotek4.3说明。角尺用钢、铸铁制造时,应
经过淬火和稳定性处理;也有花岗岩的矩
形角尺。
数控机床精度检验常用的工具
数控机床精度检验常用的工具
五、精密水平仪

5.1用来测量机床的水平、扭曲、直线
度、平面度等。

5.2分类,主要有框式水平仪、条式钳

数控机床精度检验

数控机床精度检验

数控机床的高精度最终是要靠机床本身的精度来保证,数控机床精度包括几何精度和切削精度。

另一方面,数控机床各项性能的好坏及数控功能能否正常发挥将直接影响到机床的正常使用。

因此,数控机床精度检验对初始使用的数控机床及维修调整后机床的技术指标恢复是很重要的。

精度检测内容主要包括数控机床的几何精度、定位精度和切削精度。

(1)数控机床几何精度的检测数控机床的几何精度检验,又称静态精度检验,摇臂钻床是综合反映机床关键零部件经组装后的综合几何形状误差。

目前,检测机床几何精度的常用检测工具有精密水平仪、精密方箱、直角尺、平尺、平行光管、千分表、测微仪、高精度检验棒及刚性好的千分表杆等。

检测工具的精度必须比所测的几何精度高一个等级,否则测量的结果将是不可信的。

每项几何精度的具体检测方法可按照GB/T 21948.2—2008“数控升降台铣床检验条件”、GB/T 18400.9—2007“加工中心检验条件”等有关标准的要求进行,亦可按机床出厂时的几何精度检测项目要求进行。

机床几何精度的检测必须在机床精调后依次完成,不允许调整一项检测一项,因为几何精度有些项目是相互关联相互影响的。

数控机床几何精度的检查在几何精度检测中必须对机床地基有严格要求,应当在地基及地脚螺栓的固定混凝土完全固化后再进行。

精调时应把机床的主床身调到较精确摇臂钻床的水平面以后,再精调其他几何精度。

有一些几何精度项目是互相联系的,例如在立式加工中心检测中,如发现y轴上数控机床和Z轴方向移动的相互垂直度误差较大,则可以适当调整立柱底部床身的地脚垫铁,使立柱适当前倾或后仰,减小该项误差。

但这样也会改变主轴回转轴心线对工作台面的垂直度误差。

因此,对各项几何精度检测工作应在精调后一气呵成,不允许检测一项调整一项,否则会造成由于调整后一项几何精度而把已检测合格的前一项精度调成不合格。

机床几何精度检测应在机床稍有预热的条件下进行,所以机床通电后各移动坐标应往复运动几次,主轴也应按中速回转几分钟后才能进行检测。

数控机床精度检验

数控机床精度检验

数控机床精度检测数控机床的高精度最终是要靠机床本身的精度来保证,数控机床精度包括几何精度和切削精度。

另一方面,数控机床各项性能的好坏及数控功能能否正常发挥将直接影响到机床的正常使用。

因此,数控机床精度检验对初始使用的数控机床及维修调整后机床的技术指标恢复是很重要的。

1、检验所用的工具1.1、水平仪水平:0.04mm/1000mm扭曲:0.02mm/1000mm水平仪的使用和读数水平仪是用于检查各种机床及其它机械设备导轨的直线度、平面度和设备安装的水平性、垂直性。

使用方法:测量时使水平仪工作面紧贴在被测表面,待气泡完全静止后方可读数。

水平仪的分度值是以一米为基长的倾斜值,如需测量长度为L的实际倾斜值可以通过下式进行计算:实际倾斜值=分度值×L×偏差格数水平仪的读数:水平仪读数的符号,习惯上规定:气泡移动方向和水平移动方向相同时读数为正值,相反时为负值。

1.2、千分表1.3、莫氏检验棒2、检验内容2.1、相关标准(例)➢加工中心检验条件第2部分:立式加工中心几何精度检验/T8771.2-1998➢加工中心检验条件第7部分:精加工试件精度检验/T8771.7-1998➢加工中心检验条件第4部分:线性和回转轴线的定位精度和重复定位精度检验/T8771.4-1998➢机床检验通则第2部分:数控轴线的定位精度和重复定位精度的确定/T17421.2-2000加工中心技术条件/T8801-19982.2、检验内容精度检验内容主要包括数控机床的几何精度、定位精度和切削精度。

2.2.1、数控机床几何精度的检测机床的几何精度是指机床某些基础零件本身的几何形状精度、相互位置的几何精度及其相对运动的几何精度。

机床的几何精度是综合反映该设备的关键机械零部件和组装后几何形状误差。

数控机床的基本性能检验与普通机床的检验方法差不多,使用的检测工具和方法也相似,每一项要独立检验,但要求更高。

所使用的检测工具精度必须比所检测的精度高一级。

数控机床精度的检测方法及注意事项

数控机床精度的检测方法及注意事项

数控机床精度的检测方法及注意事项数控机床的精度主要包括机床的几何精度、机床的定位精度和机床的切削精度。

现根据在日常工作中所积累的经验,就这些精度的检测项目、检测方法及注意事项进行综合的说明。

一、数控机床几何精度数控机床的几何精度反映机床的关键机械零部件(如床身、溜板、立柱、主轴箱等)的几何形状误差及其组装后的几何形状误差,包括工作台面的平面度、各坐标方向上移动的相互垂直度、工作台面X、Y坐标方向上移动的平行度、主轴孔的径向圆跳动、主轴轴向的窜动、主轴箱沿Z坐标轴心线方向移动时的主轴线平行度、主轴在Z轴坐标方向移动的直线度和主轴回转轴心线对工作台面的垂直度等。

钛浩机械是以回转顶尖、丝杠、轴加工、数控车床加工、刀柄刀杆、夹头接杆为公司的主打产品。

常用检测工具有精密水平尺、精密方箱、千分表或测微表、直角仪、平尺、高精度主轴芯棒及千分表杆磁力座等。

1、检测方法:数控机床的几何精度的检测方法与普通机床的类似,检测要求较普通机床的要高。

2、检测时的注意事项:(1)检测时,机床的基座应已完全固化。

(2)检测时要尽量减小检测工具与检测方法的误差。

(3)应按照相关的国家标准,先接通机床电源对机床进行预热,并让沿机床各坐标轴往复运动数次,使主轴以中速运行数分钟后再进行。

(4)数控机床几何精度一般比普通机床高。

普通机床用的检具、量具,往往因自身精度低,满足不了检测要求。

且所用检测工具的精度等级要比被测的几何精度高一级。

(5)几何精度必须在机床精调试后一次完成,不得调一项测一项,因为有些几何精度是相互联系与影响的。

(6)对大型数控机床还应实施负荷试验,以检验机床是否达到设计承载能力;在负荷状态下各机构是否正常工作;机床的工作平稳性、准确性、可靠性是否达标。

另外,在负荷试验前后,均应检验机床的几何精度。

有关工作精度的试验应于负荷试验后完成。

二、数控机床定位精度数控机床的定位精度,是指所测机床运动部件在数控系统控制下运动时所能达到的位置精度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改一、数控机床的精度检验数控机床的高精度最终是要靠机床本身的精度来保证,数控机床精度包括几何精度和切削精度。

另一方面,数控机床各项性能和性能检验对初始使用的数控机床及维修调整后机床的技术指标恢复是很重要的。

1. 几何精度检验几何精度检验,又称静态精度检验,是综合反映机床关键零部件经组装后的综合几何形状误差。

数控机床精度的检验工具和检验方法类似于普通机床,但检测要求更高。

几何精度检测必须在地基完全稳定、地脚螺栓处于压紧状态下进行。

考虑到地基可能随时间而变化,一般要求机床使用半年后,再复校一次几何精度。

在几何精度检测时,应注意测量方法及测量工具应用不当所引起的误差。

在检测时,应按国家标准规定,即机床接通电源后,在预热状态下,机床各坐标轴往复运动几次,主轴按中等转速运转十多分钟后进行。

常用的检测工具有精密水平仪、精密方箱、直角尺、平尺、平行光管、千分表、测微仪及高精度主轴心棒等。

检测工具的精度必须比所设的几何精度高一个等级。

以卧式加工中心为例,要对下列几何精度进行检验:1)X、Y、Z坐标轴的相互垂直度;2)工作台面的平行度;3)X、Z轴移动时工作台面的平行度;4)主轴回转轴线对工作台面的平行度;5)主轴在Z轴方向移动的直线度;6)X轴移动时工作台边界与定位基准的平行度;7)主轴轴向及孔径跳动;8)回转工作台精度。

2. 定位精度的检验数控机床的定位精度是表明所测量的机床各运动部位在数控装置控制下,运动所能达到的精度。

因此,根据实测的定位精度数值,可以判断出机床自动加工过程中能达到的最好的工件加工精度。

(1)定位精度检测的主要内容机床定位精度主要检测内容如下:1) 直线运动定位精度(包括X 、Y 、Z 、U 、V 、W 轴);2) 直线运动重复定位精度;3) 直线运动轴机械原点的返回精度;4) 直线运动失动量的测定;5) 直线运动定位精度(转台A 、B 、C 轴);6) 回转运动重复定位精度;7) 回转轴原点的返回精度;8) 回转运动矢动量的测定。

(2)机床定位精度的试验方法检查定位精度和重复定位精度使用得比较多的方法是应用精密线纹尺和读数显微镜(或光电显微镜)。

以精密线纹尺作为测量时的比较基准,测量时将精密线纹尺用等高垫按最佳支架(见图5.1)安装在被测部件例如工作台的台面上,并用千分表找正。

显微镜可安装在机床的固定部件上,调整镜头使与工作台垂直。

在整个坐标的全长上可选取任意几个定位点,一般为5~15个,最好是非等距的。

对每个定位点重复进行多次定位。

可以从单一方向趋近定位点,也可以从两个方向分别趋紧,以便揭示机床进给系统中间隙和变形的影响。

每一次定位的误差值X 可按下式计算:()()00y y s s X L L ---=式中 0s ——基准点或零点时显微镜的读数;L s ——工作台移动L 距离后显微镜的读数;0y 、L y ——相应于0s 和L s 时机床调位读数装置或数码显示装置的读数,对于数控机床就是程序指令中给定的位移数值。

图5.1 测量的支承部位激光干涉仪在定位测量中也逐渐用得较多。

它的优点是测量精度高,测量时间短。

但必须对环境温度、零件温度和气压等进行控制和自动补偿,才能在较长距离的测量中获得高的精度。

关于激光干涉仪的使用将在后面专门讲述。

在利用行程挡块控制执行部件行程距离的一些普通机床上,要测定重复定位精度时,也可用千分表进行测量。

为了分析机床各因素对定位精度的影响,有时还需要对一些元件和部件的误差进行测量。

如在测量系统中,要将某些基准元件如光栅、线纹尺、丝杠、主要刻度盘的制造精度测量出来。

在机床构件系统中,需要测量出机床的几何精度,特别是导轨的几何精度,以及机床的刚度等。

在进给系统方面需要测量传动件的精度、反向间隙、传动刚度和摩擦特性等。

也可以在不同的工作条件下测出定位精度,以求出工作条件变化对定位精度的影响。

(3)定位精度测量数据的处理定位精度测量以后要对测量数据进行统计处理,求出平均定位误差,定位分散带宽和最大定位误差带。

下面介绍一种数控机床定位精度试验的数据处理方法。

首先选取一系列定位点,对每一定位点进行多次重复定位,测定实际位置,比较实际值与程序给定值,对每一定位点求出实际误差X 及其算术平均值X 。

连接各定位点定位误差的算术平均值,如图5.2中间的一条折线所示。

然后再根据各点中算术平均值的最大值max X 和最小值min X ,求出定位误差min max X X A -=以及平均定位误差2min max X X A +=。

此后,要确定定位分散带宽p R ,它相当于σ6。

为此,应先求各点位点的标准误差(均方根差)i σ。

标准误差i σ可按下式计算:()11--=∑=n X X n k i ik i σ 式中ik X 、i X ——分别为实测误差值及其算术平均值,脚标i 表示某一定位点;n ——某一定位点的重复定位次数。

此后,再求出各定位点的标准误差的平均值,即平均标准误差σ:∑==M i i M 11σσ式中 M ——定位点数。

定位分散带宽σ6=p R ,它反映了偶然性误差。

最后求出最大定位误差带σ6min max +-=X X T E 以及上、下定位误差限20E T A G +=、20E T A G -=。

以上是单向趋近时定位精度的测定。

如果是双向趋近,则应按上述方法分别求出左、右两向的误差指标。

左、右两向平均值之差为反向不灵敏区u 。

如果取各点上u 的平均值∑==M M i u M u 11,则得到平均反向不灵敏取u 。

另外对标准误差及其平均值也要求出左右两向的平均值。

这时整个误差分布如图 5.3所示。

图中2min max X X A u +=,u X X T Eu ++-=σ6min max 。

图5.2 定位精度实验数据处理示意图图5.3双向趋近定位精度实验数据处理示意图3. 机床切削精度的检验机床切削精度检查实质上是对机床的几何精度和定位精度在切削加工条件下的一项综合检查。

机床切削精度检查可以是单项加工,也可以加工一个标准的综合性试件。

以普通立式加工中心为例,其主要单项加工有:1)镗孔精度;2)端面铣刀铣削平面的精度(X-Y平面);3)镗孔的孔距精度和孔径分散度;4)直线铣削精度;5)斜线铣削精度;6)圆弧铣削精度。

对于普通卧式加工中心,则还应有:1)箱体掉头镗孔的同轴度;2)水平转台回转90°铣四方时的加工精度。

被切削加工试件的材料除特殊要求外,一般都采用一级铸铁,使用硬质合金刀具按标准的切削用量切削。

二、数控机床性能检验1. 主轴性能检验(1)手动操作选择高、中、低三档转速,主轴连续进行五次正转和反转的起动、停止,检验其动作的灵活性和可靠性。

同时,观察负载表上的功率显示是否符合要求。

(2)手动数据输入方式(MDI)使主轴由低速到最高速旋转,测量各级转速值,转速允差值为设定值的±10%。

进行此项检查的同时,观察机床的振动情况。

主轴在2小时高速运转后允许温升15℃。

(3)主轴准停连续操作五次以上,检验其动作的灵活性和可靠性。

有齿轮挂档的主轴箱,应多次试验自动挂档,其动作应准确可靠。

2. 进给性能检验(1)手动操作分别对X、Y、Z直线坐标轴(回转坐标A、B、C)进行手动操作,检验正、反向的低、中、高速进给和快速移动的起动、停止、点动等动作的平稳性和可靠性。

在增量方式(INC 或STEP)下,单次进给误差不得大于最小设定当量的100%。

在手轮方式(HANDLE)下,手轮每格进给和累计进给误差同增量方式。

(2)用手动数据输入方式(MDI)通过G00和G01 F指令功能,测定快速移动及各进给速度,其允差为±5%。

(3)软硬限位通过上述两种方法,检验各伺服轴在进给时软硬限位的可靠性。

数控机床的硬限位是通过行程开关来确定的,一般在各伺服轴的极限位置,因此,行程开关的可靠性就决定了硬限位的可靠性。

软限位是通过设置机床参数来确定的,限位范围是可变的。

软限位是否有效可观察伺服轴在到达设定位置时,伺服轴是否停止来确定。

(4)回原点用回原点(REF)方式,检验各伺服轴回原点的可靠性。

3. 自动换刀(ATC)性能(1)手动和自动操作刀库在装满刀柄的满负载条件下,通过手动操作运行和M06、T指令自动运行,检验刀具自动交换的可靠性和灵活性、机械手爪最大长度和直径刀柄的可靠性、刀库内刀号选择的准确性以及换刀过程的平稳性。

(2)刀具交换时间根据技术指标,测定交换刀具的时间。

4. 机床噪声检验数控机床噪声包括主轴电动机的冷却风扇噪声、液压系统油泵噪声等。

机床空运转时,噪声不得超过标准规定的85dB。

5. 润滑装置检验检验定时定量润滑装置的可靠性,润滑油路有无泄漏,油温是否过高,以及润滑油路到润滑点的油量分配状况等。

6. 气、液装置检验检查压缩空气和液压油路的密封,气液系统的调压功能及液压油箱的工作情况等。

7. 附属装置检验检查冷却装置能否正常工作,排屑器的工作状况,冷却防护罩有无泄漏,带负载的交换托盘(APC)能否自动交换并准确定位,接触式测量头能否正常工等等。

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改。

相关文档
最新文档