高等数学(本科少学时类型)第三版上册
高等数学(本科少学时类型)同济第三版课后习题答案选解1
高等数学(本科少学时类型)同济第三、四版课后习题答案选解1第一章函数与极限1.1函数P.17习题1.11..005.0:01.0;05.0:1.0,222,1),,1(<=<=<<-<-∈δεδεεδδδx x U x 1..3.下列函数是否为同一函数?为什么?(1)2()2ln ()ln f x x x x j ==与;(2)()f x =()x x j =;(2)(3)()f x =与()g x x =;(4)()f x =与()sin g x x =;解:(1)否;因为定义域不同;(2)否;因为对应关系不同;(2)否;因为函数的定义域不同;(3)是;因为定义域和对应关系及值域都相同;(4)否;因为对应关系及值域都相同;4.求下列函数的定义域:(1)1y x =(2)2232x y x x =-+;(3)arcsin(3)y x =-;(4)1arctan y x =;(5)ln(1)y x =+;(6)1x y e =;解:(1)要使1y x=有意义,需使20,10x x ¹-³故函数的定义域为[-1,0)[(0,1].(2)要使2232x y x x =-+有意义,需使2320x x -+¹故函数的定义域为(-,-2)(-2,1)[1,+.) (3)要使arcsin(3)y x =-有意义,需使31x -£故函数的定义域为[2,4].(4)要使1arctan y x=有意义,需使30,0x x ->¹故函数的定义域为(-,0)(0,3].¥(5)要使ln(1)y x =+有意义,需使10x +>故函数的定义域为+).(1,-¥(6)要使1xy e =有意义,需使0x ≠故定义域为(,0)(0,)-∞+∞ .5.6.7.8.9.10.下列函数中哪些是偶函数,哪些是奇函数,哪些是非奇函数又非偶函数?(1)22(1)y x x =-;(2)233y x x =-;(3)(1)(1)y x x x =-+;(4)2x xa a y -+=;(5)2x xa a y --=;(6)sin cos 1y x x =-+;解:(1)按运算:偶函数与偶函数的和差积仍是偶函数;也可以按定义判定;(2)定义域对称,但()();()()f x f x f x f x -¹-¹-所以是非奇非偶函数;(3)按运算:奇函数与奇函数的积是偶函数;奇函数与偶函数的积是奇函数;所以是奇函数;也可以按定义判定;(4)定义域对称,()()f x f x -=所以函数是偶函数;(5)定义域对称,()()f x f x -=-所以函数是奇函数;(6)定义域对称,但()();()()f x f x f x f x -¹-¹-所以是非奇非偶函数;11.设下面所考虑的函数都是定义在对称区间(,)l l -内的,证明:(1)两个偶函数的和是偶函数;两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数。
高等数学(上) 第3版教学课件2-2 求导法则和基本求导公式
csc x
csc x cot x
例4
解
设y
sin x cos x
sin 2 x
因为 y
,求 y x4 .
sin x cos x 1
sec x csc x ,
sin 2 x
2
所以
y
1
1
sec x csc x sec x tan x csc x cot x
log a x
(3)
cot
x
csc 2 x ;
(10)
x
e
e
(6)
x
(7)
sin x
x
arcsin x
1
1 x2 ;
1
arccos x
(14)
1 x2 ;
1
arctan x
sec
x
sec
x
tan
x
(11)
;(15)
∆ ∆ ∆
′
∆
∆
∆
= ′ + ′
= lim
= lim
+ lim
∆→0 ∆
∆→0 ∆
∆→0 ∆
即: +
′
= ′ + ′
上述求导法则还有以下常用的推论:
);
Z
n
(
u
u
u
u
《高等数学》同济(少学时第三版) (8.2) 第二节 偏导数(同济少学时第三版简约型)
例:设
u
=
x
y
z,求:u
x
,
u y
,
u y
.
偏导数计算实际是单变量求导,其计算规则本
质上是一元函数求导规则。因此,偏导数计算过程取决
于函数结构,求偏导数的关键是先弄清所求偏导数对指
定自变两而言的函数结构。
根据函数结构计算偏导数
• 求 u/ x u = x y z 对自变量 x 而言是简单幂函数, 指数 y z 是
0e e.
根据偏导数的定义计算
由偏导数的定义有
fx 1 ,1 lx i m 1fx ,1 x 1 f1 ,1
lx i m 1 exysinyx1 x a1 rctan x y y10
lx i m 1e x s in x x 1 a 1 r c t a nx 0
l x i m 1x 1 a x r c t 1 a n x l x i m 1 a r c t a n x 4 .
论多元函数的性质就产生多元
函数偏导数的概念。
(2) 二元函数的变化率问题 设有二元函数 z = f( x ,y ),( x ,y )Df ,考察其在一
点 P0( x 0,y0 )处的变化率问题。
多元函数由于自变量个数 的增加,使得函数的增量及相应变 化率形式呈现出多样性。其中,可 以有一个自变量发生改变而其余自 变量不变的情形,也可有多个自变 量同时发生改变的情形。对于不同 的自变量的变化形式就有相应不同 的变化率的形式。
(4) 二元函数偏导数概念的推广
由函数对单变量变化率的概念,易对二元函数偏导 数概念作一般性的推广。
以三元函数为例,设有定义在某空间区域 上的 三元函数 u = f( x ,y ,z ),( x ,y ,z ) ,则有
课程标准
《高等数学》课程标准《高等数学》课程是本科非数学类各理科专业的重要专业基础课,在大学教育及高素质人才的培养过程中占有十分重要的地位。
随着时代的发展、科学的进步、经济的腾飞,数学科学已与自然科学、社会科学并列为三大基础科学,数学地位的巨大变化必将影响到高等数学课程在整个高等教育中的地位与作用。
同时,《高等数学》课程还担负着培养学生严谨的思维、求实的作风、创新的意识等任务。
因此,《高等数学》不仅要向学生传授数学知识,更要注重培养学生的数学修养。
但是,不同学科和专业对高等数学知识的需求不同,同时,为了满足我校学生将来考研的需要,根据专业需求的特点和考研《数学一》至《数学三》的要求,将《高等数学》课程划分为如下三个层次。
《高等数学I》(第一层次)一、课程说明:《高等数学I》由微积分、线性代数和概率论与数理统计三部分构成,本课程是物理教育专业和计算机等专业的一门必修的基础课程,也可供将来考研时需要考《数学一》的其它专业同学选修。
课程总学时为276学时,分四个学期行课,其中,第一学期78学时,4学分,第二学期90学时,5学分,第三学期54个学时,3学分,第四学期54个学时,3学分,共15学分。
1.参考专业:物理教育和计算机等专业。
2.课程类别:专业基础课3.参考教材与参考书目教材:1 《高等数学》第六版,同济大学高等数学教研室编,高等教育出版社,2007年。
2 居余马等编著,线性代数(第2版),北京,清华大学出版社,2002年9月第2版3 盛骤等,概率论与数理统计(第二版),北京:高等教育出版社,1989。
参考书目:1 四川大学数学系高等数学教研室编,高等数学(第一、二、三、四册),北京,高等教育出版社,1997。
2 同济大学应用数学系编,线性代数(第4版)北京,高等教育出版社,2003年7月。
3 高世泽,概率统计引论,重庆:重庆大学出版社,2000年。
4.课程教学方法与手段以教师讲授为主,学生自学为辅的教学方式进行教学,课堂上的教学以启发式的方式进行讲授,学生作适当的课内练习。
高等数学 高等教育出版社 第三版 上册 课后答案(童裕孙 金路 张万国 於崇华 著)
1 x2 2. (1) 3 ln 3 ; (2) 2 x arcsin x ; x ln 3 1 x2
x
1 e x ln x x 2 shx (3) e x arcsin x ; (4) arccos x(2 x chx) ; x 1 x2 1 x2
1 1 n(n 1) ; (4)6; (5) ; (6) 。 2 2 2 x
4. (1)
m n2 m2 ; (2)1; (3) sin x ; (4) ; (5) x ; n 2
3 1 (7) ; (8) 。 (6) 1 ; 5 2
5. lim f ( x) , lim f ( x )
1 x x (2) y log a ,0 x 1; 11. (1) y arcsin , 2 x 2 ; 3 2 1 x x (3) y log a ( x x 2 1) , x ; (4) y cos , 0 x 2 。 4
3. (1)3; (2)2; (3)1; (4)0; (5)
4. (1){a n bn } 必发散;{a n bn } 不一定发散; (2){a n bn } 和 {a n bn } 均不一定发 散。
2 5.提示: a n
1 3 3 5 (2n 1)(2n 1) 1 1 2 。 2 2 2n 1 2n 1 2 4 ( 2 n)
§ 3 微分运算
1. (1) (sin 2 x 2 x cos 2 x)dx ; (2)
dx (1 x 2 )
3 2
ln x 2 2x
3 2
dx ;
(3)
; (4) e 2 x (3 x 2 2 x 3 )dx ;
高等数学(上) 第3版教学课件5-6 定积分应用举例
《高等数学》
谢谢观看
于是 A f ( x)dx
b
A lim f ( x)dx a f ( x)dx.
o a x x dxb x
所求量U 符合下列条件时能用定积分
表达:
(1)U 是与一个变量 x的变化区间a, b有关
的量;
( 2 ) U 对 于 区 间 a, b具 有 可 加 性 , 就 是 说,如果把区间a, b分成许多部分区间,则
例8 计算从时刻 0 到 T 秒时间段内
自由落体运动的平均速度.
解:自由落体运动的速度为 v gt
根据定积分的物理意义及平均值公式得:
v 1 T
T 0
gtdt
g T
1 2
t2
T 0
1 2
gT
例9 计算纯电阻电路中正弦交流电 i m sin t
在一个周期上的平均功率.
解: 设电阻为 R ,则这个电路的电压为
积分变量,在 2,1 上任取一个小区间 x, x dx
则相应 于此小区间的窄条面积可用高为 x 1 1 x
xx
,宽为dx 的小矩形面积近似代替,从而得面积微元
根据微元法得
dA 1 x dx x
A 1 1 x dx
2 x
ln x 1 x2 1 3 ln 2
2 2 2
形的曲边是上半个(或下半个)椭圆
y
a b
a2 x2 ,
代入体积公式得:V
a b a a
a2 x2 dx
2b 2
a2
a a 2 x2 dx
0
2b 2
a2
a2 x
1 3
x3
a 0
4 3
高等数学(本科少学时类型)(第三版)上册4ppt课件
Index First
Up
Back Down Last
End Demand 4
例1. 设f(x)在(a,b)内可导, 且 f(x) M,
证明f(x)在(a,b)内有界.
证: 取点 x0(a,b),再取异于x0的点 x(a,b), 对 f(x)在 以x0,x 为端点的区间上用拉氏中值定理,
得 f(x ) f(x 0 ) f()(x x 0 )(界于 x0与x之)间
且F(0)F(1)0, 由罗尔定理知: (0,1),
使 F()0,
即 a0a1xanxn0在(0, 1)内至少有一 .
Index First
Up
Back Down Last
End Demand 7
例4.设函数 f (x) 在[0, 3] 上连续, 在(0, 3) 内可导, 且
f( 0 ) f( 1 ) f( 2 ) 3 ,f( 3 ) 1 ,证 明 (0,3),使 f()0.
x2 x
f (x)
提示: 根据f(x)的连续性及导函数 的正负作 f (x) 的示意图.
Up
Back Down Last
End Demand 11
例6. 填空题
(1) 设 f(x)在(,)上连续,
其导数图形如图所示,则f(x)的
单调减区间为 (, x1)(,0,x2); x 1 O
单调增区间为 (x1,0)(,x2, );
极小值点为 x 1 , x 2 ;
极大值点为 x 0
.
y
f ( x )
习题课
一、 微分中值定理及其应用 二、 导数应用
Index First
Up
Back Down Last
End Demand 1
高等数学第3版教材
高等数学第3版教材高等数学是一门研究函数、极限、微分、积分等数学概念和方法的学科,是理工科学生必修的一门课程。
作为大学数学的一部分,高等数学的教材在不断更新和改进中,第3版教材是其中的一份。
教材特点高等数学第3版教材是一本综合性的教材,涵盖了高等数学的各个知识点和应用。
与前两版相比,第3版教材在内容上进行了更新和扩充,更加注重理论与实际应用的结合,同时更加注重培养学生的数学思维和解决问题的能力。
第3版教材的内容分为多个章节,每个章节都涵盖了一个或多个相关的数学概念和方法。
教材采用了逐步深入的方式,由基础概念引入,逐步展开,形成完整的数学体系。
每个章节都包括了理论知识的介绍、基本公式的推导以及大量的例题和习题,以便学生巩固和应用所学的知识。
在教学方法上,第3版教材注重启发式教学,通过引导学生主动思考和解决问题,提高学生的学习主动性和创造性。
教材还加入了一些趣味性的问题和案例,以增加学生的兴趣和动力。
教材内容丰富多样,包括但不限于以下几个方面:1. 数列与极限:介绍了数列的概念和性质,引入了极限的概念和计算方法,以及一些典型的极限问题,如无穷小量和无穷大量的比较等。
2. 无穷级数:介绍了级数的概念和判敛法则,包括正项级数、一般项级数以及幂级数等。
教材给出了一些常用的级数收敛和计算方法,以及级数应用于实际问题的案例。
3. 微分学:包括了函数的极限、连续性、可导性和微分中值定理等内容。
教材详细介绍了常见函数的导数计算方法,以及一些典型问题的求解方法。
4. 积分学:介绍了定积分和不定积分的概念、性质和计算方法。
教材还介绍了曲线的弧长、曲线旋转体的体积和曲线下面积等应用问题。
5. 多元函数微分学:包括了多元函数的偏导数、全微分以及多元函数的极值问题等。
教材给出了一些常见函数的偏导数计算方法,以及一些典型问题的求解方法。
6. 多元函数积分学:介绍了二重积分和三重积分的概念、性质和计算方法。
教材还介绍了曲面的面积和曲线围成的曲面的体积等应用问题。
高等数学(上) 第3版教学课件1-2 函数的极限
问题: 当无限增大时, 是否无限接近于某一确定的数值?如果是,
如何确定?
通过上面演示实验的观察:
( 1)n1
当 n 无限增大时, xn 1
无限接近于 1.
n
问题: “无限接近”意味着什么?如何用数学语言刻划它.
定义:如果当无限增大(记 → ∞)时,数列 无限接近
(或恒等于)一个确定的常数,则称为数列 的极限,
→0
lim =
→0
0
→0
lim = 0
→0
定义3 设函数 = 在点0 的左、右近旁有定义(在点0 处,
可以没有定义),如果当从0 的左右两边无限接近于0 时, 无限
一个常数A,则称A为函数 当 → 0 时的极限。记为:
正十二边形的面积 A2
R
1
An
正 6 2 n 边形的面积
A1 , A2 , A3 ,, An ,
S
数学思想小贴士:
割圆术:有限与无限的辩证思维
二、数列的极限
( 1)n1
观察数列 {1
} 当 n 时的变化趋势.
n
播放
二、数列的极限
( 1)n1
观察数列 {1
=
4
3
2
1
−4 −3 −2 −1
1
2
3
4
5
y=
1
−2
3 − −
−
2
2
-1
0
2
3
2
2 5
2
3 7
2
4
2.当 → 时,函数 的极限
常见的函数极限:
高等数学 高等教育出版社 第三版 上册 课后答案(童裕孙 金路 张万国 於崇华 著)
3.提示:注意 f ( x) g ( x ) e g ( x ) ln f ( x ) ,并利用函数 y e x 和 y ln x 的连续性。 4. (1) e 2 ; (2)1。 5. (1)
1 1 ; (2) 3 2 ; (3)1; (4)0; (5) 2 ; 4 6
(6) e ; (7) 2 ; (8) e ( a b ) ; (9) e 2 ; (10) e 。
(2k )
(0) 0 ( k 1,2, ) 。
f ( x) f ( x) [ f ( x)]2 。 [ f ( x)]2
15. 提示:
d 2 x d dx d 1 dx 。 dy 2 dy dy dx y dy
k
2k , 4
1
5 2k 。 4
(2)
(3)
3. (1)偶函数; (2)偶函数; (3)偶函数; (4)奇函数。 4.略。 1 5.提示:令 x 代入 f 满足的表达式,再与该表达式结合可解出 t
f ( x) c a b2
5.提示:直接计算。 6.471 m/s。 7. 1.65 m/s。 8. 3 3 m/s。 9. (1)
cos ln x sin ln x 2 x2 ; ( 2 ) ; 3 x2 2 2 (1 x )
(3) e 2 x (4 sin x 4 cos x 2 sin x) ; (4) 3x 2 e 3 x (3x 2 8 x 4) 。 (5) e x e e 2 x e ; (6) x x (ln x 1) 2 x x 1 。 10. (1) (1) n 1
6. (1)
高等数学·(同济大学本科少学时类型)(第三版)上册·第二章·导数与微分·答案
第二章 导数与微分第一节 导数概念教材习题2--1答案(上册P91)1. 解:(1) 21110(1)(1)1022t g t g h V t t ⎛⎫⎛⎫+∆-+∆-- ⎪ ⎪∆⎝⎭⎝⎭==∆∆=1102g g t --⋅∆.(2) 10,dhgt dt=-∴'111lim(10)10,t tt t V h gt g ==→==-=-(3) 2200001110(1)(1)1022t g t t gt h V t t ⎛⎫⎛⎫+-+-- ⎪ ⎪∆⎝⎭⎝⎭==∆∆=01102gt g t --⋅∆.(4) 10,dhgt dt=-∴000lim(10)10.t t t t t t dh V gt gt dt==→==-=-2.解:2100(1)(1)10()201010lim lim x x x dy f x f x x dxx x=-∆→∆→-+∆--∆-⋅∆+-==∆∆ =0lim (1020)20.x x ∆→⋅∆-=-3.解:[]000()()lim lim lim .x x x a x x b ax b dy y a xa dx x xx ∆→∆→∆→+∆+-+∆∆====∆∆∆ 4.解:可导.令0()lim ,x f x a x →=0000()()(0)lim ()lim lim lim 00,x x x x f x f x f f x x x a x x→→→→====⋅='00()(0)()(0)limlim .0x x f x f f x f a x x→→-∴===- 5.解:(1)'34.y x =(2) '21'332.3y x x -⎛⎫== ⎪⎝⎭(3) ' 1.60.61.6.y x x ==(4) ''13'221.2y x x --⎛⎫===- ⎪⎝⎭(5) ()'''23212.y x x x --⎛⎫===- ⎪⎝⎭(6) ('1611''5516.5y x x x ⎛⎫=== ⎪⎝⎭(7) ''15'661.6y x x -⎛⎫=== ⎪⎝⎭ 6.解:物体在t 时刻的运动速度为:'()()2(/),v t h t t m s ==(2)224(/)v ms ∴=⋅= 7.证:'00()()cos()cos (cos )limlim x x f x x f x x x xx x x∆→∆→+∆-+∆-===∆∆00sin2lim sin()limsin .22x x x x x x x∆→∆→∆∆-+=-∆# 则''1()sin ,()sin,662f x x f ππ=-=-=-'()sin 33f ππ=-= 8.证:''00()(0)()(0)(0)limlim (0),00x x f x f f x f f f x x →→---==-=---- (()())f x f x -=注: ''2(0)=0(0)=0.f f ∴,即#9.解:(1)y sin ,x = ∴0lim sin sin 00,x x →==所以y sin x =在0x =处连续.'00sin 0sin y (0)limlim ,0x x x x x x→→-==- '00sin sin y (0)lim lim 1,x x x x x x +++→→∴==='00sin sin y (0)lim lim 1,x x x x x x-+-→→-===-故'sin y (0)limx xx→=不存在,即y sin x =在0x =处不可导. (2)1sin0y ,00x x xx ⎧≠⎪=⎨⎪=⎩∴01lim sin0(0),x x y x→==所以函数在0x =处连续. '001sin 01y (0)lim limsin ,0x x x x x x →→-==- 该极限不存在, ∴1sin 0y 0x x xx ⎧≠⎪=⎨⎪=⎩在0x =处不可导.(3)21sin 0y ,00x x xx ⎧≠⎪=⎨⎪=⎩∴201lim sin 0(0),x x y x →==所以函数在0x =处连续. 2'001sin 01y (0)lim lim sin 0,0x x x x x x x→→-===- 极限存在,∴1sin 0y 00x x xx ⎧≠⎪=⎨⎪=⎩在0x =处可导.10.解:()''sin cos ,y x x == ''2321cos,cos 1,32x x y y ππππ====-==-∴s i ny x =在23x π=处的切线斜率为1,2-在x π=处的切线斜率为-1. 11.解:抛物线2y x =上的两点为(1,1),(3,9),过此两点的直线的斜率为:914,31k -==- 而()''22,yxx ==令24,x =得 2.x =∴抛物线2y x =上过点(2,4)的切线平行于此割线.12.解:显然点1(,)32π在曲线cos y x =上.'33sin 2x x yxππ===-=- ∴c o sy x =在点1(,)32π处切线的斜率为 在点1(,)32π处法线的斜率为:3∴cos y x =在点1(,)32π处切线的方程为:1--223y x π=(). cos y x =在点1(,)32π处的法线方程为:1--233y x π=().13.解:设该物体在0t 时刻的角速度为0t ω.则0'0000()()lim ().t t t t t t tθθωθ∆→+∆-==∆ 14.解:该物体在t 时刻的变化速度为;'0()()()lim().t T t t T t V t T t t∆→+∆-==∆15.证:设00(,)x y 为双曲线2xy a =上任一点,则200,a y x = 过点00(,)x y 的切线斜率为:22'2(),x x a a xx ==-∴过点00(,)x y 的切线方程为: 20020(),a y y x x x -=--∴切线与两坐标轴所构成的三角形面积为:22001222.2a S x a x =⋅= 第二节 函数的和、积、商的求导法则教材习题2-2答案(上册P99) 1.解:(1)'2'2''34(3)(2)56.y x x x x-=-+=+(2)3'2'2'225()(2(22(24.2y x x x xx x =++=++=+ (3)()()'5'3357'4223(1)(1)523.2x x x x y x x x x --+-+==--(4)2'441,8 4.y x x y x =-+∴=-2.解:(1)'2'001()()().2v t h t v t gt v gt ==-=- (2)当物体达到最高点时速度为0,令()0,v t =即000.v v gt t g-=⇒=∴物体达到最高点的时刻为:.v g3.解:当0x =时,0,y =故所求的切线及法线均过原点.因为'2cos 2,y x x =+则切线斜率为'(0)2,y =法线斜率为1.2-所以切线及法线方程分别为:12,.2y x y x ==-4.解:令0y =即10x x -=得曲线1y x x =-与横轴的交点为(-1,0)和(1,0). '211,y x=+ 则点(-1,0)处切线的斜率为'(1)2,y -=点(1,0)处切线的斜率为'(1)2,y =∴过(-1,0)和(1,0)两点的切线方程分别为: 2(1),2(1).y x y x =+=- 5.解:设曲线32y x x =+-上点00(,)x y 处的切线与直线41y x =-平行. '231,y x =+ 则'200()31,y x x =+∴20031411x x +=⇒=-或,故曲线32y x x =+-上点(-1,-4)或(1,0)与直线41y x =-平行.6.证:(1) ()()()''''222cos sin sin cos cos 1cot csc sin sin sin x x x x x x x x x x -⎛⎫===-=- ⎪⎝⎭. (2) ()()'''2sin 1cos csc csc cot .sin sin sin sin x x x x x x x x x ⎛⎫==-=-=-⋅ ⎪⋅⎝⎭7.解:(1) ()''22'2cos (cos )2cos sin .y x x x x x x xx =+=-(2)'''sin ).ρϕϕϕ==(3)()()''''2tan tan 2(sec )tan sec 2sec tan .y x x x x x x x x x x =+-=+-(4)()()''22'42cos cos 12cos (sin )x x x xx y x x x x-==-+ (5)'''3(sin )13cos .u v v v =-=- (6)()''10'9(10)1010ln10.x x y x x=+=+(7)()''22'2(31)(31)(54).x x x y exx e x x e x x =+++++=++(8)()'''(cos sin )(cos sin )(cos sin cos ).x xxy ex x x e x x x e x x x x x =+++=++(9)'()()()()()().y x b x c x c x a x a x b =--+--+-- (10)'2cot )cos (1csc )cot )sin .y x x x x x x x x =-++-8.解:(1)()()()()()()()()()'''22211111112.1111x x x x x x x y x x x x -+-+-+---⎛⎫==== ⎪+⎝⎭+++,(2)()()()2'''1sin (1cos )1cos (1sin )1cos t t t t st ++-++=+ ()()22cos (1cos )sin (1sin )cos sin 1.1cos 1cos t t t t t t t t +++++==++(3)()()()()''222'2222csc (1)1csc csc cot (1)2csc 2211x x x xx x x x xy x x +-+-+-==++()2222csc cot (1)21x x x x x ⎡⎤-++⎣⎦=+.(4)()()()''22'232sin sin cos 2sin .x x x xx x xy x x --==(5)()()()()''533543'2233(2)22(5).22v v v v v v u vv----==--(6)()((()'''2cot 11cot 1x xy +-+==,()221csc cot .11x x+==-++(7)()()()'2'222221121.111x x x y x x x x x x +++⎛⎫==-=-⎪++⎝⎭++++,(8)'''y ==-,11== .(9)()''''2(tan csc )tan (csc )tan +sec csc cot .y x x x x x x x x x x x =-=-=+(10)()()'''2sin (1tan )(1tan )sin sin 1tan 1tan x x x x x x x x y x x +-+⎛⎫==- ⎪+⎝⎭+,()()22s i n c o s (1t a n )s i n s e c.1t a n x x x x x x x x ++-=+9.解:(1) ''(cos sin )cos2,y x x x == ''641cos 2,cos 20.624x x y y ππππ==∴=⋅==⋅=(2)'11(sin cos )sin cos ,22d d ρϕϕϕϕϕϕϕ=+=+41sin cos ).244442d d πϕρππππϕ=∴=+=+(3)()f t ==()()()()()'''21111()11tt t tf t t t -----∴==-- 故'41(4).18f =∴==-(4) ()()()''2'22532()3,5555x x x f x x x -⎛⎫=-+=+ ⎪--⎝⎭ ''317(0),(2).2515f f ∴== 第三节 反函数和复合函数的求导法则教材习题2-3答案(上册P107) 1.解:[][]'''''''()()(),(3)(3)(3)7(5)7.F x fg x g x F f g g f =∴===-[][]'''''''()()(),(3)(3)(3)2(5)248.G x g f x f x G gff g =∴==-=-⋅=- 2. 解: (1)()2''2'242()2(arctan ).11x xy x x x ===++(2)'''')arctan )y x x x x ==+=(3)''2arcsin (arcsin )y x x ==(4)'arcsin(ln )y x =(5) ()'2'224212.1(1)22x xy x x x -=-=+--+(6)'''1e y ex===+(7)''y ====(8) 'ar cc ar cc .y osx osx ==(9) ()''22221111.1111111x x x y x x x x x -+⎛⎫⎪--⎝⎭===-+++⎛⎫⎛⎫++ ⎪ ⎪--⎝⎭⎝⎭(10)()()'''2arcsin arccos arc s arcsin (arccos )x x co x x y x -=-=. (11) ()()'''22ln ln 2ln .y x x x x x x x =+=+(12) ()()()()()()'''221ln 1ln 1ln 1ln 2.1ln 1ln x x x x yx x x -+-+-==-++ 3.解: (1)()''445(31)3115(31).y x x x =++=+(2)''3()3.x xy e x e --=-=-(3) ''cos()()cos().s A t t A t ωϕωϕωωϕ=++=+(4) ''112()().n n b b nb by n a a a x x x x--⎛⎫=++=-+ ⎪⎝⎭(5) 22'2'()2.x x y e x xe --=-=-(6) ''cos tan .cos x y x x==- (7) ''cos(2)(2)2cos(2)ln 2.xx xxy == (8) 'sin 'sin 2ln 2(sin )2cos ln 2.x x y x x ==(9) ''22sec (sec )2sec tan .y x x x x ==(10) '2'221111sc()sc .y c c x x x x=-=(11) ''1t y +⎛⎫ ⎪== (12) 2ln(1),ln x x y a ++= 2''22(1)21.(1)ln (1)ln x x x y x x a x x a +++∴==++++4.解(1) '2'22'tan sec ()sec 1tan 22222s .tan tan 2tan 2tan 2222x x x x x y c cx x x x x ⎛⎫+ ⎪⎝⎭=====(2)''x y +===(3) 2'22'2'tan y x x ====-(4) ''y ==(5) ()'''2cos(2)cos(2)2cos(2)sin(2)(2).s a t t a t t t ωϕωϕωϕωϕωϕ=++=-+++2s i n 2(2)a t ωωϕ=-+ (6) '''(ln ln )(ln )1.ln ln ln ln ln ln ln ln x x s x x x x x x===⋅⋅⋅ (7) ()'''22sin 2sin 22cos 2sin 2.x x x x x x x y x x --==(8) ()'''sin()cos()()t ty e t et t ααωϕωϕωϕ--=++++[]i n ()c o s ()c o s ()i n ().tt tes t e t e t st ααααωϕωωϕωωϕαωϕ---=-+++=+-+(9) '22''22x x y ⎛⎫== ⎪⎝⎭(10) ''ln ln 2ln 12ln 2()2ln 2.ln ln xxxxx x y x x-==⋅⋅(11) '22'4'224sec tan (tan )tan (tan )sec (1tan tan ).y x x x x x x x x =-+=-+(12) '22''tan sec sec 2x x xx y ⎛⎫ ⎪⎫===⎪⎭ 5.解:'22'''''()()f x g x y +===6.解:(1)2'22'2()()()2().dy d f x f x x x f x dx dx ===⋅ (2)2222((sin )(cos ))(sin )(cos )dy d d d f x f x f x f x dx dx dx dx=+=+ ()()'''2'2(sin )2sin sin (cos )2cos cos f x x x f x x x =+'2'2sin 2(sin )(cos ).x f x f x ⎡⎤=-⎣⎦7.解:222''()()()2'2222()(),2x a x a x a D D D x a y x ee D ------⎛⎫⎛⎫⎛⎫-==-=⎪⎪ ⎪⎪⎪⎝⎭⎭⎭令'()0,y x=即2()200.x a D x a x a --=⇒-=⇒=8.解:011()(),kt T t T T e T -=-+ ∴物体温度的变化速度为:'01()()(),kt v T t T T e k -==--即10().kt v k T T e -=-9.解:0(),kt m t m e -= ∴函数的变化率为:0().kt dm t km e dt-=- 10.解:当0x =时,(0) 1.y = '2'22,(0)2,xy e x y =+=∴ 过(0,1)点的法线方程的斜率为12-,法线方程:11(0),2y x -=--即220.x y +-=原点到法线的距离为:d ==第四节 高阶导数教材习题2-4答案(上册P112) 1. 解:(1)'''2114,4.y x y x x=+∴=- (2)'21'21''21(21)2,4.x x x y ex e y e ---=-=∴=(3)'''cos sin ,2sin cos .y x x x y x x x =-∴=--(4)'''cos sin ,2s .t t t y e t e t y e co t ---=-∴=- (5)2'''y y =∴=(6)13521'2''32221324,44,48.24y x xx y x x x y x x ------=++∴=--=++(7)()2'''22222(1),.11x x y y x x -+=∴=--- (8)'2''2sec ,2sec tan .y x y x x =∴= (9)()()23'''233336(21),.11x x x y y xx--=∴=++(10)'''22arctan 1,2(arctan ).1xy x x y x x=+∴=++ (11)22'''cos cos 2sin 2-sin 2ln ,2cos 2ln .x x x y x x y x x x x x =+∴=--- (12)2'''23(22),.x x x xe e e x x y y x x --+=∴= (13)222'2''22,2(32).x x x y e x e y xe x =+∴=+ (14)'''y y =∴=2.解: '5''4'''3'''36(10),30(10),120(10)(2)12012.y x y x y x y =+=+=+∴=⨯3.解:'2''''''22()()()()()(),()().()()()dy f x d y d dy d f x f x f x f x f x dx f x dx dx dx dx f x f x -=∴=== 4.解:由物体运动的规律sin s A t ω=得:物体运动的速度为:cos dsv A t dtωω==和加速度222sin .d sa A t dtωω==-下验证2220.d s s dtω+=左边=22sin sin 0A t A t ωωωω-+⋅==右边.5.解:由12x x y c e c e λλ-=+得: '''221212,,x x x x y c e c e y c e c e λλλλλλλλ--=-=+所以,左边=''2y y λ-=(2212x x c e c e λλλλ-+)212()x x c e c e λλλ--+=0=右边. 6.解:(1) ()()()00(1)21!.n n n yx n n n =++⋅⋅⋅+=-⋅⋅⋅⋅=(2) ()()'''2''sin sin 2,sin 22cos 2,y x x y x x ====''''(2c o s 2)4s i n 2,y x x ==-所以,一般地得: ()12sin 2+.2n n y x π-⎡⎤=⎢⎥⎣⎦(n-1) (3) ()()''''2312222221,,,11111x y y y x x x x x +-⋅⎛⎫==-+∴==-= ⎪+++⎝⎭++ ()'''4223,1y x ⋅⋅=-+所以,一般地得: ()()()12!1.1nn n n y x +⋅=-+(4) ()()()'11112'''11111,(1)1,m m m y x x y x mm m --⎡⎤=+=+=-+⎢⎥⎣⎦ 所以,一般地得:()1()111(1)(1)1.nn m yn x m m m-=-⋅⋅⋅-++ (5)由莱布尼兹公式得:()()()()1()01'l n (l n )(l n )00n n n n n n y x x c x x c x x -==⋅+⋅++⋅⋅⋅+()()1(l n )(l n ),n n x x n x -=⋅+'''''''231112(ln ),(ln ),(ln ),x x x x x x x ⎛⎫===-= ⎪⎝⎭一般地得:()()()11!(ln )(1).n n nn x x --=-()()()()()()()()112()11!2!ln (ln )(ln )(1)(1)n n n n n n nn n n ny x x x x n x x x ------∴==⋅+=-+-()12!(1)(2).nn n n x --=-≥()()1ln 1,(1)=.2!(1)(2)n n n x n y n n x -+=⎧⎪∴⎨--≥⎪⎩第五节 隐函数的导数以及由参数方程所确定的函数的导数教材习题2-5答案(上册P122)1.解:(1)方程2290y xy -+=两边分别对x 求导得: 2220,d y d y yy x d x d x --=解得: .dy y dx y x=- (2) 方程3330x y axy +-=两边分别对x 求导得:2222333()0.dy dy dy ay x x y a y x dx dx dx y ax-+-+=⇒=-(3) 方程x y xy e +=两边分别对x 求导得:(1).x y x yx ydy dy dy e y y x e dx dx dx x e +++-+=+⇒=- (4) 方程1y y xe =-两边分别对x 求导得:.1y y y ydy dy dy e e xe dx dx dx xe=--⇒=-+ 2.解: 方程222333x y a +=两边分别对x 求导得: 1133.dyx y dx-=- ∴曲线上点44⎛⎫ ⎪ ⎪⎝⎭处的切线斜率为: 1.dydx ⎝⎭=-该点的切线方程为: 1(),44y x -=--即0.2x y +-= 该点的法线方程为: (),44y x -=-0.x y -= 3.解:(1) 方程sin()y x y =+两边分别对x 求导得:cos(),1cos()dy x y dx x y +=-+ 所以22cos()()1os()d y d x y dx dx c x y +=-+[][]2s i n ()(1)1o s ()c o s ()s i n ()(1),1c o s ()d y d yx y c x y x y x y d x d x x y -++-+-+++=-+把cos()1cos()dy x y dx x y +=-+代入即得[]232sin().os()1d y x y dx c x y +=+- (2) 方程221x y -=两边分别对x 求导得:,dy xdx y=所以222(),dyy xd y d dy d x dx dx dx dx dx y y -⎛⎫=== ⎪⎝⎭将dy x dx y=代入即得2222233()1.xy x d y y x ydx y y y---=== 4.解:(1)方程1xx y x ⎛⎫= ⎪+⎝⎭两边取以e 为底的对数得:ln ln ,1x y x x =+ 两边分别对x 求导得:'''111ln ln .11111xx x x x x y x y y x x x x x x +⎛⎫⎛⎫⎛⎫=+⇒=+ ⎪ ⎪⎪+++++⎝⎭⎝⎭⎝⎭(2)方程()cot 2tan 2xy x =两边取以e 为底的对数得:ln cotln tan 2,2xy x = 两边分别对x 求导'22cot112csc ln tan 22sec 222tan 2xx y x x y x=-+⇒cot2'2(tan 2)(csc ln tan 28cot csc 4).222x x x xy x x ⇒=-- (3)方程y =e 为底的对数得:211ln ln(5)ln(2)55y x x ⎡⎤=--+⎢⎥⎣⎦, 两边分别对x 求导整理得:2'426252531010.25(2)x x y x ++=-+(x-5(4)方程y =两边取以e 为底的对数 得:1l nl n (2)4l n (3)5l n (1)2y x x x =++--+,两边分别对x 求导整理得:4'5)145.(1)2(2)31x y x x x x ⎡⎤-=--⎢⎥++-+⎣⎦5.解:(1)由2223332,3,.22dyx at dx dy dy bt bt dt at bt dt dt dx at a y btdt⎧=⇒==⇒===⎨=⎩ (2)由(1sin )1sin cos ,cos sin cos x dx dyy d d θθθθθθθθθθθθ=-⎧⇒=--=-⎨=⎩cos sin .1sin cos dy dy d dx dx d θθθθθθθθ-⇒==--6.解:(1)由sin (sin +cos ,cos sin ,cos t t ttx e t dx dy e t t e t t dt dt y e t ⎧=⇒=+=-⇒⎨=⎩)() sin +cos cos sin dydy t tdt dx dx t t dt==-. 所以,33sin +cos 2cos sin t t dy t t dxt tππ====--7.解:(1)当 4t π=时,曲线上对应的点为2⎛⎫ ⎪ ⎪⎝⎭,2sin 24sin ,cos dydy t dt t dx dxt dt-===-44s i n 24t dy dxππ=∴=-=-⎫⎪⎪⎝⎭的切线斜率. 则切线方程为:0(),2y x -=--即20,y +-=法线方程为0(42y x -=-410.y --=(2) 当 0t =时,曲线上对应的点为()2,1,2,22t tt dydy e e dt dx dx e dt---===-12t dy dx =∴=-为过点()2,1的切线斜率. 则切线方程为: 11(2),2y x -=-- 即240,x y +-=法线方程为12(2),y x -=-即230.x y --=8.解:(1)由2,1,21t x dx dy t dt dt y t⎧=⎪⇒==-⎨⎪=-⎩1,dy dy dt dx dx t dt⇒==- 222311111()()().d y d d y d d y d t d dx dx dx dx dt dx dx dt t t t t dt⇒===-== (2)由cos sin ,cos ,sin x a t dx dya tb t y b tdt dt =⎧⇒=-=⎨=⎩cos cot ,sin dy b t b t dx a t a ⇒==-- 22231()()(cot ).sin d y d dy d dy dt d b bt dx dx dx dx dt dx dx dt a a t dt⇒===-=- 9.解:(1)由sin (sin +cos ,cos sin ,cos t t ttx e t dx dy e t t e t t dt dt y e t ⎧=⇒==-⇒⎨=⎩)() 22cos sin sin +cos dydy t t d y d dy d dy dtdt dx dx t t dx dx dx dt dx dxdt-⎛⎫⎛⎫==⇒== ⎪ ⎪⎝⎭⎝⎭cos sin 1sin +cos d dy dt d t t dxdt dx dx dt t t dt-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 23212,(cos sin )(sin +cos )(cos sin )t t t t e t t e t t --==++则 左边222()d y x y dx =+=2322(sin cos ),(cos sin )cos sin t t t t e e t e t e t t t t --+=++ 右边=cos sin 22()2(sin cos )sin +cos cos sin t tt dy t t e x y e t e t dx t t t t---=-=+, 左边=右边第六节 变化率问题举例及相关变化率教材习题2-6答案(上册P130)1. 解:速度函数是位置函数的导数.由于32() 1.5,s f t t t t ==+-所以速度2()33 1.dsv t t t dt==+-当()5v t =时,即233151(0).t t t t +-=⇒=> 2.解:由题意得: 3sin ,x θ=则33cos 3cos1.5(/).3dx dx m rad d d πθπθθθ==⇒==3.解:设细棒AB 上任意一点M 处的坐标为,x 质量为(),m m x =则2(0),m kx k =>为比例系数因为当2l =时8,m =即2822k k =⋅⇒=,所以22(0).m x k =>为比例系数故细棒AB 上任意一点M 处的密度为4(/).dmx g cm dx = 4.解:由21000(1)50(1)(040),4040t dV tV t dt =-⇒=--≤≤所以 5550(1)43.75(/m i n )40t dV L dt ==--=-(负号表示容器内的水在减少), 101050(1)37.5(/min)40t dV L dt ==--=-, 202050(1)25(/min)40t dV L dt ==--=- . 5.解:(1)由()2(sin cos ),sin cos sin cos W dF W F d μμθμθμθθθμθθ-=⇒=++ (2)令0,dF d θ=即 ()2(s i n c o s )0t a n t a n .s i n c o s W a r c μθμθθμθμμθθ-=⇒=⇒=+ 6.解:由2.c dv cpv c v p dp p=⇒=⇒=- 7.解:由22111.()fq dp f p f p q q f dq q f =+⇒=⇒=--- 8.解:由2150.020.040.04.t dm dmm t t dt dt==-⇒=-⇒=-9.解:(1) 由2'()420 1.50.002() 1.50.004C x x x C x x =++⇒=+得:'(100)1.90,C =(101)(100) 1.C C -≈(2) 由23'2()200030.010.0002()30.020.0006C x x x x C x x x =+++⇒=++得:'(100)11,C =(101)(100)11.07C C -≈10.解: 由3432D V π⎛⎫= ⎪⎝⎭=36D V π= (其中V 为雪球体积, D 为雪球直径),两边对间t 求导得:22dV D dDdt dtπ=,当1,10dV D dt ==时, dD dt =211.450dV dt D ππ=11.解:设飞机与雷达站的距离为S ,则经过时间t 后,S =,则6dS dt =,又两者相距4km时的时间1000t =,则t dS dt =.12.解:解:记12:00整时0.t =设经过时间t 后两船相距S ,则S =则dSdt=,经过4个小时即16:00时472013t dS dt==13.解:设圆锥形容器中溶液的深度为h ,溶液表面的半径为r ,则h ,r 都是时间t 的函数。
同济大学 高等数学(本科少学时)第三版第一章
阶梯曲线
(3) 狄利克雷函数
y
D(
x)
1 0
当x是有理数时 当x是无理数时
y
1
• 无理数点
o
有理数点
x
(4) 取最值函数
y max{ f ( x), g( x)}
y
f (x)
g( x)
o
x
y min{ f ( x), g( x)}
y
f (x)
g( x)
o
x
在自变量的不同变化范围中, 对应法则用不同的 式子来表示的函数,称为分段函数.
{x a x b} 称为半开区间, 记作 (a,b]
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
3.邻域: 设a与是两个实数 , 且 0.
数集{x x a }称为点a的邻域 ,
例如,
2x 1,
f
(
x)
x2
1,
x0 x0
y x2 1
y 2x 1
例1
设f
(
x)
1 2
0
x
1 ,
求函数
f
(
x
3)的定义域.
1 x2
解
f (x)
1 2
0 x1 1 x2
f
(x
3)
1 2
0 x31 1 x32
点a叫做这邻域的中心, 叫做这邻域的半径 .
高等数学教材第三版答案
高等数学教材第三版答案为了方便广大高等数学学习者更好地学习,我特意整理了高等数学教材第三版的答案,希望能对大家的学习有所帮助。
下面是对教材中各章节习题的答案解析。
第一章微分学1.1 函数与极限1.2 导数与微分1.3 微分中值定理与导数的应用第二章积分学2.1 定积分2.2 反常积分2.3 定积分的应用第三章无穷级数3.1 数项级数3.2 幂级数3.3 函数项级数第四章高次方程及其解法4.1 代数方程与代数方程的根4.2 高次代数方程的整数根与有理根4.3高次代数方程的正根与实根4.4高次代数方程的复根第五章傅立叶级数5.1 傅立叶级数的定义与性质5.2 奇延拓与偶延拓5.3 傅立叶级数的收敛性第六章偏微分方程6.1 偏导数与偏微分方程6.2 一阶线性偏微分方程6.3 高阶线性偏微分方程第七章多元函数微分学7.1 多元函数的极限与连续7.2 一阶偏导数与全微分7.3 高阶偏导数与多元函数微分学应用第八章向量代数与空间解析几何8.1 向量代数8.2 空间解析几何8.3 平面与直线的夹角与距离第九章多元函数积分学9.1 二重积分9.2 三重积分9.3 三重积分的应用第十章曲线积分与曲面积分10.1 第一类曲线积分10.2 第二类曲线积分10.3 曲面积分第十一章广义重积分与格林公式11.1 广义重积分11.2 格林公式及其应用11.3 闭曲线上格林公式的应用第十二章级数的一致收敛性12.1 函数项级数的一致收敛性12.2 幂级数的一致收敛性12.3 一致收敛性的应用第十三章线性代数初步13.1 行列式13.2 向量空间与线性方程组13.3 特征值与特征向量第十四章线性代数进阶14.1 线性空间与线性映射14.2 矩阵与线性映射14.3 特征多项式与相似矩阵注意:以上只是教材中各章节的题目答案简要解析,建议在学习过程中,除了参考答案之外,还需要仔细研读教材中的知识点,并通过大量的练习来巩固和加深理解。
高等数学(本科少学时类型)
高等数学(本科少学时类型)第一章 函数与极限第一节 函数○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★) (){},|U a x x a δδ=-<(){},|0U a x x a δδ=<-<第二节 数列的极限○数列极限的证明(★)【题型示例】已知数列{}n x ,证明{}lim n x x a →∞=【证明示例】N -ε语言1.由n x a ε-<化简得()εg n >,∴()N g ε=⎡⎤⎣⎦2.即对0>∀ε,()N g ε∃=⎡⎤⎣⎦,当N n >时,始终有不等式n x a ε-<成立,∴{}a x n x =∞→lim第三节 函数的极限○0x x →时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x x =→0lim【证明示例】δε-语言1.由()f x A ε-<化简得()00x x g ε<-<,∴()εδg =2.即对0>∀ε,()εδg =∃,当00x x δ<-<时,始终有不等式()f x A ε-<成立,∴()A x f x x =→0lim○∞→x 时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x =∞→lim【证明示例】X -ε语言1.由()f x A ε-<化简得()x g ε>,∴()εg X =2.即对0>∀ε,()εg X =∃,当X x >时,始终有不等式()f x A ε-<成立,∴()A x f x =∞→lim第四节 无穷小与无穷大○无穷小与无穷大的本质(★) 函数()x f 无穷小⇔()0lim =x f 函数()x f 无穷大⇔()∞=x f lim○无穷小与无穷大的相关定理与推论(★★)(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ⋅=⎡⎤⎣⎦(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f 1-为无穷大 【题型示例】计算:()()0lim x x f x g x →⋅⎡⎤⎣⎦(或∞→x )1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0=→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)3.由定理可知()()0lim 0x x f x g x →⋅=⎡⎤⎣⎦(()()lim 0x f x g x →∞⋅=⎡⎤⎣⎦)第一节 极限运算法则○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则关于多项式()p x 、()x q 商式的极限运算设:()()⎪⎩⎪⎨⎧+⋯++=+⋯++=--nn n mm m b x b x b x q a x a x a x p 110110 则有()()⎪⎪⎩⎪⎪⎨⎧∞=∞→0limb a x q x p x m n m n m n >=< ()()()()000lim 00x x f x g x f x g x →⎧⎪⎪⎪=∞⎨⎪⎪⎪⎩()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00lim 0x x f x g x →=(不定型)时,通常分子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim9x x x →--【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()23333311lim lim lim 93336x x x x x x x x x →→→--====-+-+ 其中3x =为函数()239x f x x -=-的可去间断点 倘若运用罗比达法则求解(详见第三章第二节):解:()()0233323311lim lim lim 9269x L x x x x x x x '→→→'--===-'- ○连续函数穿越定理(复合函数的极限求解)(★★)(定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ϕϕ→→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦【题型示例】求值:93lim23--→x x x【求解示例】36x →==第一节 极限存在准则及两个重要极限○夹迫准则(P53)(★★★)第一个重要极限:1sin lim0=→xxx ∵⎪⎭⎫⎝⎛∈∀2,0πx ,x x x tan sin <<∴1sin lim0=→x x x 0000lim11lim lim 1sin sin sin lim x x x x x x x x x x →→→→===⎛⎫⎪⎝⎭(特别地,000sin()lim1x x x x x x →-=-)○单调有界收敛准则(P57)(★★★)第二个重要极限:e x xx =⎪⎭⎫⎝⎛+∞→11lim(一般地,()()()()lim lim lim g x g x f x f x =⎡⎤⎡⎤⎣⎦⎣⎦,其中()0lim >x f )【题型示例】求值:11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x【求解示例】()()211121212122121122122121lim21221232122lim lim lim 121212122lim 1lim 121212lim 121x x x x x x x x x x x x x x x x x x x x x x x x +++→∞→∞+→∞⋅++++⋅⋅+++→∞+→∞++→∞+++⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎢⎥=+=+ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎢⎥=+⎪⎢⎥+⎝⎭⎣⎦解:()()12lim 1212121212122lim 121x x x x x x x x x eee e+→∞⎡⎤⋅+⎢⎥+⎣⎦+→∞+→∞⎡⎤⋅+⎢⎥+⎣⎦+⎛⎫⎪+⎝⎭====第一节 无穷小量的阶(无穷小的比较) ○等价无穷小(★★) 1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1U U U U U U U e +-2.U U cos 1~212-(乘除可替,加减不行)【题型示例】求值:()()xx x x x x 31ln 1ln lim 20++++→【求解示例】()()()()()()()3131lim 31lim 31ln 1lim 31ln 1ln lim,0,000020=++=+⋅+=++⋅+=++++=≠→→→→→x x x x x x x x x x x x x x x x x x x x x 所以原式即解:因为第二节 函数的连续性 ○函数连续的定义(★) ()()()00lim lim x x x x f x f x f x -+→→==○间断点的分类(P67)(★)⎩⎨⎧∞⋯⋯⎩⎨⎧)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数()⎩⎨⎧+=x a e x f x 2 ,00≥<x x 应该怎样选择数a ,使得()x f 成为在R上的连续函数?【求解示例】1.∵()()()2010000f e e e f a a f a --⋅++⎧===⎪⎪=+=⎨⎪=⎪⎩2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 0∴e a =第五节 闭区间上连续函数的性质 ○零点定理(★)【题型示例】证明:方程()()f x g x C =+至少有一个根介于a 与b 之间 【证明示例】 1.(建立辅助函数)函数()()()x f x g x C ϕ=--在闭区间[],a b 上连续; 2.∵()()0a b ϕϕ⋅<(端点异号)3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξϕ,即()()0f g C ξξ--=(10<<ξ)4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第二章 导数与微分 第一节 导数概念○高等数学中导数的定义及几何意义(P83)(★★)【题型示例】已知函数()⎩⎨⎧++=b ax e x f x 1 ,00>≤x x 在0=x 处可导,求a ,b【求解示例】1.∵()()0010f e f a -+'⎧==⎪⎨'=⎪⎩,()()()00001120012f e e f b f e --+⎧=+=+=⎪⎪=⎨⎪=+=⎪⎩2.由函数可导定义()()()()()0010002f f a f f f b -+-+''===⎧⎪⎨====⎪⎩∴1,2a b ==【题型示例】求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ⎡⎤⎣⎦处的切线与法线方程) 【求解示例】1.()x f y '=',()a f y a x '='=| 2.切线方程:()()()y f a f a x a '-=- 法线方程:()()()1y f a x a f a -=--'第二节 函数的和(差)、积与商的求导法则 ○函数和(差)、积与商的求导法则(★★★) 1.线性组合(定理一):()u v u v αβαβ'''±=+ 特别地,当1==βα时,有()u v u v '''±=± 2.函数积的求导法则(定理二):()uv u v uv '''=+3.函数商的求导法则(定理三):2u u v uv v v '''-⎛⎫= ⎪⎝⎭第三节 反函数和复合函数的求导法则 ○反函数的求导法则(★) 【题型示例】求函数()x f 1-的导数【求解示例】由题可得()x f 为直接函数,其在定于域D 上单调、可导,且()0≠'x f ;∴()()11f x f x -'⎡⎤=⎣⎦' ○复合函数的求导法则(★★★)【题型示例】设(ln y e =,求y '【求解示例】(22arcsi y ex a e e e ''='⎛⎫' ⎪+ ⎝⎛⎫⎪ ⎝⎭解:⎛ ⎝第四节 高阶导数 ○()()()()1n n fx fx -'⎡⎤=⎣⎦(或()()11n n n n d y d y dx dx--'⎡⎤=⎢⎥⎣⎦)(★) 【题型示例】求函数()x y +=1ln 的n 阶导数【求解示例】()1111y x x -'==++, ()()()12111y x x --'⎡⎤''=+=-⋅+⎣⎦, ()()()()()2311121y x x --'⎡⎤'''=-⋅+=-⋅-⋅+⎣⎦ ……()1(1)(1)(1)n n n y n x --=-⋅-⋅+!第一节 隐函数及参数方程型函数的导数 ○隐函数的求导(等式两边对x 求导)(★★★)【题型示例】试求:方程y e x y +=所给定的曲线C :()x y y =在点()1,1e -的切线方程与法线方程【求解示例】由y e x y +=两边对x 求导即()y y x e '''=+化简得1y y e y ''=+⋅ ∴ee y -=-='11111∴切线方程:()e x ey +--=-1111 法线方程:()()e x e y +---=-111○参数方程型函数的求导【题型示例】设参数方程()()⎩⎨⎧==t y t x γϕ,求22dx yd【求解示例】1.()()t t dx dy ϕγ''=2.()22dy d y dx dxt ϕ'⎛⎫⎪⎝⎭=' 第二节 变化率问题举例及相关变化率(不作要求)第三节 函数的微分○基本初等函数微分公式与微分运算法则(★★★) ()dx x f dy ⋅'=第三章 中值定理与导数的应用第一节 中值定理 ○引理(费马引理)(★) ○罗尔定理(★★★)【题型示例】现假设函数()f x 在[]0,π上连续,在()0,π 上可导,试证明:()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立 【证明示例】 1.(建立辅助函数)令()()sin x f x x ϕ=显然函数()x ϕ在闭区间[]0,π上连续,在开区间()0,π上可导; 2.又∵()()00sin00f ϕ==()()sin 0f ϕπππ==即()()00ϕϕπ==3.∴由罗尔定理知()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x >时,x e e x >⋅ 【证明示例】 1.(建立辅助函数)令函数()x f x e =,则对1x ∀>,显然函数()f x 在闭区间[]1,x 上连续,在开区间()1,x 上可导,并且()x f x e '=;2.由拉格朗日中值定理可得,[]1,x ξ∃∈使得等式()11x e e x e ξ-=-成立, 又∵1e e ξ>,∴()111x e e x e e x e ->-=⋅-, 化简得x e e x >⋅,即证得:当1x >时,x e e x >⋅ 【题型示例】证明不等式:当0x >时,()ln 1x x +<【证明示例】 1.(建立辅助函数)令函数()()ln 1f x x =+,则对0x ∀>,函数()f x 在闭区间[]0,x 上连续,在开区间()0,π上可导,并且()11f x x '=+;2.由拉格朗日中值定理可得,[]0,x ξ∃∈使得等式()()()1ln 1ln 1001x x ξ+-+=-+成立, 化简得()1ln 11x x ξ+=+,又∵[]0,x ξ∈,∴()111f ξξ'=<+,∴()ln 11x x x +<⋅=,即证得:当1x >时,x e e x >⋅ 第二节 罗比达法则○运用罗比达法则进行极限运算的基本步骤(★★) 1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件A .属于两大基本不定型(0,0∞∞)且满足条件, 则进行运算:()()()()lim limx a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出)B .☆不属于两大基本不定型(转化为基本不定型) ⑴0⋅∞型(转乘为除,构造分式) 【题型示例】求值:0lim ln x x x α→⋅【求解示例】()10000201ln ln lim ln limlimlim111lim 0x x L x x x x xx x x x x xxx a ααααααα∞∞-'→→→→→'⋅===⋅'⎛⎫- ⎪⎝⎭=-=解: (一般地,()0lim ln 0x x x βα→⋅=,其中,R αβ∈)⑵∞-∞型(通分构造分式,观察分母)【题型示例】求值:011lim sin x x x →⎛⎫- ⎪⎝⎭【求解示例】200011sin sin lim lim lim sin sin x x x x x x x x x x x x →→→--⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪⋅⎝⎭⎝⎭⎝⎭解: ()()()()00002sin 1cos 1cos sin limlim lim lim 0222L x x L x x x x x x xx x x ''→→→→''---====='' ⑶00型(对数求极限法) 【题型示例】求值:0lim x x x →【求解示例】()()0000lim ln ln 000002ln ,ln ln ln ln ln 0lim ln lim lim111lim lim 0lim lim 11x x x x x L x yy x x x x x y x y x x x xx xx y xx x x y e e e x→∞∞'→→→→→→→===='→=='⎛⎫ ⎪⎝⎭==-=====-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞型(对数求极限法)【题型示例】求值:()10lim cos sin xx x x →+【求解示例】()()()()()1000000lim ln ln 10ln cos sin cos sin ,ln ,ln cos sin ln 0lim ln lim ln cos sin cos sin 10lim lim 1,cos sin 10lim =lim x x x x L x x yy x x x x y x x y xx x y x y x x x x x x x x y e e e e→→→'→→→→+=+=+→='+⎡⎤--⎣⎦====++'===解:令两边取对数得对求时的极限,从而可得⑸0∞型(对数求极限法)【题型示例】求值:tan 01lim xx x →⎛⎫ ⎪⎝⎭【求解示例】()()tan 0020002220011,ln tan ln ,1ln 0lim ln lim tan ln 1ln ln lim lim lim 1sec 1tan tan tan sin sin lim lim li xx x x L x x x L x y y x x x y x y x x x x x x x x x x x x x →→∞∞'→→→'→→⎛⎫⎛⎫==⋅ ⎪⎪⎝⎭⎝⎭⎡⎤⎛⎫→=⋅ ⎪⎢⎥⎝⎭⎣⎦'=-=-=-⎛⎫'⎛⎫- ⎪ ⎪⎝⎭⎝⎭'==='解:令两边取对数得对求时的极限,00lim ln ln 002sin cos m 0,1lim =lim 1x x yy x x x xy e e e →→→→⋅====从而可得 ○运用罗比达法则进行极限运算的基本思路(★★)00001∞⎧⎪∞-∞−−→←−−⋅∞←−−⎨∞⎪∞⎩∞(1)(2)(3)⑴通分获得分式(通常伴有等价无穷小的替换)⑵取倒数获得分式(将乘积形式转化为分式形式)⑶取对数获得乘积式(通过对数运算将指数提前)第一节 泰勒中值定理(不作要求) 第二节 函数的单调性和曲线的凹凸性 ○连续函数单调性(单调区间)(★★★)【题型示例】试确定函数()3229123f x x x x =-+-的单调区间 【求解示例】1.∵函数()f x 在其定义域R 上连续,且可导∴()261812f x x x '=-+2.令()()()6120f x x x '=--=,解得:121,2x x ==4.∴函数f x 的单调递增区间为,1,2,-∞+∞;单调递减区间为()1,2【题型示例】证明:当0x >时,1x e x >+ 【证明示例】 1.(构建辅助函数)设()1x x e x ϕ=--,(0x >) 2.()10x x e ϕ'=->,(0x >) ∴()()00x ϕϕ>=3.既证:当0x >时,1x e x >+【题型示例】证明:当0x >时,()ln 1x x +<【证明示例】 1.(构建辅助函数)设()()ln 1x x x ϕ=+-,(0x >)2.()1101x xϕ'=-<+,(0x >) ∴()()00x ϕϕ<=3.既证:当0x >时,()ln 1x x +<○连续函数凹凸性(★★★)【题型示例】试讨论函数2313y x x =+-的单调性、极值、凹凸性及拐点【证明示例】1.()()236326661y x x x x y x x '⎧=-+=--⎪⎨''=-+=--⎪⎩ 2.令()()320610y x x y x '=--=⎧⎪⎨''=--=⎪⎩解得:120,21x x x ==⎧⎨=⎩-(1,3) 5 4.⑴函数13y x x =+-单调递增区间为(0,1),(1,2) 单调递增区间为(,0)-∞,(2,)+∞;⑵函数2313y x x =+-的极小值在0x =时取到,为()01f =,极大值在2x =时取到,为()25f =;⑶函数2313y x x =+-在区间(,0)-∞,(0,1)上凹,在区间(1,2),(2,)+∞上凸; ⑷函数2313y x x =+-的拐点坐标为()1,3第一节 函数的极值和最大、最小值○函数的极值与最值的关系(★★★)⑴设函数()f x 的定义域为D ,如果M x ∃的某个邻域()M U x D ⊂,使得对()M x U x ∀∈,都适合不等式()()M f x f x <,我们则称函数()f x 在点(),M M x f x ⎡⎤⎣⎦处有极大值()M f x ;令{}123,,,...,M M M M Mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最大值M 满足:()(){}123max ,,,,...,,M M M Mn M f a x x x x f b =;⑵设函数()f x 的定义域为D ,如果m x ∃的某个邻域()m U x D ⊂,使得对()m x U x ∀∈,都适合不等式()()m f x f x >,我们则称函数()f x 在点(),m m x f x ⎡⎤⎣⎦处有极小值()m f x ;令{}123,,,...,m m m m mn x x x x x ∈ 则函数()f x 在闭区间[],a b 上的最小值m 满足:()(){}123min ,,,,...,,m m m mn m f a x x x x f b =; 【题型示例】求函数()33f x x x =-在[]1,3-上的最值 【求解示例】1.∵函数()f x 在其定义域[]1,3-上连续,且可导∴()233f x x '=-+2.令()()()3110f x x x '=--+=, 解得:121,1x x =-= 3.(三行表)4.又∵()()()12,12,318f f f -=-==- ∴()()()()max min 12,318f x f f x f ====-第一节 函数图形的描绘(不作要求) 第二节 曲率(不作要求)第三节 方程的近似解(不作要求) 第四章 不定积分第一节 不定积分的概念与性质○原函数与不定积分的概念(★★) ⑴原函数的概念:假设在定义区间I 上,可导函数()F x 的导函数为()F x ',即当自变量x I ∈时,有()()F x f x '=或()()dF x f x dx =⋅成立,则称()F x 为()f x 的一个原函数⑵原函数存在定理:(★★)如果函数()f x 在定义区间I 上连续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续) ⑶不定积分的概念(★★)在定义区间I 上,函数()f x 的带有任意常数项C 的原函数称为()f x 在定义区间I 上的不定积分,即表示为:()()f x dx F x C =+⎰(⎰称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 则称为积分变量)○基本积分表(★★★)○不定积分的线性性质(分项积分公式)(★★★) ()()()()1212k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ 第二节 换元积分法○第一类换元法(凑微分)(★★★) (()dx x f dy ⋅'=的逆向应用)()()()()f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰ 【题型示例】求221dx a x +⎰ 【求解示例】222211111arctan 11x x dx dx d C a x a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰解:【题型示例】求 【求解示例】()()121212x x C=+=+= ○第二类换元法(去根式)(★★) (()dx x f dy ⋅'=的正向应用) ⑴对于一次根式(0,a b R ≠∈):t =,于是2t bx a-=, 则原式可化为t⑵对于根号下平方和的形式(0a >):tan x a t =(22t ππ-<<), 于是arctan xt a=,则原式可化为sec a t ;⑶对于根号下平方差的形式(0a >):asin x a t =(22t ππ-<<),于是arcsin xt a=,则原式可化为cos a t ;bsec x a t =(02t π<<),于是arccos at x =,则原式可化为tan a t ;【题型示例】求(一次根式)【求解示例】2221t x t dx tdttdt dt t C C t =-=⋅==+=⎰⎰【题型示例】求(三角换元)【求解示例】()()2sin ()2222arcsincos 22cos 1cos 221sin 2sin cos 222x a t t xt adx a ta a tdt t dta a t t C t t t C ππ=-<<==−−−−−−→=+⎛⎫=++=++ ⎪⎝⎭⎰⎰第一节 分部积分法 ○分部积分法(★★)⑴设函数()u f x =,()v g x =具有连续导数,则其分部积分公式可表示为:udv uv vdu =-⎰⎰⑵分部积分法函数排序次序:“反、对、幂、三、指” ○运用分部积分法计算不定积分的基本步骤: ⑴遵照分部积分法函数排序次序对被积函数排序; ⑵就近凑微分:(v dx dv '⋅=)⑶使用分部积分公式:udv uv vdu =-⎰⎰ ⑷展开尾项vdu v u dx '=⋅⎰⎰,判断a .若v u dx '⋅⎰是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分可以轻易求解出结果);b .若v u dx '⋅⎰依旧是相当复杂,无法通过a 中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2x e x dx ⋅⎰ 【求解示例】()()222222222222222x x x x x x x x x x x x x x x e x dx x e dx x de x e e d x x e x e dx x e x d e x e xe e dx x e xe e C⋅===-=-⋅=-⋅=-+=-++⎰⎰⎰⎰⎰⎰⎰解:【题型示例】求sin x e xdx ⋅⎰ 【求解示例】()()()()sin cos cos cos cos cos cos sin cos sin sin cos sin sin x x x x x x x x x x x x x x e xdx e d x e x xd e e x e xdx e x e d x e x e x xd e e x e x e xdx⋅=-=-+=-+=-+=-+-=-+-⎰⎰⎰⎰⎰⎰⎰解:()sin cos sin sin x x x x e xdx e x e x xd e ⋅=-+-⎰⎰即:∴()1sin sin cos 2x x e xdx e x x C ⋅=-+⎰第一节 有理函数的不定积分 ○有理函数(★)设:()()()()101101m m mn n nP x p x a x a x a Q x q x b x b x b --=++⋯+==++⋯+ 对于有理函数()()P x Q x ,当()P x 的次数小于()Q x 的次数时,有理函数()()P x Q x 是真分式;当()P x 的次数大于()Q x 的次数时,有理函数()()P x Q x 是假分式○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数()()P x Q x 的分母()Q x 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示为一次因式()kx a -;而另一个多项式可以表示为二次质因式()2lx px q ++,(240p q -<);即:()()()12Q x Q x Q x =⋅一般地:n mx n m x m ⎛⎫+=+ ⎪⎝⎭,则参数n a m =-22b c ax bx c a x x a a ⎛⎫++=++ ⎪⎝⎭则参数,b cp q a a==⑵则设有理函数()()P x Q x 的分拆和式为: ()()()()()()122k l P x P x P x Q x x a x px q =+-++ 其中()()()()1122...k k k P x A A A x a x a x a x a =+++----()()()()2112222222...ll llP x M x N M x N x px q x px q x px q M x N x px q ++=++++++++++++参数121212,,...,,,,...,l k lM M M A A A N N N ⎧⎧⎧⎨⎨⎨⎩⎩⎩由待定系数法(比较法)求出⑶得到分拆式后分项积分即可求解【题型示例】求21x dx x +⎰(构造法) 【求解示例】()()()221111111111ln 112x x x x dx dx x dx x x x xdx dx dx x x x Cx +-++⎛⎫==-+ ⎪+++⎝⎭=-+=-++++⎰⎰⎰⎰⎰⎰第一节 积分表的使用(不作要求) 第五章 定积分极其应用第一节 定积分的概念与性质 ○定积分的定义(★)()()01lim nbiiai f x dx f x I λξ→==∆=∑⎰(()f x 称为被积函数,()f x dx 称为被积表达式,x 则称为积分变量,a 称为积分下限,b 称为积分上限,[],a b 称为积分区间) ○定积分的性质(★★★) ⑴()()bba af x dx f u du =⎰⎰ ⑵()0aa f x dx =⎰⑶()()bba a kf x dx k f x dx =⎡⎤⎣⎦⎰⎰ ⑷(线性性质)()()()()1212b b baa a k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰⑸(积分区间的可加性)()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0b af x dx >⎰; (推论一)若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()b baa f x dx g x dx ≤⎰⎰;(推论二)()()bbaaf x dx f x dx ≤⎰⎰○积分中值定理(不作要求) 第二节 微积分基本公式○牛顿-莱布尼兹公式(★★★) (定理三)若果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数,则()()()baf x dx F b F a =-⎰○变限积分的导数公式(★★★)(上上导―下下导)()()()()()()()x x d f t dt f x x f x x dx ϕψϕϕψψ''=-⎡⎤⎡⎤⎣⎦⎣⎦⎰ 【题型示例】求21cos 2limt xx e dt x -→⎰【求解示例】()2211cos cos 2002lim lim 解:t t x xx L x d e dt e dt dx x x--'→→='⎰⎰ ()()()()2222221cos cos000cos 0cos cos 0cos 010sin sin lim lim 22sin lim 2cos sin 2sin cos lim21lim sin cos 2sin cos 21122x xx x xL x x x x x x e e x x e x xd xe dx x x e x e x xe x x x x e e---→→-'→--→-→-⋅-⋅-⋅==⋅='⋅+⋅⋅=⎡⎤=+⋅⎣⎦=⋅= 第三节 定积分的换元法及分部积分法 ○定积分的换元法(★★★) ⑴(第一换元法)()()()()b ba a f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰ 【题型示例】求20121dx x +⎰【求解示例】()[]222000111121ln 212122121ln 5ln 5ln122解:dx d x x x x =+=⎡+⎤⎣⎦++=-=⎰⎰ ⑵(第二换元法)设函数()[],f x C a b ∈,函数()x t ϕ=满足:a .,αβ∃,使得()(),ab ϕαϕβ==;b .在区间[],αβ或[],βα上,()(),f t t ϕϕ'⎡⎤⎣⎦连续 则:()()()ba f x dx f t t dt βαϕϕ'=⎡⎤⎣⎦⎰⎰【题型示例】求40⎰【求解示例】()2210,43220,1014,332332311132213111332223522933解:t t x x t x t t dx tt t dt t dt t x t =-====+→+⎛⎫=⋅⋅=+=+ ⎪⎝⎭=-=⎰⎰⎰⎰ ⑶(分部积分法)()()()()()()()()()()()()bba ab bb aaau x v x dx u x v x v x u x dxu x dv x u x v x v x du x ''=-=-⎡⎤⎣⎦⎰⎰⎰⎰○偶倍奇零(★★)设()[],f x C a a ∈-,则有以下结论成立: ⑴若()()f x f x -=,则()()02aaaf x dx f x dx -=⎰⎰⑵若()()f x f x -=-,则()0aaf x dx -=⎰第四节 定积分在几何上的应用(暂时不作要求) 第五节 定积分在物理上的应用(暂时不作要求) 第六节 反常积分(不作要求)第六章 如:不定积分公式21arctan 1dx x C x =++⎰的证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、求函数29x y -=的定义域 解:092≥-x解得:33≤≤-x2、求函数x x y 53++=的定义域 解:3+X>=0, 解得: X>=-3 X.>=05X>=0 X>=03函数)2)(3(-+=x x y 的定义域解:(X+3)(X-2)>=0 解得:X ≤-3,X ≥24函数213--=x x y 的定义域 解: 3X-1>=0 解得: X ≥31 2.,231><≤x x X-2≠0 X ≠25、求函数211x xy --=的定义域 解: X ≠0 解得: X ≠0 012≥-x 11≤≤-x6、求函数212--=x x y 的定义域解:022>--x x 解得;x<-1,x>27、求极限237135lim 424+-+-∞→x x x x x =5/7 12、求极限3711129lim 2436+-+-∞→x x x x x = ∞ 13、求极限3711127lim 2523+-+-∞→x x x x x =0 14、求极限xx x 1sinlim 0→=1 15、求极限x x x 1sin lim ∞→=∞16、求极限x x x )51(lim -∞→=e 5- 17、求极限x x x 10)31(lim -→=e 3-18、求极限x x x3)21(lim -∞→=e 6- 19、求极限xx x )1ln(lim 0+→ =1 20、求极限ax a x a x --→sin sin lim =cos a 21、、求极限)1311(lim 31x x x ---→=1- 22、5)(0='x f ,则h x f h x f h )()2(lim000-+→=10 23、3)2(='f ,则h f h f h )2()52(lim0--→=-15 24、函数x e y 5=,求y y ''',,)0(),0(y y '''y’=e x 55 y ’’ =e x 525y ’(0)=5 y ’’(0)=25 25、函数)13(cos 2+=x y ,求dy y ,',y’=-6COS(3X+1)SIN(3X+1) dy= -6cos(3x+1)sin(3x+1)dx26、函数)1(sin 22+=x y ,求dy y ,'y’ =4XSIN(x 2+1)COS(x 2+1) dy=4xsin(x 2+1)cos(x^2+1)dx 27、函数)35(tan 22+=x y ,求dy y ,'y’=20xtan(x 25+3)sec^2(x 25+3) dy=20xtan(5x^2+3)sec^2(5x^2+3)dx 28、函数n x y =,求)1(+n yy’=nx^(n-1)y ’’=n(n-1)x^(n-2)y ’’’=n(n-1)(n-2)x^(n-3)y(4)=n(n-1)(n-2)(n-3)x^(n-4)...y(n)=n(n-1)(n-2)(n-3)(n-4)(n-5)…….1=n!y(n+1)=029、求由方程0333=-+xy y x 所确定的隐函数的导数dxdy x y dx dy y x 333322--+dx dy =0 3y 2dx dy -3x dx dy =3y-3x 2 x y dx dy y x 333322--==xy y x --2230、求由方程xy e xy =所确定的隐函数的导数dxdy e e e e e xyxy xy xy xy x x y y dx dy y y x x dxdy dxdy x y dx dy x y --=-=-+=+)()( 31、求由方程y xe y +=1所确定的隐函数的导数dxdy )1('x y dx dy dx dy x e ee y y y y +=+= 32、用对数求导法求0,sin >=x x y x 的导数。
)sin (cos )sin (cos sin cos sin sin xx Inx x x xInx y dx dy xxxInx y dx dyxInxIny x x +=+=+== 33、用对数求导法求)4)(3()2)(1(----=x x x x y 的导数。
)41312111()4)(3()2)(1(21)4(21)3(21)2(21)1(21)4(21)3(21)2(21)1(21)4)(3()2)(1(-----+-----=-----+-=-----+-=----=x x x x x x x x dx dy x x x x y dx dyx In x In x In x In Iny x x x x InIny 34、求由参数方程⎪⎩⎪⎨⎧==ty t x 22所确定的函数的导数dx dy tdx dy 1= 35、求由参数方程⎩⎨⎧==t y t x cos sin 所确定的函数的导数dx dy x tt dx dy tan cos sin -=-= 36、求由参数方程⎩⎨⎧==2θθey e x 所确定的函数的导数dx dy e e dx dy θθθ22=37、求由参数方程⎩⎨⎧==ty t x 2cos sin 所确定的函数的导数dx dy tt dx dy cos 2sin 2-= 在3π=t 处的值,及曲线在该点的切线和法线方程。
4523)23(232123......4163)23(632121.23.63,32-=-=+=--=--=+-==-==x y x y x y x y y x k t k 切线方程时π38、判断函数⎩⎨⎧≤<-≤≤=21210)(2x x x x x f 的连续性。
右极限故函数连续左极限=∴=∴==-++→→→→lim lim lim lim 111111_x x x x39、函数在一点连续是函数在该点可导的 充分非必要 条件,函数在一点可导是函数在该点连续的 充要 条件40、函数在一点可导是函数在该点可微的 充分非必要 条件。
41、求函数23122+--=x x x y 的间断点,并判断其类型。
是函数可去间断点是函数的间断点。
是函数没有定义,故12211,21,21,20)2)(1(21)2)(1()1)(1(lim 1=∴-=-+====∴≠≠∴≠---+=--+-=→x x x x x x x x x x x x x x x x x y x 42、求函数⎩⎨⎧>-≤-=1311x x x x y 的间断点,并判断其类型。
函数是跳跃间断点右极限左极限∴≠∴==-+→→0121lim lim x x46、函数⎩⎨⎧≥+<+=003)(2x k x x x x f 在0=x 连续,求k 的值。
.30)(3),0()()(3)3(0)()(0)()(03)(,000lim 0lim 022=∴====∴=+===+=<∴+=<-+→-→+-+k x x f k f f f f kk x f x f X x f x x x x x 处连续。
在时,即而是连续的。
时在是初等函数当47、函数⎩⎨⎧≥+<-=0202)(2x k x x x x f 在0=x 连续,求k 的值。
2)0()()(0)(2)2(0)()2(0)()(02)(00lim 0lim 02-=∴==∴=≡-=-==+=<∴-=-+→-→+-+k f f f x x f x f kk f x f x x x f x x x 处连续在右极限时当左极限是连续的。
时在是初等函数当 48、计算极限)112(lim 2x x x +-∞→=2 49、计算极限xx x arctan lim ∞→=0 50、计算极限 xx x 5sin lim 0→=5 51、计算极限 x x x 35sin lim 0→=35 52、计算极限x x x 3sin 5sin lim 0→3553、计算极限xx x 35tan lim 0→=35 54、计算极限32lim 1xx x →∞⎛⎫- ⎪⎝⎭=e 6- 55、计算极限x x x 11lim 0-+→=21 56、计算极限2)11(lim x x x+∞→=e 21 57、计算极限122lim x x x x →∞+⎛⎫ ⎪⎝⎭=1 58、计算极限3lim 1x x x x -→∞⎛⎫ ⎪+⎝⎭=e1 59、计算极限313lim +∞→⎪⎭⎫ ⎝⎛-+x x x x =e 4 60、计算极限xx x 3tan tan lim2π→ 32cos 26cos 62sin 6sin (3(lim lim)3sec )sec lim22222====→→→xx x x x x x x x πππ解:原式61、计算极限xx x ln cot ln lim 0+→=-1 62、计算极限2112lim()11x x x →---=21 63、函数2arctan x y =,求y '。
x y x4'12+=64、函数2)(arcsin x y =,求dy y ,'dxxdy xx x y 22'1arcsin 21arcsin 2-=-= 65、函数x x e y 352-= ,求dy y ,'。
dxx x dy x x e e y x x3535'22)310()310(---=-= 66、求函数7186223---=x x x y 的单调区间和极值;拉格朗日中值定理。
61)3()(3)1()(.)(31--)(3,1-3,10'''2'3103,1.018126-===-=∞+∞∴>-<><<-<=-==--=f x f f x f x f x f x x y y y x y x x x x 极小值:极大值:为增函数),函数,),(,在(为减函数,)区间内,函数在(即即解得:令解: 67、 求函数xx y 82+= 的单调区间和极值。
8)2(:,8)2(:),2(),2,)2,2()(2,2082'2'-=-=+∞-∞--∴=-==-=f f x f x x y x y 极小值极大值区间内是减函数。
区间内是增函数,在(在,解得:令 68、 求函数)1ln(2x x y ++= 的单调区间。
区间内是单调递增在恒成立恒大于零),1()(0)(0)0(0111112)(11min '222''+∞-∴>∴==∴>+=++++=->∴>++x f x f f x xx f y x x x y x x x69、求函数)1ln(x x y +-= 的单调区间和极值。