三视图中考试题整理

合集下载

2024年四川省成都市中考数学试题+答案详解

2024年四川省成都市中考数学试题+答案详解

2024年四川省成都市中考数学试题+答案详解(试题部分)A 卷(共100分) 第I 卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. ﹣5的绝对值是( ) A. 5B. ﹣5C. 15−D.152. 如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是( )A. B. C. D.3. 下列计算正确的是( ) A. ()2233x x = B. 336x y xy += C. ()222x y x y +=+D. ()()2224x x x +−=−4. 在平面直角坐标系xOy 中,点()1,4P −关于原点对称的点的坐标是( ) A. ()1,4−−B. ()1,4−C. ()1,4D. ()1,4−5. 为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是( ) A. 53B. 55C. 58D. 646. 如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB AD =B. AC BD ⊥C. AC BD =D. ACB ACD ∠=∠7. 中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为( )A. 142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩B. 142133y x y x ⎧=−⎪⎪⎨⎪=+⎪⎩C. 142133y x y x ⎧=−⎪⎪⎨⎪=−⎪⎩D. 142133y x y x ⎧=+⎪⎪⎨⎪=−⎪⎩8. 如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是( )A. ABE CBE ∠=∠B. 5BC =C. DE DF =D.53BE EF = 第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 若m ,n 为实数,且()240m ++=,则()2m n +的值为______. 10. 分式方程132x x=−的解是____. 11. 如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则AB 的长为______.12. 盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则xy的值为______. 13. 如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l上一动点,连接PO,PA,则PO PA+的最小值为______.三、解答题(本大题共5个小题,共48分)14. (1()02sin60π20242 +︒−−+.(2)解不等式组:2311123xx x+≥−⎧⎪⎨−−<⎪⎩①②15. 2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.16. 中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)17. 如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan BFC ∠=,AF =CF 的长和O 的直径.18. 如图,在平面直角坐标系xOy 中,直线y x m =−+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0ky k x=<图象上.(1)求a ,b ,m 的值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为______.20. 若m ,n 是一元二次方程2520x x −+=的两个实数根,则()22m n +−的值为______. 21. 在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为______;若24n =,则k 的值为______.22. 如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD 中点,连接BE .若BE BC =,2CD =,则BD =______.23. 在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =−+−图象上三点.若101x <<,24x >,则1y ______2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是______. 二、解答题(本大题共3个小题,共30分)24. 推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg . (1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.25. 如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =−−>与x 轴交于A ,B 两点(点A在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB ''.将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.26. 数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC 和ADE 中,3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.【初步感知】(1)如图1,连接BD ,CE ,在纸片ADE 绕点A 旋转过程中,试探究BDCE的值. 【深入探究】(2)如图2,在纸片ADE 绕点A 旋转过程中,当点D 恰好落在ABC 的中线BM 的延长线上时,延长ED 交AC 于点F ,求CF 的长.【拓展延伸】(3)在纸片ADE 绕点A 旋转过程中,试探究C ,D ,E 三点能否构成直角三角形.若能,直接写出所有直角三角形CDE 的面积;若不能,请说明理由.2024年四川省成都市中考数学试题+答案详解(答案详解)A 卷(共100分) 第I 卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. ﹣5的绝对值是( ) A. 5 B. ﹣5C. 15−D.15【答案】A 【解析】【分析】根据负数的绝对值等于它的相反数可得答案. 【详解】解:|﹣5|=5. 故选A .2. 如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是( )A. B. C. D.【答案】A 【解析】【分析】本题考查简单几何体的三视图,根据主视图是从正面看到的图形求解即可. 【详解】解:该几何体的主视图为,故选:A .3. 下列计算正确的是( ) A. ()2233x x = B. 336x y xy += C. ()222x y x y +=+ D. ()()2224x x x +−=−【答案】D【解析】【分析】本题主要考查了积的乘方运算,同类项的合并,完全平方公式以及平方差公式,根据积的乘方运算法则,同类项的合并法则以及完全平方公式以及平方差公式一一计算判断即可.【详解】解:A .()2239x x =,原计算错误,故该选项不符合题意;B .3x 和3y 不是同类项,不能合并,故该选项不符合题意;C .()2222x y x y xy +=++,原计算错误,故该选项不符合题意; D .()()2224x x x +−=−,原计算正确,故该选项符合题意;故选:D .4. 在平面直角坐标系xOy 中,点()1,4P −关于原点对称的点的坐标是( ) A. ()1,4−− B. ()1,4−C. ()1,4D. ()1,4−【答案】B 【解析】【分析】本题考查了求关于原点对称的点的坐标.关于原点对称的两点,则其横、纵坐标互为相反数,由点关于原点对称的坐标特征即可求得对称点的坐标.【详解】解:点()1,4P −关于原点对称的点的坐标为()1,4−; 故选:B .5. 为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是( ) A. 53 B. 55C. 58D. 64【答案】B 【解析】【分析】本题主要考查了中位数的定义,根据中位数的定义求解即可. 【详解】解:参赛的六个村得分分别为:55,64,51,50,61,55, 把这6个数从小到大排序:50,51,55,55,61,64, ∴这组数据的中位数是:5555552+=, 故选:B .6. 如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB AD =B. AC BD ⊥C. AC BD =D. ACB ACD ∠=∠【答案】C 【解析】【分析】本题考查矩形的性质,根据矩形的性质逐项判断即可. 【详解】解:∵四边形ABCD 是矩形,∴AB CD =,AC BD =,AD BC ∥,则ACB DAC ∠=∠, ∴选项A 中AB AD =不一定正确,故不符合题意; 选项B 中AC BD ⊥不一定正确,故不符合题意; 选项C 中AC BD =一定正确,故符合题意;选项D 中ACB ACD ∠=∠不一定正确,故不符合题意, 故选:C .7. 中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为( )A. 142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩B. 142133y x y x ⎧=−⎪⎪⎨⎪=+⎪⎩C. 142133y x y x ⎧=−⎪⎪⎨⎪=−⎪⎩D. 142133y x y x ⎧=+⎪⎪⎨⎪=−⎪⎩【答案】B 【解析】【分析】本题主要考查了列二元一次方程组,根据题意列出二元一次方程组即可. 【详解】解:设人数为x ,琎价为y , 根据每人出12钱,会多出4钱可得出1y x 42=−, 每人出13钱,又差了3钱.可得出133y x =+,则方程组为:142133y x y x ⎧=−⎪⎪⎨⎪=+⎪⎩,故选:B .8. 如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是( )A. ABE CBE ∠=∠B. 5BC =C. DE DF =D.53BE EF = 【答案】D 【解析】【分析】本题考查角平分线的尺规作图、平行四边形的性质、等腰三角形的判定以及相似性质与判定的综合.先由作图得到BF为ABC ∠的角平分,利用平行线证明AEB ABE ∠=∠,从而得到3AE AB CD ===,再利用平行四边形的性质得到325BC AD AE ED ==+=+=,再证明AEB DEF △∽△,分别求出32BE EF =,2DF =,则各选项可以判定. 【详解】解:由作图可知,BF 为ABC ∠的角平分, ∴ABE CBE ∠=∠,故A 正确; ∵四边形ABCD 为平行四边形, ∴,,AD BC AB CD AD BC ==, ∵AD BC ∥ ∴AEB CBE ∠=∠, ∴AEB ABE ∠=∠, ∴3AE AB CD ===,∴325BC AD AE ED ==+=+=,故B 正确;∵AB CD =,∴ABE F ∠=∠,∵AEB DEF ∠=∠,∴AEB DEF △∽△, ∴BE AB AE EF DF ED==, ∴332BE EF DF ==, ∴32BE EF =,2DF =,故D 错误; ∵2DE =,∴DE DF =,故C 正确,故选:D .第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 若m ,n 为实数,且()240m ++=,则()2m n +的值为______.【答案】1【解析】【分析】本题考查非负数的性质,根据平方式和算术平方数的非负数求得m 、n 值,进而代值求解即可.【详解】解:∵()240m ++=,∴40m +=,50n −=,解得4m =−,5n =,∴()()22451m n +=−+=,故答案为:1.10. 分式方程132x x=−的解是____. 【答案】x=3【解析】【详解】试题分析:分式方程去分母转化为整式方程x=3(x ﹣2),求出整式方程的解得到x=3,经检验x=3是分式方程的解,即可得到分式方程的解.考点:解分式方程11. 如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则AB 的长为______.【答案】4π【解析】【分析】此题考查了弧长公式,把已知数据代入弧长公式计算即可.【详解】解:由题意得AB 的长为π120π64π180180n r ⨯==, 故答案为:4π12. 盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则x y的值为______. 【答案】35【解析】【分析】本题考查简单的概率计算、比例性质,根据随机取出一枚棋子,它是黑棋的概率是38,可得38x x y =+,进而利用比例性质求解即可. 【详解】解:∵随机取出一枚棋子,它是黑棋的概率是38, ∴38x x y =+,则35x y =, 故答案为:35. 13. 如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为______.【答案】5【解析】【分析】本题考查轴对称—最短问题以及勾股定理和轴对称图形的性质.先取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,得到AC A C '=,A A l '⊥,再由轴对称图形的性质和两点之间线段最短,得到当,,O P A '三点共线时,PO PA +的最小值为A O ',再利用勾股定理求A O '即可.【详解】解:取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,则可知AC A C '=,A A l '⊥,∴PO PA PO PA A O ''+=+≥,即当,,O P A '三点共线时,PO PA +的最小值为A O ',∵直线l 垂直于y 轴,∴A A x '⊥轴,∵()3,0A ,()0,2B ,∴3,4AO AA '==,∴在Rt A AO '中,5A O '===,故答案为:5三、解答题(本大题共5个小题,共48分)14. (1()02sin60π20242+︒−−+.(2)解不等式组:2311123x x x +≥−⎧⎪⎨−−<⎪⎩①②【答案】(1)5;(2)29x −≤<【解析】【分析】本题考查实数的混合运算、解一元一次不等式组,熟练掌握相关运算法则并正确求解是解答的关键.(1)先计算算术平方根、特殊角的三角函数值、零指数幂、化简绝对值,然后加减运算即可; (2)先求得每个不等式的解集,再求得它们的公共部分即为不等式组的解集.【详解】解:(1()02sin6020242π︒−−−42122=+⨯−+−5=+5=;(2)解不等式①,得2x ≥−,解不等式②,得9x <,∴该不等式组的解集为29x −≤<.15. 2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x 的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.【答案】(1)160,40(2)99︒(3)385【解析】【分析】本题考查统计表和扇形统计图的关联、用样本估计总体,理解题意,能从统计图中获取有用信息 是解答的关键.(1)根据选择“亲子互动慢游线”的人数及其所占的百分比可求得调查总人数,再根据选择“世界公园打卡线”对应的圆心角是90︒可求解x 值;(2)由360︒乘以选择“国风古韵观赏线”所占的百分比可得答案;(3)先求得选择“园艺小清新线”的人数,再由单位总人数乘以样本中选择“园艺小清新线”所占的比例求解即可.【小问1详解】解:调查总人数为4830160÷%=(人), 选择“世界公园打卡线”的人数为9016040360⨯=(人), 故答案为:160,40;【小问2详解】 解:“国风古韵观赏线”对应的圆心角度数为4436099160︒⨯=︒; 【小问3详解】解:选择“园艺小清新线”的人数为16044404828−−−=(人), ∴该单位选择“园艺小清新线”的员工人数为282200385160⨯=(人). 16. 中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)【答案】9.2尺【解析】【分析】本题主要考查解直角三角形和求平均数,利用正切分别求得BC 和BD ,结合题意利用平均数即可求得春分和秋分时日影长度.【详解】解:∵73.4ACB ∠=︒,杆子AB 垂直于地面,AB 长8尺. ∴tan ∠=AB ACB BC ,即8 2.393.35BC ≈≈, ∵26.6ADB ∠=︒, ∴tan AB ADB BD∠=,即8160.50BD ≈=, ∵春分和秋分时日影长度等于夏至和冬至日影长度的平均数.∴春分和秋分时日影长度为2.39169.22+≈. 答:春分和秋分时日影长度9.2尺.17. 如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan BFC ∠=,AF =CF 的长和O 的直径.【答案】(1)见详解;(2.【解析】【分析】(1)先证明EBC DBF ∽,然后利用对应边成比例,即可证明;(2)利用EBC DBF ∽,知道EBC DBF ∠=∠,从而推出CBF EBA ∠=∠,结合A CBF ∠=∠,知道A EBA ∠=∠,推出AE BE =,接下来证明BFC ABC ∠=∠,那么有tan tan BFC ∠=∠即CB AC CF BC==CF x =,代入求得CF 的长度,不妨设EF y =,在Rt CEB △和Rt CFB △中利用勾股定理求得EF 和BF 的长度,最后利用tan tan CEB FDB ∠=∠,求得DF 的长度,然后在利用勾股定理求得BD 的长度.【小问1详解】BD Q 是O 的直径90BFD C ∴∠=︒=∠又CEB FDB ∠∠=EBC DBF ∴∽ EC CB DF FB ∴= BC DF BF CE ⋅=⋅∴【小问2详解】由(1)可知,EBC DBF ∽EBC DBF ∴∠=∠EBC FBE DBF FBE ∴∠−∠=∠−∠CBF EBA ∴∠=∠A CBF ∠=∠A EBA ∴∠=∠AE BE ∴=A CBF ∠=∠9090A CBF ∴︒−∠=︒−∠ABC CFB ∴∠=∠tan BFC ∠=tan tan BFC ∠∴=∠CB AC CF BC∴==不妨设CF x =,那么CB = 4AF ==x ∴=CF ∴=5CB ==不妨设EF y =,那么AE AF EF y BE =−==在Rt CEB △中,CE EF CF y =+=,5CB =,BE y =222(5)y y ∴++=−y ∴=EF ∴=在Rt CFB △中,CF =,5BC =BF ∴===CEB FDB ∠∠=tan tan CEB FDB ∴∠=∠CB BF CE DF∴=DF =DF ∴=BD ∴===∴O 的直径是故答案为:CF =O 直径是 【点睛】本题考查了同弧所对的圆周角相等,直径所对的圆周角是直角,三角形相似的判定与性质,勾股定理,解直角三角形,等腰三角形的性质,二次根式的化简,熟练掌握以上知识点是解题的关键. 18. 如图,在平面直角坐标系xOy 中,直线y x m =−+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0k y k x=<图象上.(1)求a ,b ,m 的值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.【答案】(1)4a =,6m =,6b =(2)点C 的坐标为()4,4−或()4,4−,16k =−(3)1−【解析】【分析】(1)利用待定系数法求解即可;(2)设(),C t s ,根据平行四边形的性质,分当OA 为对角线时,当OB 为对角线时,当OC 为对角线时三种情况,分别利用中点坐标公式列方程组求解即可;(3)设点(),0D x ,则(),0E x −,0x <,利用相似三角形的性质得2AB BE BD =⋅,进而解方程得2x =−,则()2,0D −,利用待定系数法求得直线AC 的表达式为2y x =+,联立方程组得220x x k +−=,根据题意,方程220x x k +−=有且只有一个实数根,利用根的判别式求解即可.【小问1详解】解:由题意,将()2,A a 代入2y x =中,得224a =⨯=,则()2,4A ,将()2,4A 代入y x m =−+中,得42m =−+,则6m =,∴6y x =−+,将(),0B b 代入6y x =−+中,得06b =−+,则6b =;【小问2详解】解:设(),C t s ,由(1)知()2,4A ,()6,0B若O ,A ,B ,C 为顶点的四边形为平行四边形,分以下情况:当OA 为对角线时,则026040t s +=+⎧⎨+=+⎩,解得44t s =−⎧⎨=⎩, ∴()4,4C −,则4416k =−⨯=−;当OB 为对角线时,则062004t s +=+⎧⎨+=+⎩,解得44t s =⎧⎨=−⎩, ∴()4,4C −,则4416k =−⨯=−;当OC 为对角线时,依题意,这种情况不存在,综上所述,满足条件的点C 的坐标为()4,4−或()4,4−,16k =−;【小问3详解】解:如图,设点(),0D x ,则(),0E x −,0x <,若ABD EBA △∽△,则AB BD BE AB =,即2AB BE BD =⋅, ∴()()()()22264066x x −+−=+−,即24x =,解得2x =±,∵0x <,∴2x =−,则()2,0D −,设直线AC 的表达式为y px q =+,则2420p q p q +=⎧⎨−+=⎩,解得12p q =⎧⎨=⎩, ∴直线AC 的表达式为2y x =+, 联立方程组2y x k y x =+⎧⎪⎨=⎪⎩,得220x x k +−=, ∵有且只有一点C ,∴方程220x x k +−=有且只有一个实数根,∴2402k +==∆,解得1k =−;由题意,ABD ABE ∽V V 不存在,故满足条件的k 值为1−.【点睛】本题考查一次函数与反比例函数的综合、反比例函数与几何的综合,涉及待定系数法、相似三角形的性质、平行四边形的性质、坐标与图形、一元二次方程根的判别式等知识,熟练掌握相关知识的联系与运用,利用分类讨论思想求解是解答的关键.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为______.【答案】100︒##100度【解析】【分析】本题考查了三角形的内角和定理和全等三角形的性质,先利用全等三角形的性质,求出45CED ACB ∠=∠=︒,再利用三角形内角和求出DCE ∠的度数即可.【详解】解:由ABC CDE △≌△,35D ∠=︒,∴45CED ACB ∠=∠=︒,∵35D ∠=︒,∴1801803545100DCE D CED ∠=︒−∠−∠=︒−︒−︒=︒,故答案为:100︒20. 若m ,n 是一元二次方程2520x x −+=的两个实数根,则()22m n +−的值为______.【答案】7【解析】【分析】本题考查了根与系数的关系和完全平方公式和已知式子的值,求代数式的值.先利用已知条件求出2520n n −+=,5b m n a+=−=,从而得到252n n =−,再将原式利用完全平方公式展开,利用252n n =−替换2n 项,整理后得到m n 2++,再将5m n +=代入即可.【详解】解:∵m ,n 是一元二次方程2520x x −+=的两个实数根,∴2520n n −+=,5b m n a+=−=, 则252n n =−∴()22m n +− 244m n n =+−+5244m n n =+−−+2m n =++52=+7=故答案为:721. 在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为______;若24n =,则k 的值为______.【答案】 ①. 9 ②. 144【解析】【分析】本题考查数字类规律探究,理解题意,能够从特殊到一般,得到当n 为偶数或奇数时的不同取法是解答的关键.先根据前几个n 值所对应k 值,找到变化规律求解即可.【详解】解:当2n =时,只有{}1,2一种取法,则1k =;当3n =时,有{}1,3和{}2,3两种取法,则2k =;当4n =时,有{}1,4,{}2,4,{}3,4,{}2,3四种取法,则243144k =+==; 故当5n =时,有{}1,5,{}2,5,{}3,5,{}4,5,{}2,4,{}3,4六种取法,则426k =+=;当6n =时,有{}1,6,{}2,6,{}3,6,{}4,6,{}5,6,{}2,5,{}3,5,{}4,5,{}3,4九种取法,则2653194k =++==; 依次类推,当n 为偶数时,()()2135314n k n n =−+−++++=, 故当24n =时,2242321195311444k =++++++==, 故答案为:9,144. 22. 如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD 中点,连接BE .若BE BC =,2CD =,则BD =______.【解析】 【分析】连接CE ,过E 作EF CD ⊥于F ,设BD x =,EF m =,根据直角三角形斜边上的中线性质和等腰三角形的性质证得112CF DF CD ===,EAC ECA =∠∠,ECD EDC BEC ∠=∠=∠,进而利用三角形的外角性质和三角形的中位线性质得到2CED CAE ∠=∠,22AC EF m ==,证明CBE CED ∽,利用相似三角形的性质和勾股定理得到232m x =+;根据角平分线的定义和相似三角形的判定与性质证明CAB FBE ∽得到()()2212m x x =++,进而得到关于x 的一元二次方程,进而求解即可.【详解】解:连接CE ,过E 作EFCD ⊥于F ,设BD x =,EF m =,∵90ACB ∠=︒,E 为AD 中点,∴CE AE DE ==,又2CD =, ∴112CF DF CD ===,EAC ECA =∠∠,ECD EDC ∠=∠, ∴2CED CAE ∠=∠,22AC EF m ==,∵BE BC =,∴BEC ECB ∠=∠,则BEC EDC ∠=∠,又BCE ECD ∠=∠,∴CBE CED ∽, ∴CE CB CD CE=,2CBE CED CAE ∠=∠=∠, ∴()22242CE CD CB x x =⋅=+=+,则222232m EF CE CF x ==−=+;∵AD 是ABC 的一条角平分线,∴2CAB CAE CBE ∠=∠=∠,又90ACB BFE ∠=∠=︒,∴CAB FBE ∽, ∴AC BC BF EF= ∴221m x x m +=+,则()()2212m x x =++, ∴()()()23212x x x +=++,即240x x --=,解得x =,【点睛】本题考查了相似三角形的判定与性质、直角三角形的性质、等腰三角形的性质、三角形的中位线性质、三角形的外角性质、角平分线的定义以及解一元二次方程等知识,是一道填空压轴题,有一定的难度,熟练掌握三角形相关知识是解答的关键.23. 在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =−+−图象上三点.若101x <<,24x >,则1y ______2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是______.【答案】 ①. > ②. 112m −<< 【解析】【分析】本题考查二次函数的性质、不等式的性质以及解不等式组,熟练掌握二次函数的性质是解答的关键.先求得二次函数的对称轴,再根据二次函数的性质求解即可.【详解】解:由()224123y x x x =−+−=−−+得抛物线的对称轴为直线2x =,开口向下, ∵101x <<,24x >,∴1222x x −<−,∴12y y >;∵12m m m <+<+,11m x m <<+,212m x m +<<+,323m x m +<<+,∴123x x x <<,∵存在132y y y <<,∴12x <,32x >,且()11,A x y 离对称轴最远,()22,B x y 离对称轴最近, ∴132222x x x −>−>−,即134x x +<,且234x x +>,∵132224m x x m +<+<+,232325m x x m +<+<+,∴224m +<且254m +>, 解得112m −<<, 故答案为:>;112m −<<. 二、解答题(本大题共3个小题,共30分)24. 推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg .(1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.【答案】(1)A 种水果购进1000千克,B 种水果购进500千克(2)A 种水果的最低销售单价为12.5元/kg【解析】【分析】本题主要考查一元二次方程的应用和一元一次不等式的应用,(1)设A 种水果购进x 千克, B 种水果购进y 千克,根据题意列出二元一次方程组求解即可. (2)根据题意列出关于利润和进价与售价的不等式求解即可.【小问1详解】解:设A 种水果购进x 千克, B 种水果购进y 千克,根据题意有:1500101517500x y x y +=⎧⎨+=⎩, 解得:1000500x y =⎧⎨=⎩, ∴A 种水果购进1000千克,B 种水果购进500千克【小问2详解】设A 种水果的销售单价为a 元/kg ,根据题意有:()()100014%120%100010a −≥+⨯⨯,解得12.5a ≥,故A 种水果的最低销售单价为12.5元/kg25. 如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =−−>与x 轴交于A ,B 两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB ''.将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.【答案】(1)4AB =(2)10tan 3ABD ∠= (3)抛物线L '与L 交于定点()3,0【解析】【分析】(1)根据题意可得2230ax ax a −−=,整理得2230x x −−=,即可知()()1,0,3,0,A B −则有4AB =;(2)由题意得抛物线L :()222314y x x x =−−=−−,则()1,4,C −设()2,23,D n n n −−()03n <<,可求得2246ABD S n n =−++△,结合题意可得直线AD 解析式为()()31y n x =−+,设直线AD 与抛物线对称轴交于点E ,则()1,26E n −,即可求得21ACD S n =−,进一步解得点720,39D ⎛⎫− ⎪⎝⎭,过D 作DH AB ⊥于点H ,则220,39BH DH ==,即可求得tan DH ABD BH ∠=; (3)设()2,23,D n an an a −−可求得直线AD 解析式为()()31y a n x =−+,过点D 作DM AB ⊥,可得21,23AM n DM an an a =+=−++,结合题意得1,EM n =+()2,23,A n an an a −++'()24,23,B n an an a '+−++设抛物线L '解析式为()20y ax bx c a =++>,由于过点A ',B '可求得抛物线L '解析式为()22463y ax an a x an a =+−−++,根据()22232463ax ax a ax an a x an a −−=+−−++解得3x =,即可判断抛物线L '与L 交于定点()3,0.【小问1详解】解:∵抛物线L :()2230y ax ax a a =−−>与x 轴交于A ,B 两点, ∴2230ax ax a −−=,整理得2230x x −−=,解得121,3,x x =−=∴()()1,0,3,0,A B −则()314AB =−−=;【小问2详解】当1a =时,抛物线L :()222314y x x x =−−=−−, 则()1,4,C −设()2,23,D n n n −−()03n <<,则()221142324622ABD D S AB y n n n n =⋅=−⨯⨯−−=−++, 设直线AD 解析式为()1y k x =+,∵点D 在直线AD 上,∴()2231n n k n −−=+,解得3k n =−, 则直线AD 解析式为()()31y n x =−+,设直线AD 与抛物线对称轴交于点E ,则()1,26E n −,。

中考数学试题双向细目表(最新整理)

中考数学试题双向细目表(最新整理)

不等式及基本性质

解一元一次不等式

解由两个一元一次不等式组成的不等式组

一元一次不等式(组)的实际运用

常量、变量的意义

函数的概念及三种表示方法

函数的自变量取值范围、函数值

一次函数及表达式、一次函数的图象及性质 正比例函数
★ ★
图象法求二元一次方程组的近似解

与一次函数相关的实际问题

反比例函数解决某些实际问题
b2,(a+b)2=a2+2ab+b2;
因式分解(指数是正整数时),直接用公式不超过二次。
列方程解应用题

一元一次方程解法

简单的二元一次方程组及解法

可化为一元一次方程的分式方程的解法

一元二次方程及其解法

注:解可化为一元一次方程的分式方程,方程中的分式不超过两个;解简单的数字系数的一元二次方程。
圆的有关概念

弧、弦、圆心角的关系

点与圆、直线与圆、圆与圆的位置关系

圆周角与圆心角的关系

直径所对圆周角的特征

三角形的内心和外心

切线的概念、切线的性质和判定

弧长及扇形面积、圆锥的侧面积和全面积

空间与图 形
尺规作图 视图与投影 图形的轴对称 图形的平移 图形的旋转
作一条线段等于已知线段,作一个角等于已知角,

证明的必要性

定义、命题、定理

图形与证明 会识别互逆命题

理解反例

证明的格式及依据

2024年安徽省数学中考试题正式版含答案解析

2024年安徽省数学中考试题正式版含答案解析

绝密★启用前2024年安徽省数学中考试题学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.−5的绝对值是( )A. 5B. −5C. 15D. −152.据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为( )A. 0.944×107B. 9.44×106C. 9.44×107D. 94.4×1063.某几何体的三视图如图所示,则该几何体为( )A. B. C. D.4.下列计算正确的是( )A. a3+a5=a6B. a6÷a3=a2C. (−a)2=a2D. √ a2=a5.若扇形AOB的半径为6,∠AOB=120∘,则AB⏜的长为( )A. 2πB. 3πC. 4πD. 6π6.已知反比例函数y=kx(k≠0)与一次函数y=2−x的图象的一个交点的横坐标为3,则k的值为( )A. −3B. −1C. 1D. 37.如图,在Rt△ABC中,AC=BC=2,点D在AB的延长线上,且CD=AB,则BD的长是( )A. √ 10−√ 2B. √ 6−√ 2C. 2√ 2−2D. 2√ 2−√ 68.已知实数a,b满足a−b+1=0,0<a+b+1<1,则下列判断正确的是( )A. −12<a<0 B. 12<b<1C. −2<2a+4b<1D. −1<4a+2b<09.在凸五边形ABCDE中,AB=AE,BC=DE,F是CD的中点.下列条件中,不能..推出AF与CD一定垂直的是( )A. ∠ABC=∠AEDB. ∠BAF=∠EAFC. ∠BCF=∠EDFD. ∠ABD=∠AEC10.如图,在Rt▵ABC中,∠ABC=90∘,AB=4,BC=2,BD是边AC上的高.点E,F分别在边AB,BC上(不与端点重合),且DE⊥DF.设AE=x,四边形DEBF的面积为y,则y关于x的函数图象为( )A. B. C. D.第II卷(非选择题)二、填空题:本题共4小题,每小题5分,共20分。

三视图

三视图

c(高) a(长)
c(高)
长对正
俯 视 图
a(长) b(宽)
高 平 齐
b(宽)
宽相等
c(高) a(长)
b(宽)
几种基本几何体三视图 1.圆柱、圆锥、球的三视图
几何体 正视图 侧视图 俯视图
·
深度总结
注意:
(1)画几何体的三视图时,
能看见的轮廓和棱用实线Байду номын сангаас示,
不能看见的轮廓和棱用虚线表示。
(2)长对正, 高平齐, 宽相等。
乘机巩固
如图,这是一个底面为等边三角形的正 三棱柱,画出它的三视图.
注意:
(1)画几何体的三视图时,能看见的轮廓和棱用实线 表示, 不能看见的轮廓和棱用虚线 表示。
(2)长对正, 高平齐, 宽相等。
中考 试题 例1 下图是某几何体的三种视图,则该几何体是 (C ) A. 正方体 B. 圆锥体 C. 圆柱体 D. 球体
知识梳理
主视图
正 投 影 法 三 视 图
俯视图
左 视 图
----
三视图能反映物体真实的形状和长、宽、高.
三视图之间的投影规律
正 视 图 侧 视 图 正 视 图 反 映 了 物 体 的 高 度 和 长 度 侧 视 图 反 映 了 物 体 的 高 度 和 宽 度 俯 视 图 反 映 了 物 体 的 长 度 和 宽 度
三视图
横看成岭侧成峰,远近高低各不同。 不识庐山真面目,只缘身在此山中。 ----苏轼
课程引入
哥 哥 在 安 慰 生 气 的 妹 妹 。
课程引入
从这个例子 我们可以得到什么道理?
知识梳理
三视图 三视图是从三个不同角度看一个物体所看到的平面图形.

2024年黑龙江绥化市中考数学试题+答案详解

2024年黑龙江绥化市中考数学试题+答案详解

2024年黑龙江绥化市中考数学试题+答案详解(试题部分)考生注意:1.考试时间120分钟2.本试题共三道大题,28个小题,总分120分3.所有答案都必须写在答题卡上所对应的题号后的指定区域内 一、单项选择题(本题共12个小题,每小题3分,共36分) 请在答题卡上用2B 铅笔将你的选项所对应的方框涂黑1. 实数12025−的相反数是( )A. 2025B. 2025−C. 12025−D.120252. 下列所述图形中,是轴对称图形但不是中心对称图形的是( ) A. 圆B. 菱形C. 平行四边形D. 等腰三角形3. 某几何体是由完全相同的小正方体组合而成,下图是这个几何体的三视图,那么构成这个几何体的小正方体的个数是( )A. 5个B. 6个C. 7个D. 8个4.有意义,则m 的取值范围是( ) A. 23m ≤B. 32m ≥−C. 32m ≥D. 23m ≤−5. 下列计算中,结果正确的是( ) A. ()2139−−=B. ()222a b a b +=+C.3=±D. ()3263x yx y −=6. 小影与小冬一起写作业,在解一道一元二次方程时,小影在化简过程中写错了常数项,因而得到方程的两个根是6和1;小冬在化简过程中写错了一次项的系数,因而得到方程的两个根是2−和5−.则原来的方程是( ) A. 2650x x ++= B. 27100x x −+= C. 2520x x −+=D. 26100x x −−=7. 某品牌女运动鞋专卖店,老板统计了一周内不同鞋码运动鞋的销售量如表:如果每双鞋的利润相同,你认为老板最关注的销售数据是下列统计量中的( ) A. 平均数B. 中位数C. 众数D. 方差8. 一艘货轮在静水中的航速为40km /h ,它以该航速沿江顺流航行120km 所用时间,与以该航速沿江逆流航行80km 所用时间相等,则江水的流速为( ) A. 5km /hB. 6km /hC. 7km /hD. 8km /h9. 如图,矩形OABC 各顶点的坐标分别为()0,0O ,()3,0A ,()3,2B ,()0,2C ,以原点O 为位似中心,将这个矩形按相似比13缩小,则顶点B 在第一象限对应点的坐标是( )A. ()9,4B. ()4,9C. 31,2⎛⎫⎪⎝⎭D. 21,3⎛⎫⎪⎝⎭10. 下列叙述正确的是( )A. 顺次连接平行四边形各边中点一定能得到一个矩形B. 平分弦的直径垂直于弦C. 物体在灯泡发出的光照射下形成的影子是中心投影D. 相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等11. 如图,四边形ABCD 是菱形,5CD =,8BD =,AE BC ⊥于点E ,则AE 的长是( )A.245B. 6C.485D. 1212. 二次函数()20y ax bx c a =++≠的部分图象如图所示,对称轴为直线=1x −,则下列结论中: ①0bc> ②2am bm a b +≤−(m 为任意实数) ③31a c +< ④若()1,M x y 、()2,N x y 是抛物线上不同的两个点,则123x x +≤−.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个二、填空题(本题共10个小题,每小题3分,共30分) 请在答题卡上把你的答案写在所对应的题号后的指定区域内13. 中国的领水面积约为370 000 km 2,将数370 000用科学记数法表示为:__________. 14. 分解因式:2228mx my −=______.15. 如图,AB CD ∥,33C ∠=︒,OC OE =.则A ∠=______︒.16. 如图,用热气球的探测器测一栋楼的高度,从热气球上的点A 测得该楼顶部点C 的仰角为60︒,测得底部点B 的俯角为45︒,点A 与楼BC 的水平距离50m AD =,则这栋楼的高度为______m (结果保留根号).17. 计算:22x y xy y x x x ⎛⎫−−÷−= ⎪⎝⎭_________. 18. 用一个圆心角为126︒,半径为10cm 的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为______cm .19. 如图,已知点()7,0A −,(),10B x ,()17,C y −,在平行四边形ABCO 中,它的对角线OB 与反比例函数()0ky k x=≠的图象相交于点D ,且:1:4OD OB =,则k =______.20. 如图,已知50AOB ∠=︒,点P 为AOB ∠内部一点,点M 为射线OA 、点N 为射线OB 上的两个动点,当PMN 的周长最小时,则MPN ∠=______.21. 如图,已知(11,A ,(23,A ,()34,0A ,()46,0A ,(5A ,(6A ,()710,0A ,(811,A …,依此规律,则点2024A 的坐标为______.22. 在矩形ABCD 中,4cm AB =,8cm BC =,点E 在直线AD 上,且2cm DE =,则点E 到矩形对角线所在直线的距离是______cm .三、解答题(本题共6个小题,共54分)请在答题卡上把你的答案写在所对应的题号后的指定区域内23. 已知:ABC .(1)尺规作图:画出ABC的重心G.(保留作图痕迹,不要求写作法和证明)5cm,则ABC的面积是______(2)在(1)的条件下,连接AG,BG.已知ABG的面积等于22cm.24. 为了落实国家“双减”政策,某中学在课后服务时间里,开展了音乐、体操、诵读、书法四项社团活动.为了了解七年级学生对社团活动的喜爱情况,该校从七年级全体学生中随机抽取了部分学生进行“你最喜欢哪一项社团活动”的问卷调查,每人必须选择一项社团活动(且只能选择一项).根据调查结果,绘制成如下两幅统计图.请根据统计图中的信息,解答下列问题:(1)参加本次问卷调查的学生共有______人.(2)在扇形统计图中,A组所占的百分比是______,并补全条形统计图.(3)端午节前夕,学校计划进行课后服务成果展示,准备从这4个社团中随机抽取2个社团汇报展示.请用树状图法或列表法,求选中的2个社团恰好是B和C的概率.25. 为了响应国家提倡的“节能环保”号召,某共享电动车公司准备投入资金购买A、B两种电动车.若购买A种电动车25辆、B种电动车80辆,需投入资金30.5万元;若购买A种电动车60辆、B种电动车120辆,需投入资金48万元.已知这两种电动车的单价不变.(1)求A、B两种电动车的单价分别是多少元?(2)为适应共享电动车出行市场需求,该公司计划购买A、B两种电动车200辆,其中A种电动车的数量不多于B种电动车数量的一半.当购买A种电动车多少辆时,所需的总费用最少,最少费用是多少元?x (3)该公司将购买的A、B两种电动车投放到出行市场后,发现消费者支付费用y元与骑行时间min 之间的对应关系如图.其中A种电动车支付费用对应的函数为1y;B种电动车支付费用是10min之内,起步价6元,对应的函数为2y.请根据函数图象信息解决下列问题.①小刘每天早上需要骑行A 种电动车或B 种电动车去公司上班.已知两种电动车的平均行驶速度均为300m /min (每次骑行均按平均速度行驶,其它因素忽略不计),小刘家到公司的距离为8km ,那么小刘选择______种电动车更省钱(填写A 或B ).②直接写出两种电动车支付费用相差4元时,x 的值______.26. 如图1,O 是正方形ABCD 对角线上一点,以O 为圆心,OC 长为半径的O 与AD 相切于点E ,与AC 相交于点F .(1)求证:AB 与O 相切.(2)若正方形ABCD 1+,求O 的半径.(3)如图2,在(2)的条件下,若点M 是半径OC 上的一个动点,过点M 作MN OC ⊥交CE 于点N .当:1:4CM FM =时,求CN 的长.27. 综合与实践 问题情境在一次综合与实践课上,老师让同学们以两个全等的等腰直角三角形纸片为操作对象. 纸片ABC 和DEF 满足90ACB EDF ∠=∠=︒,2cm AC BC DF DE ====. 下面是创新小组的探究过程. 操作发现(1)如图1,取AB 的中点O ,将两张纸片放置在同一平面内,使点O 与点F 重合.当旋转DEF 纸片交AC 边于点H 、交BC 边于点G 时,设()12AH x x =<<,BG y =,请你探究出y 与x 的函数关系式,并写出解答过程. 问题解决(2)如图2,在(1)的条件下连接GH ,发现CGH 的周长是一个定值.请你写出这个定值,并说明理由. 拓展延伸(3)如图3,当点F 在AB 边上运动(不包括端点A 、B ),且始终保持60AFE ∠=︒.请你直接写出DEF 纸片的斜边EF 与ABC 纸片的直角边所夹锐角的正切值______(结果保留根号).28. 综合与探究如图,在平面直角坐标系中,已知抛物线2y x bx c =−++与直线相交于A ,B 两点,其中点()3,4A ,()0,1B .(1)求该抛物线的函数解析式.(2)过点B 作BC x ∥轴交抛物线于点C ,连接AC ,在抛物线上是否存在点P 使1tan tan 6BCP ACB ∠=∠.若存在,请求出满足条件的所有点P 的坐标;若不存在,请说明理由.(提示:依题意补全图形,并解答)(3)将该抛物线向左平移2个单位长度得到()2111110y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点D ,点E 为原抛物线对称轴上的一点,F 是平面直角坐标系内的一点,当以点B 、D 、E 、F 为顶点的四边形是菱形时,请直接写出点F 的坐标.2024年黑龙江绥化市中考数学试题+答案详解(答案详解)考生注意:1.考试时间120分钟2.本试题共三道大题,28个小题,总分120分3.所有答案都必须写在答题卡上所对应的题号后的指定区域内 一、单项选择题(本题共12个小题,每小题3分,共36分) 请在答题卡上用2B 铅笔将你的选项所对应的方框涂黑1. 实数12025−的相反数是( )A. 2025B. 2025−C. 12025−D.12025【答案】D 【解析】【分析】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键. 【详解】解:实数12025−的相反数是12025,故选:D .2. 下列所述图形中,是轴对称图形但不是中心对称图形的是( ) A. 圆 B. 菱形C. 平行四边形D. 等腰三角形【答案】D 【解析】【分析】根据轴对称图形与中心对称图形的概念进行判断即可. 【详解】A 、是轴对称图形,也是中心对称图形,故此选项错误; B 、是轴对称图形,也是中心对称图形,故此选项错误; C 、不是轴对称图形,是中心对称图形,故此选项错误; D 、是轴对称图形,不是中心对称图形,故此选项正确, 故选D .【点睛】本题考查了中心对称图形与轴对称图形的概念.辨别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;.辨别中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.3. 某几何体是由完全相同的小正方体组合而成,下图是这个几何体的三视图,那么构成这个几何体的小正方体的个数是( )A. 5个B. 6个C. 7个D. 8个【答案】A 【解析】【分析】此题主考查了三视图,由主视图易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图和左视图可得第二层立方体的个数,相加即可.【详解】解:由三视图易得最底层有3个正方体,第二层有2个正方体,那么共有325+=个正方体组成. 故选:A .4. 有意义,则m 的取值范围是( ) A. 23m ≤B. 32m ≥−C. 32m ≥D. 23m ≤−【答案】C 【解析】【分析】本题考查了二次根式有意义的条件,根据题意可得230m −≥,即可求解.有意义, ∴230m −≥, 解得:32m ≥, 故选:C .5. 下列计算中,结果正确的是( ) A. ()2139−−=B. ()222a b a b +=+C.3=±D. ()3263x yx y −=【答案】A 【解析】【分析】本题考查了负整数指数幂,完全平方公式,算术平方根,积的乘方,据此逐项分析计算,即可求解.【详解】解:A. ()2139−−=,故该选项正确,符合题意; B. ()2222a b a ab b +=++,故该选项不正确,不符合题意;C.3=,故该选项不正确,不符合题意;D. ()3263x yx y −=−,故该选项不正确,不符合题意;故选:A .6. 小影与小冬一起写作业,在解一道一元二次方程时,小影在化简过程中写错了常数项,因而得到方程的两个根是6和1;小冬在化简过程中写错了一次项的系数,因而得到方程的两个根是2−和5−.则原来的方程是( ) A. 2650x x ++= B. 27100x x −+= C. 2520x x −+= D. 26100x x −−=【答案】B 【解析】【分析】本题考查了一元二次方程根与系数的关系,根据题意得出原方程中127x x +=,1210x x =,逐项分析判断,即可求解.【详解】解:∵小影在化简过程中写错了常数项,得到方程的两个根是6和1; ∴12617x x +=+=,又∵写错了一次项的系数,因而得到方程的两个根是2−和5−. ∴1210x x =A. 2650x x ++=中,126x x +=−,125x x =,故该选项不符合题意;B. 27100x x −+=中,127x x +=,1210x x =,故该选项符合题意;C. 2520x x −+=中,125x x +=,122x x =,故该选项不符合题意;D. 26100x x −−=中,126x x +=,1210x x =−,故该选项不符合题意; 故选:B .7. 某品牌女运动鞋专卖店,老板统计了一周内不同鞋码运动鞋的销售量如表:如果每双鞋的利润相同,你认为老板最关注的销售数据是下列统计量中的( )A. 平均数B. 中位数C. 众数D. 方差【答案】C【解析】【分析】此题主要考查统计的有关知识,了解平均数、中位数、众数、方差的意义;平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】解:由于众数是数据中出现次数最多的数,故老板最关注的销售数据的统计量是众数. 故选:C .8. 一艘货轮在静水中的航速为40km /h ,它以该航速沿江顺流航行120km 所用时间,与以该航速沿江逆流航行80km 所用时间相等,则江水的流速为( )A. 5km /hB. 6km /hC. 7km /hD. 8km /h 【答案】D【解析】【分析】此题主要考查了分式方程的应用,利用顺水速=静水速+水速,逆水速=静水速-水速,设未知数列出方程,解方程即可求出答案.【详解】解:设江水的流速为km/h x ,根据题意可得: 120804040x x=+−, 解得:8x =,经检验:8x =是原方程的根,答:江水的流速为8km/h .故选:D .9. 如图,矩形OABC 各顶点的坐标分别为()0,0O ,()3,0A ,()3,2B ,()0,2C ,以原点O 为位似中心,将这个矩形按相似比13缩小,则顶点B 在第一象限对应点的坐标是( )A. ()9,4B. ()4,9C. 31,2⎛⎫ ⎪⎝⎭D. 21,3⎛⎫ ⎪⎝⎭【答案】D【解析】 【分析】本题考查了位似图形的性质,根据题意B 的坐标乘以13,即可求解. 【详解】解:依题意,()3,2B ,以原点O 为位似中心,将这个矩形按相似比13缩小,则顶点B 在第一象限对应点的坐标是21,3⎛⎫ ⎪⎝⎭故选:D .10. 下列叙述正确的是( )A. 顺次连接平行四边形各边中点一定能得到一个矩形B. 平分弦的直径垂直于弦C. 物体在灯泡发出的光照射下形成的影子是中心投影D. 相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等【答案】C【解析】【分析】本题考查了矩形的判定,垂径定理,中心投影,弧、弦与圆心角的关系,根据相关定理逐项分析判断,即可求解.【详解】A. 顺次连接平行四边形各边中点不一定能得到一个矩形,故该选项不正确,不符合题意;B. 平分弦(非直径)的直径垂直于弦,故该选项不正确,不符合题意;C. 物体在灯泡发出的光照射下形成的影子是中心投影,故该选项正确,符合题意;D. 在同圆或等圆 中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等,故该选项不正确,不符合题意;故选:C .11. 如图,四边形ABCD 是菱形,5CD =,8BD =,AE BC ⊥于点E ,则AE 的长是( )A. 245B. 6C. 485D. 12【答案】A【解析】【分析】本题考查了勾股定理,菱形的性质,根据勾股定理求得OC ,进而得出6AC =,进而根据等面积法,即可求解.【详解】解:∵四边形ABCD 是菱形,5CD =,8BD =, ∴142DO BD ==,AC BD ⊥,5BC CD ==,在Rt CDO △中,3CO ==, ∴26AC OC ==,∵菱形ABCD 的面积为12AC BD BC AE ⨯=⨯, ∴18624255AE ⨯⨯==, 故选:A .12. 二次函数()20y ax bx c a =++≠的部分图象如图所示,对称轴为直线=1x −,则下列结论中: ①0b c> ②2am bm a b +≤−(m 为任意实数) ③31a c +< ④若()1,M x y 、()2,N x y 是抛物线上不同的两个点,则123x x +≤−.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】 【分析】本题考查了二次函数的图象的性质,根据抛物线的开口方向,对称轴可得a<0,20b a =<即可判断①,=1x −时,函数值最大,即可判断②,根据1x =时,0y <,即可判断③,根据对称性可得122x x +=−即可判段④,即可求解.【详解】解:∵二次函数图象开口向下∴a<0∵对称轴为直线=1x −, ∴12b x a=−=− ∴20b a =<∵抛物线与y 轴交于正半轴,则0c > ∴0b c<,故①错误, ∵抛物线开口向下,对称轴为直线=1x −,∴当=1x −时,y 取得最大值,最大值为a b c −+∴2am bm c a b c ++≤−+(m 为任意实数)即2am bm a b +≤−,故②正确;∵1x =时,0y <即0a b c ++<∵2b a =∴20a a c ++<即30a c +<∴31a c +<,故③正确;∵()1,M x y 、()2,N x y 是抛物线上不同的两个点,∴,M N 关于=1x −对称, ∴1212x x +=−即122x x +=−故④不正确正确的有②③故选:B二、填空题(本题共10个小题,每小题3分,共30分)请在答题卡上把你的答案写在所对应的题号后的指定区域内13. 中国的领水面积约为370 000 km 2,将数370 000用科学记数法表示为:__________.【答案】3.7×105【解析】【详解】科学记数法是指:a ×10n ,且1≤a <10,n 为原数的整数位数减一,370000=3.7×510. 故答案为:3.7×105.14. 分解因式:2228mx my −=______.【答案】()()222m x y x y +−【解析】【分析】本题考查了因式分解,先提公因式2m ,然后根据平方差公式因式分解,即可求解.【详解】解:2228mx my −=()2224m x y −=()()222m x y x y +−故答案为:()()222m x y x y +−.15. 如图,AB CD ∥,33C ∠=︒,OC OE =.则A ∠=______︒.【答案】66【解析】【分析】本题考查了平行线的性质,等边对等角,三角形外角的性质,根据等边对等角可得33E C ∠=∠=︒,根据三角形的外角的性质可得66DOE ∠=︒,根据平行线的性质,即可求解.【详解】解:∵OC OE =,33C ∠=︒,∴33E C ∠=∠=︒,∴66DOE E C ∠=∠+∠=︒,∵AB CD ∥,∴66A DOE =∠=︒∠,故答案为:66.16. 如图,用热气球的探测器测一栋楼的高度,从热气球上的点A 测得该楼顶部点C 的仰角为60︒,测得底部点B 的俯角为45︒,点A 与楼BC 的水平距离50m AD =,则这栋楼的高度为______m (结果保留根号).【答案】(50+##()50【解析】【分析】本题考查解直角三角形—仰角俯角问题.注意准确构造直角三角形是解答此题的关键.根据题意得456050m BAD CAD AD ∠=︒∠=︒=,,,然后利用三角函数求解即可.【详解】解:依题意,456050m BAD CAD AD ∠=︒∠=︒=,,.在Rt △ABD 中,tan 4550150m BD AD =⋅︒=⨯=,在Rt ACD △中,tan 6050CD AD =⋅︒==,∴(m 50BC BD CD =+=+.故答案为:(50+. 17. 计算:22x y xy y x x x ⎛⎫−−÷−= ⎪⎝⎭_________. 【答案】1x y− 【解析】【分析】本题考查了分式的混合运算.先算括号内的减法,把除法变成乘法,再根据分式的乘法法则进行计算即可. 【详解】解:22x y xy y x x x ⎛⎫−−÷− ⎪⎝⎭ 222x y x xy y x x−−+=÷ 2()x y x x x y −=− 1x y=−,故答案为:1x y−. 18. 用一个圆心角为126︒,半径为10cm 的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为______cm . 【答案】72【解析】【分析】本题考查了弧长公式,根据圆锥的底面圆的周长等于侧面的弧长,代入数据计算,即可求解.【详解】解:设这个圆锥的底面圆的半径为cm R ,由题意得,12610π2π180R ⨯⨯= 解得:7cm 2R = 故答案为:72. 19. 如图,已知点()7,0A −,(),10B x ,()17,C y −,在平行四边形ABCO 中,它的对角线OB 与反比例函数()0k y k x=≠的图象相交于点D ,且:1:4OD OB =,则k =______.【答案】15−【解析】【分析】本题考查了反比例函数与平行四边形综合,相似三角形的性质与判定,分别过点,B D ,作x 的垂线,垂足分别为,F E ,根据平行四边形的性质得出()2410B −,,证明ODE OBF △∽△得出6OE =,2.5DE =,进而可得()6,2.5D −,即可求解.【详解】如图所示,分别过点,B D ,作x 的垂线,垂足分别为,F E ,∵四边形AOCB 是平行四边形,点()7,0A −,(),10B x ,()17,C y −,∴7OA BC ==,∴24x =−,即()2410B −,,则24OF =,10BF = ∵DE x ⊥轴,BF x ⊥轴,∴DE BF ∥∴ODE OBF △∽△ ∴14OE OD DE OF OB BF === ∴6OE =, 2.5DE =∴()6,2.5D −∴6 2.515k =−⨯=−故答案为:15−.20. 如图,已知50AOB ∠=︒,点P 为AOB ∠内部一点,点M 为射线OA 、点N 为射线OB 上的两个动点,当PMN 的周长最小时,则MPN ∠=______.【答案】80︒##80度【解析】【分析】本题考查了轴对称-最短路线问题,等腰三角形的性质,三角形内角和定理的应用;作关于OA ,OB 的对称点12P P ,.连接12OP OP ,.则当M ,N 是12PP 与OA ,OB 的交点时,PMN 的周长最短,根据对称的性质可以证得:150OPM OPM ∠=∠=︒,12OP OP OP ==,根据等腰三角形的性质即可求解.【详解】解:作P 关于OA ,OB 的对称点12P P ,.连接12OP OP ,.则当M ,N 是12PP 与OA ,OB 的交点时,PMN 的周长最短,连接12PO P O 、,1PP 关于OA 对称,∴11112POP MOP OP OP PM PM OPM OPM ∠=∠==∠=∠,,,同理,222P OP NOP OP OP ∠=∠=,,12122(210)0POP POP P OP MOP NOP AOB ∴∠=∠+∠=∠+∠=∠=︒,12OP OP OP ==, ∴12POP △是等腰三角形.∴2140OP N OPM ∠=∠=︒, ∴2180MPN MPO NPO OP N OPM ∠=∠+∠=∠+∠=︒ 故答案为:80︒.21. 如图,已知(11,A ,(23,A ,()34,0A ,()46,0A ,(5A ,(6A ,()710,0A ,(811,A …,依此规律,则点2024A 的坐标为______.【答案】(2891,【解析】【分析】本题考查了点坐标的规律探究.解题的关键在于根据题意推导出一般性规律.根据题意可知7个点坐标的纵坐标为一个循环,7n A 的坐标为()10,0n ,据此可求得2024A 的坐标.【详解】解:∵(11,A ,(23,A ,()34,0A ,()46,0A ,(5A ,(6A ,()710,0A ,(811,A …,,∴可知7个点坐标的纵坐标为一个循环,7n A 的坐标为()10,0n ,(71101,n A n ++∵202472891÷=⋅⋅⋅,∴2023A 的坐标为()2890,0.∴2024A 的坐标为(2891,故答案为:(2891,.22. 在矩形ABCD 中,4cm AB =,8cm BC =,点E 在直线AD 上,且2cm DE =,则点E 到矩形对角线所在直线的距离是______cm .或5或【解析】【分析】本题考查了矩形的性质,解直角三角形,设,AC BD 交于点O ,点1E 在线段AD 上,2E 在AD 的延长线上,过点AC 作AC ,BD 的垂线,垂足分别为123,,F F F ,进而分别求得垂线段的长度,即可求解.【详解】解:∵四边形ABCD 是矩形,4AB =,8BC =,∴8AD BC ==,4CD AB ==,∴AC ===∴sin5CD CAD AC ∠===,cos 5CAD ∠==,41tan 82CAD ∠== 如图所示,设,AC BD 交于点O ,点1E 在线段AD 上,2E 在AD 的延长线上,过点AC 作AC ,BD 的垂线,垂足分别为123,,F F F∵AO DO =∴OAD ODA ∠=∠当E 在线段AD 上时,∴1826AE AD DE =−=−=在11Rt AE F 中个,111sin 655E F AE CAD =⋅∠== ∵OAD ODA ∠=∠在12Rt E F D 中,12112sin 255E F DE E DF =∠=⨯=; 当E 在射线AD 上时,在2Rt DCE 中,221tan 42DCE ∠== ∴CAD DCE ∠=∠∴90DCE DCA ∠+∠=︒∴2E C AC ⊥∴2E C ===在23Rt DE F 中,232232sin 55E F DE E DF DE =⨯∠=⨯=综上所述,点E 或5或或5或 三、解答题(本题共6个小题,共54分)请在答题卡上把你的答案写在所对应的题号后的指定区域内23. 已知:ABC.(1)尺规作图:画出ABC的重心G.(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,连接AG,BG.已知ABG的面积等于25cm,则ABC的面积是______ 2cm.【答案】(1)见解析(2)15【解析】【分析】本题考查了三角形重心的性质,画垂线;(1)分别作,BC AC的中线,交点即为所求;(2)根据三角形重心的性质可得23ABGABDSS=,根据三角形中线的性质可得2215cmABC ABDS S==【小问1详解】解:作法:如图所示①作BC的垂直平分线交BC于点D②作AC的垂直平分线交AC于点F③连接AD、BF相交于点G④标出点G,点G即为所求【小问2详解】解:∵G是ABC的重心,∴23 AG AD=∴23 ABGABDSS=∵ABG 的面积等于25cm ,∴27.5cm ABD S =又∵D 是BC 的中点,∴2215cm ABC ABD S S ==故答案为:15.24. 为了落实国家“双减”政策,某中学在课后服务时间里,开展了音乐、体操、诵读、书法四项社团活动.为了了解七年级学生对社团活动的喜爱情况,该校从七年级全体学生中随机抽取了部分学生进行“你最喜欢哪一项社团活动”的问卷调查,每人必须选择一项社团活动(且只能选择一项).根据调查结果,绘制成如下两幅统计图.请根据统计图中的信息,解答下列问题:(1)参加本次问卷调查的学生共有______人.(2)在扇形统计图中,A 组所占的百分比是______,并补全条形统计图.(3)端午节前夕,学校计划进行课后服务成果展示,准备从这4个社团中随机抽取2个社团汇报展示.请用树状图法或列表法,求选中的2个社团恰好是B 和C 的概率.【答案】(1)60(2)30%,作图见解析(3)16【解析】【分析】本题考查了条形统计图与扇形统计图信息关联,列表法或画树状图法求概率;(1)根据D 组的人数除以占比得出总人数;(2)根据总人数求得A 组的人数,进而求得占比,以及补全统计图;(3)根据列表法或画树状图法求概率,即可求解.【小问1详解】解:参加本次问卷调查的学生共有1220%60÷=(人);【小问2详解】解:A组人数为6020101218−−−=人A组所占的百分比为:18100%30% 60⨯=补全统计图如图所示,【小问3详解】画树状图法如下图列表法如下图由树状图法或列表法可以看出共有12种结果出现的可能性相等,选中的2个社团恰好是B和C的情况有两种.∴P(选中的2个社团恰好是B和C)21 126 ==.25. 为了响应国家提倡的“节能环保”号召,某共享电动车公司准备投入资金购买A、B两种电动车.若购买A种电动车25辆、B种电动车80辆,需投入资金30.5万元;若购买A种电动车60辆、B种电动车120辆,需投入资金48万元.已知这两种电动车的单价不变.(1)求A 、B 两种电动车的单价分别是多少元?(2)为适应共享电动车出行市场需求,该公司计划购买A 、B 两种电动车200辆,其中A 种电动车的数量不多于B 种电动车数量的一半.当购买A 种电动车多少辆时,所需的总费用最少,最少费用是多少元? (3)该公司将购买的A 、B 两种电动车投放到出行市场后,发现消费者支付费用y 元与骑行时间min x 之间的对应关系如图.其中A 种电动车支付费用对应的函数为1y ;B 种电动车支付费用是10min 之内,起步价6元,对应的函数为2y .请根据函数图象信息解决下列问题.①小刘每天早上需要骑行A 种电动车或B 种电动车去公司上班.已知两种电动车的平均行驶速度均为300m /min (每次骑行均按平均速度行驶,其它因素忽略不计),小刘家到公司的距离为8km ,那么小刘选择______种电动车更省钱(填写A 或B ).②直接写出两种电动车支付费用相差4元时,x 的值______.【答案】(1)A 、B 两种电动车的单价分别为1000元、3500元(2)当购买A 种电动车66辆时所需的总费用最少,最少费用为535000元(3)①B ②5或40【解析】【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用;(1)设A 、B 两种电动车的单价分别为x 元、y 元,根据题意列二元一次方程组,解方程组,即可求解;(2)设购买A 种电动车m 辆,则购买B 种电动车()200m −辆,根据题意得出m 的范围,进而根据一次函数的性质,即可求解;(3)①根据函数图象,即可求解;②分别求得12,y y 的函数解析式,根据214y y −=,解方程,即可求解.【小问1详解】解:设A 、B 两种电动车的单价分别为x 元、y 元由题意得,258030500060120480000x y x y +=⎧⎨+=⎩ 解得10003500x y =⎧⎨=⎩答:A 、B 两种电动车的单价分别为1000元、3500元【小问2详解】设购买A 种电动车m 辆,则购买8种电动车()200m −辆,由题意得:()12002m m ≤− 解得:2003m ≤ 设所需购买总费用为w 元,则()100035002002500700000w m m m =+−=−+25000−<,w 随着 m 的增大而减小, m 取正整数66m ∴=时,w 最少∴700000250066535000w =−⨯=最少 (元)答:当购买A 种电动车66辆时所需的总费用最少,最少费用为535000元【小问3详解】解:①∵两种电动车的平均行驶速度均为300m /min ,小刘家到公司的距离为8km , ∴所用时间为80002263003=分钟, 根据函数图象可得当20x >时,21y y <更省钱,∴小刘选择B 种电动车更省钱,故答案为:B .②设11y k x =,将()20,8代入得,1820k = 解得:25k =∴125y x =; 当010x <≤时,26y =,当10x >时,设222y k x b =+,将()10,6,()20,8代入得,2222610820k b k b =+⎧⎨=+⎩解得:22154k b ⎧=⎪⎨⎪=⎩ ∴2145y x =+ 依题意,当010x <<时,214y y −= 即2645x −= 解得:5x =当10x >时,214y y −= 即124455x x +−= 解得:0x =(舍去)或40x =故答案为:5或40.26. 如图1,O 是正方形ABCD 对角线上一点,以O 为圆心,OC 长为半径的O 与AD 相切于点E ,与AC 相交于点F .(1)求证:AB 与O 相切.(2)若正方形ABCD1+,求O 的半径.(3)如图2,在(2)的条件下,若点M 是半径OC 上的一个动点,过点M 作MN OC ⊥交CE 于点N .当:1:4CM FM =时,求CN 的长.【答案】(1)证明见解析(2(3)5【解析】【分析】(1)方法一:连接OE ,过点O 作OG AB ⊥于点G ,四边形ABCD 是正方形,AC 是正方形的对角线,得出OE OG =,进而可得OG 为O 的半径,又OG AB ⊥,即可得证;方法二:连接OE ,过点O 作OG AB ⊥于点G ,根据正方形的性质证明()AAS AOE AOG ≌得出OE OG =,同方法一即可得证;方法三:过点O 作OG AB ⊥于点G ,连接OE .得出四边形AEOG 为正方形,则OE OG =,同方法一即可得证;(2)根据O 与AD 相切于点E ,得出90AEO ∠=︒,由(1)可知AE OE =,设AE OE OC OF R ====,在Rt AEO △中,勾股定理得出AO =,在Rt ADC 中,勾股定理求得AC ,进而根据OA OC AC +=建立方程,解方程,即可求解.(3)方法一:连接ON ,设CM k =,在Rt OMN △中,由勾股定理得:2MN k =,在Rt CMN 中,由勾股定理得:CN =,结合题意522FC k R ====5k =,即可得出CN ;方法二:连接FN ,证明CNM CFN ∽△△得出2CN CM CF =⋅,进而可得155CM CF ==,同理可得CN 方法三:连接FN ,证明CNM CFN ∽△△得出2NC MC FC =⋅,设CM k =,则5FC k =,进而可得NC =,进而同方法一,即可求解.【小问1详解】方法一:证明:连接OE ,过点O 作OG AB ⊥于点G , O 与AD 相切于点E ,。

小专题(四) 确定小正方体的个数问题

小专题(四) 确定小正方体的个数问题

小专题
类型1 全部视图得出唯一个数 1.如图是由一些相同的小正方体构成的几何体从不同方向看得到 的平面图形,在这个几何体中,小正方体的个数是( C ) A.7 C.5 B.6 D.4
-3-
2.在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆 货箱的三视图画了出来,如图所示,则这堆正方体货箱共有( A ) A.9箱 B.10箱 C.11箱 D.12箱
小专题(四) 确定小正方体的个数问题
小专题
-2-
通过小正方体组合图形的三视图确定小正方体的个数问题全国 各地中考试题中经常出现.解决这类问题需要充分发挥空间想象能 力,如果考虑问题不全面,很容易出现确定小正方体的个数与事实 不符. 通过三视图计算组合图形的小正方体的个数,首先要根据小正方 体组合图形的三视图弄清楚它的行数和列数,再分析每行、每列中 各有多少层,理清了行、列、层的数量关系,小正方体的个数问题 就迎刃而解了.
小专题
5.一个几何体由若干大小相同的小立方块搭成,如图分别是从它的 正面、上面看到的形状图,该几何体至少是多少个小立方块搭成的 ( C ) A.8 B.7 C.6 D.5
-5-
6.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子 的个数与碟子的高度的关系如下表:
碟子的个数 碟子的高度( 12 3 4 …
小专题
3.观察下图,这是由一些相同小正方体构成的立体图形的三种视图, 构成这个立体图形的小正方体的个数是 8 .
-4-
类型2 部分视图确定计数范围
4.由一些完全相同的小正方体搭成一个几何体,这个几何体的主视 图和左视图相同,如图所示,则小正方体的块数最少有( A ) A.6块 B.7块 C.8块 D.9块
单位:cm ) 2 2+1.5 2+3 2+4.5 …

2024年湖北武汉市中考数学试题+答案详解

2024年湖北武汉市中考数学试题+答案详解

2024年湖北武汉市中考数学试题+答案详解(试题部分)亲爱的同学:在你答题前,请认真阅读下面的注意事项:1.本试卷全卷共6页,三大题,满分120分.考试用时120分钟.2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号.3.答选择题时,选出每小题答案后,用2B铅笔将“答题卡”上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.答在“试卷”上无效.4.答非选择题时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡”上.答在“试卷”上无效.5.认真阅读答题卡上的注意事项.预祝你取得优异成绩!一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.2. 小美和小好同学做“石头、剪刀、布”的游戏,两人同时出相同的手势,这个事件是()A. 随机事件B. 不可能事件C. 必然事件D. 确定性事件3. 如图是由两个宽度相同的长方体组成的几何体,它的主视图是()A. B. C. D.4. 国家统计局2024年4月16日发布数据,今年第一季度国内生产总值接近300000亿元,同比增长5.3%,国家高质量发展取得新成效.将数据300000用科学记数法表示是()A. 50.310⨯B. 60.310⨯C. 5310⨯D. 6310⨯5. 下列计算正确的是( )A. 236a a a ⋅=B. ()1432a a =C. ()2236a a =D. ()2211a a +=+ 6. 如图,一个圆柱体水槽底部叠放两个底面半径不等的实心圆柱体,向水槽匀速注水.下列图象能大致反映水槽中水的深度h 与注水时间t 的函数关系的是( )A. B. C. D. 7. 小美同学按如下步骤作四边形ABCD :①画MAN ∠;②以点A 为圆心,1个单位长为半径画弧,分别交AM ,AN 于点B ,D ;③分别以点B ,D 为圆心,1个单位长为半径画弧,两弧交于点C ;④连接BC ,CD ,BD .若44A ∠=︒,则CBD ∠的大小是( )A. 64︒B. 66︒C. 68︒D. 70︒8. 经过某十字路口的汽车,可能直行,也可能向左转或向右转,这三种可能性大小相同.若两辆汽车经过这个十字路口,则至少一辆车向右转的概率是( ) A. 19 B. 13 C. 49 D. 599. 如图,四边形ABCD 内接于O ,60ABC ∠=︒,45BAC CAD ∠=∠=︒,2AB AD +=,则O的半径是( )A. 3B. 3C. 2D. 210. 如图,小好同学用计算机软件绘制函数32331y x x x =−+−的图象,发现它关于点()1,0中心对称.若点()110.1,A y ,()220.2,A y ,()330.3,A y ,……,()19191.9,A y ,()20202,A y 都在函数图象上,这20个点的横坐标从0.1开始依次增加0.1,则1231920y y y y y +++++的值是( )A. 1−B. 0.729−C. 0D. 1二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11. 中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作3+℃,则零下2℃记作_________℃.12. 某反比例函数k y x =具有下列性质:当0x >时,y 随x 的增大而减小,写出一个满足条件的k 的值是__________.13. 分式方程131x x x x +=−−的解是______. 14. 黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉.在一次综合实践活动中,某数学小组用无人机测量黄鹤楼AB 的高度,具体过程如下:如图,将无人机垂直上升至距水平地面102m 的C 处,测得黄鹤楼顶端A 的俯角为45︒,底端B 的俯角为63︒,则测得黄鹤楼的高度是__________m .(参考数据:tan632︒≈)15. 如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形和中间的小正方形MNPQ 拼成的一个大正方形ABCD .直线MP 交正方形ABCD 的两边于点E ,F ,记正方形ABCD 的面积为1S ,正方形MNPQ 的面积为2S .若(1)BE kAE k =>,则用含k 的式子表示12S S 的值是___________.16. 抛物线2y ax bx c =++(a ,b ,c 是常数,0a <)经过()1,1−,(),1m 两点,且01m <<.下列四个结论:①0b >;②若01x <<,则()()2111a x b x c −+−+>;③若1a =−,则关于x 的一元二次方程 22ax bx c ++=无实数解;④点()11,A x y ,()22,B x y 在抛物线上,若1212x x +>−,12x x >,总有12y y <,则102m <≤. 其中正确的是__________(填写序号). 三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17. 求不等式组3121x x x +>⎧⎨−≤⎩①②的整数解. 18. 如图,在ABCD Y 中,点E ,F 分别在边BC ,AD 上,AF CE =.(1)求证:C ABE DF ≌△△;(2)连接EF .请添加一个与线段相关的条件,使四边形ABEF 是平行四边形.(不需要说明理由) 19. 为加强体育锻炼,增强学生体质,某校在“阳光体育一小时”活动中组织九年级学生定点投篮技能测试,每人投篮4次,投中一次计1分.随机抽取m 名学生的成绩作为样本,将收集的数据整理并绘制成如下的统计图表.测试成绩频数分布表根据以上信息,解答下列问题:(1)直接写出m ,n 的值和样本的众数;(2)若该校九年级有900名学生参加测试,估计得分超过2分的学生人数.20. 如图,ABC 为等腰三角形,O 是底边BC 的中点,腰AC 与半圆O 相切于点D ,底边BC 与半圆O 交于E ,F 两点.(1)求证:AB 与半圆O 相切;(2)连接OA .若4CD =,2CF =,求sin OAC ∠的值.21. 如图是由小正方形组成的34⨯网格,每个小正方形的顶点叫做格点.ABC 三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD 交BC 于点D ,使AD 平分ABC 的面积;(2)在(1)的基础上,在射线AD 上画点E ,使ECB ACB ∠=∠;(3)在图(2)中,先画点F ,使点A 绕点F 顺时针旋转90︒到点C ,再画射线AF 交BC 于点G ; (4)在(3)的基础上,将线段AB 绕点G 旋转180︒,画对应线段MN (点A 与点M 对应,点B 与点N 对应).22. 16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线2y ax x =+和直线12y x b =−+.其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离. (2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .23. 问题背景:如图(1),在矩形ABCD 中,点E ,F 分别是AB ,BC 的中点,连接BD ,EF ,求证:BCD FBE ∽△△.问题探究:如图(2),在四边形ABCD 中,AD BC ∥,90BCD ∠=︒,点E 是AB 的中点,点F 在边BC 上,2AD CF =,EF 与BD 交于点G ,求证:BG FG =.问题拓展:如图(3),在“问题探究”的条件下,连接AG ,AD CD =,AG FG =,直接写出EG GF 的值.24. 抛物线215222y x x =+−交x 轴于A ,B 两点(A 在B 的右边),交y 轴于点C .(1)直接写出点A ,B ,C 的坐标;(2)如图(1),连接AC ,BC ,过第三象限的抛物线上的点P 作直线PQ AC ∥,交y 轴于点Q .若BC 平分线段PQ ,求点P 的坐标;(3)如图(2),点D 与原点O 关于点C 对称,过原点的直线EF 交抛物线于E ,F 两点(点E 在x 轴下方),线段DE 交抛物线于另一点G ,连接FG .若90EGF ∠=︒,求直线DE 的解析式.2024年湖北武汉市中考数学试题+答案详解(答案详解)亲爱的同学:在你答题前,请认真阅读下面的注意事项:1.本试卷全卷共6页,三大题,满分120分.考试用时120分钟.2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号.3.答选择题时,选出每小题答案后,用2B铅笔将“答题卡”上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.答在“试卷”上无效.4.答非选择题时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡”上.答在“试卷”上无效.5.认真阅读答题卡上的注意事项.预祝你取得优异成绩!一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.【答案】C【解析】【分析】本题考查了轴对称图形的识别,根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A,B,D选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,C选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:C.2. 小美和小好同学做“石头、剪刀、布”的游戏,两人同时出相同的手势,这个事件是()A. 随机事件B. 不可能事件C. 必然事件D. 确定性事件【答案】A【解析】 【分析】本题考查的是必然事件、不可能事件、随机事件的概念.根据事件发生的可能性大小判断即可.【详解】解:两人同时出相同的手势,,这个事件是随机事件,故选:A .3. 如图是由两个宽度相同的长方体组成的几何体,它的主视图是( )A. B. C. D.【答案】B【解析】【分析】本题考查了三视图的知识,熟知主视图是从物体的正面看到的视图是解题的关键.按照主视图的定义逐项判断即可.【详解】解:从正面看该几何体,下面是一个大长方形,上面叠着一个小长方形,故选:B .4. 国家统计局2024年4月16日发布数据,今年第一季度国内生产总值接近300000亿元,同比增长5.3%,国家高质量发展取得新成效.将数据300000用科学记数法表示是( )A. 50.310⨯B. 60.310⨯C. 5310⨯D. 6310⨯【答案】C【解析】 【分析】本题考查了科学记数法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值大于1与小数点移动的位数相同.【详解】解:5300000310=⨯,故选:C .5. 下列计算正确的是( )A. 236a a a ⋅=B. ()1432a a =C. ()2236a a =D. ()2211a a +=+ 【答案】B【解析】 【分析】本题考查了完全平方公式,积的乘方,幂的乘方,同底数幂的乘法等,根据同底数幂的乘法,积的乘方,幂的乘方,完全平方公式运算法则分别判断即可.【详解】解:A. 235a a a ⋅=,故该选项不正确,不符合题意;B. ()4312a a =,故该选项正确,符合题意;C. ()2239a a =,故该选项不正确,不符合题意;D. ()22121a a a +=++,故该选项不正确,不符合题意;故选:B .6. 如图,一个圆柱体水槽底部叠放两个底面半径不等的实心圆柱体,向水槽匀速注水.下列图象能大致反映水槽中水的深度h 与注水时间t 的函数关系的是( )A. B. C. D.【答案】D【解析】【分析】本题考查了函数图象;根据题意,分3段分析,即可求解.【详解】解:下层圆柱底面半径大,水面上升块,上层圆柱底面半径稍小,水面上升稍慢,再往上则水面上升更慢,所以对应图象是第一段比较陡,第二段比第一段缓,第三段比第二段缓.故选:D .7. 小美同学按如下步骤作四边形ABCD :①画MAN ∠;②以点A 为圆心,1个单位长为半径画弧,分别交AM ,AN 于点B ,D ;③分别以点B ,D 为圆心,1个单位长为半径画弧,两弧交于点C ;④连接BC ,CD ,BD .若44A ∠=︒,则CBD ∠的大小是( )A. 64︒B. 66︒C. 68︒D. 70︒【答案】C 【解析】【分析】本题考查了基本作图,菱形的判定和性质,根据作图可得四边形ABCD 是菱形,进而根据菱形的性质,即可求解.【详解】解:作图可得AB AD BC DC === ∴四边形ABCD 是菱形, ∴,AD BC ABD CBD ∠=∠ ∵44A ∠=︒,∴44MBC A ∠=∠=︒, ∴()()11180180446822CBD MBC ∠=︒−∠=︒−︒=︒, 故选:C .8. 经过某十字路口的汽车,可能直行,也可能向左转或向右转,这三种可能性大小相同.若两辆汽车经过这个十字路口,则至少一辆车向右转的概率是( ) A.19B.13C.49D.59【答案】D 【解析】【分析】本题考查的是运用树状图求概率,运用树状图法确定所有情况数和符合题意情况数是解答本题的关键.运用树状图法确定所有情况数和符合题意情况数,然后用概率公式解答即可. 【详解】解:列树状图如图所示,共有9种情况,至少一辆车向右转有5种, ∴至少一辆车向右转的概率是59, 故选:D .9. 如图,四边形ABCD 内接于O ,60ABC ∠=︒,45BAC CAD ∠=∠=︒,2AB AD +=,则O的半径是( )A.B.C.2D.2【答案】A 【解析】【分析】延长AB 至点E ,使BE AD =,连接BD ,连接CO 并延长交O 于点F ,连接AF ,即可证得()SAS ADC EBC ≌,进而可求得cos 45AC AE =︒⋅=,再利用圆周角定理得到60AFC ∠=︒,结合三角函数即可求解.【详解】解:延长AB 至点E ,使BE AD =,连接BD ,连接CO 并延长交O 于点F ,连接AF ,∵四边形ABCD 内接于O ,∴180ADC ABC ABC CBE ∠+∠=∠+∠=︒ ∴ADC CBE ∠=∠ ∵45BAC CAD ∠=∠=︒∴45CBD CDB ∠=∠=︒,90DAB ∠=︒ ∴BD 是O 的直径,∴90DCB ∠=︒∴DCB △是等腰直角三角形, ∴DC BC = ∵BE AD =∴()SAS ADC EBC ≌ ∴ACD ECB ∠=∠,AC CE =, ∵2AB AD += ∴2AB BE AE +== 又∵90DCB ∠=︒ ∴90ACE ∠=︒∴ACE △是等腰直角三角形∴cos 45AC AE =︒⋅=∵60ABC ∠=︒ ∴60AFC ∠=︒ ∵90FAC ∠=︒∴sin 603AC CF ==︒∴123OF OC CF ===故选:A .【点睛】本题考查了全等三角形的性质与判定,圆周角定理,锐角三角函数、等腰三角形的性质与判定等知识点,熟练掌握圆周角定理以及全等三角形的性质与判定是解题的关键.10. 如图,小好同学用计算机软件绘制函数32331y x x x =−+−的图象,发现它关于点()1,0中心对称.若点()110.1,A y ,()220.2,A y ,()330.3,A y ,……,()19191.9,A y ,()20202,A y 都在函数图象上,这20个点的横坐标从0.1开始依次增加0.1,则1231920y y y y y +++++的值是( )A. 1−B. 0.729−C. 0D. 1【答案】D 【解析】【分析】本题坐标规律,求函数值,中心对称的性质,根据题意得出123911190y y y y y y +++++=,进而转化为求1020y y +,根据题意可得100y =,201y =,即可求解. 【详解】解:∵这20个点的横坐标从0.1开始依次增加0.1, ∴0.1 1.90.2 1.80.9 1.11222+++==⋅⋅⋅=, ∴123911190y y y y y y +++++=,∴12319201020y y y y y y y +++++=+,而()101,0A 即100y =,∵32331y x x x =−+−, 当0x =时,1y =−,即()0,1−,∵()0,1−关于点()1,0中心对称的点为()2,1, 即当2x =时,201y =, ∴12319201020011y y y y y y y +++++=+=+=,故选:D .二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11. 中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作3+℃,则零下2℃记作_________℃. 【答案】2− 【解析】【分析】本题考查了正数和负数的意义,在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:零上3℃记作3+℃,则零下2℃记作2−℃., 故答案为:2−. 12. 某反比例函数ky x=具有下列性质:当0x >时,y 随x 的增大而减小,写出一个满足条件的k 的值是__________.【答案】1(答案不唯一) 【解析】【分析】本题考查的是反比例函数的性质,反比例函数的图象是双曲线,当0k >,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小,当0k <,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.直接根据反比例函数的性质写出符合条件的的值即可. 【详解】解:∵当0x >时,y 随x 的增大而减小, ∴0k >故答案为:1(答案不唯一). 13. 分式方程131x x x x +=−−的解是______. 【答案】3x =− 【解析】【分析】本题主要考查了解分式方程,熟练掌握解分式方程的方法和步骤是解题关键.首先等号两边同时乘以()()31x x −−完成去分母,再按照去括号,移项、合并同类项的步骤求解,检验即可获得答案. 【详解】解:131x x x x +=−−, 等号两边同时乘以()()31x x −−,得 ()()()131x x x x −=−+, 去括号,得 2223x x x x −=−−, 移项、合并同类项,得 3x =−, 经检验,3x =−是该分式方程的解, 所以,该分式方程的解为3x =−. 故答案为:3x =−.14. 黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉.在一次综合实践活动中,某数学小组用无人机测量黄鹤楼AB 的高度,具体过程如下:如图,将无人机垂直上升至距水平地面102m 的C 处,测得黄鹤楼顶端A 的俯角为45︒,底端B 的俯角为63︒,则测得黄鹤楼的高度是__________m .(参考数据:tan632︒≈)【答案】51 【解析】【分析】本题主要考查解直角三角形的应用,理解题意,作出辅助线是解题关键.延长BA 交距水平地面102m 的水平线于点D ,根据tan632︒≈,求出51m DC AD =≈,即可求解.【详解】解:延长BA 交距水平地面102m 的水平线于点D ,如图,由题可知,102m BD =, 设AD x =, ∵45DCA ∠=︒ ∴DC AD x == ∴102tan632BD DC x︒==≈ ∴51m DC AD =≈∴1025151m AB BD AD =−=−≈ 故答案为:51.15. 如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形和中间的小正方形MNPQ 拼成的一个大正方形ABCD .直线MP 交正方形ABCD 的两边于点E ,F ,记正方形ABCD 的面积为1S ,正方形MNPQ 的面积为2S .若(1)BE kAE k =>,则用含k 的式子表示12S S 的值是___________.【答案】221(1)k k +− 【解析】【分析】作EG AN ⊥交AN 于点G ,不妨设MN a =,设1EG =,通过四边形MNPQ 是正方形,推出45EMG PMN ∠=∠=︒,得到1EG MG ==,然后证明AEG ABN ∽,利用相似三角形对应边成比例,得到111AE AG AB BN AN k ===+,从而表示出AG ,MN 的长度,最后利用2122AB BN AN S ==+和222S MN a ==表示出正方形ABCD 和MNPQ 的面积,从而得到12S S . 【详解】解:作EG AN ⊥交AN 于点G ,不妨设MN a =,设1EG =四边形MNPQ 是正方形45PMN ∴∠=︒45EMG PMN ∴∠=∠=︒1EG MG ∴==在AEG △和ABN 中,EAG BAN ∠=∠,90AGE ANB ∠=∠=︒AEG ABN ∴∽AE EG AGAB BN AN∴== (1)BE kAE k =>(1)AB AE BE AE k ∴=+=+ 111AE AG AB BN AN k ∴===+ 1BN k ∴=+由题意可知,ABN DAM △≌△1BN AM k ∴==+11AG AM GM k k ∴=−=+−=111AG AG k AN AM MN k a k ∴===++++ 21a k ∴=−2211AN AG GM MN k k k k ∴=++=++−=+∴正方形ABCD 的面积222221222(1)()(1)(1)S AB BN AN k k k k k ==+=+++=++,正方形MNPQ 的面积2222222(1)(1)(1)S MN a k k k ===−=+−222221(1)(1)(1)(1)k k k k S S +++−∴= 1k >2(1)0k ∴+≠ 22121(1)k S S k +−∴= 【点睛】本题考查了弦图,正方形的性质,等角三角形的性质,相似三角形的判定与性质,正方形的面积,勾股定理,熟练掌握以上知识点并能画出合适的辅助线构造相似三角形是解题的关键.16. 抛物线2y ax bx c =++(a ,b ,c 是常数,0a <)经过()1,1−,(),1m 两点,且01m <<.下列四个结论: ①0b >;②若01x <<,则()()2111a x b x c −+−+>;③若1a =−,则关于x 的一元二次方程 22ax bx c ++=无实数解; ④点()11,A x y ,()22,B x y 在抛物线上,若1212x x +>−,12x x >,总有12y y <,则102m <≤. 其中正确的是__________(填写序号). 【答案】②③④ 【解析】【分析】本题考查了二次函数的性质,根据题意可得抛物线对称轴11022m−+−<<,即可判断①,根据()1,1−,(),1m 两点之间的距离大于1,即可判断②,根据抛物线经过()1,1−得出2c b =+,代入顶点纵坐标,求得纵坐标的最大值即可判断③,根据④可得抛物线的对称轴111224m −+−<≤−,解不等式,即可求解.【详解】解:∵2y ax bx c =++(a ,b ,c 是常数,0a <)经过()1,1−,(),1m 两点,且01m <<.∴对称轴为直线122b mx a −+=−=, 11022m −+−<<, ∵02bx a=−<,a<0 ∴0b <,故①错误, ∵01m <<∴()11m −−>,即()1,1−,(),1m 两点之间的距离大于1 又∵a<0∴1x m =−时,1y >∴若01x <<,则()()2111a x b x c −+−+>,故②正确; ③由①可得11022m −+−<<, ∴1022b−<<,即10b −<<, 当1a =−时,抛物线解析式为2y x bx c =−++设顶点纵坐标为224444ac b c b t a −−−==− ∵抛物线2y x bx c =−++(a ,b ,c 是常数,0a <)经过()1,1−,∴11b c −−+= ∴2c b =+∴()222224411122144444c b b c t b c b b b −−+===+=++=++−∵10b −<<,104−>,对称轴为直线2b =−,∴当0b =时,t 取得最大值为2,而0b <,∴关于x 的一元二次方程 22ax bx c ++=无解,故③正确;④∵a<0,抛物线开口向下,点()11,A x y ,()22,B x y 在抛物线上, 1212x x +>−,12x x >,总有12y y <,又12124x x x +=>−, ∴点()11,A x y 离14x =−较远,∴对称轴111224m −+−<≤− 解得:102m <≤,故④正确. 故答案为:②③④.三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17. 求不等式组3121x x x +>⎧⎨−≤⎩①②的整数解.【答案】整数解为:1,0,1− 【解析】【分析】本题考查了解一元一次不等式组,分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而求得整数解. 【详解】解:3121x x x +>⎧⎨−≤⎩①②解不等式①得:2x >− 解不等式②得:1x ≤∴不等式组的解集为:21x −<≤, ∴整数解为:1,0,1−18. 如图,在ABCD Y 中,点E ,F 分别在边BC ,AD 上,AF CE =.(1)求证:C ABE DF ≌△△;(2)连接EF .请添加一个与线段相关的条件,使四边形ABEF 是平行四边形.(不需要说明理由)【答案】(1)见解析 (2)添加AF BE =(答案不唯一)【解析】【分析】本题考查了平行四边形的性质与判定,全等三角形的判定;(1)根据平行四边形的性质得出AB CD =,B D ∠=∠,结合已知条件可得DF BE =,即可证明C ABE DF ≌△△;(2)添加AF BE =,依据一组对边平行且相等的四边形是平行四边形,即可求解.【小问1详解】证明:∵四边形ABCD 是平行四边形,∴AB CD =,AD BC =,B D ∠=∠,∵AF CE =,∴AD AF BC CE −=−即DF BE =,在ABE 与CDF 中,AB CD B D BE DF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE CDF ≌;【小问2详解】添加AF BE =(答案不唯一)如图所示,连接EF .∵四边形ABCD 是平行四边形,∴AD BC ∥,即AF BE ∥,当AF BE =时,四边形ABEF 是平行四边形.19. 为加强体育锻炼,增强学生体质,某校在“阳光体育一小时”活动中组织九年级学生定点投篮技能测试,每人投篮4次,投中一次计1分.随机抽取m 名学生的成绩作为样本,将收集的数据整理并绘制成如下的统计图表.测试成绩频数分布表根据以上信息,解答下列问题:(1)直接写出m ,n 的值和样本的众数;(2)若该校九年级有900名学生参加测试,估计得分超过2分的学生人数.【答案】(1)60m =,15n =,众数为3分(2)该校九年级有900名学生参加测试,估计得分超过2分的学生人数为450人【解析】【分析】本题考查了样本估计总体,求众数,频数分布表与扇形统计图;(1)根据成绩为2分的人数除以占比,求得m 的值,根据成绩为3分的人数的占比,求得18a =,进而求得9b =,即可得出n 的值;(2)根据得分超过2分的学生的占比乘以900,即可求解.【小问1详解】解:依题意,156025%m ==(人),6030%18a =⨯=(人),6012181569b =−−−−=(人),∴9%100%15%60n =⨯=, ∴15n =,∵3分的人数为18个,出现次数最多,∴众数为3分,【小问2详解】 解:181290045060+⨯=(人) 答:该校九年级有900名学生参加测试,估计得分超过2分的学生人数为450人.20. 如图,ABC 为等腰三角形,O 是底边BC 的中点,腰AC 与半圆O 相切于点D ,底边BC 与半圆O 交于E ,F 两点.(1)求证:AB 与半圆O 相切;(2)连接OA .若4CD =,2CF =,求sin OAC ∠的值.【答案】(1)见解析 (2)45 【解析】【分析】本题考查了等腰三角形三线合一,角平分线的判定与性质,解直角三角形,熟练掌握以上知识点是解题的关键.(1)连接OA 、OD ,作ON AB ⊥交AB 于N ,根据等腰三角形三线合一可知,AO BC ⊥,AO 平分BAC ∠,结合AC 与半圆O 相切于点D ,可推出ON OD =,得证;(2)由题意可得出OAC COD ∠=∠,根据OF OD =,在Rt ODC △中利用勾股定理可求得OD 的长度,从而得到OC 的长度,最后根据CD sin OAC sin COD OC∠=∠=即可求得答案. 【小问1详解】证明:连接OA 、OD ,作ON AB ⊥交AB 于N ,如图ABC 为等腰三角形,O 是底边BC 的中点AO BC ∴⊥,AO 平分BAC ∠ AC 与半圆O 相切于点DOD AC ∴⊥由ON AB ⊥ON OD ∴=AC ∴是半圆O 的切线【小问2详解】解:由(1)可知AO BC ⊥,OD AC ⊥90AOC ∴∠=︒,90ODC ∠=︒18090OAC OCA AOC ∴∠+∠=︒−∠=︒,18090COD OCA ODC ∠+∠=︒−∠=︒OAC COD ∴∠=∠sin sin CD OAC COD OC ∴∠=∠=又OF OD =,2CF =∴在Rt ODC △中,4CD =,2OC OF FC OD =+=+222OC CD OD =+,∴222(2)4OD OD +=+解得:3OD =442325CD CD sin OAC sin COD OC OD ∴∠=∠====++ 21. 如图是由小正方形组成的34⨯网格,每个小正方形的顶点叫做格点.ABC 三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD 交BC 于点D ,使AD 平分ABC 的面积;(2)在(1)的基础上,在射线AD 上画点E ,使ECB ACB ∠=∠;(3)在图(2)中,先画点F ,使点A 绕点F 顺时针旋转90︒到点C ,再画射线AF 交BC 于点G ; (4)在(3)的基础上,将线段AB 绕点G 旋转180︒,画对应线段MN (点A 与点M 对应,点B 与点N 对应).【答案】(1)作图见解析(2)作图见解析 (3)作图见解析(4)作图见解析【解析】【分析】本题考查了网格作图.熟练掌握全等三角形性质,平行四边形性质,等腰三角形性质,等腰直角三角形性质,是解题的关键.(1)作矩形HBIC ,对角线HI 交BC 于点D ,做射线AD ,即可;(2)作OP BC ∥,射线AR OP ⊥于点Q ,连接CQ 交AD 于点E ,即可;(3)在AC 下方取点F ,使AF CF ==ACF △是等腰直角三角形,连接CF , AF ,AF 交BC于点G ,即可;(4)作OP BC ∥,交AG 于点M ,作ST AG ∥,交BC 于点N ,连接MN ,即可.【小问1详解】如图,作线段HI ,使四边形HBIC 是矩形,HI 交BC 于点D ,做射线AD ,点D 即为所求作; 【小问2详解】如图,作OP BC ∥,作AR OP ⊥于点Q ,连接CQ 交AD 于点E ,点E 即为作求作;【小问3详解】如图,在AC 下方取点F ,使AF CF ==CF ,连接并延长AF ,AF 交BC 于点G ,点F ,G即为所求作;【小问4详解】如图,作OP BC ∥,交射线AG 于点M ,作ST AG ∥,交BC 于点N ,连接MN ,线段MN 即为所求作.22. 16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线2y ax x =+和直线12y x b =−+.其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离. (2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .【答案】(1)①115a =−,8.1b =;②8.4km (2)2027a −<< 【解析】【分析】本题考查了二次函数和一次函数的综合应用,涉及待定系数法求解析式,二次函数的图象和性质,一次函数的图象与性质等知识点,熟练掌握二次函数和一次函数的图象与性质是解题的关键.(1)①将()9,3.6代入即可求解;②将2115y x x =−+变为2115151524y x ⎛⎫=−−+ ⎪⎝⎭,即可确定顶点坐标,得出 2.4km y =,进而求得当 2.4km y =时,对应的x 的值,然后进行比较再计算即可; (2)若火箭落地点与发射点的水平距离为15km ,求得227a =−,即可求解. 【小问1详解】解:①∵火箭第二级的引发点的高度为3.6km∴抛物线2y ax x =+和直线12y x b =−+均经过点()9,3.6 ∴3.6819a =+,13.692b =−⨯+ 解得115a =−,8.1b =. ②由①知,18.12y x =−+,2115y x x =−+ ∴22111515151524y x x x ⎛⎫=−+=−−+ ⎪⎝⎭ ∴最大值15km 4y = 当15 1.35 2.4km 4y =−=时, 则21 2.415x x −+= 解得112x =,23x =又∵9x =时, 3.6 2.4y =>∴当 2.4km y =时, 则418. 2.12x +=− 解得11.4x =()11.438.4km −=∴这两个位置之间的距离8.4km .【小问2详解】解:当水平距离超过15km 时,火箭第二级的引发点为()9,819a +,将()9,819a +,()15,0代入12y x b =−+,得 181992a b +=−⨯+,10152b =−⨯+ 解得7.5b =,227a =− ∴2027a −<<. 23. 问题背景:如图(1),在矩形ABCD 中,点E ,F 分别是AB ,BC 的中点,连接BD ,EF ,求证:BCD FBE ∽△△.问题探究:如图(2),在四边形ABCD 中,AD BC ∥,90BCD ∠=︒,点E 是AB 的中点,点F 在边BC 上,2AD CF =,EF 与BD 交于点G ,求证:BG FG =.问题拓展:如图(3),在“问题探究”的条件下,连接AG ,AD CD =,AG FG =,直接写出EG GF的值.【答案】 【解析】 【分析】问题背景:根据矩形的性质可得90AB CD EBF C =∠=∠=︒,,根据点E ,F 分别是AB ,BC 的中点,可得12BE BF AB BC ==,即可得证;。

2024年山东省滨州市中考数学试题+答案详解

2024年山东省滨州市中考数学试题+答案详解

2024年山东省滨州市中考数学试题+答案详解(试题部分)温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分120分,考试用时120分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共24分)一、选择题:本大题共8个小题,每小题3分,满分24分.每小题只有一个选项符合题目要求. 1. 12−的绝对值是( )A. 2B. 12 C. 12− D. 2−2. 如图,一个三棱柱无论怎么摆放,其主视图不可能是( )A. B.C. D.3. 数学中有许多精美的曲线,以下是“悬链线”“黄金螺旋线”“三叶玫瑰线”和“笛卡尔心形线”.其中不是轴对称图形的是( )A. B.C. D.4. 下列运算正确的是( )A. ()336n n =B. 22(2)4a a −=−C. 824x x x ÷=D. 23m m m ⋅=5. 若点()12,N a a −在第二象限,那么a 的取值范围是( ) A. 12a > B. 12a < C. 102a << D. 102a ≤< 6. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:某同学分析上表后得出如下结论:①这些运动员成绩的平均数是1.65;②这些运动员成绩的中位数是1.70;③这些运动员成绩的众数是1.75.上述结论中正确的是( )A. ②③B. ①③C. ①②D. ①②③7. 点()11,M x y 和点()22,N x y 在反比例函数223k k y x−+=(k 为常数)的图象上,若120x x <<,则120y y ,,的大小关系为( )A. 120y y <<B. 120y y >>C. 120y y <<D. 120y y >>8. 刘徽(今山东滨州人)是魏晋时期我国伟大的数学家,中国古典数学理论的奠基者之一,被誉为“世界古代数学泰斗”.刘徽在注释《九章算术》时十分重视一题多解,其中最典型的是勾股容方和勾股容圆公式的推导,他给出了内切圆直径的多种表达形式.如图,Rt ABC △中,90C ∠=︒,,,AB BC CA 的长分别为,,c a b .则可以用含,,c a b 的式子表示出ABC 的内切圆直径d ,下列表达式错误的是( )A. d a b c =+−B. 2ab d a b c =++C. d =D. |()()|d a b c b =−−第Ⅱ卷(非选择题共96分)二、填空题:本大题共8个小题,每小题3分,满分24分.9. 若分式11x −在实数范围内有意义,则x 的取值范围是_____.10.小的整数是___________.11. 将抛物线2y x =−先向右平移1个单位长度,再向上平移2个单位长度,则平移后抛物线的顶点坐标为____________.12. 一副三角板如图1摆放,把三角板AOB 绕公共顶点O 顺时针旋转至图2,即AB OD ∥时,1∠的大小为____________︒.13. 如图,在ABC 中,点D ,E 分别在边,AB AC 上.添加一个条件使ADE ACB ∽,则这个条件可以是____________.(写出一种情况即可)14. 如图,四边形ABCD 内接于⊙O ,若四边形AOCD 是菱形,∠B 的度数是______.15. 如图,四边形AOBC 四个顶点的坐标分别是(1,3)A −,(0,0)O ,(3,1)B −,(5,4)C ,在该平面内找一点P ,使它到四个顶点的距离之和PA PO PB PC +++最小,则P 点坐标为____________.16. 如图,在边长为1的正方形网格中,点A ,B 均在格点上.(1)AB 的长为____________;(2)请只用..无刻度的直尺,在如图所示的网格中,画出以AB 为边的矩形ABCD ,使其面积为263,并简要说明点C ,D 的位置是如何找到的(不用证明):____________. 三、解答题:本大题共8个小题,满分72分.解答时请写出必要的演推过程.17. 计算:()11222−⎫⎛+−⨯−− ⎪⎝⎭ 18. 解方程:(1)21132x x −+=; (2)240x x −=.19. 欧拉是历史上享誉全球的最伟大的数学家之一,他不仅在高等数学各个领域作出杰出贡献,也在初等数学中留下了不凡的足迹.设a ,b ,c 为两两不同的数,称()()()()()()()0,1,2,3n n nn a b c P n a b a c b c b a c a c b =++=−−−−−−为欧拉分式. (1)写出0P 对应的表达式;(2)化简1P 对应的表达式.20. 某校劳动实践基地共开设五门劳动实践课程,分别是A :床铺整理,B :衣物清洗,C :手工制作、D :简单烹饪、E :绿植栽培;课程开设一段时间后,季老师采用抽样调查的方式在全校学生中开展了“我最喜欢的劳动实践课程”为主题的问卷调查.根据调查所收集的数我进行整理、绘制了如下两幅不完整的统计图.根据图中信息,请回答下列问题:(1)请将条形统计图补充完整,并直接写出“手工制作”对应的扇形圆心角度数;(2)若该校共有1800名学生,请你估计全校最喜欢“绿植栽培”的学生人数;(3)小兰同学从B ,C ,D 三门课程中随机选择一门参加劳动实践,小亮同学从C ,D ,E 三门课程中随机选择一门参加劳动实践,求两位同学选择相同课程的概率.21. 【问题背景】某校八年级数学社团在研究等腰三角形“三线合一”性质时发现:①如图,在ABC 中,若AD BC ⊥,BD CD =,则有B C ∠=∠;②某同学顺势提出一个问题:既然①正确,那么进一步推得AB AC =,即知AB BD AC CD +=+,若把①中的BD CD =替换为AB BD AC CD +=+,还能推出B C ∠=∠吗?基于此,社团成员小军、小民进行了探索研究,发现确实能推出B C ∠=∠,并分别提供了不同的证明方法.小军小民ADB 与△【问题解决】(1)完成①的证明;(2)把②中小军、小民的证明过程补充完整.22. 春节期间,全国各影院上映多部影片,某影院每天运营成本为2000元,该影院每天售出的电影票数量y (单位:张)与售价x (单位:元/张)之间满足一次函数关系(3080x ≤≤,且x 是整数),部分数据如下表所示:(1)请求出y 与x 之间的函数关系式;(2)设该影院每天的利润(利润=票房收入-运营成本)为w (单位:元),求w 与x 之间的函数关系式;(3)该影院将电影票售价x 定为多少时,每天获利最大?最大利润是多少?如图1,ABC 中,点D ,E ,F 分别在三边BC CA AB ,,上,且满足DF AC DE AB ,∥∥.23. ①求证:四边形AFDE 为平行四边形;②若AB BD AC DC=,求证:四边形AFDE 为菱形; 24. 把一块三角形余料MNH (如图2所示)加工成菱形零件,使它的一个顶点与MNH △的顶点M 重合,另外三个顶点分别在三边MN NH HM ,,上,请在图2上作出这个菱形.(用尺规作图,保留作图痕迹,不写作法.)25. 【教材呈现】现行人教版九年级下册数学教材85页“拓广探索”第14题: ABC 中,)【得出结论】sin sin sin a b c A B C==. 【基础应用】在ABC 中,75B ∠=︒,45C ∠=︒,2BC =,利用以上结论求AB 的长;【推广证明】 进一步研究发现,sin sin sin a b c A B C==不仅在锐角三角形中成立,在任意三角形中均成立,并且还满足2sin sin sin a b c R A B C===(R 为ABC 外接圆的半径). 请利用图1证明:2sin sin sin a b c R A B C===.【拓展应用】如图2,四边形ABCD 中,2AB =,3BC =,4CD =,90B C ∠=∠=︒.求过A ,B ,D 三点的圆的半径.2024年山东省滨州市中考数学试题+答案详解(答案详解)温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分120分,考试用时120分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共24分)一、选择题:本大题共8个小题,每小题3分,满分24分.每小题只有一个选项符合题目要求.1.12−的绝对值是()A. 2B. 12C.12− D. 2−【答案】B【解析】【分析】本题考查了绝对值,根据数轴上某个数与原点的距离叫做这个数的绝对值的定义进行求解即可.【详解】解:∵11 22−=,∴12−的绝对值是12,故选:B.2. 如图,一个三棱柱无论怎么摆放,其主视图不可能是()A. B.C. D.【答案】A【解析】【分析】本题考查了物体的三视图,根据三棱柱的表面由2个三角形,1个正方形,2个矩形构成即可判断求解,掌握三棱柱的结构特点是解题的关键.【详解】解:∵三棱柱的表面由2个三角形,1个正方形,2个矩形构成,∴其主视图可能是三角形或正方形或矩形,不可能是圆,故选:A.3. 数学中有许多精美的曲线,以下是“悬链线”“黄金螺旋线”“三叶玫瑰线”和“笛卡尔心形线”.其中不是轴对称图形的是()A. B.C. D.【答案】B【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进行判断即可.【详解】解:A,C,D选项中的图形都能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;B选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形.故选:B.4. 下列运算正确的是( )A. ()336n n =B. 22(2)4a a −=−C. 824x x x ÷=D. 23m m m ⋅=【答案】D【解析】【分析】本题考查了幂的运算.根据幂的乘方运算、积的乘方运算、同底数幂的乘法运算、同底数幂的除法运算逐项验证即可得到答案.【详解】解:A 、()3396n n n =≠,本选项不符合题意;B 、222(2)44a a a −=≠−,本选项不符合题意;C 、8264x x x x ÷=≠,本选项不符合题意;D 、23m m m ⋅=,本选项符合题意;故选:D .5. 若点()12,N a a −在第二象限,那么a 的取值范围是( ) A. 12a > B. 12a < C. 102a << D. 102a ≤< 【答案】A【解析】【分析】本题考查各象限内的点的坐标特点,解一元一次不等式组.根据点()12,N a a −在第二象限可得不等式组1200a a −<⎧⎨>⎩,求解即可. 【详解】解:∵点()12,N a a −在第二象限,∴1200a a −<⎧⎨>⎩, 解得:12a >. 故选:A .6. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:某同学分析上表后得出如下结论:①这些运动员成绩的平均数是1.65;②这些运动员成绩的中位数是1.70;③这些运动员成绩的众数是1.75.上述结论中正确的是( )A. ②③B. ①③C. ①②D. ①②③ 【答案】A【解析】【分析】本题考查了平均数、中位数、众数.根据平均数、中位数、众数的意义求解即可.【详解】解:①这些运动员成绩的平均数是()12 1.53 1.62 1.653 1.74 1.751 1.8 1.615⨯+⨯+⨯+⨯+⨯+⨯=,原说法不正确;②这些运动员成绩的中位数是从小到大排列第8个数为1.70,原说法正确;③这些运动员成绩出现最多的是1.75,则的众数是1.75,原说法正确.故选:A .7. 点()11,M x y 和点()22,N x y 在反比例函数223k k y x −+=(k 为常数)的图象上,若120x x <<,则120y y ,,的大小关系为( )A. 120y y <<B. 120y y >>C. 120y y <<D. 120y y >>【答案】C【解析】【分析】本题考查了反比例函数的性质,利用配方法可得()2223120k k k −+=−+>,进而得到反比例函数的图象分布在一、三象限,0x >时,0y >,0x <时,0y <,据此即可求解,利用配方法得到()2223120k k k −+=−+>是解题的关键.【详解】解:∵()2223120k k k −+=−+>, ∴反比例函数的图象分布在一、三象限,0x >时,0y >,0x <时,0y <,∵120x x <<,∴120y y <<,故选:C .8. 刘徽(今山东滨州人)是魏晋时期我国伟大的数学家,中国古典数学理论的奠基者之一,被誉为“世界古代数学泰斗”.刘徽在注释《九章算术》时十分重视一题多解,其中最典型的是勾股容方和勾股容圆公式的推导,他给出了内切圆直径的多种表达形式.如图,Rt ABC △中,90C ∠=︒,,,AB BC CA 的长分别为,,c a b .则可以用含,,c a b 的式子表示出ABC 的内切圆直径d ,下列表达式错误的是( )A. d a b c =+−B. 2ab d a b c =++C. d =D. |()()|d a b c b =−−【答案】D【解析】【分析】如图,设E F G 、、为切点,连接OC OD OE OF 、、、,则OE AC ⊥,再结合切线长定理可判定A ,再结合三角形的面积可判定B ,再由d a b c =+−,结合完全平方公式与勾股定理可判断C ,通过举反例可得D 错误.【详解】解:如图,设E F G 、、为切点,连接OC OD OE OF 、、、,则OE AC ⊥,OD BC ⊥,OF AB ⊥,2d OD OE OF ===,由切线长定理得,AE AF =,CE CD =,BD BF =,∵90ACB OEC ODC ∠=∠=∠=︒,CE CD =,∴四边形ODCE 是正方形, ∴2d CE CD OD ===, ∴2d AE b =−,2d BD a =−,∴2d BF a =−, ∴22d d AF c a c a ⎛⎫=−−=−+ ⎪⎝⎭, ∵AE AF =, ∴22d d b c a −=−+, ∴d a b c =+−,故A 正确,不合题意;∵ABC BOC AOC AOB S S S S =++△△△△, ∴11112222222d d d ab a b c =⨯+⨯+⨯, ∴2ab ad bd cd =++ ∴2ab d a b c=++,故B 正确,不合题意; ∵d a b c =+−,∴()22d a b c =+− 222222a b c ab ac bc =+++−−,∵222+=a b c ,222222d c ab ac bc ∴=+−−()()22c c a b c a =−−−()()2c a c b =−−,∵0d >,d ∴=C 正确;令3a =,4b =,5c =,3452d a b c ∴=+−=+−=,而()()()()34541a b c b −−=−⨯−=,|()()|d a b c b ∴≠−−,故D 错误;故选D【点睛】本题考查的是三角形的内切圆的性质,勾股定理的应用,分解因式的应用,举反例的应用,切线长定理的应用,掌握基础知识并灵活应用是解本题的关键.第Ⅱ卷(非选择题共96分)二、填空题:本大题共8个小题,每小题3分,满分24分.9. 若分式11x−在实数范围内有意义,则x的取值范围是_____.【答案】x≠1【解析】【分析】分式有意义的条件是分母不等于零.【详解】∵分式11x−在实数范围内有意义,∴x−1≠0,解得:x≠1故答案为x≠1.【点睛】此题考查分式有意义的条件,解题关键在于分母不等于零使得分式有意义.10.小的整数是___________.【答案】2或3【解析】的大小,然后确定范围在其中的整数即可.【详解】2<,323<<<小的整数为2或3,故答案为:2或3【点睛】本题考查了无理数的估算和大小比较,掌握无理数估算的方法是正确解答的关键.11. 将抛物线2y x=−先向右平移1个单位长度,再向上平移2个单位长度,则平移后抛物线的顶点坐标为____________.【答案】()1,2【解析】【分析】本题考查了二次函数的图象与几何变换和二次函数的性质.根据“上加下减,左加右减”的规律进行解答即可.【详解】解:由抛物线2y x =−先向右平移1个单位长度,再向上平移2个单位长度,根据“上加下减,左加右减”规律可得抛物线是()212y x =−−+,∴顶点坐标是()1,2故答案为:()1,2.12. 一副三角板如图1摆放,把三角板AOB 绕公共顶点O 顺时针旋转至图2,即AB OD ∥时,1∠的大小为____________︒.【答案】75【解析】【分析】本题考查了的平行线的性质,三角形的外角性质.由AB OD ∥,推出45BOD B ∠=∠=︒,再利用三角形的外角性质即可求解.【详解】解:∵AB OD ∥,∴45BOD B ∠=∠=︒,∴1453075BOD D ∠=∠+∠=︒+︒=︒,故答案为:75.13. 如图,在ABC 中,点D ,E 分别在边,AB AC 上.添加一个条件使ADE ACB ∽,则这个条件可以是____________.(写出一种情况即可)【答案】ADE C ∠=∠或AED B ∠=∠或AD AE AC AB= 【解析】 【分析】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.利用有两组角对应相等的两个三角形相似添加条件.【详解】解:DAE CAB ∠=∠,∴当ADE C ∠=∠时,ADE ACB ∽.当AED B ∠=∠时,ADE ACB ∽. 当AD AE AC AB=时,ADE ACB ∽. 故答案为:ADE C ∠=∠或AED B ∠=∠或AD AE AC AB =. 14. 如图,四边形ABCD 内接于⊙O ,若四边形AOCD 是菱形,∠B 的度数是______.【答案】60°##60度【解析】【分析】根据圆内接四边形的性质得到∠B +∠D =180°,根据菱形的性质,圆周角定理列式计算即可.【详解】解:∵四边形ABCD 内接于⊙O ,∴∠B +∠D =180°,∵四边形OACD 是菱形,∴∠AOC =∠D ,由圆周角定理得,∠B =12∠AOC , ∴∠B +2∠B =180°,解得,∠B =60°,故答案为:60°.【点睛】本题考查的是圆内接四边形的性质,菱形的性质,掌握圆内接四边形的对角互补是解题的关键. 15. 如图,四边形AOBC 四个顶点的坐标分别是(1,3)A −,(0,0)O ,(3,1)B −,(5,4)C ,在该平面内找一点P ,使它到四个顶点的距离之和PA PO PB PC +++最小,则P 点坐标为____________.【答案】108,99⎛⎫⎪⎝⎭##181,99⎛⎫ ⎪⎝⎭ 【解析】 【分析】本题考查了一次函数的应用,两点之间线段最短.连接AB OC 、相交于点P ,根据“两点之间线段最短”知PA PO PB PC +++最小,利用待定系数法求得直线AB 和OC 的解析式,联立即可求解.【详解】解:连接AB OC 、相交于点P ,根据“两点之间线段最短”知PA PO PB PC +++最小,设直线AB 的解析式为y kx b =+,则有331k b k b −+=⎧⎨+=−⎩, 解得12k b =−⎧⎨=⎩, ∴直线AB 的解析式为2y x =−+,设直线OC 的解析式为y mx =,则有45m =, 解得45m =, ∴直线OC 的解析式为45y x =, 联立得425x x =−+,解得109x=,则4108599y=⨯=,∴P点坐标为108,99⎛⎫ ⎪⎝⎭,故答案为:108,99⎛⎫ ⎪⎝⎭.16. 如图,在边长为1的正方形网格中,点A,B均在格点上.(1)AB的长为____________;(2)请只用..无刻度的直尺,在如图所示的网格中,画出以AB为边的矩形ABCD,使其面积为263,并简要说明点C,D的位置是如何找到的(不用证明):____________.【答案】①. ②. 取点,E F,得到正方形ABEF,AF交格线于点C,BE交格线于点D,连接DC,得到矩形ABCD,即为所求.【解析】【分析】本题考查了网格与勾股定理,勾股定理的逆定理,矩形的性质与判定,掌握勾股定理是解题的关键.(1)根据勾股定理直接计算即可求解;(2)取点,E F,得到正方形ABEF,AF交格线于点D,BE交格线于点C,连接DC,得到矩形ABCD,即为所求.【详解】(1)AB==(2)取点,E F,则AF AB===ABEF,∴正方形ABEF13=,AF交格线于点D,BE交格线于点C,连接DC ,得到矩形ABCD ,∵DG FH , ∴23AD AG AF AH ==,∴23AD AF BC ===,∴矩形ABCD 263=, 如图,矩形ABCD ,即为所求..故答案为:取点,E F ,得到正方形ABEF ,AF 交格线于点D ,BE 交格线于点C ,连接DC ,得到矩形ABCD ,即为所求.三、解答题:本大题共8个小题,满分72分.解答时请写出必要的演推过程.17. 计算:()11222−⎫⎛+−⨯−− ⎪⎝⎭ 【答案】0【解析】【分析】本题考查了实数的混合运算,根据实数的运算法则和运算律即可求解,掌握据实数的运算法则和运算律是解题的关键. 【详解】解:原式13122=+−, 13122=−+, =11−+,0=.18. 解方程:(1)21132x x −+=; (2)240x x −=.【答案】(1)5x =(2)10x =,24x =.【解析】【分析】本题主要考查了解一元一次方程和一元二次方程,解题的关键是熟练掌握解方程的一般步骤,准确计算.(1)先去分母,再去括号,然后移项并合并同类项,最后系数化为1即可得解;(2)用因式分解法,解一元二次方程即可.【小问1详解】 解:21132x x −+=, 去括号得:()()22131x x −=+,去括号得:4233x x −=+,移项合并同类项得:5x =;【小问2详解】解:240x x −=,分解因式得:()40x x −=,∴0x =或40x −=,解得:10x =,24x =.19. 欧拉是历史上享誉全球的最伟大的数学家之一,他不仅在高等数学各个领域作出杰出贡献,也在初等数学中留下了不凡的足迹.设a ,b ,c 为两两不同的数,称()()()()()()()0,1,2,3n n nn a b c P n a b a c b c b a c a c b =++=−−−−−−为欧拉分式. (1)写出0P 对应的表达式;(2)化简1P 对应的表达式.【答案】(1)()()()()()()0111P a b a c b c b a c a c b =++−−−−−−(2)10P =【解析】 【分析】本题考查分式的化简求值,弄清欧拉公式的特点,利用分式的加减法计算是解题的关键. (1)将0n =代入欧拉公式即可;(2)将1n =代入欧拉公式化简计算即可.【小问1详解】解:当0n =时,()()()()()()0000a b c P a b a c b c b a c a c b =++−−−−−− ()()()()()()111a b a c b c b a c a c b =++−−−−−− 【小问2详解】 ()()()()()()1a b c P a b a c b c b a c a c b =++−−−−−− ()()()()()()a b a c b c a b a c b c a b c =−+−−−−−− ()())()()()(a b c b a c c a b a b a c b c =−−−−−−+− ()()()ab ac ab bc ca b c b c bc a a =−−−−−−++ ()()()ab ac ab bc ca b c b c bc a a =−−−−−−++ 0=.20. 某校劳动实践基地共开设五门劳动实践课程,分别是A :床铺整理,B :衣物清洗,C :手工制作、D :简单烹饪、E :绿植栽培;课程开设一段时间后,季老师采用抽样调查的方式在全校学生中开展了“我最喜欢的劳动实践课程”为主题的问卷调查.根据调查所收集的数我进行整理、绘制了如下两幅不完整的统计图.根据图中信息,请回答下列问题:(1)请将条形统计图补充完整,并直接写出“手工制作”对应的扇形圆心角度数;(2)若该校共有1800名学生,请你估计全校最喜欢“绿植栽培”的学生人数;(3)小兰同学从B,C,D三门课程中随机选择一门参加劳动实践,小亮同学从C,D,E三门课程中随机选择一门参加劳动实践,求两位同学选择相同课程的概率.【答案】(1)补充条形统计图见解析;“手工制作”对应的扇形圆心角度数为72︒;(2)估计全校最喜欢“绿植栽培”的学生人数为540人;(3)甲乙两位同学选择相同课程的概率为:29.【解析】【分析】(1)根据选择“E”的人数及比例求出总人数,总人数乘以D占的比例求得“D”的人数,总人数减去其他类别的人数求得“A”的人数,据此即可将条形统计图补充完整,再用360度乘以“C”占的比例即为“手工制作”对应的扇形圆心角度数;(2)利用样本估计总体思想求解;(3)通过列表或画树状图列出所有等可能的情况,再从中找出符合条件的情况数,再利用概率公式计算.【小问1详解】解:参与调查的总人数为:3030%100÷=(人),“D”的人数10025%25⨯=(人),“A”的人数1001020253015−−−−=(人),“手工制作”对应的扇形圆心角度数2036072 100⨯︒=︒,补充条形统计图如图:【小问2详解】解:180030%540⨯=(人),因此估计全校最喜欢“绿植栽培”的学生人数为540人;【小问3详解】解:画树状图如下:由图可知,共有9种等可能的情况,其中两位同学选择相同课程的情况有2种, 因此甲乙两位同学选择相同课程的概率为:29. 【点睛】本题考查条形统计图、扇形统计图、利用样本估计总体、利用画树状图或者列表法求概率等,解题的关键是将条形统计图与扇形统计图的信息进行关联,掌握画树状图或者列表法求概率的原理. 21. 【问题背景】某校八年级数学社团在研究等腰三角形“三线合一”性质时发现:①如图,在ABC 中,若AD BC ⊥,BD CD =,则有B C ∠=∠;②某同学顺势提出一个问题:既然①正确,那么进一步推得AB AC =,即知AB BD AC CD +=+,若把①中的BD CD =替换为AB BD AC CD +=+,还能推出B C ∠=∠吗?基于此,社团成员小军、小民进行了探索研究,发现确实能推出B C ∠=∠,并分别提供了不同的证明方法.小军小民 ADB 与△【问题解决】(1)完成①的证明;(2)把②中小军、小民的证明过程补充完整.【答案】(1)见解析 (2)见解析【解析】【分析】题目主要考查全等三角形的判定和性质,勾股定理解三角形,理解题意,作出辅助线,综合运用这些知识点是解题关键.(1)根据题意利用全等三角形的判定和性质即可证明;(2)小军证明:分别延长,DB DC 至E ,F 两点,使得,BE AB CF AC ==,根据全等三角形的判定和性质得出E F ∠∠=,再由等边对等角及三角形的外角性质即可证明;小民证明:利用勾股定理得出AD ==,AD ==AB BD AC CD −=−,然后求和得出AB AC =,即可证明.【小问1详解】证明:∵AD BC ⊥,∴90ADB ADC ∠∠==︒, 在Rt ADB 与Rt ADC 中,90AD AD ADB ADC BD CD ∠∠=⎧⎪==︒⎨⎪=⎩,∴()SAS Rt ADB Rt ADC ≌,∴B C ∠=∠;【小问2详解】小军证明:分别延长,DB DC 至E ,F 两点,使得,BE AB CF AC ==,如图所示:∵AB BD AC CD +=+,∴BE BD CF CD +=+即DE DF =,∵AD BC ⊥,∴90ADB ADC ∠∠==︒,在Rt ADE 与Rt ADF 中,90AD AD ADB ADC ED FD ∠∠=⎧⎪==︒⎨⎪=⎩,∴()SAS Rt ADE Rt ADF ≌,∴E F ∠∠=,∵,BE AB CF AC ==,∴E EAB F FAC ∠∠∠∠===,∴,E EAB ABC F FAC ACB ∠∠∠∠∠∠+=+=,∴ABC ACB ∠∠=;小民:证明:∵AD BC ⊥.∴ADB 与ADC △均为直角三角形,根据勾股定理,AD ==,AD ==∵AB BD AC CD +=+①,∴AB BD AC CD −=−②,+①②得:AB AC =,∴B C ∠=∠.22. 春节期间,全国各影院上映多部影片,某影院每天运营成本为2000元,该影院每天售出的电影票数量y (单位:张)与售价x (单位:元/张)之间满足一次函数关系(3080x ≤≤,且x 是整数),部分数据如下表所示:(1)请求出y 与x 之间的函数关系式;(2)设该影院每天的利润(利润=票房收入-运营成本)为w (单位:元),求w 与x 之间的函数关系式;(3)该影院将电影票售价x 定为多少时,每天获利最大?最大利润是多少?【答案】(1)()43243080y x x =−+≤≤(2)()2432420003080w x x x =−+−≤≤ (3)定价40元/张或41元/张时,每天获利最大,最大利润是4560元【解析】【分析】本题是一次函数与二次函数的应用,解题的关键是得出函数解析式,并熟练掌握二次函数的性质. (1)设y 与x 之间的函数关系式为y kx b =+,根据待定系数法代入求解即可;(2)“利润=票房收入-运营成本”可得函数解析式;(2)将函数解析式配方成顶点式,由3080x ≤≤,且x 是整数,结合二次函数的性质求解可得.【小问1详解】解:设y 与x 之间的函数关系式为y kx b =+,则1644012450k b k b =+⎧⎨=+⎩,解得4324k b =−⎧⎨=⎩, ∴y 与x 之间的函数关系式()43243080y x x =−+≤≤;【小问2详解】由题意得:22000(4324)200043242000w xy x x x x =−=−+−=−+−,即w 与x 之间的函数关系式为:()2432420003080w x x x =−+−≤≤.【小问3详解】()2281432420004()456130802w x x x x =−+−=−−+≤≤, x 是整数,且 3080x ≤≤,∴ 当40x =或41时,w 取得最大值,最大值为4560.价格低更能吸引顾客,定价40元/张或41元/张时,每天获利最大,最大利润是4560元.如图1,ABC 中,点D ,E ,F 分别在三边BC CA AB ,,上,且满足DF AC DE AB ,∥∥.23. ①求证:四边形AFDE 为平行四边形;②若AB BD AC DC=,求证:四边形AFDE 为菱形; 24. 把一块三角形余料MNH (如图2所示)加工成菱形零件,使它的一个顶点与MNH △的顶点M 重合,另外三个顶点分别在三边MN NH HM ,,上,请在图2上作出这个菱形.(用尺规作图,保留作图痕迹,不写作法.)【答案】23. ①见解析;②见解析24. 见解析【解析】【分析】本题考查了平行四边形的判定定理、菱形的判定定理、尺规作图,熟练掌握相关判定定理是解题的关键.(1)①DF AC DE AB ,∥∥,即可证明四边形AFDE 为平行四边形;②由DF AC DE AB ,∥∥,可得DF BD AC BC =,DE CD AB BC=,即DF BC AC BD ⋅=⋅, DE BC AB CD ⋅=⋅,再由AB BD AC DC=,得AB DC AC BD ⋅=⋅,因此DF DE =,进而即可证明四边形AFDE 为菱形; (2)作NMH ∠的角平分线,交NH 于点P ,作MP 的垂直平分线,交MN 于点D ,交MH 于点E ,则四边形MDPE 是菱形.【23题详解】①证明:DF AC DE AB ∥,∥,∴四边形AFDE 为平行四边形;②DF AC ∥,DF BD AC BC∴=, 即DF BC AC BD ⋅=⋅DE AB ∥,DE CD AB BC∴=, 即DE BC AB CD ⋅=⋅, 又AB BD AC DC =, AB DC AC BD ∴⋅=⋅,DF DE ∴=,由①知四边形AFDE 为平行四边形,∴四边形AFDE 为菱形;【24题详解】如图,菱形MDPE 即为所求.∵MP 平分NMH ∠,∴DMP EMP ∠=∠,∵DE 是MP 的垂直平分线,∴DM DP =,EM EP =,∴DMP DPM ∠=∠,=EMP EPM ∠∠,∴DPM EMP ∠=∠,EPM DMP ∠=∠,∴DP ME ∥,EP DM ∥,∴四边形MDPE 是平行四边形,∵DM DP =,∴平行四边形MDPE 是菱形.25. 【教材呈现】现行人教版九年级下册数学教材85页“拓广探索”第14题: ABC 中,)【得出结论】sin sin sin a b c A B C==. 【基础应用】在ABC 中,75B ∠=︒,45C ∠=︒,2BC =,利用以上结论求AB 的长;【推广证明】 进一步研究发现,sin sin sin a b c A B C==不仅在锐角三角形中成立,在任意三角形中均成立,并且还满足2sin sin sin a b c R A B C ===(R 为ABC 外接圆的半径). 请利用图1证明:2sin sin sin a b c R A B C===.【拓展应用】如图2,四边形ABCD 中,2AB =,3BC =,4CD =,90B C ∠=∠=︒.求过A ,B ,D 三点的圆的半径.【答案】教材呈现:见解析;基础应用:AB =;推广证明:见解析;拓展应用:R =. 【解析】。

2024年甘肃定西中考数学试题及答案 (2)

2024年甘肃定西中考数学试题及答案  (2)

2024年甘肃定西中考数学试题及答案考生注意:本试卷满分为150分,考试时间为120分钟.所有试题均在答题卡上作答,否则无效.一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1. 下列各数中,比2-小的数是( )A. 1-B. 4-C. 4D. 12. 如图所示,该几何体的主视图是( )A. B. C. D.3. 若55A ∠=︒,则A ∠的补角为( )A. 35︒B. 45︒C. 115︒D. 125︒4. 计算:4222a b a b a b -=--( )A. 2 B. 2a b - C. 22a b - D. 2a ba b--5. 如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,60ABD ∠=︒,2AB =,则AC 的长为( )A. 6B. 5C. 4D. 36. 如图,点A ,B ,C 在O 上,AC OB ⊥,垂足为D ,若35A ∠=︒,则C ∠的度数是( )A. 20︒B. 25︒C. 30︒D. 35︒7. 如图1,“燕几”即宴几,是世界上最早的一套组合桌,由北宋进士黄伯思设计.全套“燕几”一共有七张桌子,包括两张长桌、两张中桌和三张小桌,每张桌面的宽都相等.七张桌面分开可组合成不同的图形.如图2给出了《燕几图》中名称为“回文”的桌面拼合方式,若设每张桌面的宽为x 尺,长桌的长为y 尺,则y 与x 的关系可以表示为( )A. 3y x =B. 4y x =C. 31y x =+D.41y x =+8. 近年来,我国重视农村电子商务发展.下面的统计图反映了2016—2023年中国农村网络零售额情况.根据统计图提供的信息,下列结论错误的是( )A. 2023年中国农村网络零售额最高的B. 2016年中国农村网络零售额最低C 2016—2023年,中国农村网络零售额持续增加D. 从2020年开始,中国农村网络零售额突破20000亿元9. 敦煌文书是华夏民族引以为傲的艺术瑰宝,其中敦煌《算经》中出现的《田积表》部分如图1所示,它以表格形式将矩形土地的面积直观展示,可迅速准确地查出边长10步到60步的矩形田地面积,极大地提高了农田面积的测量效率.如图2是复原的部分《田积表》,表中对田地的长和宽都用步来表示,A 区域表示的是长15步,宽16步的田地面积为一亩,用有序数对记为()15,16,那么有序数对记为()12,17对应的田地面积为( )A. 一亩八十步B. 一亩二十步C. 半亩七十八步D. 半亩八十四步10. 如图1,动点P 从菱形ABCD 的点A 出发,沿边AB BC →匀速运动,运动到点C 时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为( ).A 2 B. 3D. 二、填空题:本大题共6小题,每小题4分,共24分.11. 因式分解:228x -=________.12. 已知一次函数24y x =-+,当自变量2x >时,函数y 的值可以是________(写出一个合理的值即可).13. 定义一种新运算*,规定运算法则为:*n m n m mn =-(m ,n 均为整数,且0m ≠).例:32*32232=-⨯=,则(2)*2-=________.14. 围棋起源于中国,古代称为“弈”.如图是两位同学的部分对弈图,轮到白方落子,观察棋盘,白方如果落子于点________的位置,则所得的对弈图是轴对称图形.(填写A ,B ,C ,D 中的一处即可,A ,B ,C ,D 位于棋盘的格点上)15. 如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系20.020.3 1.6y x x =-++的图象,点()62.68B ,在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长4m CD =,高 1.8m DE =的矩形,则可判定货车________完全停到车棚内(填“能”或“不能”).16. 甘肃临夏砖雕是一种历史悠久的古建筑装饰艺术,是第一批国家级非物质文化遗产.如.图1是一块扇面形的临夏砖雕作品,它的部分设计图如图2,其中扇形OBC 和扇形OAD 有相同的圆心O ,且圆心角100O ∠=︒,若120OA =cm ,60OB =cm ,则阴影部分的面积是______ 2cm .(结果用π表示)三、解答题:本大题共6小题,共46分.解答时,应写出必要的文字说明、证明过程或演算步骤.17..18. 解不等式组:()223122x x x x ⎧-<+⎪⎨+<⎪⎩19. 先化简,再求值:()()()22222a b a b a b b ⎡⎤+-+-÷⎣⎦,其中2a =,1b =-.20. 马家窑文化以发达的彩陶著称于世,其陶质坚固,器表细腻,红、黑、白彩共用,彩绘线条流畅细致,图案繁缛多变,形成了绚丽典雅的艺术风格,创造了一大批令人惊叹的彩陶艺术精品,体现了古代劳动人民的智慧.如图1的彩陶纹样呈现的是三等分圆周,古人用等边三角形三点定位的方法确定圆周的三等分点,这种方法和下面三等分圆周的方法相通.如图2,已知O 和圆上一点M .作法如下:①以点M 为圆心,OM 长为半径,作弧交O 于A ,B 两点;②延长MO 交O 于点C ;即点A ,B ,C 将O 的圆周三等分.(1)请你依据以上步骤,用不带刻度的直尺和圆规在图2中将O的圆周三等分(保留作加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2020中考数学试题含答案 (53)

2020中考数学试题含答案  (53)

2020中考数学试卷一、选择题:本大题共有12小题,每小题3分,共36分.每小题只有一个正确选项1.(3.00分)计算﹣﹣|﹣3|的结果是()A.﹣1 B.﹣5 C.1 D.52.(3.00分)如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.3.(3.00分)函数y=中,自变量x的取值范围是()A.x≠1 B.x>0 C.x≥1 D.x>14.(3.00分)下列事件中,属于不可能事件的是()A.某个数的绝对值大于0B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540°D.长分别为3,4,6的三条线段能围成一个三角形5.(3.00分)如果2x a+1y与x2y b﹣1是同类项,那么的值是()A.B.C.1 D.36.(3.00分)一组数据1,3,4,4,4,5,5,6的众数和方差分别是()A.4,1 B.4,2 C.5,1 D.5,27.(3.00分)如图,在△ABC中,AB=2,BC=4,∠ABC=30°,以点B为圆心,AB 长为半径画弧,交BC于点D,则图中阴影部分的面积是()A.2﹣B.2﹣C.4﹣D.4﹣8.(3.00分)如图,在△ABC中,AB=AC,△ADE的顶点D,E分别在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,则∠EDC的度数为()A.17.5°B.12.5°C.12°D.10°9.(3.00分)已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A.6 B.5 C.4 D.310.(3.00分)已知下列命题:①若a3>b3,则a2>b2;②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2;③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥c;④周长相等的所有等腰直角三角形全等.其中真命题的个数是()A.4个 B.3个 C.2个 D.1个11.(3.00分)如图,在平面直角坐标系中,直线l1:y=﹣x+1与x轴,y轴分别交于点A和点B,直线l2:y=kx(k≠0)与直线l1在第一象限交于点C.若∠BOC=∠BCO,则k的值为()A.B.C.D.212.(3.00分)如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E 为BC的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则DF的长为()A.B.C.D.二、填空题:本大题共有8小题,每小题3分,共24分.13.(3.00分)若a﹣3b=2,3a﹣b=6,则b﹣a的值为.14.(3.00分)不等式组的非负整数解有个.15.(3.00分)从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.16.(3.00分)化简;÷(﹣1)=.17.(3.00分)如图,AB是⊙O的直径,点C在⊙O上,过点C的切线与BA的延长线交于点D,点E在上(不与点B,C重合),连接BE,CE.若∠D=40°,则∠BEC=度.18.(3.00分)如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S△AEF =1,则S△ADF的值为.19.(3.00分)以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=(x>0)经过点D,则OB•BE的值为.20.(3.00分)如图,在Rt△ACB中,∠ACB=90°,AC=BC,D是AB上的一个动点(不与点A,B重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接DE,DE与AC相交于点F,连接AE.下列结论:①△ACE≌△BCD;②若∠BCD=25°,则∠AED=65°;③DE2=2CF•CA;④若AB=3,AD=2BD,则AF=.其中正确的结论是.(填写所有正确结论的序号)三、解答题:本大题共有6小题,共60分.请写出必要的文字说明、计算过程或推理过程21.(8.00分)某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选人的综合成绩(满分为100分).他们的各项成绩如下表所示:修造人笔试成绩/分面试成绩/分甲9088乙8492丙x90丁8886(1)直接写出这四名候选人面试成绩的中位数;(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.22.(8.00分)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=AD,连接BD,点E在AB上,且∠BDE=15°,DE=4,DC=2.(1)求BE的长;(2)求四边形DEBC的面积.(注意:本题中的计算过程和结果均保留根号)23.(10.00分)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?24.(10.00分)如图,在Rt△ACB中,∠ACB=90°,以点A为圆心,AC长为半径的圆交AB于点D,BA的延长线交⊙A于点E,连接CE,CD,F是⊙A上一点,点F与点C位于BE两侧,且∠FAB=∠ABC,连接BF.(1)求证:∠BCD=∠BEC;(2)若BC=2,BD=1,求CE的长及sin∠ABF的值.25.(12.00分)如图,在矩形ABCD中,AB=3,BC=5,E是AD上的一个动点.(1)如图1,连接BD,O是对角线BD的中点,连接OE.当OE=DE时,求AE 的长;(2)如图2,连接BE,EC,过点E作EF⊥EC交AB于点F,连接CF,与BE交于点G.当BE平分∠ABC时,求BG的长;(3)如图3,连接EC,点H在CD上,将矩形ABCD沿直线EH折叠,折叠后点D落在EC上的点D'处,过点D′作D′N⊥AD于点N,与EH交于点M,且AE=1.①求的值;②连接BE,△D'MH与△CBE是否相似?请说明理由.26.(12.00分)如图,在平面直角坐标系中,已知抛物线y=x2+x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过A,C两点,连接BC.(1)求直线l的解析式;(2)若直线x=m(m<0)与该抛物线在第三象限内交于点E,与直线l交于点D,连接OD.当OD⊥AC时,求线段DE的长;(3)取点G(0,﹣1),连接AG,在第一象限内的抛物线上,是否存在点P,使∠BAP=∠BCO﹣∠BAG?若存在,求出点P的坐标;若不存在,请说明理由.中考数学试卷参考答案与试题解析一、选择题:本大题共有12小题,每小题3分,共36分.每小题只有一个正确选项1.(3.00分)计算﹣﹣|﹣3|的结果是()A.﹣1 B.﹣5 C.1 D.5【分析】原式利用算术平方根定义,以及绝对值的代数意义计算即可求出值.【解答】解:原式=﹣2﹣3=﹣5,故选:B.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2.(3.00分)如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.【解答】解:由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(3.00分)函数y=中,自变量x的取值范围是()A.x≠1 B.x>0 C.x≥1 D.x>1【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0且x﹣1≠0,解得x>1.故选:D.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.(3.00分)下列事件中,属于不可能事件的是()A.某个数的绝对值大于0B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540°D.长分别为3,4,6的三条线段能围成一个三角形【分析】直接利用随机事件以及确定事件的定义分析得出答案.【解答】解:A、某个数的绝对值大于0,是随机事件,故此选项错误;B、某个数的相反数等于它本身,是随机事件,故此选项错误;C、任意一个五边形的外角和等于540°,是不可能事件,故此选项正确;D、长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误.故选:C.【点评】此题主要考查了随机事件以及确定事件,正确把握相关定义是解题关键.5.(3.00分)如果2x a+1y与x2y b﹣1是同类项,那么的值是()A.B.C.1 D.3【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出a、b的值,然后代入求值.【解答】解:∵2x a+1y与x2y b﹣1是同类项,∴a+1=2,b﹣1=1,解得a=1,b=2.∴=.故选:A.【点评】此题考查了同类项的知识,属于基础题,掌握同类项所含字母相同,并且相同字母的指数也相同,是解答本题的关键.6.(3.00分)一组数据1,3,4,4,4,5,5,6的众数和方差分别是()A.4,1 B.4,2 C.5,1 D.5,2【分析】根据题目中的数据可以直接写出众数,求出相应的平均数和方差,从而可以解答本题.【解答】解:数据1,3,4,4,4,5,5,6的众数是4,,则=2,故选:B.【点评】本题考查方差和众数,解答本题的关键是明确众数的定义,会求一组数据的方差.7.(3.00分)如图,在△ABC中,AB=2,BC=4,∠ABC=30°,以点B为圆心,AB 长为半径画弧,交BC于点D,则图中阴影部分的面积是()A.2﹣B.2﹣C.4﹣D.4﹣【分析】过A作AE⊥BC于E,依据AB=2,∠ABC=30°,即可得出AE=AB=1,再根据公式即可得到,阴影部分的面积是×4×1﹣=2﹣.【解答】解:如图,过A作AE⊥BC于E,∵AB=2,∠ABC=30°,∴AE=AB=1,又∵BC=4,∴阴影部分的面积是×4×1﹣=2﹣,故选:A.【点评】本题主要考查了扇形面积的计算,求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积,常用的方法:①直接用公式法;②和差法;③割补法.8.(3.00分)如图,在△ABC中,AB=AC,△ADE的顶点D,E分别在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,则∠EDC的度数为()A.17.5°B.12.5°C.12°D.10°【分析】由AB=AC知∠B=∠C,据此得2∠C+∠BAC=180°,结合∠C+∠BAC=145°可知∠C=35°,根据∠DAE=90°、AD=AE知∠AED=45°,利用∠EDC=∠AED﹣∠C 可得答案.【解答】解:∵AB=AC,∴∠B=∠C,∴∠B+∠C+∠BAC=2∠C+∠BAC=180°,又∵∠C+∠BAC=145°,∴∠C=35°,∵∠DAE=90°,AD=AE,∴∠AED=45°,∴∠EDC=∠AED﹣∠C=10°,故选:D.【点评】本题主要考查等腰直角三角形,解题的关键是掌握等腰直角三角形和等腰三角形的性质及三角形的内角和定理、外角的性质.9.(3.00分)已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A.6 B.5 C.4 D.3【分析】根据方程的系数结合根的判别式△≥0,即可得出m≤3,由m为正整数结合该方程的根都是整数,即可求出m的值,将其相加即可得出结论.【解答】解:∵a=1,b=2,c=m﹣2,关于x的一元二次方程x2+2x+m﹣2=0有实数根∴△=b2﹣4ac=22﹣4(m﹣2)=12﹣4m≥0,∴m≤3.∵m为正整数,且该方程的根都是整数,∴m=2或3.∴2+3=5.故选:B.【点评】本题考查了根的判别式以及一元二次方程的整数解,牢记“当△≥0时,方程有实数根”是解题的关键.10.(3.00分)已知下列命题:①若a3>b3,则a2>b2;②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2;③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥c;④周长相等的所有等腰直角三角形全等.其中真命题的个数是()A.4个 B.3个 C.2个 D.1个【分析】依据a,b的符号以及绝对值,即可得到a2>b2不一定成立;依据二次函数y=x2﹣2x﹣1图象的顶点坐标以及对称轴的位置,即可得y1>y2>﹣2;依据a∥b,b⊥c,即可得到a∥c;依据周长相等的所有等腰直角三角形的边长对应相等,即可得到它们全等.【解答】解:①若a3>b3,则a2>b2不一定成立,故错误;②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2,故正确;③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a⊥c,故错误;④周长相等的所有等腰直角三角形全等,故正确.故选:C.【点评】本题主要考查了命题与定理,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11.(3.00分)如图,在平面直角坐标系中,直线l1:y=﹣x+1与x轴,y轴分别交于点A和点B,直线l2:y=kx(k≠0)与直线l1在第一象限交于点C.若∠BOC=∠BCO,则k的值为()A.B.C.D.2【分析】利用直线l1:y=﹣x+1,即可得到A(2,0)B(0,1),AB==3,过C作CD⊥OA于D,依据CD∥BO,可得OD=AO=,CD=BO=,进而得到C(,),代入直线l2:y=kx,可得k=.【解答】解:直线l1:y=﹣x+1中,令x=0,则y=1,令y=0,则x=2,即A(2,0)B(0,1),∴Rt△AOB中,AB==3,如图,过C作CD⊥OA于D,∵∠BOC=∠BCO,∴CB=BO=1,AC=2,∵CD∥BO,∴OD=AO=,CD=BO=,即C(,),把C(,)代入直线l2:y=kx,可得=k,即k=,故选:B.【点评】本题主要考查了两直线相交或平行问题,两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.12.(3.00分)如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E 为BC的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则DF的长为()A.B.C.D.【分析】先利用含30度角的直角三角形的性质求出BD,再利用直角三角形的性质求出DE=BE=2,即:∠BDE=∠ABD,进而判断出DE∥AB,再求出AB=3,即可得出结论.【解答】解:如图,在Rt△BDC中,BC=4,∠DBC=30°,∴BD=2,连接DE,∵∠BDC=90°,点D是BC中点,∴DE=BE=CE BC=2,∵∠DCB=30°,∴∠BDE=∠DBC=30°,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠BDE,∴DE∥AB,∴△DEF∽△BAF,∴,在Rt△ABD中,∠ABD=30°,BD=2,∴AB=3,∴,∴,∴DF=BD=×2=,故选:D.【点评】此题主要考查了含30度角的直角三角形的性质,相似三角形的判定和性质,角平分线的定义,判断出DE∥是解本题的关键.二、填空题:本大题共有8小题,每小题3分,共24分.13.(3.00分)若a﹣3b=2,3a﹣b=6,则b﹣a的值为﹣2.【分析】将两方程相加可得4a﹣4b=8,再两边都除以2得出a﹣b的值,继而由相反数定义或等式的性质即可得出答案.【解答】解:由题意知,①+②,得:4a﹣4b=8,则a﹣b=2,∴b﹣a=﹣2,故答案为:﹣2.【点评】本题主要考查解二元一次方程组,解题的关键是掌握等式的基本性质的灵活运用及两方程未知数系数与待求代数式间的特点.14.(3.00分)不等式组的非负整数解有4个.【分析】首先正确解不等式组,根据它的解集写出其非负整数解.【解答】解:解不等式2x+7>3(x+1),得:x<4,解不等式x﹣≤,得:x≤8,则不等式组的解集为x<4,所以该不等式组的非负整数解为0、1、2、3这4个,故答案为:4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(3.00分)从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.【分析】列表得出所有等可能结果,从中找到积为大于﹣4小于2的结果数,根据概率公式计算可得.【解答】解:列表如下:﹣2﹣112﹣22﹣2﹣4﹣12﹣1﹣21﹣2﹣122﹣4﹣22由表可知,共有12种等可能结果,其中积为大于﹣4小于2的有6种结果,∴积为大于﹣4小于2的概率为=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.16.(3.00分)化简;÷(﹣1)=﹣.【分析】根据分式混合运算顺序和运算法则计算可得.【解答】解:原式=÷(﹣)=÷=•=﹣,故答案为:﹣.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.17.(3.00分)如图,AB是⊙O的直径,点C在⊙O上,过点C的切线与BA的延长线交于点D,点E在上(不与点B,C重合),连接BE,CE.若∠D=40°,则∠BEC=115度.【分析】连接OC,根据切线的性质求出∠DCO,求出∠COB,即可求出答案.【解答】解:连接OC,∵DC切⊙O于C,∴∠DCO=90°,∵∠D=40°,∴∠COB=∠D+∠DCO=130°,∴的度数是130°,∴的度数是360°﹣130°=230°,∴∠BEC==115°,故答案为:115.【点评】本题考查了圆周角定理和切线的性质,能根据切线的性质求出∠DCO的度数是解此题的关键.18.(3.00分)如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S△AEF =1,则S△ADF的值为.【分析】由3AE=2EB可设AE=2a、BE=3a,根据EF∥BC得=()2=,结合S△AEF =1知S△ADC=S△ABC=,再由==知=,继而根据S△ADF=S△ADC可得答案.【解答】解:∵3AE=2EB,∴可设AE=2a、BE=3a,∵EF∥BC,∴△AEF∽△ABC,∴=()2=()2=,∵S△AEF=1,∴S△ABC=,∵四边形ABCD是平行四边形,∴S△ADC =S△ABC=,∵EF∥BC,∴===,∴==,∴S△ADF =S△ADC=×=,故答案为:.【点评】本题主要考查相似三角形的判定与性质,解题的关键是掌握相似三角形的判定及性质、平行线分线段成比例定理及平行四边形的性质.19.(3.00分)以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=(x>0)经过点D,则OB•BE的值为3.【分析】由双曲线y=(x >0)经过点D 知S △ODF =k=,由矩形性质知S △AOB =2S △ODF =,据此可得OA•BE=3,根据OA=OB 可得答案.【解答】解:如图,∵双曲线y=(x >0)经过点D ,∴S △ODF =k=,则S △AOB =2S △ODF =,即OA•BE=,∴OA•BE=3,∵四边形ABCD 是矩形,∴OA=OB ,∴OB•BE=3,故答案为:3.【点评】本题主要考查反比例函数图象上的点的坐标特征,解题的关键是掌握反比例函数系数k 的几何意义及矩形的性质.20.(3.00分)如图,在Rt △ACB 中,∠ACB=90°,AC=BC ,D 是AB 上的一个动点(不与点A ,B 重合),连接CD ,将CD 绕点C 顺时针旋转90°得到CE ,连接DE ,DE 与AC 相交于点F ,连接AE .下列结论:①△ACE≌△BCD;②若∠BCD=25°,则∠AED=65°;③DE2=2CF•CA;④若AB=3,AD=2BD,则AF=.其中正确的结论是①②③.(填写所有正确结论的序号)【分析】先判断出∠BCD=∠ACE,即可判断出①正确;先求出∠BDC=110°,进而得出∠AEC=110°,即可判断出②正确;先判断出∠CAE=∠CEF,进而得出△CEF∽△CAE,即可得出CE2=CF•AC,最后用勾股定理即可得出③正确;先求出BC=AC=3,再求出BD=,进而求出CE=CD=,求出CF=,即可判断出④错误.【解答】解:∵∠ACB=90°,由旋转知,CD=CE,∠DCE=90°=∠ACB,∴∠BCD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE,故①正确;∵∠ACB=90°,BC=AC,∴∠B=45°∵∠BCD=25°,∴∠BDC=180°﹣45°﹣25°=110°,∵△BCD≌△ACE,∴∠AEC=∠BDC=110°,∵∠DCE=90°,CD=CE,∴∠CED=45°,则∠AED=∠AEC﹣∠CED=65°,故②正确;∵△BCD≌△ACE,∴∠CAE=∠CBD=45°=∠CEF,∵∠ECF=∠ACE,∴△CEF∽△CAE,∴,∴CE2=CF•AC,在等腰直角三角形CDE中,DE2=2CE2=2CF•AC,故③正确;如图,过点D作DG⊥BC于G,∵AB=3,∴AC=BC=3,∵AD=2BD,∴BD=AB=,∴DG=BG=1,∴CG=BC﹣BG=3﹣1=2,在Rt△CDG中,根据勾股定理得,CD==,∵△BCD≌△ACE,∴CE=,∵CE2=CF•AC,∴CF==,∴AF=AC﹣CF=3﹣=,故④错误,故答案为:①②③.【点评】此题是三角形综合题,主要考查了等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出△BCD ≌△ACE是解本题的关键.三、解答题:本大题共有6小题,共60分.请写出必要的文字说明、计算过程或推理过程21.(8.00分)某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选人的综合成绩(满分为100分).他们的各项成绩如下表所示:修造人笔试成绩/分面试成绩/分甲9088乙8492丙x90丁8886(1)直接写出这四名候选人面试成绩的中位数;(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.【分析】(1)根据中位数的概念计算;(2)根据题意列出方程,解方程即可;(3)根据加权平均数的计算公式分别求出余三名候选人的综合成绩,比较即可.【解答】解:(1)这四名候选人面试成绩的中位数为:=89(分);(2)由题意得,x×60%+90×40%=87.6解得,x=86,答:表中x的值为86;(3)甲候选人的综合成绩为:90×60%+88×40%=89.2(分),乙候选人的综合成绩为:84×60%+92×40%=87.2(分),丁候选人的综合成绩为:88×60%+86×40%=87.2(分),∴以综合成绩排序确定所要招聘的前两名的人选是甲和丙.【点评】本题考查的是中位线、加权平均数,掌握中位数的概念、加权平均数的计算公式是解题的关键.22.(8.00分)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=AD,连接BD,点E在AB上,且∠BDE=15°,DE=4,DC=2.(1)求BE的长;(2)求四边形DEBC的面积.(注意:本题中的计算过程和结果均保留根号)【分析】(1)解直角三角形求出AD、AE即可解决问题;(2)作DF⊥BC于F.则四边形ABFD是矩形,解直角三角形求出CF,即可解决问题;【解答】解:(1)在四边形ABCD中,∵AD∥BC,∠ABC=90°,∴∠BAD=90°,∵AB=AD,∴∠ABD=∠ADB=45°,∵∠BDE=15°,∴∠ADE=30°,在Rt△ADE中,AE=DE×sin30=2,AD=DE•cos30°=6,∴AB=AD=6,∴BE=6﹣2.(2)作DF⊥BC于F.则四边形ABFD是矩形,∴BF=AD=6,DF=AB=6,在Rt△DFC中,FC==4,∴BC=6+4,∴S四边形DEBC =S△DEB+S△BCD=×(6﹣2)×6+(6+4)×6=36+6.【点评】本题考查矩形的性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23.(10.00分)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?【分析】(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x元,根据数量=总价÷单价结合4月份比3月份多销售30件,即可得出关于x的分式方程,解之经检验即可得出结论;(2)设该商品的进价为y元,根据销售利润=每件的利润×销售数量,即可得出关于y的一元一次方程,解之即可得出该商品的进价,再利用4月份的利润=每件的利润×销售数量,即可求出结论.【解答】解:(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x元,根据题意得:=﹣30,解得:x=40,经检验,x=40是原分式方程的解.答:该商店3月份这种商品的售价是40元.(2)设该商品的进价为y元,根据题意得:(40﹣a)×=900,解得:a=25,∴(40×0.9﹣25)×=990(元).答:该商店4月份销售这种商品的利润是990元.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.24.(10.00分)如图,在Rt△ACB中,∠ACB=90°,以点A为圆心,AC长为半径的圆交AB于点D,BA的延长线交⊙A于点E,连接CE,CD,F是⊙A上一点,点F与点C位于BE两侧,且∠FAB=∠ABC,连接BF.(1)求证:∠BCD=∠BEC;(2)若BC=2,BD=1,求CE的长及sin∠ABF的值.【分析】(1)先利用等角的余角相等即可得出结论;(2)先判断出△BDC∽△BCE得出比例式求出BE=4,DE=3,利用勾股定理求出CD,CE,再判断出△AFM∽△BAC,进而判断出四边形FNCA是矩形,求出FN,NC,即:BN,再用勾股定理求出BF,即可得出结论.【解答】解:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵DE是⊙A的直径,∴∠DCE=90°,∴∠BEC+∠CDE=90°,∵AD=AC,∴∠CDE=∠ACD,∴∠BCD=∠BEC,(2)∵∠BCD=∠BEC,∠EBC=∠EBC,∴△BDC∽△BCE,∴,∵BC=2,BD=1,∴BE=4,EC=2CD,∴DE=BE﹣BD=3,在Rt△DCE中,DE2=CD2+CE2=9,∴CD=,CE=,过点F作FM⊥AB于M,∵∠FAB=∠ABC,∠FMA=∠ACB=90°,∴△AFM∽△BAC,∴,∵DE=3,∴AD=AF=AC=,AB=,∴FM=,过点F作FN⊥BC于N,∴∠FNC=90°,∵∠FAB=∠ABC,∴FA∥BC,∴∠FAC=∠ACB=90°,∴四边形FNCA是矩形,∴FN=AC=,NC=AF=,∴BN=,在Rt△FBN中,BF=,在Rt△FBM中,sin∠ABF=.【点评】此题主要考查了圆的有关性质,等角的余角相等,相似三角形的判定和性质,勾股定理,锐角三角函数,正确作出辅助线是解本题的关键.25.(12.00分)如图,在矩形ABCD中,AB=3,BC=5,E是AD上的一个动点.(1)如图1,连接BD,O是对角线BD的中点,连接OE.当OE=DE时,求AE 的长;(2)如图2,连接BE,EC,过点E作EF⊥EC交AB于点F,连接CF,与BE交于点G.当BE平分∠ABC时,求BG的长;(3)如图3,连接EC,点H在CD上,将矩形ABCD沿直线EH折叠,折叠后点D落在EC上的点D'处,过点D′作D′N⊥AD于点N,与EH交于点M,且AE=1.①求的值;②连接BE,△D'MH与△CBE是否相似?请说明理由.【分析】(1)先求出BD,进而求出OD=OB=OA,再判断出△ODE∽△ADO,即可得出结论;(2)先判断出△AEF≌△DCE,进而求出BF=1,再判断出△CHG∽△CBF,进而求出BK=GK=,最后用勾股定理即可得出结论;(3)①先求出EC=5,再求出D'C=1,根据勾股定理求出DH=,CH=,再判断出△EMN∽△EHD,的粗,△ED'M∽△ECH,得出,进而得出,即可得出结论;②先判断出∠MD'H=∠NED',进而判断出∠MD'H=∠ECB,即可得出,即可.【解答】解:(1)如图1,连接OA,在矩形ABCD中,CD=AB=3,AD=BC=5,∠BAD=90°在Rt△ABD中,根据勾股定理得,BD=,∵O是BD中点,∴OD=OB=OA=,∴∠OAD=∠ODA,∵OE=DE,∴∠EOD=∠ODE,∴∠EOD=∠ODE=∠OAD,∴△ODE∽△ADO,∴,∴DO2=DE•DA,∴设AE=x,∴DE=5﹣x,∴()2=5(5﹣x),∴x=,即:AE=;(2)如图2,在矩形ABCD中,∵BE平分∠ABC,∴∠ABE=∠EBC=45°,∵AD∥BC,∴∠AEB=∠EBC,∴∠ABE=∠AEB,∴AE=AB=3,∴AE=CD=3,∵EF⊥EC,∴∠FEC=90°,∴∠AEF+∠CED=90°,∵∠A=90°,∴∠AEF+∠AFE=90°,∴∠CED=∠AFE,∵∠D=∠A=90°,∴△AEF≌△DCE,∴AF=DE=2,∴BF=AB﹣AF=1,过点G作GK⊥BC于K,∴∠EBC=∠BGK=45°,∴BK=GK,∠ABC=∠GKC=90°,∵∠KCG=∠BCF,∴△CHG∽△CBF,∴,设BK=GK=y,∴CK=5﹣y,∴y=,∴BK=GK=,在Rt△GKB中,BG=;(3)①在矩形ABCD中,∠D=90°,∵AE=1,AD=5,∴DE=4,∵DC=3,∴EC=5,由折叠知,ED'=ED=4,D'H=DH,∠ED'H=∠D=90°,∴D'C=1,设D'H=DH=z,∴HC=3﹣z,根据勾股定理得,(3﹣z)2=1+z2,∴z=,∴DH=,CH=,∵D'N⊥AD,∴∠AND'=∠D=90°,∴D'N∥DC,∴△EMN∽△EHD,∴,∵D'N∥DC,∴∠ED'M=∠ECH,∵∠MED'=∠HEC,∴△ED'M∽△ECH,∴,∴,∴,∴;②相似,理由:由折叠知,∠EHD'=∠EHD,∠ED'H=∠D=90°,∴∠MD'H+∠ED'N=90°,∵∠END'=90°,∴∠ED'N+∠NED'=90°,∴∠MD'H=∠NED',∵D'N∥DC,∴∠EHD=∠D'MH,∴∠EHD'=∠D'MH,∴D'M=D'H,∵AD∥BC,∴∠NED'=∠ECB,∴∠MD'H=∠ECB,∵CE=CB=5,∴,∴△D'MH∽△CBE.【点评】此题是相似形综合题,主要考查了矩形的性质,相似三角形的判定和性质,勾股定理,角平分线的定义,熟练掌握判定两三角形相似的方法是解本题的关键.26.(12.00分)如图,在平面直角坐标系中,已知抛物线y=x2+x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过A,C两点,连接BC.(1)求直线l的解析式;(2)若直线x=m(m<0)与该抛物线在第三象限内交于点E,与直线l交于点D,连接OD.当OD⊥AC时,求线段DE的长;(3)取点G(0,﹣1),连接AG,在第一象限内的抛物线上,是否存在点P,使∠BAP=∠BCO﹣∠BAG?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)根据题目中的函数解析式可以求得点A和点C的坐标,从而可以求得直线l的函数解析式;(2)根据题意作出合适的辅助线,利用三角形相似和勾股定理可以解答本题;(3)根据题意画出相应的图形,然后根据锐角三角函数可以求得∠OAC=∠OCB,然后根据题目中的条件和图形,利用锐角三角函数和勾股定理即可解答本题.【解答】解:(1)∵抛物线y=x2+x﹣2,∴当y=0时,得x1=1,x2=﹣4,当x=0时,y=﹣2,∵抛物线y=x2+x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,∴点A的坐标为(﹣4,0),点B(1,0),点C(0,﹣2),∵直线l经过A,C两点,设直线l的函数解析式为y=kx+b,,得,即直线l的函数解析式为y=;(2)直线ED与x轴交于点F,如右图1所示,由(1)可得,AO=4,OC=2,∠AOC=90°,∴AC=2,∴OD=,∵OD⊥AC,OA⊥OC,∠OAD=∠CAO,∴△AOD∽△ACO,∴,即,得AD=,∵EF⊥x轴,∠ADC=90°,∴EF∥OC,∴△ADF∽△ACO,∴,解得,AF=,DF=,∴OF=4﹣=,∴m=﹣,当m=﹣时,y=×()2+×(﹣)﹣2=﹣,∴EF=,∴DE=EF﹣FD=;(3)存在点P,使∠BAP=∠BCO﹣∠BAG,理由:作GM⊥AC于点M,作PN⊥x轴于点N,如右图2所示,∵点A(﹣4,0),点B(1,0),点C(0,﹣2),∴OA=4,OB=1,OC=2,∴tan∠OAC=,tan∠OCB=,AC=2,∴∠OAC=∠OCB,∵∠BAP=∠BCO﹣∠BAG,∠GAM=∠OAC﹣∠BAG,∴∠BAP=∠GAM,∵点G(0,﹣1),AC=2,OA=4,∴OG=1,GC=1,∴AG=,,即,解得,GM=,∴AM===,∴tan∠GAM==,∴tan∠PAN=,设点P的坐标为(n,n2+n﹣2),∴AN=4+n,PN=n2+n﹣2,∴,解得,n1=,n2=﹣4(舍去),当n=时,n2+n﹣2=,∴点P的坐标为(,),即存在点P(,),使∠BAP=∠BCO﹣∠BAG.【点评】本题是一道二次函数综合题,解答本题的关键是明确题意,作出合适的辅助线,找出所求问题需要的条件,利用三角形相似、锐角三角函数和二次函数的性质解答.。

2017各地中考及北京各区一、二模数学试题分类整理——三视图、平面展开图

2017各地中考及北京各区一、二模数学试题分类整理——三视图、平面展开图

类型2:平面图形与立体图形(1)三视图1、(顺义一模7的轮廓图,其俯视图是()2、(燕山一模3)下列四个几何体中,主视图为圆的是()A.B.C.D.3、(海淀二模2)如图,在正方体的一角截去一个小正方体,所得立体图形的主视图是()A.B.C.D.4、(昌平二模3)在下面的四个几何体中,主视图是三角形的是()A.B.C.D.5、(怀柔二模7)如图所示的几何体为圆台,其俯视图正确的是()A.B.C.D.6、(平谷二模3)下面所给几何体的俯视图是()A.B.C.D.7、(房山一模5)如图,A ,B ,C ,D 是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是( )A .B .C .D .8、(东城一模6)下列哪个几何体,它的主视图、左视图、俯视图都相同( )A .B .C .D .9、(怀柔一模6)下面几何体中,主视图、左视图和俯视图形状都相同,大小均相等的是( )A .圆柱B .圆锥C .三棱柱D .球10、(西城一模4)如图是某几何体的三视图,该几何体是( )A .三棱柱B .长方体C .圆锥D .圆柱11、(朝阳一模3)如图是某个几何体的三视图,该几何体是( )A.棱柱 B .圆锥 C .球 D .圆柱 第10题图 第11题图 第12题图 第13题图12、(通州一模4)如图是某个几何体的三视图,该几何体是( ) A .圆锥 B .四棱锥 C .圆柱D .四棱柱13、(丰台二模3)如图是几何体的三视图,该几何体是( )A .圆锥B .圆柱C .正三棱锥D .正三棱柱14、(平谷一模3、门头沟一模4)右图是某几何体从不同角度看到的图形,这个几何体是( )A .圆锥B .圆柱C .正三棱柱D .三棱锥15、(石景山一模7)若某几何体的三视图如右图所示,则该几何体是 ( )A .B .C .D .主视图俯视图俯视图左视图主视图主视图 左视图 俯视图16、(青岛中考14)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的表面积为____。

2024四川省广安市中考数学试题及答案(Word解析版)

2024四川省广安市中考数学试题及答案(Word解析版)

四川省广安市2024年中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)(2024•广安)4的算术平方根是()A.±2 B.C.2D.﹣2考点:算术平方根.分析:依据算术平方根的定义即可得出答案.解答:解:4的算术平方根是2,故选C.点评:本题主要考查了算术平方根,留意算术平方根与平方根的区分.2.(3分)(2024•广安)将来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()A.0.845×104亿元B.8.45×103亿元C.8.45×104亿元D.84.5×102亿元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的肯定值与小数点移动的位数相同.当原数肯定值>1时,n是正数;当原数的肯定值<1时,n是负数.解答:解:将8450亿元用科学记数法表示为8.45×103亿元.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2024•广安)下列运算正确的是()A.a2•a4=a8B.2a2+a2=3a4C.a6÷a2=a3D.(ab2)3=a3b6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:分别利用合并同类项法则、同底数幂的除法、同底数幂的乘法、积的乘方法则分的推断得出即可.解答:解:A、a2•a4=a6,故此选项错误;B、2a2+a2=3a2,故此选项错误;C、a6÷a2=a4,故此选项错误;D、(ab2)3=a3b6,故此选项正确.故选:D.点评:本题考查了合并同类项法则、同底数幂的除法、同底数幂的乘法、积的乘方,解题的关键是驾驭相关运算的法则.4.(3分)(2024•广安)有五个相同的小正方体堆成的物体如图所示,它的主视图是()A.B.C.D.考点:简洁组合体的三视图.分析:找到从正面看所得到的图形即可,留意全部的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有3个正方形,其次层最左边有一个正方形.故选B.点评:本题考查了三视图的学问,主视图是从物体的正面看得到的视图.5.(3分)(2024•广安)数据21、12、18、16、20、21的众数和中位数分别是()A.21和19 B.21和17 C.20和19 D.20和18考点:众数;中位数.分析:依据众数和中位数的定义求解即可.解答:解:在这一组数据中21是出现次数最多的,故众数是21;数据按从小到大排列:12、16、18、20、21、21,中位数是(18+20)÷2=19,故中位数为19.故选A.点评:本题考查了中位数,众数的意义.找中位数的时候肯定要先排好依次,然后再依据奇数和偶数个来确定中位数.假如数据有奇数个,则正中间的数字即为所求;假如是偶数个,则找中间两位数的平均数.众数是一组数据中出现次数最多的数据,留意众数可以不止一个.6.(3分)(2024•广安)假如a3x b y与﹣a2y b x+1是同类项,则()A.B.C.D.考点:解二元一次方程组;同类项.专题:计算题分析:依据同类项的定义列出方程组,然后利用代入消元法求解即可.解答:解:∵a3x b y与﹣a2y b x+1是同类项,∴,②代入①得,3x=2(x+1),解得x=2,把x=2代入②得,y=2+1=3,所以,方程组的解是.故选D.点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简洁,依据同类项的“两同”列出方程组是解题的关键.7.(3分)(2024•广安)等腰三角形的一条边长为6,另一边长为13,则它的周长为()A.25 B.25或32 C.32 D.19考点:等腰三角形的性质;三角形三边关系.分析:因为已知长度为6和13两边,没有明确是底边还是腰,所以有两种状况,须要分类探讨.解答:解:①当6为底时,其它两边都为13,6、13、13可以构成三角形,周长为32;②当6为腰时,其它两边为6和13,∵6+6<13,∴不能构成三角形,故舍去,∴答案只有32.故选C.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目肯定要想到两种状况,分类进行探讨,还应验证各种状况是否能构成三角形进行解答,这点特别重要,也是解题的关键.8.(3分)(2024•广安)下列命题中正确的是()A.函数y=的自变量x的取值范围是x>3B.菱形是中心对称图形,但不是轴对称图形C.一组对边平行,另一组对边相等四边形是平行四边形D.三角形的外心到三角形的三个顶点的距离相等考点:命题与定理.分析:依据菱形、等腰梯形的性质以及外心的性质和二次根式的性质分别推断得出即可.解答:解:A、函数y=的自变量x的取值范围是x≥3,故此选项错误;B、菱形是中心对称图形,也是轴对称图形,故此选项错误;C、一组对边平行,另一组对边相等四边形是也可能是等腰梯形,故此选项错误;D、依据外心的性质,三角形的外心到三角形的三个顶点的距离相等,故此选项正确.故选:D.点评:此题主要考查了菱形、等腰梯形的性质以及外心的性质和二次根式的性质,娴熟驾驭相关定理和性质是解题关键.9.(3分)(2024•广安)如图,已知半径OD与弦AB相互垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O的半径为()A.cm B.5cm C.4cm D.cm考点:垂径定理;勾股定理.分析:连接AO,依据垂径定理可知AC=AB=4cm,设半径为x,则OC=x﹣3,依据勾股定理即可求得x 的值.解答:解:连接AO,∵半径OD与弦AB相互垂直,∴AC=AB=4cm,设半径为x,则OC=x﹣3,在Rt△ACO中,AO2=AC2+OC2,即x2=42+(x﹣3)2,解得:x=,故半径为cm.故选A.点评:本题考查了垂径定理及勾股定理的学问,解答本题的关键是娴熟驾驭垂径定理、勾股定理的内容,难度一般.10.(3分)(2024•广安)已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>O,②2a+b=O,③b2﹣4ac<O,④4a+2b+c>O其中正确的是()A.①③B.只有②C.②④D.③④考点:二次函数图象与系数的关系.分析:由抛物线开口向下,得到a小于0,再由对称轴在y轴右侧,得到a与b异号,可得出b大于0,又抛物线与y轴交于正半轴,得到c大于0,可得出abc小于0,选项①错误;由抛物线与x轴有2个交点,得到根的判别式b2﹣4ac大于0,选项②错误;由x=﹣2时对应的函数值小于0,将x=﹣2代入抛物线解析式可得出4a﹣2b+c小于0,最终由对称轴为直线x=1,利用对称轴公式得到b=﹣2a,得到选项④正确,即可得到正确结论的序号.解答:解:∵抛物线的开口向上,∴a>0,∵﹣>0,∴b<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,①错误;∵对称轴为直线x=1,∴﹣=1,即2a+b=0,②正确,∵抛物线与x轴有2个交点,∴b2﹣4ac>0,③错误;∵对称轴为直线x=1,∴x=2与x=0时的函数值相等,而x=0时对应的函数值为正数,∴4a+2b+c>0,④正确;则其中正确的有②④.故选C.点评:此题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c(a≠0),a的符号由抛物线开口方向确定;b的符号由对称轴的位置及a的符号确定;c的符号由抛物线与y轴交点的位置确定;抛物线与x轴的交点个数,确定了b2﹣4ac的符号,此外还要留意x=1,﹣1,2及﹣2对应函数值的正负来推断其式子的正确与否.二、填空题:请将最简答案干脆填写在题目后的横线上(本大题共6个小题,每小题3分.共18分)11.(3分)(2024•广安)方程x2﹣3x+2=0的根是1或2.考点:解一元二次方程-因式分解法.专题:因式分解.分析:由题已知的方程进行因式分解,将原式化为两式相乘的形式,再依据两式相乘值为0,这两式中至少有一式值为0,求出方程的解.解答:解:因式分解得,(x﹣1)(x﹣2)=0,解得x1=1,x2=2.点评:本题考查了因式分解法解一元二次方程,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般状况下是把左边的式子因式分解,再利用积为0的特点解出方程的根,因式分解法是解一元二次方程的一种简便方法,要会敏捷运用.12.(3分)(2024•广安)将点A(﹣1,2)沿x轴向右平移3个单位长度,再沿y轴向下平移4个长度单位后得到点A′的坐标为(2,﹣2).考点:坐标与图形变更-平移.分析:依据点的平移规律,左右移,横坐标减加,纵坐标不变;上下移,纵坐标加减,横坐标不变即可解的答案.解答:解:∵点A(﹣1,2)沿x轴向右平移3个单位长度,再沿y轴向下平移4个长度单位后得到点A′,∴A′的坐标是(﹣1+3,2﹣4),即:(2,﹣2).故答案为:(2,﹣2).点评:此题主要考查了点的平移规律,正确驾驭规律是解题的关键.13.(3分)(2024•广安)如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4=63°30′.考点:平行线的判定与性质.分析:依据∠1=∠2可以判定a∥b,再依据平行线的性质可得∠3=∠5,再依据邻补角互补可得答案.解答:解:∵∠1=40°,∠2=40°,∴a∥b,∴∠3=∠5=116°30′,∴∠4=180°﹣116°30′=63°30′,故答案为:63°30′.点评:此题主要考查了平行线的判定与性质,关键是驾驭同位角相等,两直线平行.14.(3分)(2024•广安)解方程:﹣1=,则方程的解是x=﹣.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:4x﹣x+2=﹣3,解得:x=﹣,经检验是分式方程的解.故答案为:x=﹣点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程肯定留意要验根.15.(3分)(2024•广安)如图,假如从半径为5cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高是3cm.考点:圆锥的计算.分析:因为圆锥的高,底面半径,母线构成直角三角形,则留下的扇形的弧长==8π,所以圆锥的底面半径r==4cm,利用勾股定理求圆锥的高即可;解答:解:∵从半径为5cm的圆形纸片上剪去圆周的一个扇形,∴留下的扇形的弧长==8π,依据底面圆的周长等于扇形弧长,∴圆锥的底面半径r==4cm,∴圆锥的高为=3cm故答案为:3.点评:此题主要考查了主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.解此类题目要依据所构成的直角三角形的勾股定理作为等量关系求解.16.(3分)(2024•广安)已知直线y=x+(n为正整数)与坐标轴围成的三角形的面积为S n,则S1+S2+S3+…+S2024=.考点:一次函数图象上点的坐标特征.专题:规律型.分析:令x=0,y=0分别求出与y轴、x轴的交点,然后利用三角形面积公式列式表示出S n,再利用拆项法整理求解即可.解答:解:令x=0,则y=,令y=0,则﹣x+=0,解得x=,所以,S n=••=(﹣),所以,S1+S2+S3+…+S2024=(﹣+﹣+﹣+…+﹣)=(﹣)=.故答案为:.点评:本题考查的是一次函数图象上点的坐标特点,表示出S n,再利用拆项法写成两个数的差是解题的关键,也是本题的难点.三、解答题(本大题共4个小题,第17小题5分,第18、19、20小题各6分,共23分)17.(6分)(2024•广安)计算:()﹣1+|1﹣|﹣﹣2sin60°.考点:实数的运算;负整数指数幂;特别角的三角函数值.分析:分别进行负整数指数幂、肯定值、开立方、特别角的三角函数值等运算,然后依据实数的运算法则计算即可.解答:解:原式=2+﹣1+2﹣2×=3.点评:本题考查了实数的运算,涉及了负整数指数幂、肯定值、开立方、特别角的三角函数值等学问,属于基础题.18.(6分)(2024•广安)先化简,再求值:(﹣)÷,其中x=4.考点:分式的化简求值.分析:先依据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.解答:解:原式=(﹣)÷=×=﹣,当x=4时,原式=﹣=﹣.点评:本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.19.(6分)(2024•广安)如图,在平行四边形ABCD中,AE∥CF,求证:△ABE≌△CDF.考点:平行四边形的性质;全等三角形的判定.专题:证明题.分析:首先证明四边形AECF是平行四边形,即可得到AE=CF,AF=CF,再依据由三对边相等的两个三角形全等即可证明:△ABE≌△CDF.解答:证明:∵四边形ABCD是平行四边形,∴AE∥CF,AD=BC,AB=CD,∵AE∥CF,∴四边形AECF是平行四边形,∴AE=CF,AF=CF,∴BE=DE,在△ABE和△CDF中,,∴△ABE≌△CDF(SSS).点评:此题主要考查学生对平行四边形的判定与性质和全等三角形的判定的理解和驾驭,难度不大,属于基础题.20.(6分)(2024•广安)已知反比例函数y=(k≠0)和一次函数y=x﹣6.(1)若一次函数与反比例函数的图象交于点P(2,m),求m和k的值.(2)当k满意什么条件时,两函数的图象没有交点?考点:反比例函数与一次函数的交点问题.分析:(1)两个函数交点的坐标满意这两个函数关系式,因此将交点的坐标分别代入反比例函数关系式和一次函数关系式即可求得待定的系数;(2)函数的图象没有交点,即无解,用二次函数根的判别式可解.解答:解:(1)∵一次函数和反比例函数的图象交于点(2,m),∴m=2﹣6,解得m=﹣4,即点P(2,﹣4),则k=2×(﹣4)=﹣8.∴m=﹣4,k=﹣8;(2)由联立方程y=(k≠0)和一次函数y=x﹣6,有=x﹣6,即x2﹣6x﹣k=0.∵要使两函数的图象没有交点,须使方程x2﹣6x﹣k=0无解.∴△=(﹣6)2﹣4×(﹣k)=36+4k<0,解得k<﹣9.∴当k<﹣9时,两函数的图象没有交点.点评:本题考查反比例函数与一次函数的交点问题,留意先代入一次函数解析式,求得两个函数的交点坐标.四、实践应用:(本大题共4个小题,其中第21小题6分,地22、23、24小题各8分,共30分)21.(6分)(2024•广安)6月5日是“世界环境日”,广安市某校实行了“洁美家园”的演讲竞赛,赛后整理参赛同学的成果,将学生的成果分成A、B、C、D四个等级,并制成了如下的条形统计图和扇形图(如图1、图2).(1)补全条形统计图.(2)学校确定从本次竞赛中获得A和B的学生中各选出一名去参与市中学生环保演讲竞赛.已知A等中男生有2名,B等中女生有3 名,请你用“列表法”或“树形图法”的方法求出所选两位同学恰好是一名男生和一名女生的概率.考点:条形统计图;扇形统计图;列表法与树状图法.专题:计算题分析:(1)依据等级为A的人数除以所占的百分比求出总人数,进而求出等级B的人数,补全条形统计图即可;(2)列表得出全部等可能的状况数,找出一男一女的状况数,即可求出所求的概率.解答:解:(1)依据题意得:3÷15%=20(人),故等级B的人数为20﹣(3+8+4)=5(人),补全统计图,如图所示;(2)列表如下:男男女女女男(男,男)(男,男)(女,男)(女,男)(女,男)男(男,男)(男,男)(女,男)(女,男)(女,男)女(男,女)(男,女)(女,女)(女,女)(女,女)全部等可能的结果有15种,其中恰好是一名男生和一名女生的状况有8种,则P恰好是一名男生和一名女生=.点评:此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.22.(8分)(2024•广安)某商场筹集资金12.8万元,一次性购进空调、彩电共30台.依据市场须要,这些空调、彩电可以全部销售,全部销售后利润不少于1.5万元,其中空调、彩电的进价和售价见表格.空调彩电进价(元/台)5400 3500售价(元/台)6100 3900设商场安排购进空调x台,空调和彩电全部销售后商场获得的利润为y元.(1)试写出y与x的函数关系式;(2)商场有哪几种进货方案可供选择?(3)选择哪种进货方案,商场获利最大?最大利润是多少元?考点:一次函数的应用.分析:(1)y=(空调售价﹣空调进价)x+(彩电售价﹣彩电进价)×(30﹣x);(2)依据用于一次性购进空调、彩电共30台,总资金为12.8万元,全部销售后利润不少于1.5万元.得到一元一次不等式组,求出满意题意的x的正整数值即可;(3)利用y与x的函数关系式y=150x+6000的增减性来选择哪种方案获利最大,并求此时的最大利润即可.解答:解:(1)设商场安排购进空调x台,则安排购进彩电(30﹣x)台,由题意,得y=(6100﹣5400)x+(3900﹣3500)(30﹣x)=300x+12000;(2)依题意,有,解得10≤x≤12.∵x为整数,∴x=10,11,12.即商场有三种方案可供选择:方案1:购空调10台,购彩电20台;方案2:购空调11台,购彩电19台;方案3:购空调12台,购彩电18台;(3)∵y=300x+12000,k=300>0,∴y随x的增大而增大,即当x=12时,y有最大值,y最大=300×12+12000=15600元.故选择方案3:购空调12台,购彩电18台时,商场获利最大,最大利润是15600元.点评:本题主要考查了一次函数和一元一次不等式组的实际应用,难度适中,得出商场获得的利润y与购进空调x的函数关系式是解题的关键.在解答一次函数的应用问题中,要留意自变量的取值范围还必需使实际问题有意义.23.(8分)(2024•广安)如图,广安市防洪指挥部发觉渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF的坡比i=1:2.(1)求加固后坝底增加的宽度AF的长;(2)求完成这项工程须要土石多少立方米?考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:(1)分别过E、D作AB的垂线,设垂足为G、H.在Rt△EFG中,依据坡面的铅直高度(即坝高)及坡比,即可求出FG的长,同理可在Rt△ADH中求出AH的长;由AF=FG+GH﹣AH求出AF的长.(2)已知了梯形AFED的上下底和高,易求得其面积.梯形AFED的面积乘以坝长即为所需的土石的体积.解答:解:(1)分别过点E、D作EG⊥AB、DH⊥AB交AB于G、H,∵四边形ABCD是梯形,且AB∥CD,∴DH平行且等于EG,故四边形EGHD是矩形,∴ED=GH,在Rt△ADH中,AH=DH÷tan∠DAH=8÷tan45°=8(米),在Rt△FGE中,i=1:2=,∴FG=2EG=16(米),∴AF=FG+GH﹣AH=16+2﹣8=10(米);(2)加宽部分的体积V=S梯形AFED×坝长=×(2+10)×8×400=19200(立方米).答:(1)加固后坝底增加的宽度AF为10米;(2)完成这项工程须要土石19200立方米.点评:本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般.24.(8分)(2024•广安)雅安芦山发生7.0级地震后,某校师生打算了一些等腰直角三角形纸片,从每张纸片中剪出一个半圆制作玩具,寄给灾区的小挚友.已知如图,是腰长为4的等腰直角三角形ABC,要求剪出的半圆的直径在△ABC的边上,且半圆的弧与△ABC的其他两边相切,请作出全部不同方案的示意图,并求出相应半圆的半径(结果保留根号).考点:作图—应用与设计作图.专题:作图题.分析:分直径在直角边AC、BC上和在斜边AB上三种状况分别求出半圆的半径,然后作出图形即可.解答:解:依据勾股定理,斜边AB==4,①如图1、图2,直径在直角边BC或AC上时,∵半圆的弧与△ABC的其它两边相切,∴=,解得r=4﹣4,②如图3,直径在斜边AB上时,∵半圆的弧与△ABC的其它两边相切,∴=,解得r=2,作出图形如图所示:点评:本题考查了应用与设计作图,主要利用了直线与圆相切,相像三角形对应边成比例的性质,分别求出半圆的半径是解题的关键.五、理论与论证(9分)25.(9分)(2024•广安)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙0,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙0的切线.(2)假如⊙0的半径为5,sin∠ADE=,求BF的长.考点:切线的判定;等腰三角形的性质;圆周角定理;解直角三角形.分析:(1)连结OD,AB为⊙0的直径得∠ADB=90°,由AB=AC,依据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后依据切线的判定方法即可得到结论;(2)由∠DAC=∠DAB,依据等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可计算出AD=8,在Rt△ADE中可计算出AE=,然后由OD∥AE,得△FDO∽△FEA,再利用相像比可计算出BF.解答:(1)证明:连结OD,如图,∵AB为⊙0的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分BC,即DB=DC,∵OA=OB,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴EF是⊙0的切线;(2)解:∵∠DAC=∠DAB,∴∠ADE=∠ABD,在Rt△ADB中,sin∠ADE=sin∠ABD==,而AB=10,∴AD=8,在Rt△ADE中,sin∠ADE==,∴AE=,∵OD∥AE,∴△FDO∽△FEA,∴=,即=,∴BF=.点评:本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线.也考查了等腰三角形的性质、圆周角定理和解直角三角形.六、拓展探究(10分)26.(9分)(2024•广安)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).(1)求此抛物线的解析式.(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.①动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;②连接PA,以AP为边作图示一侧的正方形APMN,随着点P的运动,正方形的大小、位置也随之变更.当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标.(结果保留根号)考点:二次函数综合题.专题:代数几何综合题.分析:(1)把点A、B、C的坐标代入抛物线解析式,利用待定系数法求二次函数解析式解答即可;(2)①依据点A、B的坐标求出OA=OB,从而得到△AOB是等腰直角三角形,依据等腰直角三角形的性质可得∠BAO=45°,然后求出△PED是等腰直角三角形,依据等腰直角三角形的性质,PD越大,△PDE的周长最大,再推断出当与直线AB平行的直线与抛物线只有一个交点时,PD最大,再求出直线AB的解析式为y=x+3,设与AB平行的直线解析式为y=x+m,与抛物线解析式联立消掉y,得到关于x的一元二次方程,利用根的判别式△=0列式求出m的值,再求出x、y的值,从而得到点P的坐标;②先确定出抛物线的对称轴,然后(i)分点M在对称轴上时,过点P作PQ⊥对称轴于Q,依据同角的余角相等求出∠APF=∠QPM,再利用“角角边”证明△APF和△MPQ全等,依据全等三角形对应边相等可得PF=PQ,设点P的横坐标为n,表示出PQ的长,即PF,然后代入抛物线解析式计算即可得解;(ii)点N在对称轴上时,同理求出△APF和△ANQ全等,依据全等三角形对应边相等可得PF=AQ,依据点A的坐标求出点P的纵坐标,再代入抛物线解析式求出横坐标,即可得到点P的坐标.解答:解:(1)∵抛物线y=ax2+bx+c经过点A(﹣3,0),B(0,3),C(1,0),∴,解得,所以,抛物线的解析式为y=﹣x2﹣2x+3;(2)①∵A(﹣3,0),B(0,3),∴OA=OB=3,∴△AOB是等腰直角三角形,∴∠BAO=45°,∵PF⊥x轴,∴∠AEF=90°﹣45°=45°,又∵PD⊥AB,∴△PDE是等腰直角三角形,∴PD越大,△PDE的周长越大,易得直线AB的解析式为y=x+3,设与AB平行的直线解析式为y=x+m,联立,消掉y得,x2+3x+m﹣3=0,当△=32﹣4×1×(m﹣3)=0,即m=时,直线与抛物线只有一个交点,PD最长,此时x=﹣,y=﹣+=,∴点P(﹣,)时,△PDE的周长最大;②抛物线y=﹣x2﹣2x+3的对称轴为直线x=﹣=﹣1,(i)如图1,点M在对称轴上时,过点P作PQ⊥对称轴于Q,在正方形APMN中,AP=PM,∠APM=90°,∴∠APF+∠FPM=90°,∠QPM+∠FPM=90°,∴∠APF=∠QPM,∵在△APF和△MPQ中,,∴△APF≌△MPQ(AAS),∴PF=PQ,设点P的横坐标为n(n<0),则PQ=﹣1﹣n,即PF=﹣1﹣n,∴点P的坐标为(n,﹣1﹣n),∵点P在抛物线y=﹣x2﹣2x+3上,∴﹣n2﹣2n+3=﹣1﹣n,整理得,n2+n﹣4=0,解得n1=(舍去),n2=,﹣1﹣n=﹣1﹣=,所以,点P的坐标为(,);(ii)如图2,点N在对称轴上时,设抛物线对称轴与x轴交于点Q,∵∠PAF+∠FPA=90°,∠PAF+∠QAN=90°,∴∠FPA=∠QAN,又∵∠PFA=∠AQN=90°,PA=AN,∴△APF≌△NAQ,∴PF=AQ,设点P坐标为P(x,﹣x2﹣2x+3),则有﹣x2﹣2x+3=﹣1﹣(﹣3)=2,解得x=﹣1(不合题意,舍去)或x=﹣﹣1,此时点P坐标为(﹣﹣1,2).综上所述,当顶点M恰好落在抛物线对称轴上时,点P坐标为(,),当顶点N恰好落在抛物线对称轴上时,点P的坐标为(﹣﹣1,2).点评:本题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,等腰直角三角形的判定与性质,正方形的性质,全等三角形的判定与性质,抛物线上点的坐标特征,(2)确定出△PDE是等腰直角三角形,从而推断出点P为平行于AB的直线与抛物线只有一个交点时的位置是解题的关键,(3)依据全等三角形的性质用点P的横坐标表示出纵坐标或用纵坐标求出横坐标是解题的关键.。

三视图中考试题整理

三视图中考试题整理

三视图★知识框架★中考真题 1、(2013安徽,2,4分)下面的几何体中,主(正)视图为三角形的是( )A. B. C.D. 2、(2013年北京) 右图是某个几何体的三视图,该几何体是 A .长方体 B .正方体C .圆柱D .三棱柱3.(2013年福建福州)如图是由4个大小相同的正方体组合而成的几何体,其主视图是4年甘肃兰州)一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为( ) A . 6 B . 8 C . 12 D . 245、(2013•广州)一个几何体的三视图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱7、(2013年广东湛江) 如图所示的几何体,它的主视图是( )A .B .C .D .8、(2013广东)如图所示几何体的主视图是( ) A . B 、 C . D .9、(2013年广西桂林)下列几何体的主视图、俯视图和左视图都是..长方形的第3题图 A B C D是【】10、(广西柳州)李师傅做了一个零件,如图,请你告诉他这个零件的主视图是(A)A.B.C.D.11、(2013六盘水)如图是教师每天在黑板上书写用的粉笔,它的主视图是()A.B.C.D.12.(2013铜仁)下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个13、(2013海南省3分)如图竖直放置的圆柱体的俯视图是【】A.长方体 B.正方体 C.圆 D.等腰梯形14.(2013•恩施州)一个用于防震的L形包装塑料泡沫如图所示,则该物体的俯视图是()A.B.C.D.15.(2013年湖北黄石)如图(1)所示,该几何体的主视图应为()16.(2013年湖北天门)某种零件模型如图所示,该几何体(空心圆柱)的俯视图是(17.(2013武汉)如图,是由4个相同小正方体组合而成的几何体,它的左视图是()A B CA.B.C.D.18.(2013年湖北宜昌)球和圆柱在水平面上紧靠在一起,组成如图所示的几何体,托尼画出了它的三19、(2013年湖南常德)图2所给的三视图表示的几何体是()A. 长方体B. 圆柱C. 圆锥D. 圆台20、(2013•湘潭)如图,从左面看圆柱,则图中圆柱的投影是()A.圆B.矩形C.梯形D.圆柱21、(湖南岳阳)如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A向右平移2个单位,22.(2013张家界)下面四个几何体中,左视图是四边形的几何体共有()A. 1个B. 2个C. 3个D. 4个23.(2013•扬州)如图是由几个相同的小立方块搭成的几何体的三视图,则这几个几何体的小立方块的个数是( )A. 4个B. 5个C. 6个D. 7个24.(2013滨州)某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方体C.球D.圆锥25.(2013菏泽)如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是()A.B.C.D.26.(2013•济宁)如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是()A. 3个或4个B. 4个或5个C. 5个或6个D. 6个或7个27.(2013•聊城)用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A.B.C.D.28.(2013临沂)如图是一个几何体的三视图,则这个几何体的侧面积是()A.18cm2B.20cm2C.(18+2)cm2D.(18+4)cm229.(2013泰安)如图所示的几何体的主视图是()A.B.C.D.30.(2013•烟台)如图是几个小正方体组成的一个几何体,这个几何体的俯视图是()A.B.C.D.31.(2013山西)如图所示的工件的主视图是()A.B.C.D.32、(2013年陕西)如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是()33、(2013•乐山)如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是()A.B.C.D.34、(2013年南充)下列几何体中,俯视图相同的是().35.(2013成都)如图所示的几何体是由4个相同的小正方体组成.其主视图为()A.B.C. D.36.(2013•德阳)某物体的侧面展开图如图所示,那么它的左视图为()A.B.C.D.37.(2013年四川内江)由一些大小相同的小正方形组成的一个几何体的主视图和俯视图 如图所示,那么组成该几何体所需的小正方形的个数最少为38.(2013攀枝花)如图是由五个相同的小正方体组成的立体图形,它的俯视图是( )A .B .C .D .39.(2013宜宾)下面四个几何体中,其左视图为圆的是( )A .B .C .D .40.(2013•资阳)如图是一个正方体被截去一角后得到的几何体,它的俯视图是( )A .B .C .D .41.(2013江苏泰州3分)用4个小立方块搭成如图所示的几何体,该几何体的左视图是【 】43.(2013金华市)下列四个立体图形中,主视图为圆的是( )A .B .C .D .44.(2013•宁波)如图是某物体的三视图,则这个物体的形状是( )A .四面体B .直三棱柱C .直四棱柱D .直五棱柱45.(2013•衢州)长方体的主视图、俯视图如图所示,则其左视图面积为( )A.3B.4C.12D.1646.(2013绍兴)如图所示的几何体,其主视图是()A.B、C、D.47.(2013义乌市)下列四个立体图形中,主视图为圆的是()A B C D。

2024年天津市中考真题数学试卷含答案解析

2024年天津市中考真题数学试卷含答案解析

2024年天津市中考 数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.计算()33--的结果是( )A .6B .3C .0D .-6【答案】A【详解】试题解析:根据有理数减法法则计算,减去一个数等于加上这个数的相反数得:3-(-3)=3+3=6.故选A .2.下图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .【答案】B【分析】本题主要考查了简单组合体的三视图,根据主视图是指从正前方向看到的图形求解即可.【详解】解:由此从正面看,下面第一层是三个正方形,第二层是一个正方形(且在最右边),故选:B .3.估算 的值在( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间【答案】C4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .【答案】C【分析】本题考查轴对称图形,掌握轴对称图形的定义:如果一个图形沿某一条直线对折,对折后的两部分是完全重合的,那么就称这样的图形为轴对称图形是解题的关键.【详解】解:A.不是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选C .5.据2024年4月18日《天津日报》报道,天津市组织开展了第43届“爱鸟周”大型主题宣传活动.据统计,今春过境我市候鸟总数已超过800000只.将数据800000用科学记数法表示应为( )A .70.0810⨯B .60.810⨯C .5810⨯D .48010⨯61- 的值等于( )A .0B .1C 1D 17.计算3311x x x ---的结果等于( )A .3B .xC .1x x -D .231x -8.若点()()()123,1,,1,,5A x B x C x -都在反比例函数5y x=的图象上,则123,,x x x 的大小关系是( )A .123x x x <<B .132x x x <<C .321x x x <<D .213x x x <<∴10x <,∴132x x x <<.故选:B .9.《孙子算经》是我国古代著名的数学典籍,其中有一道题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳度之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,绳子长y 尺,则可以列出的方程组为( )A . 4.50.51y x x y -=⎧⎨-=⎩B . 4.50.51y x x y -=⎧⎨+=⎩C . 4.51x y x y +=⎧⎨-=⎩D . 4.51x y y x +=⎧⎨-=⎩【答案】A【分析】本题考查的是二元一次方程组的应用.用一根绳子去量一根木条,绳子剩余4.5尺可知:绳子比木条长5尺得: 4.5y x -=;绳子对折再量木条,木条剩余1尺可知:绳子对折后比木条短1尺得:0.51x y -=;从而可得答案.【详解】解:由题意可得方程组为:4.50.51y x x y -=⎧⎨-=⎩,故选:A.10.如图,Rt ABC △中,90,40C B ∠=︒∠=︒,以点A 为圆心,适当长为半径画弧,交AB于点E ,交AC 于点F ;再分别以点,E F 为圆心,大于12EF 的长为半径画弧,两弧(所在圆的半径相等)在BAC ∠的内部相交于点P ;画射线AP ,与BC 相交于点D ,则ADC ∠的大小为( )A .60B .65C .70D .75【答案】B11.如图,ABC 中,30B ∠= ,将ABC 绕点C 顺时针旋转60 得到DEC ,点,A B 的对应点分别为,D E ,延长BA 交DE 于点F ,下列结论一定正确的是( )A .ACB ACD ∠=∠B .AC DE ∥C .AB EF =D .BF CE⊥【答案】D【分析】本题考查了旋转性质以及两个锐角互余的三角形是直角三角形,平行线的判定,正确掌握相关性质内容是解题的关键.先根据旋转性质得60BCE ACD ∠=∠=︒,结合30B ∠= ,即可得证BF CE ⊥,再根据同旁内角互补证明两直线平行,来分析AC DE ∥不一定成立;根据图形性质以及角的运算或线段的运算得出A 和C 选项是错误的.【详解】解:记BF 与CE 相交于一点H ,如图所示:∵ABC 中,将ABC 绕点C 顺时针旋转60 得到DEC ,∴60BCE ACD ∠=∠=︒∵30B ∠=︒∴在BHC 中,18090BHC BCE B ∠=︒-∠-∠=︒∴BF CE⊥故D 选项是正确的,符合题意;设ACH x ∠=︒∴60ACB x ∠=︒-︒,∵30B ∠=︒∴()180306090EDC BAC x x ∠=∠=︒-︒-︒-︒=︒+︒∴9060150EDC ACD x x ∠+∠=︒+︒+︒=︒+︒∵x ︒不一定等于30︒∴EDC ACD ∠+∠不一定等于180︒∴AC DE ∥不一定成立,故B 选项不正确,不符合题意;∵6060ACB x ACD x ∠=︒-︒∠=︒︒,,不一定等于0︒∴ACB ACD ∠=∠不一定成立,故A 选项不正确,不符合题意;∵将ABC 绕点C 顺时针旋转60 得到DEC ,∴AB ED EF FD ==+∴BA EF>故C 选项不正确,不符合题意;故选:D12.从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是()230506h t t t =-≤≤.有下列结论:①小球从抛出到落地需要6s ;②小球运动中的高度可以是30m ;③小球运动2s 时的高度小于运动5s 时的高度.其中,正确结论的个数是( )A .0B .1C .2D .3【答案】C【分析】本题考查二次函数的图像和性质,令0= 解方程即可判断①;配方成顶点式即可判断②;把2t =和5t =代入计算即可判断③.【详解】解:令0= ,则23050t t -=,解得:10t =,26t =,∴小球从抛出到落地需要6s ,故①正确;∵()223055345t t x =-=--+ ,∴最大高度为45m ,∴小球运动中的高度可以是30m ,故②正确;当2t =时,23025240=⨯-⨯= ;当5t =时,23055525=⨯-⨯= ;∴小球运动2s 时的高度大于运动5s 时的高度,故③错误;故选C .二、填空题13.不透明袋子中装有10个球,其中有3个绿球、4个黑球、3个红球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为 .14.计算86x x ÷的结果为 .【答案】2x 【分析】本题考查同底数幂的除法,掌握同底数幂的除法,底数不变,指数相减是解题的关键.【详解】解:862x x x ÷=,故答案为:2x .15.计算)11的结果为 .【答案】10【分析】利用平方差公式计算后再加减即可.【详解】解:原式11110=-=.故答案为:10.【点睛】本题考查了二次根式的混合运算,掌握二次根式的混合运算法则及平方差公式是解题的关键.16.若正比例函数y kx =(k 是常数,0k ≠)的图象经过第一、第三象限,则k 的值可以是 (写出一个即可).【答案】1(答案不唯一)【分析】根据正比例函数图象所经过的象限确定k 的符号.【详解】解: 正比例函数y kx =(k 是常数,0k ≠)的图象经过第一、三象限,0k ∴>.∴k 的值可以为1,故答案为:1(答案不唯一).【点睛】本题主要考查正比例函数图象在坐标平面内的位置与k 的关系.解答本题注意理解:直线y kx =所在的位置与k 的符号有直接的关系.0k >时,直线必经过一、三象限.0k <时,直线必经过二、四象限.17.如图,正方形ABCD 的边长为,AC BD 相交于点O ,点E 在CA 的延长线上,5OE =,连接DE .(1)线段AE 的长为 ;(2)若F 为DE 的中点,则线段AF 的长为 .∵F 为DE 的中点,A 为GD 的中点,∴AF 为DGE △的中位线,在Rt EAH △中,EAH DAC ∠=∠AH EH∴= 222AH EH AE +=,三、解答题18.如图,在每个小正方形的边长为1的网格中,点,,A F G 均在格点上.(1)线段AG 的长为 ;(2)点E 在水平网格线上,过点,,A E F 作圆,经过圆与水平网格线的交点作切线,分别与,AE AF 的延长线相交于点,,B C ABC △中,点M 在边BC 上,点N 在边AB 上,点P 在边AC上.请用无刻度的直尺,在如图所示的网格中,画出点,,M N P ,使MNP △的周长最短,并简要说明点,,M N P 的位置是如何找到的(不要求证明) .19.解不等式组213317x x x +≤⎧⎨-≥-⎩①②请结合题意填空,完成本题的解答.(1)解不等式①,得______;(2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______.【答案】(1)1x ≤(2)3x ≥-(3)见解析(4)31x -≤≤【分析】本题考查的是解一元一次不等式,解一元一次不等式组;(1)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案;(2)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案;(3)根据前两问的结果,在数轴上表示不等式的解集;(4)根据数轴上的解集取公共部分即可.【详解】(1)解:解不等式①得1x ≤,故答案为:1x ≤;(2)解:解不等式②得3x ≥-,故答案为:3x ≥-;(3)解:在数轴上表示如下:(4)解:由数轴可得原不等式组的解集为31x -≤≤,故答案为:31x -≤≤.20.为了解某校八年级学生每周参加科学教育的时间(单位:h ),随机调查了该校八年级a 名学生,根据统计的结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)填空:a的值为______,图①中m的值为______,统计的这组学生每周参加科学教育的时间数据的众数和中位数分别为______和______;(2)求统计的这组学生每周参加科学教育的时间数据的平均数;(3)根据样本数据,若该校八年级共有学生500人,估计该校八年级学生每周参加科学教育的时间是9h的人数约为多少?【答案】(1)50,34,8,8(2)8.36(3)150人【分析】本题考查条形统计图、扇形统计图,用样本估计总体,众数、中位数、平均数,解答本题的关键是明确题意,利用数形结合的思想解答.(1)根据6h的人数和百分比可以求得本次接受调查的学生人数,再由总人数和8h的人数即可求出m;根据条形统计图中的数据,可以得到这50个样本数据的众数、中位数;(2)根据平均数的定义进行解答即可;(3)在所抽取的样本中,每周参加科学教育的时间是9h的学生占30%,用八年级共有学生数乘以30%即可得到答案.÷=(人),【详解】(1)解:36%50m=÷⨯=,%1750100%34%∴=,34m在这组数据中,8出现了17次,次数最多,∴众数是8,将这组数据从小到大依次排列,处于最中间的第25,26名学生的分数都是8,+÷=,∴中位数是(88)2821.已知AOB 中,30,ABO AB ∠=︒为O 的弦,直线MN 与O 相切于点C .(1)如图①,若AB MN ∥,直径CE 与AB 相交于点D ,求AOB ∠和BCE ∠的大小;(2)如图②,若,OB MN CG AB ⊥∥,垂足为,G CG 与OB 相交于点,3F OA =,求线段OF 的长.∴△AOB 中,A ABO ∠+∠又30ABO ∠=︒,1802AOB ABO ∴∠=︒-∠ 直线MN 与O 相切于点∵ 直线 MN 与 O ∴90OCM ∠=︒∵OC MN∴90OCM COB ∠=∠=22.综合与实践活动中,要用测角仪测量天津海河上一座桥的桥塔AB 的高度(如图①).某学习小组设计了一个方案:如图②,点,,C D E 依次在同一条水平直线上,36m,DE EC AB =⊥,垂足为C .在D 处测得桥塔顶部B 的仰角(CDB ∠)为45︒,测得桥塔底部A 的俯角(CDA ∠)为6︒,又在E 处测得桥塔顶部B 的仰角(CEB ∠)为31︒.(1)求线段CD 的长(结果取整数);(2)求桥塔AB 的高度(结果取整数).参考数据:tan310.6,tan60.1︒≈︒≈.23.已知张华的家、画社、文化广场依次在同一条直线上,画社离家0.6km ,文化广场离家1.5km .张华从家出发,先匀速骑行了4min 到画社,在画社停留了15min ,之后匀速骑行了6min 到文化广场,在文化广场停留6min 后,再匀速步行了20min 返回家.下面图中x 表示时间,y 表示离家的距离.图象反映了这个过程中张华离家的距离与时间之间的对应关系.请根据相关信息,回答下列问题:(1)①填表:张华离开家的时间/min141330张华离家的距离/km 0.6②填空:张华从文化广场返回家的速度为______km /min ;③当025x ≤≤时,请直接写出张华离家的距离y 关于时间x 的函数解析式;(2)当张华离开家8min 时,他的爸爸也从家出发匀速步行了20min 直接到达了文化广场,那么从画社到文化广场的途中()0.6 1.5y <<两人相遇时离家的距离是多少?(直接写出结果即可)【答案】(1)①0.15,0.6,1.5;②0.075;③当04x ≤≤时,0.15y x =;当419x <≤时,0.6y =;当1925x <≤时,0.15 2.25y x =-(2)1.05km【分析】本题考查了从函数图象获取信息,求函数的解析式,列一元一次方程解决实际问题,准确理解题意,熟练掌握知识点是解题的关键.(1)①根据图象作答即可;②根据图象,由张华从文化广场返回家的距离除以时间求解即可;③分段求解,04x ≤≤,可得出0.15y x =,当419x <≤时,0.6y =;当1925x <≤时,设次数的函数解析式为:y kx b =+,把()19,0.6,()25,1.5代入y kx b =+,用待定系数法求解即可.(2)先求出张华爸爸的速度,设张华爸爸距家km y ',则0.0750.6y x '=-,当两人相遇书时有600.1.005 2..2575x x --=,列一元一次方程求解即可进一步得出答案.【详解】(1)解:①画社离家0.6km ,张华从家出发,先匀速骑行了4min 到画社,∴张华的骑行速度为()0.640.15km /min ÷=,∴张华离家1min 时,张华离家0.1510.15km ⨯=,张华离家13min 时,还在画社,故此时张华离家还是0.6km ,张华离家30min 时,在文化广场,故此时张华离家还是1.5km .故答案为:0.15,0.6,1.5.②()1.5 5.1 3.10.075km /min ÷-=,故答案为:0.075.③当04x ≤≤时,张华的匀速骑行速度为()0.640.15km /min ÷=,∴0.15y x =;当419x <≤时,0.6y =;当1925x <≤时,设次数的函数解析式为:y kx b =+,把()19,0.6,()25,1.5代入y kx b =+,可得出:190.625 1.5k b k b +=⎧⎨+=⎩,解得:0.152.25k b =⎧⎨=-⎩,∴0.15 2.25y x =-,综上:当04x ≤≤时,0.15y x =,当419x <≤时,0.6y =,当1925x <≤时,0.15 2.25y x =-.(2)张华爸爸的速度为:()1.5200.075km /min ÷=,设张华爸爸距家km y ',则()0.07580.0750.6y x x =-=-',当两人从画社到文化广场的途中()0.6 1.5y <<两人相遇时,有600.1.005 2..2575x x --=,解得:22x =,∴()0.07580.0750.60.075220.6 1.05km y x x =-=-=⨯-=',故从画社到文化广场的途中()0.6 1.5y <<两人相遇时离家的距离是1.05km .24.将一个平行四边形纸片OABC 放置在平面直角坐标系中,点()0,0O ,点()3,0A ,点,B C 在第一象限,且2,60OC AOC ∠== .(1)填空:如图①,点C 的坐标为______,点B 的坐标为______;(2)若P 为x 轴的正半轴上一动点,过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上,点C 的对应点为C '.设OP t =.①如图②,若直线l 与边CB 相交于点Q ,当折叠后四边形PO C Q ''与OABC 重叠部分为五边形时,O C ''与AB 相交于点E .试用含有t 的式子表示线段BE 的长,并直接写出t 的取值范围;②设折叠后重叠部分的面积为S ,当21134t ≤≤时,求S 的取值范围(直接写出结果即可).∵四边形OABC 是平行四边形,2,OC =∴23OC AB OA B AOC ====∠=∠,CB ,∵CH OA⊥∴30OCH ∠=︒此时AB与C O''的交点为E与A重合,OP 如图:当C'与点B重合时,此时AB与C O''的交点为E与B重合,OP=∴t的取值范围为35 22t<<;②如图:过点C作CH OA⊥由(1)得出()13C ,,60COA ∠=︒∴tan 60MP OP ︒=,3MP t =∴3MP t=当213t ≤<时,111222S O P OP MP t '==⨯=⨯()()1122S O P MC MP OP CM =+⨯''=+∴30>,S 随着t 的增大而增大∴在32t =时3333332222S =⨯-=-∵由①得出EO A ' 是等边三角形,EN AO⊥∴()11323222AN AO t t ==-=-',∴tan 3EAO '∠=,3EN AN=∴332EN t ⎛⎫=- ⎪⎝⎭()31333222S t AO BC MP t =--⨯+⨯=-''∴30-<,S 随着t 的增大而减小∴在51124t ≤≤时,则把51124t t ==,分别代入得出57333S =-⨯+=,113S =-⨯+25.已知抛物线()20y ax bx c a b c a =++>,,为常数,的顶点为P ,且20a b +=,对称轴与x 轴相交于点D ,点(),1M m 在抛物线上,1m O >,为坐标原点.(1)当11a c ==-,时,求该抛物线顶点P 的坐标;(2)当OM OP ==a 的值;(3)若N 是抛物线上的点,且点N 在第四象限,90MDN DM DN ∠=︒=,,点E 在线段MN上,点F 在线段DN 上,NE NF +=,当DE MF +a 的值.则901MHO HM ∠=︒=,在Rt MOH 中,由2HM 221312m ⎛⎫∴+= ⎪ ⎪⎝⎭.解得123322m m ==-,(舍)90DNK NDK MDH ∠∠∠=︒-=NDK DMH ∴≌△△.∴1DK MH ==,NK DH ==∴点N 的坐标为()2,1m -.在Rt DMN △中,DMN DNM ∠=∠。

2020年北京市中考数学试题(解析版)

2020年北京市中考数学试题(解析版)

2020年北京市中考数学一.选择题(第1-8题均有四个选项,符合题意的选项只有一个)1.如图是某几何体的三视图,该几何体是( )A. 圆柱B. 圆锥C. 三棱锥D. 长方体【答案】D【解析】【分析】 根据三视图都是长方形即可判断该几何体为长方体.【详解】解:长方体的三视图都是长方形,故选D .【点睛】本题考查了几何体的三视图,解题的关键是熟知基本几何体的三视图,正确判断几何体.2.2020年6月23日,北斗三号最后一颗全球组网卫星从西昌发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为( )A. 50.3610⨯B. 53.610⨯C. 43.610⨯D. 43610⨯【答案】C【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.当原数绝对值大于1时,n 是正数;当原数绝对值小于1时,n 是负数.【详解】解: 36000=43.610⨯,故选:C .【点睛】本题考查用科学记数法表示绝对值大于1的数,熟练掌握科学记数法的表示形式是解题的关键. 3.如图,AB 和CD 相交于点O ,则下列结论正确的是( )A. ∠1=∠2B. ∠2=∠3C. ∠1>∠4+∠5D. ∠2<∠5【答案】A【解析】【分析】根据对顶角性质、三角形外角性质分别进行判断,即可得到答案.【详解】解:由两直线相交,对顶角相等可知A正确;由三角形的一个外角等于它不相邻的两个内角的和可知B选项为∠2>∠3,C选项为∠1=∠4+∠5,D选项为∠2>∠5.故选:A.【点睛】本题考查了三角形的外角性质,对顶角性质,解题的关键是熟练掌握三角形的外角性质进行判断.4.下列图形中,既是中心对称图形也是轴对称图形的是()A. B.C. D.【答案】D【解析】【分析】根据中心对称图形以及轴对称图形的定义即可作出判断.【详解】解:A、是轴对称图形,不是中心对称图形,故选项错误;B、不是轴对称图形,也不是中心对称图形,故选项错误;C、不是轴对称图形,是中心对称图形,故选项错误;D、既是轴对称图形,又是中心对称图形,故选项正确.故选:D .【点睛】本题主要考查了中心对称图形和轴对称图形的定义,正确理解定义是关键.5.正五边形的外角和为( )A. 180°B. 360°C. 540°D. 720°【答案】B【解析】【分析】根据多边形的外角和定理即可得.【详解】任意多边形的外角和都为360︒,与边数无关故选:B .【点睛】本题考查了多边形的外角和定理,熟记多边形的外角和定理是解题关键.6.实数a 在数轴上的对应点的位置如图所示.若实数b 满足a b a -<<,则b 的值可以是( )A. 2B. -1C. -2D. -3 【答案】B【解析】【分析】先根据数轴的定义得出a 的取值范围,从而可得出b 的取值范围,由此即可得.【详解】由数轴的定义得:12a << 21a ∴-<-<-2a ∴<又a b a -<<b ∴到原点的距离一定小于2观察四个选项,只有选项B 符合故选:B .【点睛】本题考查了数轴的定义,熟记并灵活运用数轴的定义是解题关键.7.不透明的袋子中装有两个小球,上面分别写着“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是( )A. 14B. 13C. 12D. 23【答案】C【解析】【分析】先根据题意画出树状图,再利用概率公式计算即可.【详解】解:画树状图如下:所以共4种情况:其中满足题意的有两种,所以两次记录的数字之和为3的概率是21.42= 故选C .【点睛】本题考查的是画树状图求解概率,掌握画树状图求概率是解题的关键.8.有一个装有水的容器,如图所示.容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A. 正比例函数关系B. 一次函数关系C. 二次函数关系D. 反比例函数关系【答案】B【解析】【分析】 设水面高度为,hcm 注水时间为t 分钟,根据题意写出h 与t 的函数关系式,从而可得答案.【详解】解:设水面高度为,hcm 注水时间为t 分钟,则由题意得:0.210,h t =+所以容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系,故选B .【点睛】本题考查的是列函数关系式,判断两个变量之间的函数关系,掌握以上知识是解题的关键.二、填空题9.若代数式17x -有意义,则实数x 的取值范围是_____. 【答案】7x ≠【解析】【分析】根据分式有意义的条件列出不等式,解不等式即可.【详解】∵代数式17x -有意义,分母不能为0,可得70x -≠,即7x ≠, 故答案为:7x ≠.【点睛】本题考查的是分式有意义的条件,掌握分式分母不为0是解题的关键.10.已知关于x 的方程220x x k ++=有两个相等的实数根,则k 的值是______.【答案】1【解析】【分析】由一元二次方程根的判别式列方程可得答案.【详解】解:一元二次方程有两个相等的实数根,可得判别式0=,∴440k -=,解得:1k =.故答案为:1.【点睛】本题考查的是一元二次方程根的判别式,掌握根的判别式的含义是解题的关键.11.______.【答案】2(或3)【解析】【分析】<2,34,2或3.故答案为:2(或3)相邻的整数之间是解答此题的关键.12.方程组137x y x y -=⎧⎨+=⎩的解为________. 【答案】21x y =⎧⎨=⎩ 【解析】【分析】用加减消元法解二元一次方程组即可.【详解】解:两个方程相加可得48x =,∴2x =,将2x =代入1x y -=,可得1y =, 故答案为:21x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,熟练掌握加减消元法解二元一次方程组的步骤是解题的关键. 13.在平面直角坐标系xOy 中,直线y x =与双曲线m y x =交于A ,B 两点.若点A ,B 的纵坐标分别为12,y y ,则12y y +的值为_______.【答案】0【解析】【分析】根据“正比例函数与反比例函数的交点关于原点对称”即可求解.【详解】解:∵正比例函数和反比例函数均关于坐标原点O 对称,∴正比例函数和反比例函数的交点亦关于坐标原点中心对称,∴120y y +=,故答案为:0.【点睛】本题考查正比例函数和反比例函数的图像性质,根据正比例函数与反比例函数的交点关于原点对称这个特点即可解题.14.在ABC 中,AB=AC ,点D 在BC 上(不与点B ,C 重合).只需添加一个条件即可证明ABD ≌ACD ,这个条件可以是________(写出一个即可)【答案】∠BAD=∠CAD (或BD=CD )【解析】【分析】 证明ABD ≌ACD ,已经具备,,AB AC AD AD == 根据选择的判定三角形全等的判定方法可得答案.【详解】解:,,AB AC AD AD ==∴ 要使,ABD ACD ≌则可以添加:∠BAD=∠CAD ,此时利用边角边判定:,ABD ACD ≌或可以添加:,BD CD =此时利用边边边判定:,ABD ACD ≌故答案为:∠BAD=∠CAD 或(.BD CD =)【点睛】本题考查是三角形全等的判定,属开放性题,掌握三角形全等的判定是解题的关键. 15.如图所示的网格是正方形网格,A ,B ,C ,D 是网格交点,则ABC 的面积与ABD 的面积的大小关系为:ABC S ______ABD S (填“>”,“=”或“<”)【答案】=【解析】【分析】在网格中分别计算出三角形的面积,然后再比较大小即可.【详解】解:如下图所示,设小正方形网格的边长为1个单位,由网格图可得14242ABC S =⨯⨯=个平方单位, 123111=52101513224222⨯---=-⨯⨯-⨯⨯-⨯⨯=ABD S S S S , 故有ABC S =ABD S .故答案为:“=”【点睛】本题考查了三角形的面积公式,在网格中当三角形的底和高不太好求时可以采用割补的方式进行求解,用大的矩形面积减去三个小三角形的面积即得到△ABD 的面积.16.如图是某剧场第一排座位分布图:甲、乙、丙、丁四人购票,所购票分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序______.【答案】丙,丁,甲,乙【解析】【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为2,3,4,5可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4.丁所购票数最多,因此应让丁第二购票,据此判断即可.【详解】解:丙先选择:1,2,3,4.丁选:5,7,9,11,13.甲选:6,8.乙选:10,12,14.∴顺序为丙,丁,甲,乙.(答案不唯一)【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.三、解答题(解答应写出文字说明、演算步骤或证明过程)17.计算:11()|2|6sin 453---︒【答案】5【解析】【分析】分别计算负整数指数幂,算术平方根,绝对值,锐角三角函数,再合并即可得到答案.【详解】解:原式=3262+-⨯32=+-5.=【点睛】本题考查的是负整数指数幂,算术平方根,绝对值,锐角三角函数,以及合并同类二次根式,掌握以上的知识是解题的关键.18.解不等式组:5322132x x x x ->⎧⎪-⎨<⎪⎩ 【答案】12x <<【解析】【分析】分别解每一个不等式,然后即可得出解集. 【详解】解:5322132x x x x ->⎧⎪⎨-<⎪⎩①② 解不等式①得:1x >,解不等式②得:2x <,∴此不等式组的解集为12x <<.【点睛】本题考查了解一元一次不等式组,掌握不等式的解法是解题关键.19.已知2510x x --=,求代数式(32)(32)(2)x x x x +-+-的值.【答案】21024x x --,-2【解析】【分析】 先按照整式的混合运算化简代数式,注意利用平方差公式进行简便运算,再把2510x x --=变形后,整体代入求值即可.【详解】解:原式=22942x x x -+-2102 4.x x =--∵2510x x --=,∴251x x -=,∴21022x x -=,∴原式=242-=-. 【点睛】本题考查的是整式化简求值,掌握利用平方差公式进行简便运算,整体代入求值是解题的关键. 20.已知:如图,ABC 为锐角三角形,AB=BC ,CD ∥AB .求作:线段BP ,使得点P 在直线CD 上,且∠ABP=12BAC ∠. 作法:①以点A 为圆心,AC 长为半径画圆,交直线CD 于C ,P 两点;②连接BP .线段BP 就是所求作线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹)(2)完成下面的证明.证明:∵CD ∥AB ,∴∠ABP= .∵AB=AC ,∴点B 在⊙A 上.又∵∠BPC=12∠BAC ( )(填推理依据)∴∠ABP=12∠BAC【答案】(1)见解析;(2)∠BPC ,在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半 【解析】 【分析】(1)按照作法的提示,逐步作图即可;(2)利用平行线的性质证明:,ABP BPC ∠=∠ 再利用圆的性质得到:∠BPC=12∠BAC ,从而可得答案. 【详解】解:(1)依据作图提示作图如下:(2)证明:∵CD ∥AB , ∴∠ABP= BPC ∠ . ∵AB=AC , ∴点B 在⊙A 上. 又∵∠BPC=12∠BAC (在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半. )(填推理依据) ∴∠ABP=12∠BAC 故答案为:∠BPC ;在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半.【点睛】本题考查的是作图中复杂作图,同时考查了平行线的性质,圆的基本性质:在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半.掌握以上知识是解题的关键.21.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E 是AD 的中点,点F ,G 在AB 上,EF ⊥AB ,OG ∥EF . (1)求证:四边形OEFG 是矩形;(2)若AD=10,EF=4,求OE 和BG 的长.【答案】(1)见解析;(2)OE=5,BG=2.【解析】【分析】(1)先证明EO是△DAB的中位线,再结合已知条件OG∥EF,得到四边形OEFG是平行四边形,再由条件EF⊥AB,得到四边形OEFG是矩形;(2)先求出AE=5,由勾股定理进而得到AF=3,再由中位线定理得到OE=12AB=12AD=5,得到FG=5,最后BG=AB-AF-FG=2.【详解】解:(1)证明:∵四边形ABCD菱形,∴点O为BD的中点,∵点E为AD中点,∴OE为△ABD的中位线,∴OE∥FG,∵OG∥EF,∴四边形OEFG为平行四边形∵EF⊥AB,∴平行四边形OEFG为矩形.(2)∵点E为AD的中点,AD=10,∴AE=15 2AD=∵∠EFA=90°,EF=4,∴在Rt△AEF中,2222543-=-=AF AE EF.∵四边形ABCD为菱形,∴AB=AD=10,∴OE=12AB=5,∵四边形OEFG为矩形,∴FG=OE=5,∴BG=AB-AF-FG=10-3-5=2.故答案为:OE=5,BG=2.【点睛】本题考查了矩形的性质和判定,菱形的性质、勾股定理等知识点,特殊四边形的性质和判定属于中考常考题型,需要重点掌握.22.在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数y x =的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当1x >时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,直接写出m 的取值范围.【答案】(1)1y x =+;(2)2m ≥ 【解析】 【分析】(1)根据一次函数(0)y kx b k =+≠由y x =平移得到可得出k 值,然后将点(1,2)代入y x b =+可得b 值即可求出解析式;(2)由题意可得临界值为当1x =时,两条直线都过点(1,2),即可得出当12x m >>,时,(0)y mx m =≠都大于1y x =+,根据1x >,可得m 可取值2,可得出m 的取值范围. 【详解】(1)∵一次函数(0)y kx b k =+≠由y x =平移得到, ∴1k =,将点(1,2)代入y x b =+可得1b =, ∴一次函数的解析式为1y x =+; (2)当1x >时,函数(0)y mx m =≠函数值都大于1y x =+,即图象在1y x =+上方,由下图可知:临界值为当1x =时,两条直线都过点(1,2),∴当12x m >>,时,(0)y mx m =≠都大于1y x =+, 又∵1x >,∴m 可取值2,即2m =, ∴m 的取值范围为2m ≥.【点睛】本题考查了求一次函数解析式,函数图像的平移,一次函数的图像,找出临界点是解题关键. 23.如图,AB 为⊙O 的直径,C 为BA 延长线上一点,CD 是⊙O 的切线,D 为切点,OF ⊥AD 于点E ,交CD 于点F .(1)求证:∠ADC=∠AOF ; (2)若sinC=13,BD=8,求EF 的长.【答案】(1)见解析;(2)2. 【解析】 【分析】(1)连接OD ,根据CD 是⊙O 的切线,可推出∠ADC+∠ODA=90°,根据OF ⊥AD ,∠AOF+∠DAO=90°,根据OD=OA ,可得∠ODA=∠DAO ,即可证明;(2)设半径为r ,根据在Rt △OCD 中,sin 13C =,可得3OD r OC r ==,,AC=2r ,由AB 为⊙O 的直径,得出∠ADB=90°,再根据推出OF ⊥AD ,OF ∥BD ,然后由平行线分线段成比例定理可得12OE OA BD AB ==,求出OE ,34OF OC BD BC ==,求出OF ,即可求出EF . 【详解】(1)证明:连接OD ,∵CD 是⊙O 的切线, ∴OD ⊥CD ,∴∠ADC+∠ODA=90°, ∵OF ⊥AD ,∴∠AOF+∠DAO=90°, ∵OD=OA , ∴∠ODA=∠DAO , ∴∠ADC=∠AOF ; (2)设半径为r ,在Rt △OCD 中,1sin 3C =, ∴13OD OC , ∴3OD r OC r ==,, ∵OA=r ,∴AC=OC-OA=2r , ∵AB 为⊙O 的直径, ∴∠ADB=90°, 又∵OF ⊥AD , ∴OF ∥BD , ∴12OE OA BD AB ==, ∴OE=4, ∵34OF OC BD BC ==, ∴6OF =,∴2EF OF OE =-=.【点睛】本题考查了平行线分线段成比例定理,锐角三角函数,切线的性质,直径所对的圆周角是90°,灵活运用知识点是解题关键.24.小云在学习过程中遇到一个函数21||(1)(2)6y x x x x =-+≥-.下面是小云对其探究的过程,请补充完整:(1)当20x -≤<时,对于函数1||y x =,即1y x =-,当20x -≤<时,1y 随x 的增大而 ,且10y >;对于函数221y x x =-+,当20x -≤<时,2y 随x 的增大而 ,且20y >;结合上述分析,进一步探究发现,对于函数y ,当20x -≤<时,y 随x 的增大而 . (2)当0x ≥时,对于函数y ,当0x ≥时,y 与x 的几组对应值如下表:x12132 252 3y116 167161954872综合上表,进一步探究发现,当0x ≥时,y 随x 的增大而增大.在平面直角坐标系xOy 中,画出当0x ≥时的函数y 的图象.(3)过点(0,m)(0m >)作平行于x 轴的直线l ,结合(1)(2)的分析,解决问题:若直线l 与函数21||(1)(2)6y x x x x =-+≥-的图象有两个交点,则m 的最大值是 . 【答案】(1)减小,减小,减小;(2)见解析;(3)73【解析】 【分析】(1)根据一次函数的性质,二次函数的性质分别进行判断,即可得到答案; (2)根据表格的数据,进行描点,连线,即可画出函数的图像;(3)根据函数图像和性质,当2x =-时,函数有最大值,代入计算即可得到答案. 【详解】解:(1)根据题意,在函数1y x =-中, ∵10k =-<,∴函数1y x =-在20x -≤<中,1y 随x 的增大而减小; ∵222131()24y x x x =-+=-+, ∴对称轴为:1x =,∴221y x x =-+在20x -≤<中,2y 随x 的增大而减小;综合上述,21||(1)6y x x x =-+在20x -≤<中,y 随x 的增大而减小; 故答案为:减小,减小,减小;(2)根据表格描点,连成平滑的曲线,如图:(3)由(2)可知,当0x ≥时,y 随x 的增大而增大,无最大值; 由(1)可知21||(1)6y x x x =-+在20x -≤<中,y 随x 的增大而减小; ∴在20x -≤<中,有 当2x =-时,73y =, ∴m 的最大值为73; 故答案为:73. 【点睛】本题考查了二次函数的性质,一次函数的性质,以及函数的最值问题,解题的关键是熟练掌握题意,正确的作出函数图像,并求函数的最大值.25.小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:a .小云所住小区5月1日至30日的厨余垃圾分出量统计图:b .小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:时段 1日至10日 11日至20日 21日至30日 平均数 100170250(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为 (结果取整数)(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的 倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为21,s 5月11日至20日的厨余垃圾分出量的方差为22s ,5月21日至30日的厨余垃圾分出量的方差为23s .直接写出222123,,s s s 的大小关系.【答案】(1)173;(2)2.9倍;(3)222123s s s >>【解析】 【分析】(1)利用加权平均数的计算公式进行计算,即可得到答案; (2)利用5月份的平均数除以4月份的平均数,即可得到答案; (3)直接利用点状图和方差的意义进行分析,即可得到答案. 【详解】解:(1)平均数:1[(10010)(17010)(25010)]17330⨯⨯+⨯+⨯=(千克); 故答案为:173; (2)17360 2.9÷=倍; 故答案为:2.9;(3)方差反应数据的稳定程度,即从点状图中表现数据的离散程度,所以从图中可知:222123s s s >>;【点睛】本题考查了方差的意义,平均数,以及数据的分析处理,解题的关键是熟练掌握题意,正确的分析数据的联系.26.在平面直角坐标系xOy 中,1122(,),(,)M x y N x y 抛物线2(0)y ax bx c a =++>上任意两点,其中12x x <.(1)若抛物线的对称轴为1x =,当12,x x 为何值时,12;y y c ==(2)设抛物线的对称轴为x t =.若对于123x x +>,都有12y y <,求t 的取值范围. 【答案】(1)120,2x x ==;(2)32t ≤ 【解析】 【分析】(1)根据抛物线解析式得抛物线必过(0,c ),因为12y y c ==,抛物线的对称轴为1x =,可得点M ,N 关于1x =对称,从而得到12,x x 的值;(2)根据题意知,抛物线开口向上,对称轴为x t =,分3种情况讨论,情况1:当12,x x 都位于对称轴右侧时,情况2:当12,x x 都位于对称轴左侧时,情况3:当12,x x 位于对称轴两侧时,分别求出对应的t 值,再进行总结即可.【详解】解:(1)当x=0时,y=c , 即抛物线必过(0,c ),∵12y y c ==,抛物线的对称轴为1x =, ∴点M ,N 关于1x =对称, 又∵12x x <, ∴10x =,22x =;(2)由题意知,a >0, ∴抛物线开口向上∵抛物线的对称轴为x t =,12x x <∴情况1:当12,x x 都位于对称轴右侧时,即当1x t ≥时,12y y <恒成立情况2:当12,x x 都位于对称轴左侧时,即1x <2,t x t ≤时,12y y <恒不成立情况3:当12,x x 位于对称轴两侧时,即当1x <2,t x t >时,要使12y y <,必有12x t x t -<-,即()()2212x t x t -<-解得122x x t +>, ∴3≥2t , ∴32t ≤综上所述,32t ≤. 【点睛】本题考查了二次函数图象的性质.解题的关键是学会分类讨论的思想及数形结合思想.27.在ABC 中,∠C=90°,AC >BC ,D 是AB 的中点.E 为直线上一动点,连接DE ,过点D 作DF ⊥DE ,交直线BC 于点F ,连接EF .(1)如图1,当E 是线段AC 的中点时,设,AE a BF b ==,求EF 的长(用含,a b 的式子表示); (2)当点E 在线段CA 的延长线上时,依题意补全图2,用等式表示线段AE ,EF ,BF 之间的数量关系,并证明.【答案】(122a b +;(2)图见解析,222EF AE BF =+,证明见解析. 【解析】 【分析】(1)先根据中位线定理和线段中点定义可得//DE BC ,12DE BC =,CE AE a ==,再根据平行四边形的性质、矩形的判定与性质可得DE CF =,从而可得CF BF b ==,然后利用勾股定理即可得; (2)如图(见解析),先根据平行线的性质可得EAD GBD ∠=∠,DEA DGB ∠=∠,再根据三角形全等的判定定理与性质可得ED GD =,AE BG =,然后根据垂直平分线的判定与性质可得EF FG =,最后在Rt BGF 中,利用勾股定理、等量代换即可得证.【详解】(1)∵D 是AB 的中点,E 是线段AC 的中点∴DE 为ABC 的中位线,且CE AE a ==∴//DE BC ,12DE BC =∵90C ∠=︒∴18090DEC C ∠=︒-∠=︒∵DF DE ⊥∴90EDF ∠=︒∴四边形DECF 为矩形∴DE CF = 11()22CF BC BF CF ∴==+ ∴CF BF b ==则在Rt CEF中,EF =(2)过点B 作AC 的平行线交ED 的延长线于点G ,连接FG∵//BG AC∴EAD GBD ∠=∠,DEA DGB ∠=∠∵D 是AB 的中点∴AD BD =在EAD 和GBD △中,EAD GBD DEA DGB AD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EAD GBD AAS ≅∴ED GD =,AE BG =又∵DF DE ⊥∴DF 是线段EG 的垂直平分线∴EF FG =∵90C ∠=︒,//BG AC∴90GBF C ∠=∠=︒在Rt BGF 中,由勾股定理得:222FG BG BF =+∴222EF AE BF =+.【点睛】本题考查了中位线定理、矩形的判定与性质、三角形全等的判定定理与性质、垂直平分线的判定与性质、勾股定理等知识点,较难的是题(2),通过作辅助线,构造全等三角形和直角三角形是解题关键. 28.在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB=1.给出如下定义:平移线段AB ,得到⊙O 的弦A B ''(,A B ''分别为点A ,B 的对应点),线段AA '长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦12PP 和34PP ,则这两条弦的位置关系是 ;在点1234,,,P P P P 中,连接点A 与点 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线323y x =+上,记线段AB 到⊙O 的“平移距离”为1d ,求1d 的最小值; (3)若点A 的坐标为32,2⎛⎫ ⎪⎝⎭,记线段AB 到⊙O 的“平移距离”为2d ,直接写出2d 的取值范围. 【答案】(1)平行,P 3;(23(3)23392d ≤≤【解析】【分析】(1)根据圆的性质及“平移距离”的定义填空即可;(2)过点O 作OE ⊥AB 于点E ,交弦CD 于点F ,分别求出OE 、OF 的长,由1d OE OF =-得到1d 的最小值;(3)线段AB 的位置变换,可以看作是以点A 32,2⎛⎫ ⎪⎝⎭为圆心,半径为1的圆,只需在⊙O 内找到与之平行,且长度为1的弦即可.平移距离2d 的最大值即点A ,B 点的位置,由此得出2d 的取值范围.【详解】解:(1)平行;P 3;(2)如图,线段AB 在直线323y x =+上,平移之后与圆相交,得到的弦为CD ,CD ∥AB ,过点O 作OE ⊥AB 于点E ,交弦CD 于点F ,OF ⊥CD ,令0y =,直线与x 轴交点为(-2,0),直线与x 轴夹角为60°,∴2sin 603OE ︒==.由垂径定理得:22132OF OC CD ⎛⎫=-= ⎪⎝⎭, ∴13d OE OF =-=;(3)线段AB 的位置变换,可以看作是以点A 32,2⎛⎫ ⎪⎝⎭为圆心,半径为1的圆,只需在⊙O 内找到与之平行,且长度为1的弦即可;点A 到O 的距离为2235222AO ⎛⎫=+= ⎪⎝⎭. 如图,平移距离2d 的最小值即点A 到⊙O 的最小值:53122-=;平移距离2d 的最大值线段是下图AB 的情况,即当A 1,A 2关于OA 对称,且A 1B 2⊥A 1A 2且A 1B 2=1时.∠B 2A 2A 1=60°,则∠OA 2A 1=30°, ∵OA 2=1,∴OM=12, A 2M=32, ∴MA=3,AA 2=2233932⎛⎫+= ⎪ ⎪⎝⎭,∴2d 的取值范围为:23392d ≤≤ 【点睛】本题考查圆的基本性质及与一次函数的综合运用,熟练掌握圆的基本性质、点与圆的位置关系、直线与圆的位置关系是解题的关键.。

2024年辽宁中考数学试题及答案

2024年辽宁中考数学试题及答案

2024年辽宁中考数学试题及答案第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中;有一项是符合题目要求的)1.如图是由5个相同的小立方块搭成的几何体,这个几何体的俯视图是( )A .B .C .D .2.亚洲、欧洲、非洲和南美洲的最低海拔如下表:大洲亚洲欧洲非洲南美洲最低海拔/m 415-28-156-40-其中最低海拔最小的大洲是( )A .亚洲B .欧洲C .非洲D .南美洲3.越山向海,一路花开.在5月24日举行的2024辽宁省高品质文体旅融合发展大型产业招商推介活动中,全省30个重大文体旅项目进行集中签约,总金额达532亿元.将53200000000用科学记数法表示为( )A .853210⨯B .953.210⨯C .105.3210⨯D .115.3210⨯4.如图,在矩形ABCD 中,点E 在AD 上,当EBC 是等边三角形时,AEB ∠为( )A .30︒B .45︒C .60︒D .120︒5.下列计算正确的是( )A .2352a a a +=B .236a a a ⋅=C .()325a a =D .2(1)a a a a+=+6.一个不透明袋子中装有4个白球,3个红球,2个绿球,1个黑球,每个球除颜色外都相同.从中随机摸出一个球,则下列事件发生的概率为310的是( )A .摸出白球B .摸出红球C .摸出绿球D .摸出黑球7.纹样是我国古代艺术中的瑰宝.下列四幅纹样图形既是轴对称图形又是中心对称图形的是( )A .B .C .D .8.我国古代数学著作《孙子算经》中有“雉兔同笼”问题:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”其大意是:鸡兔同笼,共有35个头,94条腿,问鸡兔各多少只?设鸡有x 只,兔有y 只,根据题意可列方程组为( )A .944235x y x y +=⎧⎨+=⎩B .942435x y x y +=⎧⎨+=⎩C .354294x y x y +=⎧⎨+=⎩D .352494x y x y +=⎧⎨+=⎩9.如图,ABCD Y 的对角线AC ,BD 相交于点O ,DE AC ∥,CE BD ∥,若3AC =,5BD =,则四边形OCED 的周长为( )A .4B .6C .8D .1610.如图,在平面直角坐标系xOy 中,菱形AOBC 的顶点A 在x 轴负半轴上,顶点B 在直线34y x =上,若点B 的横坐标是8,为点C 的坐标为( )A .(1,6)-B .()2,6-C .(3,6)-D .(4,6)-第二部分 非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11.方程512x =+的解为 .12.在平面直角坐标系中,线段AB 的端点坐标分别为(2,1)A -,(1,0)B ,将线段AB 平移后,点A 的对应点A '的坐标为()2,1,则点B 的对应点B '的坐标为 .13.如图,AB CD ∥,AD 与BC 相交于点O ,且AOB 与DOC △的面积比是1:4,若6AB =,则CD 的长为 .14.如图,在平面直角坐标系中,抛物线23y ax bx =++与x 与相交于点A ,B ,点B 的坐标为(3,0),若点(2,3)C 在抛物线上,则AB 的长为 .15.如图,四边形ABCD 中,AD BC ∥,AD AB >,AD a =,10AB =.以点A 为圆心,以AB 长为半径作图,与BC 相交于点E ,连接AE .以点E 为圆心,适当长为半径作弧,分别与EA ,EC 相交于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径作弧,两弧在AEC ∠的内部相交于点P ,作射线EP ,与AD 相交于点F ,则FD 的长为 (用含a 的代数式表示).三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(1)计算:2410(1)+÷-(2)计算:22111a a a a a-⋅++.17.甲、乙两个水池注满水,蓄水量均为336m 、工作期间需同时排水,乙池的排水速度是38m /h .若排水3h ,则甲池剩余水量是乙池剩余水量的2倍.(1)求甲池的排水速度.(2)工作期间,如果这两个水池剩余水量的和不少于324m ,那么最多可以排水几小时?18.某校为了解七年级学生对消防安全知识掌握的情况,随机抽取该校七年级部分学生进行测试,并对测试成绩进行收集、整理、描述和分析(测试满分为100分,学生测试成绩x 均为不小于60的整数,分为四个等级:D :6070x ≤<,C :7080x ≤<,B :8090x ≤<,A :90100x ≤≤),部分信息如下:信息一:信息二:学生成绩在B 等级的数据(单位:分)如下:80,81,82,83,84,84,84,86,86,86,88,89请根据以上信息,解答下列问题:(1)求所抽取的学生成组为C 等级的人数;(2)求所抽取的学生成绩的中位数;(3)该校七年级共有360名学生,若全年级学生都参加本次测试,请估计成绩为A 等级的人数.19.某商场出售一种商品,经市场调查发现,日销售量y (件)与每件售价x (元)满足一次函数关系,部分数据如下表所示:每件售价x /元⋅⋅⋅455565⋅⋅⋅日销售量y /件⋅⋅⋅554535⋅⋅⋅(1)求y 与x 之间的函数关系式(不要求写出自变量x 的取值范围);(2)该商品日销售额能否达到2600元?如果能,求出每件售价:如果不能,请说明理由.20.如图1,在水平地面上,一辆小车用一根绕过定滑轮的绳子将物体竖直向上提起.起始位置示意图如图2,此时测得点A 到BC 所在直线的距离3m AC =,60CAB ∠=︒;停止位置示意图如图3,此时测得37CDB ∠=︒(点C ,A ,D 在同一直线上,且直线CD 与平面平行,图3中所有点在同一平面内.定滑轮半径忽略不计,运动过程中绳子总长不变.(参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈ 1.73≈)(1)求AB 的长;(2)求物体上升的高度CE (结果精确到0.1m ).21.如图,O 是ABC 的外接圆,AB 是O 的直径,点D 在 BC 上, AC BD=,E 在BA 的延长线上,CEA CAD ∠=∠.(1)如图1,求证:CE 是O 的切线;(2)如图2,若2CEA DAB ∠=∠,8OA =,求 BD的长.22.如图,在ABC 中,90ABC ∠=︒,()045ACB αα∠=︒<<︒.将线段CA 绕点C 顺时针旋转90︒得到线段CD ,过点D 作DE BC ⊥,垂足为E .图1 图2 图3(1)如图1,求证:ABC CED △≌△;(2)如图2,ACD ∠的平分线与AB 的延长线相交于点F ,连接DF ,DF 的延长线与CB 的延长线相交于点P ,猜想PC 与PD 的数量关系,并加以证明;(3)如图3,在(2)的条件下,将BFP △沿AF 折叠,在α变化过程中,当点P 落在点E 的位置时,连接EF .①求证:点F 是PD 的中点;②若20CD =,求CEF △的面积.23.已知1y 是自变量x 的函数,当21y xy =时,称函数2y 为函数1y 的“升幂函数”.在平面直角坐标系中,对于函数1y 图象上任意一点(,)A m n ,称点(,)B m mn 为点A “关于1y 的升幂点”,点B 在函数1y 的“升幂函数”2y 的图象上.例如:函数12y x =,当22122y xy x x x==⋅=时,则函数222y x =是函数12y x =的“升幂函数”.在平面直角坐标系中,函数12y x =的图象上任意一点(,2)A m m ,点()2,2B m m为点A “关于1y 的升幂点”,点B 在函数12y x =的“升幂函数”222y x =的图象上.图1 图2(1)求函数112y x =的“升幂函数”2y 的函数表达式;(2)如图1,点A 在函数13(0)y x x=>的图象上,点A “关于1y 的升幂点”B 在点A 上方,当2AB =时,求点A 的坐标;(3)点A 在函数14y x =-+的图象上,点A “关于1y 的升幂点”为点B ,设点A 的横坐标为m .①若点B 与点A 重合,求m 的值;②若点B 在点A 的上方,过点B 作x 轴的平行线,与函数1y 的“升幂函数”2y 的图象相交于点C ,以AB ,BC 为邻边构造矩形ABCD ,设矩形ABCD 的周长为y ,求y 关于m 的函数表达式;③在②的条件下,当直线1y t =与函数y 的图象的交点有3个时,从左到右依次记为E ,F ,G ,当直线2y t =与函数y 的图象的交点有2个时,从左到右依次记为M ,N ,若EF MN =,请直接写出21t t -的值.参考答案1.A【分析】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得上面一层有2个正方形,下面左边有1个正方形.故选:A .2.A【分析】此题主要考查了负数的大小比较,掌握负数比较大小,绝对值大的反而小是解题关键.比较各负数的绝对值,绝对值最大的,海拔就最低,故可得出答案.【详解】415415-=,2828-=,156156-=,4040-=∵4151564028>>>,∴8415156024-<-<-<-,∴海拔最低的是亚洲.故选:A .3.C【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:105050.030232000010⨯=,故选:C .4.C【分析】本题考查了矩形的性质,等边三角形的性质,熟练掌握等边三角形的性质是解题的关键.由矩形ABCD 得到AD BC ∥,继而得到AEB EBC ∠=∠,而EBC 是等边三角形,因此得到60AEB EBC ∠=∠=︒.【详解】解:∵四边形ABCD 是矩形,∴AD BC ∥,∴AEB EBC ∠=∠,∵EBC 是等边三角形,∴60EBC ∠=︒,∴60AEB ∠=︒,故选:C .5.D【分析】根据合并同类项、同底数幂的乘法、幂的乘方、单项式乘以多项式等知识点进行判定即可.【详解】A .3332a a a +=,故本选项原说法不符合题意;B .235a a a ⋅=,故本选项原说法不合题意;C .236()a a =,故本选项原说法不合题意;D .2(1)a a a a +=+,故本选项符合题意.故选:D .【点睛】此题考查了整式的运算,涉及的知识有:合并同类项、同底数幂的乘法、幂的乘方、单项式乘以多项式的运算,熟练掌握运算法则是解本题的关键.6.B【分析】本题考查了概率,熟练掌握概率公式是解题关键.分别求出摸出四种颜色球的概率,即可得到答案.【详解】解:A 、摸出白球的概率为4424321105==+++,不符合题意;B 、摸出红球33432110=+++,符合题意;C 、摸出绿球2214321105==+++,不符合题意;D 、摸出黑球11432110=+++,不符合题意;故选:B .7.B【分析】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A 、既不是轴对称图形也不是中心对称图形,故本选项不符合题意;B .既是轴对称图形又是中心对称图形,故本选项符合题意;C .是轴对称图形,不是中心对称图形,故本选项不符合题意;D .不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:B .8.D【分析】本题考查了二元一次方程组的应用,找出等量关系是解题关键.设鸡有x 只,兔有y 只,根据“鸡兔同笼,共有35个头,94条腿”列二元一次方程组即可.【详解】解:设鸡有x 只,兔有y 只,由题意得:352494x y x y +=⎧⎨+=⎩,故选:D .9.C【分析】本题考查了平行四边形的判定与性质,熟练掌握知识点是解题的关键.由四边形ABCD 是平行四边形得到 2.5DO =, 1.5OC =,再证明四边形OCED 是平行四边形,则 1.5, 2.5DE OC CE OD ====,即可求解周长.【详解】解:∵四边形ABCD 是平行四边形,∴1 2.52DO DB ==,1 1.52OC AC ==,∵DE AC ∥,CE BD ∥,∴四边形OCED 是平行四边形,∴ 1.5, 2.5DE OC CE OD ====,∴周长为:()2 1.5 2.58⨯+=,故选:C .10.B【分析】过点B 作BD x ⊥轴,垂足为点D ,先求出()8,6B ,由勾股定理求得10BO =,再由菱形的性质得到10,BC BO BC x ==∥轴,最后由平移即可求解.【详解】解:过点B 作BD x ⊥轴,垂足为点D ,∵顶点B 在直线34y x =上,点B 的横坐标是8,∴3864B y =⨯=,即6BD =,∴()8,6B ,∵BD x ⊥轴,∴由勾股定理得:10BO ==,∵四边形ABCD 是菱形,∴10,BC BO BC x ==∥轴,∴将点B 向左平移10个单位得到点C ,∴点()2,6C -,故选:B .【点睛】本题考查了一次函数的图像,勾股定理,菱形的性质,点的坐标平移,熟练掌握知识点,正确添加辅助线是解题的关键.11.3x =【分析】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键.先去分母,再解一元一次方程,最后再检验.【详解】解:512x =+,25x +=,解得:3x =,经检验:3x =是原方程的解,∴原方程的解为:3x =,故答案为:3x =.12.()1,2【分析】本题考查了平面直角坐标系中点的平移,熟练掌握知识点是解题的关键.先由点A 和点A '确定平移方式,即可求出点B '的坐标.【详解】解:由点(2,1)A -平移至点()2,1A '得,点A 向上平移了2个单位得到点A ',∴(1,0)B 向上平移2个单位后得到点()1,2B ',故答案为:()1,2.13.12【分析】本题考查了相似三角形的判定与性质,把握相似三角形面积比等于相似比的平方是解题的关键.可得AOB DOC ∽△△,再根据相似三角形面积比等于相似比的平方即可求解.【详解】解:∵AB CD ∥,∴AOB DOC ∽△△,∴2AOB DOC S AB S CD ⎛⎫= ⎪⎝⎭△△,∴2164CD ⎛⎫= ⎪⎝⎭,∴12CD =,故答案为:12.14.4【分析】本题主要考查了待定系数求二次函数的解析式,二次函数的性质,熟练求解二次函数的解析式是解题的关键.先利用待定系数法求得抛物线223y x x =-++,再令0y =,得2023x x =-++,解得1x =-或3x =,从而即可得解.【详解】解:把点B (3,0),点(2,3)C 代入抛物线23y ax bx =++得,09333423a b a b =++⎧⎨=++⎩,解得12a b =-⎧⎨=⎩,∴抛物线223y x x =-++,令0y =,得2023x x =-++,解得1x =-或3x =,∴(1,0)A -,∴()314AB =--=;故答案为:4.15.10a -【分析】本题考查了作图﹣作角平分线,平行线的性质,等腰三角形的判定,熟练掌握知识点是解题的关键.利用基本作图得到10AE AB ==,EF 平分AEC ∠,,接着证明AEF AFE ∠=∠得到10A F A E ==,然后利用FD AD AF =-求解.【详解】解:由作法得10AE AB ==,EF 平分AEC ∠,∴AEF CEF ∠=∠,∵AD BC ∥,∴∠=∠AFE CEF ,∴AEF AFE ∠=∠,∴10A F A E ==,∴10FD AD AF a =-=-.故答案为:10a -.16.(1)9(2)1【分析】本题考查了实数的运算,分式的化简,熟练掌握知识点是解题的关键.(1)先化简二次根式,去绝对值,再进行加减运算;(2)先计算乘法,再计算加法即可.【详解】解:(1)原式16103=-+9=;(2)原式()()21111a a a a a a+-=⋅++11a a a -=+11a a-+=1=.17.(1)34m /h(2)4小时【分析】本题考查了列一元一次方程解应用题,一元一次不等式的应用,熟练掌握知识点,正确理解题意是解题的关键.(1)设甲池的排水速度为3m /h x ,由题意得,()36323683x -=-⨯,解方程即可;(2)设排水a 小时,则()3624824a ⨯-+≥,再解不等式即可.【详解】(1)解:设甲池的排水速度为3m /h x ,由题意得,()36323683x -=-⨯,解得:4x =,答:甲池的排水速度为34m /h ;(2)解:设排水a 小时,则()3624824a ⨯-+≥,解得:4a ≤,答:最多可以排4小时.18.(1)7人(2)85(3)120人【分析】本题考查了扇形统计图和频数分布直方图,中位数,用样本估计总体,正确理解题意是解题的关键.(1)先根据B 的人数以及所占百分比求得总人数,再拿总人数减去A 、B 、D 的人数即可;(2)总人数为30人,因此中位数是第15和第16名同学的成绩的平均数,由于C 中1人,D 中7人,B 中12人,故中位数是B 中第7和第8名同学的成绩的平均数,因此中位数为:()8486285+÷=;(3)拿360乘以A 等级的人数所占百分比即可.【详解】(1)解:总人数为:1240%30÷=(人),∴抽取的学生成组为C 等级的人数为:30112107---=(人);(2)解:总人数为30人,因此中位数是第15和第16名同学的成绩的平均数,∵C 中1人,D 中7人,B 中12人,故中位数是B 中第7和第8名同学的成绩的平均数,∴中位数为:()8486285+÷=;(3)解:成绩为A 等级的人数为:1036012030⨯=(人),答:成绩为A 等级的人数为120.19.(1)100=-+y x ;(2)该商品日销售额不能达到2600元,理由见解析。

2024年安徽省中考数学试题真题及答案解析

2024年安徽省中考数学试题真题及答案解析

分别在边AB,BC上(不与端点重合),且DE⊥DF.设AE=x,四边形 DEBF的面积为
y,则y关于x的函数图象为( )
DC

AE

16

A.
力4


4x

16

B.
4h

4x

16。

C.
45
0|
4x

16

D.
4y

4x
二、填空题
x-4 11.若代数式 有意义,则实数x的取值范围是
试卷第2页,共7页
试卷第4页,共7页
x2-y2(x, y均为自然数).师生一起研讨,分析过程如下:
假设4n-2=x2-y2,其中x,y均为自然数.
分下列三种情形分析: ①若x,y均为偶数,设x=2k,y=2m,其中k,m均为自然数,
则x2-y2=(2k)2-(2m2=4(k2-m2)为4的倍数.
而4n-2不是4的倍数,矛盾.故x, y不可能均为偶数.
1208×6=4m, 【详解】解:由题意可得,AB的长为
故选:C.
6. A
答案第1页,共18页
【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出y=2-3=-1,代
入反比例函数求解即可
【详解】解:∵反比例函数y=≤(k≠0)与一次函数y=2-x的图象的一个交点的横坐标为3,
∴y=2-3=-1,
00于另一点F, FA=FE.




E D


(1)求证:CD⊥AB;
(2)设 FM⊥AB,垂足为M,若OM=OE=1,求AC的长. 21.综合与实践

2023年有关中考数学试题按知识点分类汇编三视图展开图

2023年有关中考数学试题按知识点分类汇编三视图展开图

(1)(2023年四川宜宾)下面几何的主视图是( B )(2)(2023年浙江衢州)下面形状的四张纸板,按图中线通过折叠可以围成一下直三棱柱的是( C )(3) (08浙江温州)由4个相同的小立方块搭成的几何体如图所示,它的左视图是( C )(4)(2023淅江金华)在生活和生产实践中,我们经常需要运用三视图来描述物体的形状和大小。

小亮在观测左边的热水瓶时,得到的左视图是(B )(5)(2023浙江义乌)下列四个几何体中,主视图、左视图、俯视图都是圆的几何体是( C ) A.正方体B.圆锥C.球 D.圆柱(6)(2023山东威海)下图的几何体是由三个同样大小的立方体搭成的,其左视图为(B)(7)(2023湖南益阳)一个正方体的水晶砖,体积为100cm3,它的棱长大约在(A)A. 4cm~5cm之间B. 5cm~6cm之间C. 6cm~7cm之间D. 7cm~8cm之间(8)(2023湖南益阳)如图1,骰子是一个质量均匀的小正方体,它的六个面上分别刻有1~6 个点.,小明仔细观测骰子,发现任意相对两面的点数和都相等. 这枚骰子向上的一面的点数是5,它的对面的点数是(B)A. 1B. 2C. 3D. 6(9)(2023年山东滨州)如图,一个空间几何体的主视图和左视图都是边长为1的三角形,俯视图是一个圆,那么这个几何体的侧面积是( D )A、 B、 C、 D、(10)(2023年山东临沂)如图是一个包装盒的三视图,则这个包装盒的体积是( C )A. 1000π㎝3 B. 1500π㎝3C. 2023π㎝3 D. 4000π㎝3(11)(2023年辽宁十二市)图2是由几个相同的小正方体搭成的一个几何体,它的俯视图是( D )(12)(2023年浙江绍兴)将如右图所示的绕直角边旋转一周,所得几何体的主视图是( A )(13)(2023年天津市)下面的三视图所相应的物体是( A )(14)(2023年沈阳市)如图所示的几何体的左视图是( A )(15)(2023年四川巴中市)在学校开展的“为灾区儿童过六一”的活动中,晶晶把自己最爱慕的铅笔盒送给了一位灾区儿童.这个铅笔盒(图1)的左视图是( B )(16)(2023年成都市)用若干个大小相同,棱长为1的小正方体搭成一个几何体模型,其三视图如图所示,则搭成这个几何体模型所用的小正方体的个数是(B ) ;(A)4 (B)5 (C)6 (D)7(17)(2023年陕西省)如图,这个几何体的主视图是( A )(18)(2023年江苏连云港)若一个几何体的主视图、左视图、俯视图分别是三角形、三角形、圆,则这个几何体也许是( C )A.球B.圆柱C.圆锥D.棱锥(19)(2023年山东青岛)某几何体的三种视图如右图所示,则该几何体也许是( D )A.圆锥体B.球体C.长方体D.圆柱体(20)(2023湖北鄂州)图1是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表达在该位置的小立方块的个数,那么这个几何体的主视图是( A )(21)(2023安徽)如图是某几何体的三视图及相关数据,则判断对的的是( D )A.B.C.D.(22)(2023年云南省双柏县)下图中所示的几何体的主视图是( D )(23)(2023山东济南)下列简朴几何体的主视图是( C )(24)(2023湖北黄石).下面左图所示的几何体的俯视图是( D )(25)(2023江苏宿迁) 有一实物如图,那么它的主视图是(A)(26)(2023年山东省菏泽市)如图,一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么这个几何体的侧面积是(D)A.B.C.D.(27)(2023 河南)如图①是一些大小相同的小正方体组成的几何体,其主视图如图②所示,则其俯视图是(B)(28)(2023 四川泸州)下列图形中,不是正方形的表面展开图的是( D )(29)(2023 湖南怀化)如图3,是小玲在5月11日“母亲节”送给她妈妈的礼盒,图中所示礼盒的主视图是 ( A )(30)(2023 重庆)如图是由4个大小相同的正方体搭成的几何体,其主视图是( A )(31)(2023 湖北荆门)左下图是由若干个小正方形所搭成的几何体及从上面看这个几何体所看到的图形,那么从左边看这个几何体时, 所看到的几何图形是( B )(32)(2023 湖南长沙)如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“迎”相对的面上的汉字是( A )A、文B、明C、奥D、运(33)(.2023 江西)10.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多..有( C )A.4个 B.5个 C.6个 D.7个(34)(08厦门市)由四个相同的小正方体堆成的物体如图所示,它的俯视图是( C )(35)(08乌兰察布市)六个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法对的的是( C )A.正视图的面积最大B.左视图的面积最大C.俯视图的面积最大D.三个视图的面积同样大(36)(08莆田市)如图,茶杯的主视图是( A )(37)(08绵阳市)某几何体的三视图如下所示,则该几何体可以是( A ).(38)(2023年杭州市)由大小相同的正方体木块堆成的几何体的三视图如右图所示,则该几何体中正方体木块的个数是( C )A. 6个B. 5个C. 4个D. 3个(39)(2023泰安)如图是由相同小正方体组成的立体图形,它的左视图为( A )(40)(2023佛山)如图,是某工件的三视图,其中圆的半径为10,等腰三角形的高为30,则此工件的侧面积是( D ).A.B.C.D.(41)(2023 山东聊城)一个几何体的三视图如图所示,这个几何体是( B )A.棱柱B.圆柱C.圆锥D.球(42)(2023四川内江)在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来.如图所示,则这堆正方体货箱共有( D )A.9箱B.10箱C.11箱D.12箱(43)(2023泰州市)如左下图是一个几何体的三视图,根据图中提供的数据(单位:cm)可求得这个几何体的体积为(A)A. 2cm3 B.4 cm3 C.6 cm3 D.8 cm3(44)(2023山西省)如图,有一圆心角为120 o、半径长为6cm的扇形,若将OA、OB重合后围成一圆锥侧面,那么圆锥的高是(A)A.cmB.cmC.cmD.cm(45).(2023永州市)下图※是一种瑶族长鼓的轮廓图,其主视图对的的是(D)(46)(2023四川达州市)某几何体的三视图如图所示,则它是( D )A.球体B.圆柱C.棱锥D.圆锥(47)(2023广东深圳)如图1,圆柱的左视图是( C )(48)(2023山西太原)右图是一个正方体的平面展开图,这个正方体是( D )(49)(2023湖北武汉)一个无盖的正方体盒子的平面展开图可以是下列图形中的( D ).(50)(2023湖北孝感)一几何体的三视图如右,这个几何体是( D )A.圆锥B.圆柱C. 三棱锥D. 三棱柱(51)(2023湖北襄樊)如图5,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是( C )(52)(2023江苏盐城)下列四个几何体中,主视图、左视图、俯视图完全相同的是( B )A.圆锥B.球C.圆柱D.三棱柱(53)(2023湖北黄冈)如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是( C )A.长方体B.圆柱体C.球体D.三棱柱(54)(2023黑龙江哈尔滨)4.右图是某一几何体的三视图,则这个几何体是( A )。

中考数学试题-35

中考数学试题-35

中考数学试题学校:___________姓名:___________班级:___________考号:___________1.下列图形,既是中心对称图形又是轴对称图形的是( ) A .B .C .D .2.下列运算正确的是( ) A .235a b ab +=B .325a a a ⋅=C .222()a b a b +=+D .()326a ba b =3.今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少1109万.数字1109万用科学记数法可表示为( ) A .71.10910⨯B .61.10910⨯C .80.110910⨯D .611.0910⨯4.将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是( )A .B .C .D .5.为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:则关于这组数据的结论正确的是( ) A .平均数是144B .众数是141C .中位数是144.5D .方差是5.46.若221m m +=,则2483m m +-的值是( ) A .4B .3C .2D .17.如图,点E 是ABCD 的边AD 上的一点,且12DE AE =,连接BE 并延长交CD 的延长线于点F ,若3,4DE DF ==,则ABCD 的周长为( )A .21B .28C .34D .428.关于x 的一元二次方程2(3)10x k x k +-+-=根的情况,下列说法正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定9.如图,函数(0)y kx b k =+≠与my (m 0)x=≠的图象相交于点(2,3),(1,6)A B --两点,则不等式mkx b x+>的解集为( )A .2x >-B .20x -<<或1x >C .1x >D .2x <-或01x <<10.如图,在Rt AOB 中,90,3,4AOB OA OB ∠=︒==,以点O 为圆心,2为半径的圆与OB 交于点C ,过点C 作CD OB ⊥交AB 于点D ,点P 是边OA 上的动点.当PC PD +最小时,OP 的长为( )A .12B .34C .1D .3211.若关于x 的不等式组35128x x a -⎧⎨-<⎩有且只有3个整数解,则a 的取值范围是( )A .02a ≤≤B .02a ≤<C .02a <≤D .02a <<12.若定义一种新运算:(2)6(2)a b a b a b ab ab 例如:31312⊗=-=;545463⊗=+-=.则函数(2)(1)y x x =+⊗-的图象大致是( )A .B .C .D .13.因式分解:x 2y ﹣9y =_____.14.若|2|0a -=,则a b +=_________.15.如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边,AC AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;⑤作射线AF .若AF 与PQ 的夹角为α,则α=________°.16.若关于x 的分式方程33122x m x x +=+--有增根,则m =_________. 17.如图,矩形ABCD 中,点G ,E 分别在边,BC DC 上,连接,,AC EG AE ,将ABG 和ECG 分别沿,AG EG 折叠,使点B ,C 恰好落在AE 上的同一点,记为点F .若3,4CE CG ==,则sin DAE ∠=_______.的.其中:1DA 的圆心为点A ,半径为AD ;11A B 的圆心为点B ,半径为1BA ;11B C 的圆心为点C ,半径为1CB ;11C D 的圆心为点D ,半径为1DC ;…1111111,,,,DA A B B C C D ⋅⋅⋅的圆心依次按点A ,B ,C ,D 循环.若正方形ABCD 的边长为1,则20202020A B 的长是_________.19.先化简,再求值:2131211x x x x x +-⎛⎫-÷ ⎪-+-⎝⎭,其中x 是16的算术平方根. 20.某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB 是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB 的上方120米的点C 处悬停,此时测得桥两端A ,B 两点的俯角分别为60°和45°,求桥AB 的长度.21.在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t (单位:小时).把调查结果分为四档,A 档:8t <;B 档:89t ≤<;C 档:910t ≤<;D 档:10t ≥.根据调查情况,给出了部分数据信息:①A 档和D 档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5; ②图1和图2是两幅不完整的统计图. 根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整; (2)已知全校共1200名学生,请你估计全校B 档的人数;(3)学校要从D 档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率. 22.如图,AB 为O 的直径,射线AD 交O 于点F ,点C 为劣弧BF 的中点,过点C 作CE AD ⊥,垂足为E ,连接AC .(1)求证:CE 是O 的切线;(2)若30,4BAC AB ∠=︒=,求阴影部分的面积.23.因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y (桶)与销售单价x (元)之间满足一次函数关系,其图象如图所示.(1)求y 与x 之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利涧=销售价-进价)24.如图1,在ABC 中,90,1A AB AC ∠=︒==,点D ,E 分别在边,AB AC上,且1AD AE ==,连接DE .现将ADE 绕点A 顺时针方向旋转,旋转角为()0360αα︒︒<<,如图2,连接,,CE BD CD .(1)当0180α︒<<︒时,求证:CE BD =;(2)如图3,当90α=︒时,延长CE 交BD 于点F ,求证:CF 垂直平分BD ; (3)在旋转过程中,求BCD 的面积的最大值,并写出此时旋转角α的度数. 25.如图,抛物线28(0)y ax bx a =++≠与x 轴交于点()2,0A -和点()8,0B,与y轴交于点C ,顶点为D ,连接,,AC BC BC 与抛物线的对称轴l 交于点E .(1)求抛物线的表达式;(2)点P 是第一象限内抛物线上的动点,连接,PB PC ,当35PBCABCS S =时,求点P 的坐标;(3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与OBC 相似?若存在,求点M 的坐标;若不存在,请说明理由.参考答案1.C 【解析】 【分析】根据轴对称图形与中心对称图形的概念依次对各项进行判断即可. 【详解】A .不是轴对称图形,是中心对称图形,故此选项不符合题意;B .是轴对称图形,不是中心对称图形,故此选项不符合题意;C .是轴对称图形,也是中心对称图形,故此选项符合题意;D .是轴对称图形,不是中心对称图形,故此选项不符合题意; 故选:C . 【点睛】本题考查中心对称图形与轴对称图形的识别.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 2.B 【解析】 【分析】根据合并同类项、幂的乘方,同底数幂乘法以及完全平方公式,逐项判断即可. 【详解】A 、不是同类项,不能合并,故选项A 计算错误;B 、325a a a ⋅=,故选项B 计算正确;C 、222()2a b a ab b +=+++,故选项C 计算错误;D 、()3263a ba b =,故选项D 计算错误.故选B . 【点睛】本题考查合了并同类项,同底数幂的乘法和积的乘方、以及完全平方公式,解题关键是熟记运算法则和公式. 3.A 【解析】科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,故先将1109万换成11090000,再按照科学记数法的表示方法表示即可得出答案.【详解】∵1109万=11090000,∴11090000=1.109×107.故选:A.【点睛】本题考查了科学记数法的简单应用,属于基础知识的考查,比较简单.4.D【解析】【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【详解】从几何体的左边看可得到一个正方形,正方形的右上角处有一个看不见的小正方形画为虚线,故选:D.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图;注意看到的用实线表示,看不到的用虚线表示.5.B【解析】【分析】根据平均数,众数,中位数,方差的性质分别计算出结果,然后判判断即可.【详解】解:根据题目给出的数据,可得:平均数为:14151442145114621435212x,故A选项错误;众数是:141,故B选项正确;中位数是:141144142.52,故C选项错误;D选项错误;【点睛】本题考查的是平均数,众数,中位数,方差的性质和计算,熟悉相关性质是解题的关键. 6.D 【解析】 【分析】把所求代数式2483m m +-变形为24(2)3m m +-,然后把条件整体代入求值即可. 【详解】 ∵221m m +=, ∴2483m m +- =24(2)3m m +- =4×1-3 =1. 故选:D . 【点睛】此题主要考查了代数式求值以及“整体代入”思想,解题的关键是把代数式2483m m +-变形为24(2)3m m +-. 7.C 【解析】 【分析】根据平行四边形的性质和相似三角形的判定和性质解答即可. 【详解】解:∵四边形ABCD 是平行四边形, ∴AB ∥CF ,AB=CD , ∴△ABE ∽△DFE , ∴12DE FD AE AB ==, ∵3,4DE DF ==,∴AE=6,AB=8,∴AD=AE+DE=6+3=9,∴ABCD的周长为:(8+9)×2=34.故选:C.【点睛】此题考查相似三角形的判定和性质,关键是根据平行四边形的性质和相似三角形的判定和性质解答.8.A【解析】【分析】先计算判别式,再进行配方得到△=(k-1)2+4,然后根据非负数的性质得到△>0,再利用判别式的意义即可得到方程总有两个不相等的实数根.【详解】△=(k-3)2-4(1-k)=k2-6k+9-4+4k=k2-2k+5=(k-1)2+4,∴(k-1)2+4>0,即△>0,∴方程总有两个不相等的实数根.故选:A.【点睛】本题考查的是根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.9.D【解析】【分析】结合图像,求出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.【详解】解:∵函数()0y kx b k =+≠与()0m y m x =≠的图象相交于点(2,3),(1,6)A B --两点, ∴不等式m kx b x+>的解集为:2x <-或01x <<, 故选:D .【点睛】 本题考查了一次函数与反比例函数的交点问题,关键是注意掌握数形结合思想的应用. 10.B【解析】【分析】延长CO 交O 于点E ,连接EP ,交AO 于点P ,则PC+PD 的值最小,利用平行线份线段成比例分别求出CD ,PO 的长即可.【详解】延长CO 交O 于点E ,连接ED ,交AO 于点P ,如图,∵CD ⊥OB ,∴∠DCB=90°,又90AOB ∠=︒,∴∠DCB=∠AOB ,∴CD//AO ∴BC CD BO AO= ∵OC=2,OB=4,∴BC=2, ∴243CD =,解得,CD=32; ∵CD//AO ,∴EO PO EC DC =,即2=43PO ,解得,PO=34故选:B .【点睛】此题主要考查了轴对称---最短距离问题,同时考查了平行线分线段成比例,掌握轴对称性质和平行线分线段成比例定理是解题的关键.11.C【解析】【分析】先求出不等式组的解集(含有字母a ),利用不等式组有三个整数解,逆推出a 的取值范围即可.【详解】解:解不等式351x -得:2x ≥,解不等式28x a -<得:82a x +<, ∴不等式组的解集为:822a x +≤<, ∵不等式组35128x x a -⎧⎨-<⎩有三个整数解, ∴三个整数解为:2,3,4, ∴8452a +<≤, 解得:02a <≤,故选:C .【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解的应用,解此题的关键就是根据整数解的个数求出关于a 的不等式组.12.A【解析】【分析】根据(2)6(2)a ba b a b a b a b ,可得当22(1)x x 时,4x ≤,分两种情况当4x ≤时和当4x >时,分别求出一次函数的关系式,然后判断即可.【详解】解:当22(1)x x 时,4x ≤,∴当4x ≤时,(2)(1)(2)(1)213x x x x x x , 即:3y =,当4x >时,(2)(1)(2)(1)621625x x x x x x x ,即:25y x =-,∴20k =>,∴当4x >时,25y x =-,函数图像向上,y 随x 的增大而增大,综上所述,A 选项符合题意,故选:A .【点睛】本题考查了一次函数的图象,能在新定义下,求出函数关系式是解题的关键13.y (x+3)(x ﹣3)【解析】【分析】先提取公因式y ,再对余下的多项式利用平方差公式继续分解.【详解】解:x 2y ﹣9y ,=y (x 2﹣9),=y (x+3)(x ﹣3).【点睛】本题主要考查利用平方差公式分解因式,熟记公式结构是解题的关键.14.5【解析】【分析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】根据题意得,20a -=,30b -=,解得2a =,3b =,∴235a b +=+=.故答案为:5.【点睛】本题考查了绝对值非负性,算术平方根非负性的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.15.55°.【解析】【分析】根据直角三角形两锐角互余得∠BAC=70°,由角平分线的定义得∠2=35°,由线段垂直平分线可得△AQM 是直角三角形,故可得∠1+∠2=90°,从而可得∠1=55°,最后根据对顶角相等求出α.【详解】如图,∵△ABC 是直角三角形,∠C=90°,90B BAC ∴∠+∠=︒,20B ︒∠=,90902070BAC B ∴∠=︒-∠=︒-︒=︒,∵AM 是BAC ∠的平分线,112703522BAC ∴∠=∠==︒⨯︒, PQ ∴是AB 的垂直平分线,AMQ ∴是直角三角形,1290∠+∠∴=︒,1902903555∴∠=︒-∠=︒-︒=︒,∵∠α与∠1是对顶角,155α∴∠=∠=︒.故答案为:55°.【点睛】此题考查了直角三角形两锐角互余,角平分线的定义,线段垂直平分线的性质,对顶角相等等知识,熟练掌握相关定义和性质是解题的关键.16.3.【解析】【分析】先把分式方程去分母转化为整式方程,然后由分式方程有增根求出x 的值,代入到转化以后的整式方程中计算即可求出m 的值.【详解】解:去分母得:()332x m x =++-,整理得:21x m =+,∵关于x 的分式方程33122x m x x +=+--有增根,即20x -=, ∴2x =,把2x =代入到21x m =+中得:221m ⨯=+,解得:3m =,故答案为:3.【点睛】本题主要考查了利用增根求字母的值,增根就是使最简公分母为零的未知数的值;解决此类问题的步骤:①化分式方程为整式方程;②让最简公分母等于零求出增根的值;③把增根代入到整式方程中即可求得相关字母的值.17.725【解析】【分析】根据折叠的性质结合勾股定理求得GE 5=,BC=AD=8,证得Rt △EGF ~Rt △EAG ,求得253EA=,再利用勾股定理得到DE的长,即可求解.【详解】矩形ABCD中,GC=4,CE =3,∠C=90︒,∴5 ==,根据折叠的性质:BG=GF,GF=GC=4,CE=EF=3,∠AGB=∠AGF,∠EGC=∠EGF,∠GFE =∠C=90︒,∴BG=GF=GC=4,∴BC=AD=8,∵∠AGB+∠AGF+∠EGC+∠EGF=180︒,∴∠AGE=90︒,∴Rt△EGF~Rt△EAG,∴EG EFEA EG=,即535EA=,∴253 EA=,∴73 ==,∴773sin DAE25253DEAE∠===,故答案为:7 25.【点睛】本考查了折叠的性质,矩形的性质,勾股定理的应用,相似三角形的判定和性质,锐角三角形函数的知识等,利用勾股定理和相似三角形的性质求线段的长度是本题的关键.18.4039π【解析】【分析】曲线11112DA B C D A 是由一段段90度的弧组成的,半径每次比前一段弧半径+1,到()1411n n AD AA n -==-+,()412n n BA BB n =-+=,再计算弧长.【详解】解:由图可知,曲线11112DA B C D A 是由一段段90度的弧组成的,半径每次比前一段弧半径+1, 11AD AA ==,112BA BB ==,……,()1411n n AD AA n -==-+,()412n n BA BB n =-+=,故20202020A B 的半径为()2020202042020128078BA BB =-+==,20202020A B 的弧长=9080784039180ππ⨯=. 故答案为:4039π.【点睛】 此题主要考查了弧长的计算,弧长的计算公式:180n r l π=,找到每段弧的半径变化规律是解题关键.19.43【解析】【分析】先将括号里的进行通分运算,然后再计算括号外的除法,把除法运算转化为乘法运算,进行约分,得到最简分式,最后把x 值代入运算即可.【详解】 解:原式=222x 2x+1x+1x 3÷x 2x+1x 2x+1x 1⎛⎫ ⎪⎝⎭------ , =22x 3x x 1×x 2x+1x 3⎛⎫ ⎪⎝⎭---- , =()()2x x 3x 1×x 3x 1---- ,=x x 1- . ∵x 是16的算术平方根,∴x=4,当x=4时,原式=43. 【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20.120【解析】【分析】过C 地点作CD AB ⊥交AB 于D 点,根据桥两端A ,B 两点的俯角分别为60°和45°,可得30ACD ∠=,45BCD ∠=,利用特殊角懂得三角函数求解即可.【详解】解:如图示:过C 地点作CD AB ⊥交AB 于D 点,则有:30ACD ∠=,45BCD ∠=, ∴3tan tan 301204033ADCD ACD CD , tan tan 451201120BD CD BCD CD , ∴403120AB AD BD .【点睛】本题考查了特殊角的三角函数的运算,熟悉特殊角的三角函数值是解题的关键.21.(1)40人,补全图形见解析;(2)480人;(3)56【解析】【分析】(1)用A档和D档所有数据数减去D档人数即可得到A档人数,用A档人数除以所占百分比即可得到总人数;用总人数减去A档,B档和D档人数,即可得到C档人数,从而可补全条统计图;(2)先求出B档所占百分比,再乘以1200即可得到结论;(3)分别用A,B,C,D表示四名同学,然后通过画树状图表示出所有等可能的结果数,再用概率公式求解即可.【详解】(1)由于A档和D档共有12个数据,而D档有4个,因此A档共有:12-4=8人,8÷20%=40人,补全图形如下:(2)1200×16=48040(人)答:全校B档的人数为480人,(3)用A表示七年级学生,用B 表示八年级学生,用C和D分别表示九年级学生,画树状图如下,所以P(2名学生来自不同年级)=105 126【点睛】本题考查条形统计图以及树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.22.(1)证明见解析;(2)23π. 【解析】【分析】(1)连接BF ,证明BF//CE ,连接OC ,证明OC ⊥CE 即可得到结论; (2)连接OF ,求出扇形FOC 的面积即可得到阴影部分的面积.【详解】(1)连接BF ,AB 是O 的直径,90AFB ∴∠=︒,即BF AD ⊥,CE AD ⊥,//BF CE ∴连接OC ,∵点C 为劣弧BF 的中点,OC BF ∴⊥,∵//BF CE ,OC CE ∴⊥∵OC 是O 的半径, ∴CE 是O 的切线;(2)连接OFOA OC =,30BAC ∠=︒,60BOC ∴∠=︒∵点C 为劣弧BF 的中点,FC BC ∴=,60FOC BOC ∴∠=∠=︒,4AB =,2FO OC OB ∴===,∴S 扇形FOC =260223603ππ⋅⨯=, 即阴影部分的面积为:23π. 【点睛】本题主要考查了切线的判定以及扇形面积的求法,熟练掌握切线的判定定理以及扇形面积的求法是解答此题的关键.23.(1)函数的表达式为:y=-2x+220;(2)80元,1800元.【解析】【分析】(1)设y 与x 之间的函数表达式为y=kx+b , ,将点(60,100)、(70,80)代入一次函数表达式,即可求解;(2)由题意得w=(x -50)(-2x+220)=-2(x -80)2+1800,即可求解.【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b ,将点(60,100)、(70,80)代入一次函数表达式得: 100608070k b k b ⎩+⎨+⎧==, 解得:2220k b -⎧⎨⎩==, 故函数的表达式为:y=-2x+220;(2)设药店每天获得的利润为W 元,由题意得:w=(x -50)(-2x+220)=-2(x -80)2+1800,∵-2<0,函数有最大值,∴当x=80时,w 有最大值,此时最大值是1800,故销售单价定为80元时,该药店每天获得的利润最大,最大利润1800元.【点睛】此题主要考查了二次函数的应用以及用待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.24.(1)证明见解析;(2)证明见解析;(3)BCD的面积的最大值为52,旋转角α的度数为135︒【解析】【分析】(1)利用“SAS”证得△ACE≅△ABD即可得到结论;(2)利用“SAS”证得△ACE≅△ABD,推出∠ACE=∠ABD,计算得出2 +,利用等腰三角形“三线合一”的性质即可得到结论;(3)观察图形,当点D在线段BC的垂直平分线上时,BCD的面积取得最大值,利用等腰直角三角形的性质结合三角形面积公式即可求解.【详解】(1)根据题意:AB=AC,AD=AE,∠CAB=∠EAD=90︒,∵∠CAE+∠BAE =∠BAD+∠BAE =90︒,∴∠CAE=∠BAD,在△ACE和△ABD中,AC ABCAE BADAE AD=⎧⎪∠=∠⎨⎪=⎩,∴△ACE≅△ABD(SAS),∴CE=BD;(2)根据题意:AB=AC,AD=AE,∠CAB=∠EAD=90︒,在△ACE和△ABD中,AC ABCAE BADAE AD=⎧⎪∠=∠⎨⎪=⎩,∴△ACE≅△ABD(SAS),∴∠ACE=∠ABD,∵∠ACE+∠AEC=90︒,且∠AEC=∠FEB,∴∠ABD+∠FEB=90︒,∴∠EFB=90︒,∴CF ⊥BD ,∵1,AD=AE=1,∠CAB=∠EAD=90︒,∴2+,2+,∴BC= CD ,∵CF ⊥BD ,∴CF 是线段BD 的垂直平分线;(3)BCD 中,边BC 的长是定值,则BC 边上的高取最大值时BCD 的面积有最大值, ∴当点D 在线段BC 的垂直平分线上时,BCD 的面积取得最大值,如图:∵∵1,AD=AE=1,∠CAB=∠EAD=90︒,DG ⊥BC 于G ,∴AG=12BC ,∠GAB=45︒,∴1+=,∠DAB=180︒-45︒=135︒,∴BCD 的面积的最大值为:)114522222BC DG ⎛⎫⋅== ⎪ ⎪⎝⎭, 旋转角α135=︒.【点睛】 本题属于几何变换综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,线段垂直平分线的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.25.(1)21382y x x =-++;(2)()()1221268P P ,,,;(3)在射线ED 上存在点M ,使得以点M ,N ,E 为顶点的三角形与OBC 相似,点M 的坐标为:()3,8,(3,5或()311,. 【解析】【分析】(1)直接将()2,0A -和点()8,0B代入28(0)y ax bx a =++≠,解出a ,b 的值即可得出答案;(2)先求出点C 的坐标及直线BC 的解析式,再根据图及题意得出三角形PBC 的面积;过点P 作PG ⊥x 轴,交x 轴于点G ,交BC 于点F ,设21,382P t t x ⎛⎫-++ ⎪⎝⎭,根据三角形PBC 的面积列关于t 的方程,解出t 的值,即可得出点P 的坐标;(3)由题意得出三角形BOC 为等腰直角三角形,然后分MN=EM ,MN=NE ,NE=EM 三种情况讨论结合图形得出边之间的关系,即可得出答案.【详解】(1)抛物线28(0)y ax bx a =++≠过点()2,0A -和点()8,0B428064880a b a b -+=⎧∴⎨++=⎩ 123a b ⎧=-⎪∴⎨⎪=⎩∴抛物线解析式为:21382y x x =-++ (2)当0x =时,8y = ()0,8C ∴∴直线BC 解析式为:8y x =-+111084022ABC SAB OC =⋅⋅=⨯⨯= 3245PBC ABC S S ∴== 过点P 作PG ⊥x 轴,交x 轴于点G ,交BC 于点F 设21,382P t t x ⎛⎫-++ ⎪⎝⎭(),8F t t ∴-+2142PF t t ∴=-+ 1242PBC S PF OB ∴=⋅= 即211482422t t ⎛⎫⨯-+⨯= ⎪⎝⎭122,6t t ∴==()()1221268P P ∴,,,(3)()()08,80=90C B COB ∠︒,,,OBC ∴为等腰直角三角形 抛物线21382y x x =-++的对称轴为331222b x a =-=-=⎛⎫⨯- ⎪⎝⎭∴点E 的横坐标为3 又点E 在直线BC 上∴点E 的纵坐标为5()35E ∴,设()21,,382M m N n n n ⎛⎫-++ ⎪⎝⎭3, ①当MN=EM ,90EMN ∠=︒,NME COB △△时2531382m n n n m -=-⎧⎪⎨-++=⎪⎩ 解得68n m =⎧⎨=⎩或20n m =-⎧⎨=⎩(舍去) ∴此时点M 的坐标为()3,8②当ME=EN ,90MEN ∠=︒时25313852m n n n -=-⎧⎪⎨-++=⎪⎩解得:53m n ⎧=+⎪⎨=⎪⎩53m n ⎧=-⎪⎨=⎪⎩∴此时点M的坐标为(3,5③当MN=EN ,90MNE ∠=︒时连接CM ,易知当N 为C 关于对称轴l 的对称点时,MNE COB △△,此时四边形CMNE 为正方形 CM CE ∴=()()()0,8,3,5,3,C E M mCM CE ∴====解得:1211,5m m ==(舍去) 此时点M 的坐标为()311,在射线ED 上存在点M ,使得以点M ,N ,E 为顶点的三角形与OBC 相似,点M 的坐标为:()3,8,(3,5或()311,. 【点睛】本题是一道综合题,涉及到二次函数的综合、相似三角形的判定及性质、等腰三角形的性质、勾股定理、正方形的性质等知识点,综合性比较强,解答类似题的关键是添加合适的辅助线.。

湖北省十堰市2024年中考数学试题(word版-含解析)

湖北省十堰市2024年中考数学试题(word版-含解析)

湖北省十堰市2024年中考数学试卷参考答案与试题解析一、选择题:(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.(3分)(2024•十堰)3的倒数是()C.3D.﹣3A.B.﹣考点:倒数.分析:依据倒数的定义可知.解答:解:3的倒数是.故选A.点评:主要考查倒数的定义,要求娴熟驾驭.须要留意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)(2024•十堰)如图,直线m∥n,则∠α为()A.70°B.65°C.50°D.40°考点:平行线的性质.分析:先求出∠1,再依据平行线的性质得出∠α=∠1,代入求出即可.解答:解:∠1=180°﹣130°=50°,∵m∥n,∴∠α=∠1=50°,故选C.点评:本题考查了平行线的性质的应用,留意:两直线平行,同位角相等.3.(3分)(2024•十堰)在下面的四个几何体中,左视图与主视图不相同的几何体是()A.正方体B.长方体C.球D.圆锥考点:简洁几何体的三视图分析:主视图、左视图是分别从物体正面、左面看,所得到的图形.解答:解:A、正方体的左视图与主视图都是正方形,故此选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的不一样,故此选项符合题意;C、球的左视图与主视图都是圆,故此选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故此选项不合题意;故选:B.点评:本题考查了几何体的三种视图,驾驭定义是关键.留意全部的看到的棱都应表现在三视图中.4.(3分)(2024•十堰)下列计算正确的是()A.﹣=B.=±2 C.a6÷a2=a3D.(﹣a2)3=﹣a6考点:同底数幂的除法;实数的运算;幂的乘方与积的乘方分析:依据二次根式的运算法则推断,开算术平方根,同底数幂的除法及幂的乘方运算.解答:解:A、不是同类二次根式,不能合并,故选项错误;B、=2≠±2,故选项错误;C、a6÷a2=a4≠a3,故选项错误;D、(﹣a2)3=﹣a6正确.故选:D.点评:本题主要考查了二次根式的运算法则推断,开算术平方根,同底数幂的除法及幂的乘方运算.熟记法则是解题的关键.5.(3分)(2024•十堰)为了调查某小区居民的用水状况,随机抽查了若干户家庭的月用水月用水量(吨)3 4 5 8户数 2 3 4 1A.众数是4 B.平均数是4.6C.调查了10户家庭的月用水量D.中位数是4.5考点:众数;统计表;加权平均数;中位数.分析:依据众数、中位数和平均数的定义分别对每一项进行分析即可.解答:解:A、5出现了4次,出现的次数最多,则众数是5,故本选项错误;B、这组数据的平均数是:(3×2+4×3+5×4+8×1)÷10=4.6,故本选项正确;C、调查的户数是2+3+4+1=10,故本选项正确;D、把这组数据从小到大排列,最中间的两个数的平均数是(4+5)÷2=4.5,则中位数是4.5,故本选项正确;故选A .点评:此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.6.(3分)(2024•十堰)如图,在平行四边形ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是()A.7B.10 C.11 D.12考点:平行四边形的性质;线段垂直平分线的性质.分析:依据线段垂直平分线的性质可得AE=EC,再依据平行四边形的性质可得DC=AB=4,AD=BC=6,进而可以算出△CDE的周长.解答:解:∵AC的垂直平分线交AD于E,∴AE=EC,∵四边形ABCD是平行四边形,∴DC=AB=4,AD=BC=6,∴△CDE的周长为:EC+CD+ED=AD+CD=6+4=10,故选:B.点评:此题主要考查了平行四边形的性质和线段垂直平分线的性质,关键是驾驭平行四边形两组对边分别相等.7.(3分)(2024•十堰)依据如图中箭头的指向规律,从2024到2024再到2024,箭头的方向是以下图示中的()A.B.C.D.考点:规律型:数字的改变类.分析:视察不难发觉,每4个数为一个循环组依次循环,用2024除以4,依据商和余数的状况解答即可.解答:解:由图可知,每4个数为一个循环组依次循环,2024÷4=503…1,∴2024是第504个循环组的第2个数,∴从2024到2024再到2024,箭头的方向是.故选D.点评:本题是对数字改变规律的考查,细致视察图形,发觉每4个数为一个循环组依次循环是解题的关键.8.(3分)(2024•十堰)已知:a2﹣3a+1=0,则a+﹣2的值为()A.+1 B.1C.﹣1 D.﹣5考点:分式的混合运算.专题:计算题.分析:已知等式变形求出a+的值,代入原式计算即可得到结果.解答:解:∵a2﹣3a+1=0,且a≠0,∴a+=3,则原式=3﹣2=1,故选B.点评:此题考查了分式的混合运算,娴熟驾驭运算法则是解本题的关键.9.(3分)(2024•十堰)如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为()A.2B.C.2D.考点:勾股定理;等腰三角形的判定与性质;直角三角形斜边上的中线.分析:依据直角三角形斜边上的中线的性质可得DG=AG,依据等腰三角形的性质可得∠GAD=∠GDA,依据三角形外角的性质可得∠CGD=2∠GAD,再依据平行线的性质和等量关系可得∠ACD=∠CGD,依据等腰三角形的性质可得CD=DG,再依据勾股定理即可求解.解答:解:∵AD∥BC,DE⊥BC,∴DE⊥AD,∠CAD=∠ACB∵点G为AF的中点,∴DG=AG,∴∠GAD=∠GDA,∴∠CGD=2∠CAD,∵∠ACD=2∠ACB,∴∠ACD=∠CGD,∴CD=DG=3,在Rt△CED中,DE==2.故选:C.点评:综合考查了勾股定理,等腰三角形的判定与性质和直角三角形斜边上的中线,解题的关键是证明CD=DG=3.10.(3分)(2024•十堰)已知抛物线y=ax2+bx+c(a≠0)经过点(1,1)和(﹣1,0).下列结论:①a﹣b+c=0;②b2>4ac;③当a<0时,抛物线与x轴必有一个交点在点(1,0)的右侧;④抛物线的对称轴为x=﹣.其中结论正确的个数有()A.4个B.3个C.2个D.1个考点:二次函数图象与系数的关系.分析:将点(﹣1,0)代入y=ax2+bx+c,即可推断①正确;将点(1,1)代入y=ax2+bx+c,得a+b+c=1,又由①得a﹣b+c=0,两式相加,得a+c=,两式相减,得b=.由b2﹣4ac=﹣4a(﹣a)=﹣2a+4a2=(2a﹣)2,当a=时,b2﹣4ac=0,即可推断②错误;③由b2﹣4ac=(2a﹣)2>0,得出抛物线y=ax2+bx+c与x轴有两个交点,设另一个交点的横坐标为x,依据一元二次方程根与系数的关系可得﹣1•x==﹣1,即x=1﹣,再由a<0得出x>1,即可推断③正确;④依据抛物线的对称轴公式为x=﹣,将b=代入即可推断④正确.解答:解:①∵抛物线y=ax2+bx+c(a≠0)经过点(﹣1,0),∴a﹣b+c=0,故①正确;②∵抛物线y=ax2+bx+c(a≠0)经过点(1,1),∴a+b+c=1,又a﹣b+c=0,两式相加,得2(a+c)=1,a+c=,两式相减,得2b=1,b=.∵b2﹣4ac=﹣4a(﹣a)=﹣2a+4a2=(2a﹣)2,当2a﹣=0,即a=时,b2﹣4ac=0,故②错误;③当a<0时,∵b2﹣4ac=(2a﹣)2>0,∴抛物线y=ax2+bx+c与x轴有两个交点,设另一个交点的横坐标为x,则﹣1•x===﹣1,即x=1﹣,∵a<0,∴﹣>0,∴x=1﹣>1,即抛物线与x轴必有一个交点在点(1,0)的右侧,故③正确;④抛物线的对称轴为x=﹣=﹣=﹣,故④正确.故选B.点评:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,一元二次方程根与系数的关系及二次函数的性质,不等式的性质,难度适中.二、填空题:(本题有6个小题,每小题3分,共18分)11.(3分)(2024•十堰)世界文化遗产长城总长约6700 000m,用科学记数法可表示为6.7×106m.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的肯定值与小数点移动的位数相同.当原数肯定值>1时,n是正数;当原数的肯定值<1时,n是负数.解答:解:将6700 000m用科学记数法表示为:6.7×106m.故答案为:6.7×106m.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2024•十堰)计算:+(π﹣2)0﹣()﹣1=1.考点:实数的运算;零指数幂;负整数指数幂.分析:本题涉及零指数幂、负指数幂、二次根式化简等考点.针对每个考点分别进行计算,然后依据实数的运算法则求得计算结果.解答:解:原式=2+1﹣=3﹣2=1.故答案为1.点评:本题考查实数的综合运算实力,是各地中考题中常见的计算题型.解决此类题目的关键是驾驭零指数幂、负指数幂、二次根式化简等考点的运算.13.(3分)(2024•十堰)不等式组的解集为﹣1<x≤2.考点:解一元一次不等式组.分析:先求出每个不等式的解集,依据不等式的解集找出不等式组的解集即可.解答:解:∵解不等式x<2x+1得:x>﹣1,解不等式3x﹣2(x﹣1)≤4得:x≤2,∴不等式组的解集是﹣1<x≤2,故答案为:﹣1<x≤2.点评:本题考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能依据不等式的解集找出不等式组的解集.14.(3分)(2024•十堰)如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD 及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是①(只填写序号).考点:菱形的判定.分析:首先利用对角线相互平分的四边形是平行四边形判定该四边形为平行四边形,然后结合菱形的判定得到答案即可.解答:解:由题意得:BD=CD,ED=FD,∴四边形EBFC是平行四边形,∵邻边相等或对角线垂直的平行四边形是菱形,∴选择BE⊥EC,故答案为:①.点评:本题考查了菱形的判定,解题的关键是了解菱形的判定定理,难度不是很大.15.(3分)(2024•十堰)如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A 处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是24海里.(结果精确到个位,参考数据:≈1.4,≈1.7,≈2.4)考点:解直角三角形的应用-方向角问题.分析:作BD⊥AC于点D,在直角△ABD中,利用三角函数求得BD的长,然后在直角△BCD中,利用三角函数即可求得BC的长.解答:解:∠CBA=25°+50°=75°.作BD⊥AC于点D.则∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,∠ABD=30°,∴∠CBD=75°﹣35°=45°.在直角△ABD中,BD=AB•sin∠CAB=20×sin60°=20×=10.在直角△BCD中,∠CBD=45°,则BC=BD=10×=10≈10×2.4=24(海里).故答案是:24.点评:本题主要考查了方向角含义,正确求得∠CBD以及∠CAB的度数是解决本题的关键.16.(3分)(2024•十堰)如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在上,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为2π﹣4.考点:扇形面积的计算;二次函数的最值;勾股定理.分析:由OC=4,点C在上,CD⊥OA,求得DC==,运用S△OCD=OD•,求得OD=2时△OCD的面积最大,运用阴影部分的面积=扇形AOC的面积﹣△OCD的面积求解.解答:解:∵OC=4,点C在上,CD⊥OA,∴DC==∴S△OCD=OD•∴=OD2•(16﹣OD2)=﹣OD4﹣4OD2=﹣(OD2﹣8)2+16∴当OD2=8,即OD=2时△OCD的面积最大,∴DC===2,∴∠COA=45°,∴阴影部分的面积=扇形AOC的面积﹣△OCD的面积=﹣×2×2=2π﹣4,故答案为:2π﹣4.点评:本题主要考查了扇形的面积,勾股定理,解题的关键是求出OD=2时△OCD的面积最大.三、解答题:(本题有9个小题,共72分)17.(6分)(2024•十堰)化简:(x2﹣2x)÷.考点:分式的混合运算.专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=x(x﹣2)•=x.点评:此题考查了分式的混合运算,娴熟驾驭运算法则是解本题的关键.18.(6分)(2024•十堰)如图,点D在AB上,点E在AC上,AB=AC,AD=AE.求证:∠B=∠C.考点:全等三角形的判定与性质.专题:证明题.分析:首先依据条件AB=AC,AD=AE,再加上公共角∠A=∠A可利用SAS定理证明△ABE ≌△ACD,进而得到∠B=∠C.解答:证明:在△ABE和△ACD中,,∴△ABE≌△ACD(SAS).∴∠B=∠C.点评:本题主要考查三角形全等的判定方法和性质,关键是驾驭全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.19.(6分)(2024•十堰)甲、乙两人打算整理一批新到的图书,甲单独整理须要40分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书须要多少分钟完工?考点:分式方程的应用.分析:将总的工作量看作单位1,依据本工作分两段时间完成列出分式方程解之即可.解答:解:设乙单独整理x分钟完工,依据题意得:+=1,解得x=100,经检验x=100是原分式方程的解.答:乙单独整理100分钟完工.点评:本题考查了分式方程的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.20.(9分)(2024•十堰)据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会竞赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并依据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你依据统计图中所供应的信息解答下列问题:(1)接受问卷调查的学生共有60名,扇形统计图中“基本了解”部分所对应扇形的圆心角为90°;请补全条形统计图;(2)若该校共有学生900人,请依据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会竞赛项目的提议达到“了解”和“基本了解”程度的总人数;(3)“剪刀石头布”竞赛时双方每次随意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只竞赛一局,请用树状图或列表法求两人打平的概率.考点:条形统计图;用样本估计总体;扇形统计图;列表法与树状图法.专题:计算题.分析:(1)由“了解很少”的人数除以占的百分比得出学生总数,求出“基本了解”的学生占的百分比,乘以360得到结果,补全条形统计图即可;(2)求出“了解”和“基本了解”程度的百分比之和,乘以900即可得到结果;(3)列表得出全部等可能的状况数,找出两人打平的状况数,即可求出所求的概率.解答:解:(1)依据题意得:30÷50%=60(名),“了解”人数为60﹣(15+30+10)=5(名),“基本了解”占的百分比为×100%=25%,占的角度为25%×360°=90°,补全条形统计图如图所示:(2)依据题意得:900×=300(人),则估计该校学生中对将“剪刀石头布”作为奥运会竞赛项目的提议达到“了解”和“基本了解”程度的总人数为300人;(3)列表如下:剪石布剪(剪,剪)(石,剪)(布,剪)石(剪,石)(石,石)(布,石)布(剪,布)(石,布)(布,布)全部等可能的状况有9种,其中两人打平的状况有3种,则P==.点评:此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.21.(7分)(2024•十堰)已知关于x的一元二次方程x2+2(m+1)x+m2﹣1=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1,x2,且满意(x1﹣x2)2=16﹣x1x2,求实数m的值.考点:根的判别式;根与系数的关系.分析:(1)若一元二次方程有两实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围;(2)由x1+x2=﹣2(m+1),x1x2=m2﹣1;代入(x1﹣x2)2=16﹣x1x2,建立关于m的方程,据此即可求得m的值.解答:解:(1)由题意有△=[2(m+1)]2﹣4(m2﹣1)≥0,整理得8m+8≥0,解得m≥﹣1,∴实数m的取值范围是m≥﹣1;(2)由两根关系,得x1+x2=﹣(2m+1),x1•x2=m2﹣1,(x1﹣x2)2=16﹣x1x2(x1+x2)2﹣3x1x2﹣16=0,∴[﹣2(m+1)]2﹣3(m2﹣1)﹣16=0,∴m2+8m﹣9=0,解得m=﹣9或m=1∵m≥﹣1∴m=1.点评:本题考查了一元二次方程根的判别式及根与系数关系,利用两根关系得出的结果必需满意△≥0的条件.22.(8分)(2024•十堰)某市政府为了增加城镇居民抵挡大病风险的实力,主动完善城镇医疗费用范围报销比例标准不超过8000元不予报销超过8000元且不超过30000元的部分50%超过30000元且不超过50000元的部分60%超过50000元的部分70%y元.(1)干脆写出x≤50000时,y关于x的函数关系式,并注明自变量x的取值范围;(2)若某居民大病住院医疗费用按标准报销了20000元,问他住院医疗费用是多少元?考点:一次函数的应用;分段函数.分析:(1)首先把握x、y的意义,报销金额y分3段①当x≤8000时,②当8000<x≤30000时,③当30000<x≤50000时分别表示;(2)利用代入法,把y=20000代入第三个函数关系式即可得到x的值.解答:解:(1)由题意得:①当x≤8000时,y=0;②当8000<x≤30000时,y=(x﹣8000)×50%=0.5x﹣4000;③当30000<x≤50000时,y=(30000﹣8000)×50%+(x﹣30000)×60%=0.6x﹣7000;(2)当花费30000元时,报销钱数为:y=0.5×30000﹣4000=11000,∵20000>11000,∴他的住院医疗费用超过30000元,把y=20000代入y=0.6x﹣7000中得:20000=0.6x﹣7000,解得:x=45000.答:他住院医疗费用是45000元.点评:此题主要考查了一次函数的应用,关键是正确理解题意,找出题目中的等量关系,列出函数关系式.23.(8分)(2024•十堰)如图,点B(3,3)在双曲线y=(x>0)上,点D在双曲线y=﹣(x<0)上,点A和点C分别在x轴,y轴的正半轴上,且点A,B,C,D构成的四边形为正方形.(1)求k的值;(2)求点A的坐标.考点:正方形的性质;反比例函数图象上点的坐标特征;全等三角形的判定与性质.分析:(1)把B的坐标代入求出即可;(2)设MD=a,OM=b,求出ab=4,过D作DM⊥x轴于M,过B作BN⊥x轴于N,证△ADM≌△BAN,推出BN=AM=3,MD=AN=a,求出a=b,求出a的值即可.解答:解:(1)∵点B(3,3)在双曲线y=上,∴k=3×3=9;(2)∵B(3,3),∴BN=ON=3,设MD=a,OM=b,∵D在双曲线y=﹣(x<0)上,∴﹣ab=﹣4,即ab=4,过D作DM⊥x轴于M,过B作BN⊥x轴于N,则∠DMA=∠ANB=90°,∵四边形ABCD是正方形,∴∠DAB=90°,A D=AB,∴∠MDA+∠DAM=90°,∠DAM+∠BAN=90°,∴∠ADM=∠BAN,在△ADM和△BAN中,,∴△ADM≌△BAN(AAS),∴BN=AM=3,MD=AN=a,∴0A=3﹣a,即AM=b+3﹣a=3,a=b,∵ab=4,∴a=b=2,∴OA=3﹣2=1,即点A的坐标是(1,0).点评:本题考查了正方形的性质,反比例函数图象上点的坐标特征,全等三角形的性质和判定的应用,主要考查学生运用性质进行推理和计算的实力,题目比较好,难度适中.24.(10分)(2024•十堰)如图1,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.(1)求证:AC平分∠DAB;(2)若AB=4,B为OE的中点,CF⊥AB,垂足为点F,求CF的长;(3)如图2,连接OD交AC于点G,若=,求sin∠E的值.考点:圆的综合题.专题:计算题.分析:(1)连结OC,如图1,依据切线的性质得OC⊥DE,而AD⊥DE,依据平行线的性质得OC∥AD,所以∠2=∠3,加上∠1=∠3,则∠1=∠2,所以AC平分∠DAB;(2)如图1,由B为OE的中点,AB为直径得到OB=BE=2,OC=2,在Rt△OCE 中,由于OE=2OC,依据含30度的直角三角形三边的关系得∠OEC=30°,则∠COE=60°,由CF⊥AB得∠OFC=90°,所以∠OCF=30°,再依据含30度的直角三角形三边的关系得OF=OC=1,CF=OF=;(3)连结OC,如图2,先证明△OCG∽△DAG,利用相像的性质得==,再证明△ECO∽△EDA,利用相像比得到==,设⊙O的半径为R,OE=x,代入求得OE=3R;最终在Rt△OCE中,依据正弦的定义求解.解答:(1)证明:连结OC,如图1,∵DE与⊙O切于点C,∴OC⊥DE,∵AD⊥DE,∴OC∥AD,∴∠2=∠3,∵OA=OC,∴∠1=∠3,∴∠1=∠2,即AC平分∠DAB;(2)解:如图1,∵直径AB=4,B为OE的中点,∴OB=BE=2,OC=2,在Rt△OCE中,OE=2OC,∴∠OEC=30°,∴∠COE=60°,∵CF⊥AB,∴∠OFC=90°,∴∠OCF=30°,∴OF=OC=1,CF=OF=;(3)解:连结OC,如图2,∵OC∥AD,∴△OCG∽△DAG,∴==,∵OC∥AD,∴△ECO∽△EDA,∴==,设⊙O的半径为R,OE=x,∴=,解得OE=3R,在Rt△OCE中,sin∠E===.点评:本题考查了圆的综合题:娴熟驾驭切线的性质、平行线的性质和锐角三角函数的定义;会依据含30度的直角三角形三边的关系和相像比进行几何计算.25.(12分)(2024•十堰)已知抛物线C1:y=a(x+1)2﹣2的顶点为A,且经过点B(﹣2,﹣1).(1)求A点的坐标和抛物线C1的解析式;(2)如图1,将抛物线C1向下平移2个单位后得到抛物线C2,且抛物线C2与直线AB相交于C,D两点,求S△OAC:S△OAD的值;(3)如图2,若过P(﹣4,0),Q(0,2)的直线为l,点E在(2)中抛物线C2对称轴右侧部分(含顶点)运动,直线m过点C和点E.问:是否存在直线m,使直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形相像?若存在,求出直线m的解析式;若不存在,说明理由.考点:二次函数综合题;待定系数法求一次函数解析式;待定系数法求二次函数解析式;相像三角形的判定与性质;锐角三角函数的增减性.专题:压轴题;存在型.分析:(1)由抛物线的顶点式易得顶点A坐标,把点B的坐标代入抛物线的解析式即可解决问题.(2)依据平移法则求出抛物线C2的解析式,用待定系数法求出直线AB的解析式,再通过解方程组求出抛物线C2与直线AB的交点C、D的坐标,就可以求出S△OAC:S△OAD的值.(3)设直线m与y轴交于点G,直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形形态、位置随着点G的改变而改变,故需对点G的位置进行探讨,借助于相像三角形的判定与性质、三角函数的增减性等学问求出符合条件的点G的坐标,从而求出相应的直线m的解析式.解答:解:(1)∵抛物线C1:y=a(x+1)2﹣2的顶点为A,∴点A的坐标为(﹣1,﹣2).∵抛物线C1:y=a(x+1)2﹣2经过点B(﹣2,﹣1),∴a(﹣2+1)2﹣2=﹣1.解得:a=1.∴抛物线C1的解析式为:y=(x+1)2﹣2.(2)∵抛物线C2是由抛物线C1向下平移2个单位所得,∴抛物线C2的解析式为:y=(x+1)2﹣2﹣2=(x+1)2﹣4.设直线AB的解析式为y=kx+b.∵A(﹣1,﹣2),B(﹣2,﹣1),∴解得:∴直线AB的解析式为y=﹣x﹣3.联立解得:或.∴C(﹣3,0),D(0,﹣3).∴OC=3,OD=3.过点A作AE⊥x轴,垂足为E,过点A作AF⊥y轴,垂足为F,∵A(﹣1,﹣2),∴AF=1,AE=2.∴S△OAC:S△OAD=(OC•AE):(OD•AF)=(×3×2):(×3×1)=2.∴S△OAC:S△OAD的值为2.(3)设直线m与y轴交于点G,与直线l交于点H,设点G的坐标为(0,t)当m∥l时,CG∥PQ.∴△OCG∽△OPQ.∴=.∵P(﹣4,0),Q(0,2),∴OP=4,OQ=2,∴=.∴OG=.∴t=时,直线l,m与x轴不能构成三角形.∵t=0时,直线m与x轴重合,∴直线l,m与x轴不能构成三角形.∴t≠0且t≠.①t<0时,如图2①所示.∵∠PHC>∠PQG,∠PHC>∠QGH,∴∠PHC≠∠PQG,∠PHC≠∠QGH.当∠PHC=∠GHQ时,∵∠PHC+∠GHQ=180°,∴∠PHC=∠GHQ=90°.∵∠POQ=90°,∴∠HPC=90°﹣∠PQO=∠HGQ.∴△PHC∽△GHQ.∵∠QPO=∠OGC,∴tan∠QPO=tan∠OGC.∴=.∴=.∴OG=6.∴点G的坐标为(0,﹣6)设直线m的解析式为y=mx+n,∵点C(﹣3,0),点G(0,﹣6)在直线m上,∴.解得:.∴直线m的解析式为y=﹣2x﹣6,联立,解得:或∴E(﹣1,﹣4).此时点E在顶点,符合条件.∴直线m的解析式为y=﹣2x﹣6.②O<t<时,如图2②所示,∵ta n∠GCO==<,tan∠PQO===2,∴tan∠GCO≠tan∠PQO.∴∠GCO≠∠PQO.∵∠GCO=∠PCH,∴∠PCH≠∠PQO.又∵∠HPC>∠PQO,∴△PHC与△GHQ不相像.∴符合条件的直线m不存在.③<t≤2时,如图2③所示.∵tan∠CGO==≥,tan∠QPO===.∴tan∠CGO≠tan∠QPO.∴∠CGO≠∠QPO.∵∠CGO=∠QGH,∴∠QGH≠∠QPO,又∵∠HQG>∠QPO,∴△PHC与△GHQ不相像.∴符合条件的直线m不存在.④t>2时,如图2④所示.此时点E在对称轴的右侧.∵∠PCH>∠CGO,∴∠PCH≠∠CGO.当∠QPC=∠CGO时,∵∠PHC=∠QHG,∠HPC=∠HGQ,∴△PCH∽△GQH.∴符合条件的直线m存在.∵∠QPO=∠CGO,∠POQ=∠GOC=90°,∴△POQ∽△GOC.∴=.∴=.∴OG=6.∴点G的坐标为(0,6).设直线m的解析式为y=px+q∵点C(﹣3,0)、点G(0,6)在直线m上,∴.解得:.∴直线m的解析式为y=2x+6.综上所述:存在直线m,使直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形相像,此时直线m的解析式为y=﹣2x﹣6和y=2x+6.点评:本题考查了二次函数的有关学问,考查了三角形相像的判定与性质、三角函数的定义及增减性等学问,考查了用待定系数法求二次函数及一次函数的解析式,考查了通过解方程组求两个函数图象的交点,强化了对运算实力、批判意识、分类探讨思想的考查,具有较强的综合性,有肯定的难度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三视图
★知识框架
★中考真题
1、(2013安徽,2,4分)下面的几何体中,主(正)视图为三角形的是()
A. B. C.
D.
2、(2013年北京)右图是某个几何体的三视图,
该几何体是
A.长方体B.正方体
C.圆柱D.三棱柱
3.(2013年福建福州)如图是由4个大小相同的正方体组合而成的几何体,其主视图是
4、
(2013年甘肃兰州)一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为( )
A.6 B.8 C.12 D.24
5、
(2013•广州)一个几何体的三视图如图所示,则这个几何体是()
A.四棱锥B .四棱柱C.三棱锥D.三棱柱
6、(2013年广东汕头)如图所示几何体的主视图是()
A.B.C.D.
正面
第3题图 A B C
D
7、(2013年广东湛江)如图所示的几何体,它的主视图是()
A.B.C.D.
8、(2013广东)如图所示几何体的主视图是()
A.B、C.D.
9、(2013年广西桂林)下列几何体的主视图、俯视图和左视图都是
..长方形的是【】
10、(广西柳州)李师傅做了一个零件,如图,请你告诉他这个零件
的主视图是(A)
A.B.C.
D.
11、(2013六盘水)如图是教师每天在黑板上书写用的粉笔,它的主视图是()
A B C
A.B.C.D.铜仁)下列图形中,既是轴对称图形又是中心对称图形的有()
12.(2013
13、(2013海南省3分)如图竖直放置的圆柱体的俯视图是
【】
A.长方体 B.正方体 C.圆 D.等腰梯

()
14.(2013•恩施州)一个用于防震的L形包装塑料泡沫如图所示,则该物体的俯视图是
15.(2013年湖北黄石)如图(1)所示,该几何体的主视图应为()
16.(2013年湖北天门)某种零件模型如图所示,该几何体(空心圆柱)的俯视图是()A.B.C.D.
17.(2013武汉)如图,是由4个相同小正方体组合而成的几何体,它的左视图是()
A.B.C.
D.
18.(2013年湖北宜昌)球和圆柱在水平面上紧靠在一起,组成如图所示的几何体,托尼画出了它的三视图,其中他画的俯视图应该是()
A、两个相交
的圆
B.两个内切
的圆
C.两个外切
的圆
D.两个外离
的圆
19、(2013年湖南常德)图2所给的三视图表示的几何体是
()
A. 长方体
B. 圆柱
C. 圆锥
D. 圆台
20、(2013•湘潭)如图,从左面看圆柱,则图中圆柱的投影是()
A.圆B.矩形C.梯形D.圆柱
21、(湖南岳阳)如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A向右平
移2个单位,向后平移1个单位后,所得几何体的视图()
A.主视图改变,俯视图改变B.主视图不变,俯视图不变
C.主视图不变,俯视图改变D.主视图改变,俯视图不变
22.(2013张家界)下面四个几何体中,左视图是四边形的几何体共有()
A. 1个B. 2个C. 3个D. 4个23.(2013•扬州)如图是由几个相同的小立方块搭成的几何体的三视图,则这几个几何体的
小立方块的个数是( )
A.4个B.5个C.6个D.7个
24.(2013滨州)某几何体的三视图如图所示,则这个几何体是()
A.圆柱B.正方体C.球D.圆锥
25.(2013菏泽)如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方
体叠加,那么下面图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是
()
A.B.C.D.
26.(2013•济宁)如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是()
A.3个或4个B.4个或5个C.5个或6个D.6个或7个27.(2013•聊城)用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()
A.B.C.D.
28.(2013临沂)如图是一个几何体的三视图,则这个几何体的侧面积是()
A.18cm2B.20cm2C.(18+2)cm2D.(18+4)cm2
29.(2013泰安)如图所示的几何体的主视图是()
A.B.C.D.
30.(2013•烟台)如图是几个小正方体组成的一个几何体,这个几何体的俯视图是()
A.B.C.D.
31.(2013山西)如图所示的工件的主视图是()
A.B.C.D.32、(2013年陕西)如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是()
33、(2013•乐山)如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是()
A.B.C.D.
34、(2013年南充)下列几何体中,俯视图相同的是().
35.(2013成都)如图所示的几何体是由4
个相同的小正方体组成.其
主视图为()
A.B .C. D.
36.(2013
•德阳)某物体的侧面展开图如图所示,那么它的左视图为()A.B.C.D.
37.(2013年四川内江)由一些大小相同的小正方形组成的一个几何体的主视图和俯视图
如图所示,那么组成该几何体所需的小正方形的个数最少为38.(2013攀枝花)如图是由五个相同的小正方体组成的立体图形,它的俯视图是()
A.B.C.D.39.(2013宜宾)下面四个几何体中,其左视图为圆的是()
A.B.C.D.40.(2013
•资阳)如图是一个正方体被截去一角后得到的几何体,它的俯视图是()
A.B.C.D.
41.(2013江苏泰州3分)用4
个小立方块搭成如图所示的几何体,
该几何体的左视图是【】
42.(2013年云南)如图是由6个形同的小正方体搭成的一个几何体,则它的俯视图是
()A.B.C.D.
43.(2013金华市)下列四个立体图形中,主视图为圆的是()
A.B.C.D.44.(2013•宁波)如图是某物体的三视图,则这个物体的形状是()
A.四面体B.直三棱柱C.直四棱柱D.直五棱柱45.(2013•衢州)长方体的主视图、俯视图如图所示,则其左视图面积为()
A.3B.4C.12D.16
46.(2013绍兴)如图所示的几何体,其主视图是()
A.B、
C、D.
47.(2013义乌市)下列四个立体图形中,主视图为圆的是()
A B C D。

相关文档
最新文档