二次规划解法
序列二次规划

起作用集方法
起作用集方法
(*****)
起作用集方法
起作用集方法
起作用集方法
起作用集方法
Questions
如何得到(*******)?
Answer
起作用集方法
起作用集方法
Questions
起作用集方法
起作Байду номын сангаас集方法
起作用集方法
起作用集方法
起作用集方法
Algorithm
起作用集方法
(***)
Proof
起作用集方法
起作用集方法
(a)
起作用集方法
(b)
满足(a)的 x* 肯定满足(b),且为满足(b)的 x* 的
一部分,但满足(b)的解是唯一的,所以问题(b)的解 就是问题(a)的解。
Remark
起作用集方法
起作用集方法
Questions
起作用集方法
起作用集方法
序列二次规划法
A characteristic of a large class of early methods is the translation of the constrained problem to a basic unconstrained problem by using a penalty function for constraints that are near or beyond the constraint boundary. In this way the constrained problem is solved using a sequence of parameterized unconstrained optimizations, which in the limit (of the sequence) converge to the constrained problem.
带约束的非线性优化问题解法小结

(1)带约束的非线性优化问题解法小结考虑形式如下的非线性最优化问题(NLP):min f(x)「g j (x )“ jI st 彳 g j (x)=O j L其 中, ^(x 1,x 2...x n )^ R n, f : R n > R , g j :R n > R(j I L) , I 二{1,2,…m }, L ={m 1,m 2...m p}。
上述问题(1)是非线性约束优化问题的最一般模型,它在军事、经济、工程、管理以 及生产工程自动化等方面都有重要的作用。
非线性规划作为一个独立的学科是在上世纪 50年 代才开始形成的。
到70年代,这门学科开始处于兴旺发展时期。
在国际上,这方面的专门性 研究机构、刊物以及书籍犹如雨后春笋般地出现,国际会议召开的次数大大增加。
在我国, 随着电子计算机日益广泛地应用,非线性规划的理论和方法也逐渐地引起很多部门的重视。
关于非线性规划理论和应用方面的学术交流活动也日益频繁,我国的科学工作者在这一领域 也取得了可喜的成绩。
到目前为止,还没有特别有效的方法直接得到最优解,人们普遍采用迭代的方法求解: 首先选择一个初始点,利用当前迭代点的或已产生的迭代点的信息,产生下一个迭代点,一 步一步逼近最优解,进而得到一个迭代点列,这样便构成求解( 1)的迭代算法。
利用间接法求解最优化问题的途径一般有:一是利用目标函数和约束条件构造增广目标 函数,借此将约束最优化问题转化为无约束最优化问题,然后利用求解无约束最优化问题的 方法间接求解新目标函数的局部最优解或稳定点,如人们所熟悉的惩罚函数法和乘子法;另 一种途径是在可行域内使目标函数下降的迭代点法,如可行点法。
此外,近些年来形成的序 列二次规划算法和信赖域法也引起了人们极大的关注。
在文献[1]中,提出了很多解决非线性 规划的算法。
下面将这些算法以及近年来在此基础上改进的算法简单介绍一下。
1. 序列二次规划法序列二次规划法,简称SQ 方法.亦称约束变尺度法。
线性规划常见题型及解法 均值不等式(含答案)

线性规划常见题型及解法一.基础知识:(一)二元一次不等式表示的区域二元一次不等式0>++C By Ax 表示直线0=++C By Ax 某一侧的所有点组成的区域,把直线画成虚线表示不包括边界, 0≥++C By Ax 所表示的区域应包括边界,故边界要画成实线.由于在直线0=++C By Ax 同一侧的所有点(x,y ),把它的坐标(x,y )代入C By Ax ++,所得的符号相同,所以只需在此直线的某一侧取一个特殊点(0,0y x ),从C By Ax ++00的正负即可判断0≥++C By Ax 表示直线哪一侧的平面区域。
通常代特殊点(0,0)。
(二)线性规划(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z =A x +B y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =A x +B y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.(3)那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(11,y x )和(22,y x )分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.线性目标函数的最值常在可行域的顶点处取得;而求最优整数解必须首先要看它们是否在可行(4)用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设z =0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值. (5) 利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出约束条件,确定线性目标函数.然后,用图解法求得数学模型的解,即画出可行域,在可行域内求得使目标函数取得最值的解. 最后,还要根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解.线性规划是新教材中新增的内容之一,由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下常见题型。
数学建模十大经典算法( 数学建模必备资料)

建模十大经典算法1、蒙特卡罗算法。
该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时通过模拟可以来检验自己模型的正确性。
2、数据拟合、参数估计、插值等数据处理算法。
比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具。
3、线性规划、整数规划、多元规划、二次规划等规划类问题。
建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo、MATLAB软件实现。
4、图论算法。
这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法。
这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中。
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法。
这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7、网格算法和穷举法。
网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8、一些连续离散化方法。
很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。
9、数值分析算法。
如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。
10、图象处理算法。
赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理。
历年全国数学建模试题及解法赛题解法93A非线性交调的频率设计拟合、规划93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划94B锁具装箱问题图论、组合数学95A飞行管理问题非线性规划、线性规划95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化96B节水洗衣机非线性规划97A零件的参数设计非线性规划97B截断切割的最优排列随机模拟、图论98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化99A自动化车床管理随机优化、计算机模拟99B钻井布局0-1规划、图论00A DNA序列分类模式识别、Fisher判别、人工神经网络00B钢管订购和运输组合优化、运输问题01A血管三维重建曲线拟合、曲面重建01B 公交车调度问题多目标规划02A车灯线光源的优化非线性规划02B彩票问题单目标决策03A SARS的传播微分方程、差分方程03B 露天矿生产的车辆安排整数规划、运输问题04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化05A长江水质的评价和预测预测评价、数据处理05B DVD在线租赁随机规划、整数规划06A 出版资源配置06B 艾滋病疗法的评价及疗效的预测 07A 中国人口增长预测 07B 乘公交,看奥运 多目标规划 数据处理 图论 08A 数码相机定位 08B 高等教育学费标准探讨09A 制动器试验台的控制方法分析 09B 眼科病床的合理安排 动态规划 10A 10B赛题发展的特点:1.对选手的计算机能力提出了更高的要求:赛题的解决依赖计算机,题目的数据较多,手工计算不能完成,如03B ,某些问题需要使用计算机软件,01A 。
解读支持向量机中的二次规划问题与求解方法

解读支持向量机中的二次规划问题与求解方法支持向量机(Support Vector Machine,简称SVM)是一种常用的机器学习算法,广泛应用于分类和回归问题中。
在SVM的训练过程中,二次规划问题是关键步骤之一,它的解决方法对于SVM的性能和效率具有重要影响。
本文将解读支持向量机中的二次规划问题与求解方法。
一、SVM的基本原理SVM的目标是找到一个超平面,将不同类别的样本分开。
超平面的选择是基于最大间隔原则,即使得样本点到超平面的距离最大化。
为了实现这一目标,SVM将问题转化为一个二次规划问题。
二、二次规划问题的定义给定一组线性约束条件和一个二次目标函数,二次规划问题的目标是找到一组变量的取值,使得目标函数最小化或最大化,同时满足线性约束条件。
在SVM中,二次规划问题的目标是最小化一个二次函数,同时满足一组线性不等式约束。
三、二次规划问题的形式在SVM中,二次规划问题的形式如下:minimize 1/2 * x^T * Q * x + p^T * xsubject to G * x <= hA * x = b其中,x是待求解的变量,Q是一个正定矩阵,p是一个向量,G是一个矩阵,h是一个向量,A是一个矩阵,b是一个向量。
四、求解二次规划问题的方法针对SVM中的二次规划问题,有多种求解方法。
常用的方法包括序列最小最优化(Sequential Minimal Optimization,简称SMO)、内点法等。
1. 序列最小最优化(SMO)SMO是一种迭代的优化算法,通过每次选择两个变量进行优化,并固定其他变量,来求解二次规划问题。
SMO算法的核心思想是将原问题分解为一系列子问题,并通过求解子问题的最优解来逐步逼近原问题的最优解。
SMO算法具有较好的收敛性和高效性,因此在SVM中得到了广泛应用。
2. 内点法内点法是一种基于迭代的优化算法,通过在可行域内搜索最优解来求解二次规划问题。
内点法的核心思想是通过引入松弛变量,将不等式约束转化为等式约束,从而将原问题转化为一个无约束的优化问题。
二次规划基本介绍

BXB CXC b
XB B-1C bB-1
(2) 确定被替换基本变量 x r
bi br 0) min( aik 1i m aik ark
x1 b1 x b r r xm bm
4.3二次规划
Find x min f ( x ) s. t . g ( x ) ≤ 0 ( j 1, 2,, n ) j
非线性约束优化问题
(目标函数—非线性) (约 束—非线性)
非线性优化问题
(目标函数—非线性)
线性约束优化问题
(目标函数—非线性) (约 束—线 性)
有约束优化问题
ai x( k1) bi ai ( x( k ) k d ) bi ai x( k ) bi
ai x ( k 1) bi
二次规划:不等式约束问题的有效集法
二次规划:不等式约束问题的有效集法
二次规划:其它算法简介
这就是K-K-T条件,
P
f (x)
2
x
*
g1 (x)
g1 (x) 0
二次规划
一.二次规划的数学模型 二.二次规划的最优性条件 三.等式约束二次规划的解法 四.不等式约束二次规划的有效集解法 五.其它算法简介
二次规划:最优性条件
二次规划:等式约束问题
二次规划:等式约束问题
二次规划:等式约束问题
单纯形法的小结
(一)线性规划的标准形式: (二)基本概念
m i nz c T x Ax b s.t. x 0 j
T
(1)可行解:满足全部约束条件的决策向量称为可行解。 x ( x1 , x2 ,, xn , ) (2)可行域:全部可行解所构成的空间称为可行域。 (3)最优解:使目标函数达到最小的可行解称为最优解。 (4)无界解:若目标函数无下界称为无界解。
二次规划问题的一个解法及几点注记

二次规划问题的一个解法及几点注记二次规划问题是指在线性规划模型中,目标函数和约束条件均为二次函数的问题。
常见的解法有坐标下降法和半正定性法。
下面是关于二次规划问题的一个解法(坐标下降法)及几点注记。
解法:坐标下降法是一种求解二次规划问题的迭代算法。
基本思路是不断地求解当前点的搜索方向,然后在这个方向上移动,直到找到最优解为止。
具体步骤如下:1.设定初始点 x0,并求出当前点的目标函数值 f(x0)。
2.求解当前点 x0 的搜索方向 d0。
3.设定步长 t,求出下一个点 x1 = x0 + t * d0。
4.求出下一个点 x1 的目标函数值 f(x1),并与当前点 x0的目标函数值 f(x0) 进行比较。
5.若 f(x1) < f(x0),则接下来以 x1 为当前点,重复步骤 2-5;若 f(x1) ≥ f(x0),则退出迭代。
注记:1.坐标下降法的关键在于如何求解当前点的搜索方向d0。
一般来说,当前点的搜索方向 d0应该是当前点的二次梯二次规划问题的一个解法及几点注记:继续上文:注记:1.坐标下降法的关键在于如何求解当前点的搜索方向d0。
一般来说,当前点的搜索方向 d0应该是当前点的二次梯度的负方向,即 d0 = -∇2f(x0)。
2.坐标下降法的收敛速度取决于步长 t的取值。
常用的方法有常数步长法和自适应步长法。
常数步长法是指固定步长t,而自适应步长法是指根据当前点的目标函数值变化情况来调整步长 t。
3.坐标下降法的收敛性是指随着迭代次数的增加,目标函数的值会逐渐降低。
但是,坐标下降法并不能保证收敛到全局最优解,只能保证收敛到局部最优解。
4.坐标下降法的迭代次数一般较多,但是每次迭代的计算量较小,因此坐标下降法适用于线性规划问题规模较大的情况。
希望这些内容能为你的学习提供帮助!。
cvxopt库中的solvers.qp数学原理

cvxopt库中的solvers.qp数学原理全文共四篇示例,供读者参考第一篇示例:cvxopt是一个用于凸优化的Python库,其solvers模块中的qp 函数是用于求解二次规划问题的。
在实际的数学优化问题中,二次规划问题是一类常见且重要的问题,其形式可以表示为:minimize 0.5 * x^T P x + q^T xsubject to Gx <= hAx = b其中,P是一个对称半正定矩阵,q是一个列向量,G和A是矩阵,h和b分别是满足不等式约束和等式约束的列向量。
在cvxopt的qp函数中,采用的是一种称为内点方法的求解算法。
内点方法是一种高效的求解凸优化问题的方法,其基本思想是通过引入松弛变量来将原始问题转化为等价的可行性问题,然后利用迭代的方式逼近最优解。
在每一步迭代中,将原始问题转化为一系列的线性规划子问题,并利用牛顿方法求解这些线性规划子问题。
通过不断迭代,最终达到原始问题的最优解。
具体来说,cvxopt的qp函数首先将原始二次规划问题表示为标准形式:minimize 0.5 * x^T P x + q^T xsubject to Gx <= hAx = b然后,使用内点方法逐步逼近最优解。
在每一步迭代中,首先构造一个Karush-Kuhn-Tucker(KKT)系统,包括原始问题和拉格朗日乘子的一阶和二阶导数关系。
然后,利用牛顿方法来解这个KKT系统,得到更新的解向量和拉格朗日乘子。
通过不断迭代以上步骤,最终收敛到原始问题的最优解。
需要注意的是,在求解过程中,cvxopt的qp函数会处理约束条件的线性等式和不等式,以及对不等式约束使用Slack变量进行松弛处理。
同时,还要注意到内点方法的迭代次数和收敛性与问题的复杂度有关,对于大规模的问题可能需要更多的迭代次数来求解。
总的来说,cvxopt库中的solvers模块提供了一个强大而高效的二次规划求解工具,采用了内点方法来求解问题。
最优化方法 第三章(二次逼近法)

min s.t.
ci x ci x
1 T Q(d ) d Bk d f ( x k )T d 2
k T
d ci x k 0, i I m 1,..., p
k T
d ci x k 0, i E 1,..., m .
基本思想:将问题转化为求解一系列的二次规划子问 题。从已知点和近似乘子向量进行迭代,由二次规划 问题计算出的结果对迭代过程进行更新。
s.t.
三、二次逼近法 等式约束问题 由等式约束K-T条件,有
f x hE x 0,
T
即
hE x 0.
T x L x , f x A x F x, 0. hE x hE x
d,
T
k W x k , λ k A x k T d f x k A xk h x 0 E
一般约束问题
min s.t.
f (x), ci x 0, i I m 1,..., p ci x 0, i E 1,..., m .
x 1 不是原二次规划问题的可行解,令
,显然为函数值下降方向。但在 x1
1
d 1 x 1 x1
沿 d 趋向
T a 某些不等式约束 i x bi , i t 1, t 2,..., p ,设
x
1
的过程中,不满足原二次规划问题的
在移动的过程中,最先遇到某个不等式约束,对应 的下标为 l ,相应的交点记为 x ,x 点处对应的有
接触问题分析-10

经典的接触问题求解方法(2/3)
定解条件:
四类接触状态,对应的定解条件为:
1)开式
Fal Fl Fbl Fbl 0
Байду номын сангаас
l x, y, z
2
引言(2/5)
研究内容:
接触模式问题:描述两接触体间的力的传递、描述不同载荷 下接触状态的变化;(解决如何描述的问题)
几何约束问题:表示接触面上两物体位移所要满足的条件; (解决到底以什么具体形式来描述、即怎样描述?)
摩擦定律问题:反映接触面上力与位移或压力与切向力之间 的关系;
求解方法问题:建立数学方程并加以求解。
6
经典的接触问题求解方法(1/3)
一般采用三个假设: 接触表面是凸的、连续的; 接触表面服从库仑摩擦定律; 接触模式是点-点接触模式。
z(法向)
A
y
B
x (切平面)
(a)
(b)
可能接触区
接触的A、B两物体
(a) 可能接触区;(b) 接触区局部坐标系
r表示接触点对间的间隙
2021/7/5
边界的接触状态(判定性条件) 分别为:
1 2
ij
ij
1 T
2
D
位移场中,真实解使得系统的总势 能取最小值。
find
min
ui (ui )
H
ui ui ui , on u
s.t.n 0
2021/7/5
12
数学规划方法求解接触问题(4/17)
接触问题的势能变分原理及其等价形式(续)
二次规划

二次规划是特殊的非线性规划,它形式简单,既可以 使用求解非线性规划的一般方法求解,又有特定的解法; 此外,二次规划在实际中有着广泛的应用,例如著名的支 持向量机,在本质上就是一个二次规划问题.本节着重介 绍凸二次规划问题的一些性质和求解方法.
9.6.1 二次规划的基本概念与基本性质
* T i i *
m l
很 明 显 A ( x x ) =0 , 而
i 1 * i T i *
m
i m 1
A
* i
m l
T i
( x x* ) 可 以 写 成 两 部 分 之 和 ,分 别 是
根 据 x* 处 起 作 用 约 束 和 不 起 作 用 不 等 式 约 束 下 标 分 别 求 和 , 由 ( 9-56 ) 和 x H 可以推出
T 1 T ( AB ) AN F , I
(9-71)
并 且 秩 ( F)= n -m , 因 此
T 1 T G G ( A BB BN T 1 B ) AN (9-72) G N F GF ( AN AB , I ) G I NB G NN 由于 F 是列满秩的,并且 G 正定,因此 G N 也是正定的,对称性显然. 定 理 9-5 表 明 对 于 等 式 约 束 的 严 格 凸 二 次 规 划 问 题 ,可 以 用 直 接 消
9.6.2 等式约束二次规划问题
本小节讨论等式约束二次规划问题
min
f ( x)
1 T x Gx r T x, 2
(9-58)
s.t. AT x b,
其 中 ,G 为 n n 阶 对 称 矩 阵 , r 为 n 维 列 向 量 , A 为 n m 阶 矩 阵 , n m 且 秩 ( A )= m , 即 矩 阵 A 是 列 满 秩 的 .
非线性规划和动态规划.

模型建立 设该容器的底边长和高分别为 x1 , x2
则问题的数学模型为
min f ( X ) 40 x1x2 20 x12
1x212xx12x
12 2 2
x1
2
68
x1
,
x
2
0
在LINGO中求解: min=40*x1*x2+20*x1^2; x1^2*x2=12; 12*x1*x2+2*x1^2<=68; 得到x1=2.690416,x2=1.657839,min
7
,决策点为D2
f
3
C 3
min
C3D1 C3D 2
f f
4 4
D1 D2
3 3*
min
3
4
6
,决策点为D1
第二阶段,由Bj到Cj分别均有三种选择,即:
B1C1 f3C1
7 6
f2 B1
min B1C2
线性规划:lindo/lingo 非线性规划:lingo 二次规划:lingo 整数规划:lindo/lingo 0-1整数规划:lindo/lingo
第四节 动态规划 (Dynamic Programming)
动 态 规 划 是 1951 年 由 美 国 数 学 家 贝 尔 曼 ( Richard Bellman)提出,它是解决一类多阶段决策问题的优化方法, 也是考察问题的一种途径,而不是一种算法(如LP单纯形法 )。因此它不象LP那样有一个标准的数学表达式和明确定义 的一组规则,而必须对具体问题进行具体分析处理。
线性 整数规划模型

g j (x) 0, j 1,...,l
整数规划问题的分类
• 整数线性规划(ILP) 目标和约束均为线性函数 • 整数非线性规划(NLP) 目标或约束中存在非线性函数
• 纯(全)整数规划(PIP) 决策变量均为整数 • 混合整数规划(MIP) 决策变量有整数,也有实数
• 0-1规划 决策变量只取0或1
优化建模
优化建模
1. 优化模型的基本概念
优化建模
优化模型和算法的重要意义
最优化: 在一定条件下,寻求使目标最大(小)的决策
最优化是工程技术、经济管理、科学研究、社 会生活中经常遇到的问题, 如: 结构设计 资源分配 生产计划 运输方案
解决优化问题的手段 • 经验积累,主观判断 • 作试验,比优劣 • 建立数学模型,求解最优策略
数学规划
g j (x) 0, j 1,...,l x D n
连 • 线性规划(LP) 目标和约束均为线性函数
续 优
• 非线性规划(NLP) 目标或约束中存在非线性函数
化 ✓ 二次规划(QP) 目标为二次函数、约束为线性
• 整数规划(IP) 决策变量(全部或部分)为整数
离 散
✓ 整数线性规划(ILP),整数非线性规划(INLP)
如:尽量少使用绝对值、符号函数、多个变量求 最大/最小值、四舍五入、取整函数等 3、尽量使用线性模型,减少非线性约束和非线性变 量的个数 (如x/y <5 改为x<5y) 4、合理设定变量上下界,尽可能给出变量初始值 5、模型中使用的参数数量级要适当 (如小于103)
优化建模
需要掌握的几个重要方面
约束条件可行解只满足约束与最优解取到最优值目标函数局部最优解localoptimalsolution整体最优解globaloptimalsolution线性规划lp目标和约束均为线性函数非线性规划nlp目标或约束中存在非线性函数二次规划qp目标为二次函数约束为线性整数规划ip决策变量全部或部分为整数整数线性规划ilp整数非线性规划inlp纯整数规划pip混合整数规划mip一般整数规划01整数规划数学规划优化线性规划非线性规划二次规划连续优化整数规划问题求解的难度增加优化模型实例506472目标函数约束条件例21线性规划模型lp模型求解图解法6472目标函数z2400z3600常数等值线在b2030点得到最优解目标函数和约束条件是线性函数可行域为直线段围成的凸多边形目标函数的等值线为直线最优解一定在凸多边形的某个顶点取得
二次规划求解方法探讨

二次规划求解方法探讨李骥昭1 刘义山2(1.平顶山工业职业技术学院文化教育部1 河南 平顶山 467001; 2.平顶山工业职业技术学院文化教育部2 河南 平顶山 467001)摘要:文章推广与应用了二次非线性规划模型的基础理论及算法。
在线性规划模型中,活动对目标函数的贡献与活动水平成比例关系,因而目标函数是决策变量的线性函数,而在实际问题中,往往遇到活动对目标函数的贡献与活动水平不成比例关系的情形,即目标函数不是决策变量的线性函数,而是二次非线性函数,我们可以利用K-T 条件并转化为等价求解相应的线性规划问题。
经过分析可以得到结论,目标函数变成了线性函数,但约束函数中有一个非线性函数,这时问题仍然是非线性的。
应用Excel 规划求解工具解这个模型后我们知道如果投资者愿意承担多一点的风险,就可以获得更大的收益。
关键词:非线性规划,线性规划,目标函数,决策变量,模型 中图分类:O226 文献标识:A 0 引言非线性规划是运筹学的一个重要分支,它在管理科学、系统控制等诸多领域有广泛应用。
非线性规划的任一算法都不能仅仅考察可行域极点的目标函数值来寻优。
非线性规划的最优点可能在其可行域的任一点达到,即最优解可能在极点,或边介点或内点达到。
在非线性规划问题中,其变量取值受到多个约束条件的限制,对其求解,一方面要使目标函数每次选代要逐次下降,且还要保持解的可行性。
这就给寻找最优解带来更大的困难。
为使求解能较顺利进行,一般采用将约束条件转化为无约束条件,化为较简单问题来处理[1]。
1 预备知识1.1 相关概念,相关定理 若0x 使得()00>xg j 则称此约束条件是0x的不起作用约束;起作用约束:若0x 使得()00=xg j ,则称此约束条件是0x 的起作用约束[2]。
可行方向:若(){}0,,,,2,10|00>∈∃=≥=∈λnj E P L j x g x R x 的实数,使得[]0,0λλ∈,均有R P x ∈+λ0,则称方向P 是0x 的一个可行方向;当()P J j P xg Tj ,00∈>∇必为0x 的一个可行方向;下降方向:若0,00>∈∃∈λn E P R x 使得[]0,0λλ∈均有()()00x f P x f <+λ,则称P 为0x 的一个下降方向。
内点法迭代原理及工程实例求解应用

内点法迭代原理及工程实例求解应用摘要:内点法是一种求解线性规划和非线性规划问题的多项式算法,其迭代次数与系统规模关系不大。
目前,内点法被扩展运用于求解二次规划模型,其计算速度和处理不等式约束的能力已经超过了求解二次规划模型的经典算法。
本文主要介绍线性规划中内点法的运用以及对工程实例的计算,并且分析了如何运用内点法迭代原理得到最优解。
关键字:线性规划问题;内点法;最优解;二次规划;1 引言1984年,Karmarkar发现了一个关于求解线性规划的方法,这个方法称作内点法。
内点法是罚函数中的一种,与外点法的最大的区别在于该方法利用罚函数生成一系列内点来逼近原约束问题的最优解。
罚函数的作用是对企图脱离可行域的点给予惩罚,相当于在可行域的边界设置了障碍,不让迭代点穿越到可行域之外。
内点法在迭代中总是从可行点出发,并保持在可行域内部进行搜索。
后得出最优解。
对于不等式约束的最优化问题,比较适合用内点法来解决。
经过实际计算结果得出内点法与单纯形法存在着很大的可比性。
在线性规划问题中,内点法比起单纯形法来说迭代次数更少,所以计算速度更快,从求得的结果来看,收敛性也比较好。
内点法中比较常用的方法是最速下降法和牛顿法。
最速下降法在解析法中是属于比较古老的一种,受该方法的启发,渐渐得到了其他不同的解析方法。
最速下降法每次迭代的计算量很小,解法简单。
如果从一个不好的初始点出发,也能收敛到局部极小点。
迭代原理的应用对于解决线性规划和非线性规划问题中具有至关重要的作用。
2 内点法2.1运筹学运筹学[1]到现在都没有一个相对比较统一的定义,这正是因为它使用的复杂性以及使用的广泛性,也凸显出了它另一方面的独特魅力。
以下是我查阅大量书籍后对运筹学所给出的定义:运筹学是一门在现有的技术及理论条件下,对问题现状的分析强调最优化决策的科学方法。
运筹帷幄之中,决胜千里之外这其中的运筹两字是赤壁之战的核心与关键,是整个战争通敌制胜的法宝。
改进求解凸二次规划中的Lemke算法

改进求解凸二次规划中的Lemke 算法张璐辽宁工程技术大学理学院,辽宁阜新(123000)E-mail:zhanglu85517@摘 要:通过对经典的Lemke 互补转轴算法求解凸二次规划问题的分析,找到了Lemke 算法的局限性。
本文在Lemke 算法求解线性互补问题的基础上修正了经典的Lemke 算法的迭代过程,提出了一种改进的Lemke 算法,通过算例证明了算法能有效克服解的局限性,减少了凸二次规划问题的迭代过程,提高了算法的效率。
关键词:非线性规划;凸二次规划;线性互补问题;Lemke 算法1.引言二次规划问题是最简单而又最基本的非线性规划问题,其目标函数是二次函数,约束是线性等式或不等式。
对于二次规划问题,可行域是凸集,所以当目标函数是凸函数时,任何K-T 点都是二次规划问题的极小点。
研究二次规划问题的算法不仅仅是为了解决二次规划问题本身,同时也是为了更好的求解其他非线性规划问题。
因为大多数最优化方法是从二次函数模型导出的,这种类型的方法在实际中常常是有效的,其主要是因为一般函数的极小点附近常可用二次函数很好地进行近似。
由于二次规划是特殊的非线性规划,因此求解非线性规划问题的方法均可用于二次规划问题的求解。
同时,由于二次规划本身的特殊性,对它的求解可以采用一些更有效的方法[1]。
因此,不论从数学角度还是应用角度来看,二次规划问题的研究都具有重要意义。
到目前为止,已经出现了很多求解二次规划问题的算法,并且现在仍有很多学者在从事这方面的研究工作。
所以,需要我们对现存的有效的求解二次规划问题的算法进行改进,得到新的求解算法来克服某些算法的缺点,并且给出具体的实例显示该算法的有效性。
本文主要研究凸二次规划的求解算法,以及线性互补问题的性质等相关问题。
对Lemke 算法进行进一步研究,对它可能出现退化的原因和迭代过程以及局限性进一步分析。
本文通过分析经典的Lemke 互补转轴算法求解含有等式约束的凸二次规划问题可能出现退化的原因,修正了Lemke 算法的迭代步骤,提出了一种改进的Lemke 算法。
二次线性规划求目标函数的最值

1.(13年江苏T9)抛物线2y x =在1x =处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点(,)P x y 是区域D 内的任意一点,则2x y +的取值范围是 . 【测量目标】导数的几何意义、直线方程以及线性规划问题.【考查方式】给定函数和切点横坐标,利用导数的几何意义求出切线方程,然后得到可行域,再利用线性规划问题的一般解法求解最值范围. 【参考答案】1[2,]2-【试题解析】由于2y x '=,所以抛物线在1x =处的切线方程为12(1)y x -=-,即21y x =-.画出可行域(如图). (步骤1)设2x y z +=,则1122y x z =-+经过点1(,0)2A ,(0,1)B -时,z 分别取最大值和最小值,此时最大值max 12z =,最小值min 2z =-,故取值范围是1[2,]2-.(步骤2)2.(13安徽T12)若非负数变量,x y 满足约束条件124x y x y --⎧⎨+⎩≥≤,则x y +的最大值为__________.【测量目标】二元线性规划求目标函数最值.【考查方式】结合约束条件,应用数形结合思想画出不等式组所表示的平面区域,求出线性规划目标函数的最大值. 【参考答案】4【试题解析】先画出可行线,再画目标函数线过原点时的直线,向上平移,寻找满足条件的最优解,代入即可得所求.第2题图 FGQ28根据题目中的约束条件画出可行域,注意到,x y 非负,得可行域为如图所示的阴影部分(包括边界).作直线y x =-,并向上平移,数形结合可知,当直线过点(4,0)A 时,x y +取得最大值,最大值为4.3.(13年浙江T15)设z kx y =+,其中实数x 、y 满足2240240x x y x y ⎧⎪-+⎨⎪--⎩………,若z 的最大值为12,则实数k = .【测量目标】线性规划解最值.【考查方式】给出约束条件,应用数形结合思想画出不等式组所表示的平面区域,求出线性规划目标函数的最小值. 【参考答案】2【试题解析】作出不等式组2240240x x y x y ⎧⎪-+⎨⎪--⎩………表示的平面区域,得到如图的△ABC 及其内部,第3题图 FGQ43其中A (2,0),B (2,3),C (4,4)(步骤1)设z =F (x ,y )=kx y +,将直线l :z kx y =+进行平移,可得①当k <0时,直线l 的斜率-k >0.(步骤2)由图形可得当l 经过点B (2,3)或C (4,4)时,z 可达最大值,此时,max z =F (2,3)=2k +3或max z =F (4,4)=4k +4. (步骤3)但由于k <0,使得2k +3<12且4k +4<12,不能使z 的最大值为12,故此种情况不符合题意. (步骤4)②当k ≥0时,直线l 的斜率-k ≤0,由图形可得当l 经过点C 时,目标函数z 达到最大值 此时max z =F (4,4)=4k +4=12,解得k =2. 符合题意,综上所述,实数k 的值为2. (步骤5)4.(13福建T6)若变量y x ,满足约束条件210x y x y +⎧⎪⎨⎪⎩≤≥≥,则yx z +=2的最大值和最小值分别为( )A .4和3B .4和2C .3和2D .2和0 【测量目标】二元线性规划求目标函数最值.【考查方式】给出不等式组,作出其表示的可行域、再通过平移图象求最优解. 第4题图zwh5【参考答案】B【试题解析】作出可行域,通过目标函数线的平移寻求最优解.作出可行域如图阴影部分.(步骤1)作直线20x y +=,并向右上平移,过点A 时z 取最小值,过点B 时z 取最大值,可求得(1,0),(2,0)A B ,∴min max 2,4z z ==.(步骤2)5.(13年全国卷T15)若x y 、满足约束条件0,34,34,x x y x y ⎧⎪+⎨⎪+⎩………则z x y =-+的最小值为 .【测量目标】二元线性规划求目标函数最值.【考查方式】直接给出函数的约束条件,利用线性规划性质及借助数形结合思想求z 的最小值.【参考答案】0【试题解析】作出定义域,借助数形结合寻找最优解.由不等式组作出可行域,如图阴影部分所示()包括边界,且()()41,1040,.3A B C ⎛⎫⎪⎝⎭,,,,由数形结合知,直线y x z =+过点()1,1A 时,min 110.z =-+= GXX3第5题图 6.(13年新课标ⅠT14)设,x y 满足约束条件 13,10x x y⎧⎨--⎩剟剟,则2z x y =-的最大值为______.【测量目标】线性规划解最值.【考查方式】直接给出约束条件,利用线性规划性质求z . 【参考答案】3【试题解析】作出可行域,进一步探索最大值. 作出可行域如图阴影部分.CQ09 第6题图(步骤1)作直线20x y -=,并向右平移,当平移至直线过点B 时,2z x y =-取得最大值.而由3,0,x x y =⎧⎨-=⎩得B (3,3).max 233 3.z ∴=⨯-=(步骤2)7.(13年山东T14)在平面直角坐标系xOy 中,M 为不等式组2360200x y x y y +-⎧⎪+-⎨⎪⎩………所表示的区域上一动点,则直线OM 的最小值为_______【测量目标】二元线性规划求目标函数的最小值.【考查方式】给出约束条件,应用数形结合思想画出不等式组所表示的平面区域,求出线性规划目标函数的最小值.【试题解析】如图所示,M 为图中阴影部分的一个动点,由于点到直线的距离最短,所以OM 的最小值第7题图SFT58.(13年四川T8)若变量,x y 满足约束条件8,24,0,0,x y y x x y +⎧⎪-⎪⎨⎪⎪⎩…………且5z y x =-的最大值为a ,最小值为b ,则a b -的值是 ( )A .48 B.30 C.24 D.16 【测量目标】二元线性规划求目标函数的最值.【考查方式】给出变量约束条件,画图求目标函数的最优解. 【参考答案】C【试题解析】先将不等式24y x -…转化为24,x y --…画出不等式组表示的平面区域,并找出目标函数55x zy =+的最优解,进而求得,a b 的值. 8,24,0,0,x y y x x y +⎧⎪-⎪⎨⎪⎪⎩ …………8,24,0,0,x y y x x y +⎧⎪--⎪∴⎨⎪⎪⎩…………由线性约束条件得可行域为如图所示的阴影部分,由5,z y x =-得.55x zy =+(步骤1)由图知目标函数55x zy =+,过点()8,0A 时,m i n5=508=8z y x =-⨯--,即8.b =-(步骤2) 目标函数55x zy =+过点B (4,4)时,m a x 554416,z y x =-=⨯-=即16.a = 第8题图 GXX15()16824,a b ∴-=--=故选C.(步骤3)9.(13年广东T13)已知变量,x y 满足约束条件30111x y x y -+⎧⎪-⎨⎪⎩…剟…,则z x y =+的最大值是 ________【测量目标】线性规划问题的最值求解.【考查方式】画出线性约束条件表示的平面区域,用图解法求最值. 【参考答案】5【试题解析】画出平面区域如图阴影部分所示,由z x y =+,得y x z =-+,z 表示直线y x z =-+在y 轴上的截距,(步骤1)由图知,当直线y x z =-+经过点(1,4)B 时,目标函数取得最大值,为145z =+=.(步骤2)10.(13年湖南T13)若变量,x y 满足约束条件28,04,03x y x y +⎧⎪⎨⎪⎩…剟剟则x y+的最大值为______.【测量目标】线性规划知识求最值. 第10题图hy4 【考查方式】给出约束条件,应用数形结合思想画出不等式组所表示的平面区域,求出线性规划目标函数的最大值. 【参考答案】6【试题解析】根据不等式组出其平面区域,令z x y =+,结合直线z x y =+的特征求解.如图,画出不等式组表示的平面区域,平行移动z x y =+经过点(4,2)A 时,z 取最大值6. 11.(13年陕西T7)若点()x,y 位于曲线y x =与2y =所围成的封闭区域,则2x y -的最小值为 ( ). A. -6 B. -2 C. 0 D. 2【测量目标】二元线性规划求目标函数最值.【考查方式】画出封闭区域,找出最优解,简单的数形结合能力. 【参考答案】A 【试题解析】曲线2y x ,y ==所围成的封闭区域如图阴影部分所示, 当直线l :2y x =向左平移时,()2x y -的值在逐渐变小,当l 通过点A (-2,2)时,min (2) 6.x y -=- 第11题图CGC 4412.(13天津T2)设变量,x y 满足约束条件360,20,30,x y x y y +-⎧⎪--⎨⎪-⎩………则目标函数2z y x =-的最小值为 ( ) A. 7- B.4- C. 1 D. 2 【测量目标】二元线性规划求目标函数的最值.【考查方式】给出约束条件,作出可行域,通过平移目标函数,求可行域的最值.【参考答案】A【试题解析】作出可行域,平移直线x y 2=,当直线过可行域内的点)3,5(A 时,Z 有最小值, min 3257Z =-⨯=-.第12题图 jxq2113.(13年新课标ⅡT3)设x ,y 满足约束条件10,10,3,x y x y x -+⎧⎪+-⎨⎪⎩………,则z =2x -3y 的最小值是( )A.-7B.-6C.-5D.-3 【测量目标】二元线性规划求目标函数的最小值.【考查方式】不等式组给出x ,y 的可行区间,目标函数求出最小值.【参考答案】B【试题解析】本题可先画出可行域,然后根据图象确定出最小值点进行解答.作出不等式组表示的可行域,如图(阴影部分).易知直线z=2x -3y 过点C 时,取得最小值. MF28 由3,10,x x y =⎧⎨-+=⎩得3,4,x y =⎧⎨=⎩∴min z =2⨯3-3⨯4=-6,故选B. 第13题图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、对于二次规划模型求解:
问题1:
先求出ij c ,结果如下表:
330.7 320.3 300.2 258.6 198 180.5 163.1 181.2 224.2 252 256 266 281.2 288 302 370.7 360.3 345.2 326.6 266 250.5 241 226.2 269.2 297 301 311 326.2 333 347 385.7 375.3 355.2 336.6 276 260.5 251 241.2 203.2 237 241 251 266.2 273 287 420.7 410.3 395.2 376.6 316 300.5 291 276.2 244.2 222 211 221 236.2 243 257 410.7 400.3 380.2 361.6 301 285.5 276 266.2 234.2 212 188 206 226.2 228 242 415.7 405.3 385.2 366.6 306 290.5 281 271.2 234.2 212 201 195 176.2 161 178 435.7 425.3 405.2 386.6 326 310.5 301 291.2 259.2 237 226 216 198.2 185 162
由于二次规划模型中约束条件151
{0}[500,],1,2,7,ij i j X s i =∈=∑的存
在,必须加以处理。
引进0-1变量15,...2,1,=i n i ,则
151{0}[500,],1,2,7,ij i j X
s i =∈=∑可以等价转换为下面的三个约束条件:
i j ij s X
≤∑=151
i j ij Mn X ≤∑=151
i j ij
n X
*500151≥∑= 其中M 为一个很大数。
这样就可以得到下面的lingo 程序:
sets :
s/1..7/:sx;
a/1..15/:z,y,n,t;
links(s,a):c,x;
endsets
data:
sx=800 800 1000 2000 2000 2000 3000;
t=104 301 750 606 194 205 201 680 480 300 220 210 420 500 0;
c=330.7 320.3 300.2 258.6 198 180.5 163.1 181.2 224.2 252 256 266 281.2 288 302
370.7 360.3 345.2 326.6 266 250.5 241 226.2 269.2 297 301 311 326.2 333 347
385.7 375.3 355.2 336.6 276 260.5 251 241.2 203.2 237 241 251 266.2 273 287
420.7 410.3 395.2 376.6 316 300.5 291 276.2 244.2 222 211 221 236.2 243 257
410.7 400.3 380.2 361.6 301 285.5 276 266.2 234.2 212 188 206 226.2 228 242
415.7 405.3 385.2 366.6 306 290.5 281 271.2 234.2 212 201 195 176.2 161 178
435.7 425.3 405.2 386.6 326 310.5 301 291.2 259.2 237 226 216 198.2 185 162
;
enddata
!目标函数;
min=@sum(links:c*x)+0.05*@sum(a(j):z(j)*(z(j)+1)+
y(j)*(y(j)+1));
!每个工厂产量的限制;
@for(s(i):@sum(a(j):x(i,j))<=sx);
@for(s(i):@sum(a(j):x(i,j))<=90000000*n(i));
@for(s(i):@sum(a(j):x(i,j))>=500*n(i));
!每个结点运量的限制;
@for(a(j):@sum(s(i):x(i,j))=z(j)+y(j));
!区间长度的限制;
@for(a(j)|j#le#14:z(j+1)+y(j)=t(j));
!初始条件;
z(1)=0;
y(15)=0;
!设置0-1变量;
@for(a(j):@bin(n(j)));
Local optimal solution found at iteration: 5800
Objective value: 1278632.
问题3:
sets:
s/1..7/:sx;
a/1..21/:z,y,n,t;
links(s,a):c,x;
endsets
data:
sx=800 800 1000 2000 2000 2000 3000;
t=104 301 750 606 194 205 201 680 480 300 220 210 420 500 0 0 0 0 0 0 0;
c=330.7 320.3 300.2 258.6 198 180.5 163.1 181.2 224.2 252 256 266 281.2 288 302
220 255 260 265 275 285
370.7 360.3 345.2 326.6 266 250.5 241 226.2 269.2 297 301 311 326.2 333 347
265 300 305 310 320 330
385.7 375.3 355.2 336.6 276 260.5 251 241.2 203.2 237 241 251 266.2 273 287
199 240 245 250 260 270
420.7 410.3 395.2 376.6 316 300.5 291 276.2 244.2 222 211 221 236.2 243 257
240 210 215 220 230 240
410.7 400.3 380.2 361.6 301 285.5 276 266.2 234.2 212 188 206 226.2 228 242
230 187 205 205 220 230
415.7 405.3 385.2 366.6 306 290.5 281 271.2 234.2 212 201 195 176.2 161 178
230 200 183 186 160 150
435.7 425.3 405.2 386.6 326 310.5 301 291.2 259.2 237 226 216 198.2 185 162
245 225 210 215 192 189;
enddata
!目标函数;
min=@sum(links:c*x)+0.05*@sum(a(j):z(j)*(z(j)+1)+ y(j)*(y(j)+1))+0.05*yd1*(yd1+1)
+0.05*yd2*(yd2+1)+0.05*yd3*(yd3+1);
!每个工厂产量的限制;
@for(s(i):@sum(a(j):x(i,j))<=sx);
@for(s(i):@sum(a(j):x(i,j))<=9000000*n(i));
@for(s(i):@sum(a(j):x(i,j))>=500*n(i));
!每个结点运量的限制;
@for(a(j)|j#ne#9 #and# j#ne#11 #and#
j#ne#17:@sum(s(i):x(i,j))=z(j)+y(j));
@sum(s(i):x(i,9))=z(9)+y(9)+yd1;
@sum(s(i):x(i,11))=z(11)+y(11)+yd2;
@sum(s(i):x(i,17))=z(17)+y(17)+yd3;
!区间长度的限制;
@for(a(j)|j#le#14:z(j+1)+y(j)=t(j));
y(16)+yd1=42;
y(17)+yd2=10;
z(17)+y(18)=130;
yd3+y(19)=190;
z(19)+y(20)=260;
z(20)+y(21)=100;
!初始条件;
z(1)=0;
y(15)=0;
z(16)=0;
z(18)=0;
z(21)=0;
!设置0-1变量;
@for(a(j):@bin(n(j)));
Local optimal solution found at iteration: 9263 Objective value: 1411287.。