人教版高中数学必修一第一章测试(含答案)
人教版A版高中数学必修第一册 第一章综合测试01试题试卷含答案 答案在前
第一章综合测试答案解析一、 1.【答案】A【解析】A 显然正确;0不是集合,不能用符号“⊆”,B 错误;∅不是M 中的元素,C 错误;M 为无限集,D 错误. 2.【答案】D【解析】{}=0469B ,,,,B ∴的子集的个数为42=16. 3.【答案】D【解析】对于①,当=4a 为正整数;对于②,当=1x 时,为正整数;对于③,当=1y 时,为正整数,故选D .4.【答案】A【解析】由1231x --<<,得12x <<,即{}|12x x x ∈<<,由30x x -()<,得03x <<,即{}|03x x x ∈<<,{}|12x x <<是{}|03x x <<的真子集,{}|03x x <<不是{}|12x x <<的子集,故选A .5.【答案】D【解析】两个集合的交集其实就是曲线和直线的交点,注意结果是两对有序实数对. 6.【答案】B【解析】{=|=0A B x x 或}1x ≥,A 错误;{}=12A B ,,B 正确;{}{}R =|1=0A B x x B ()< ,C 错误;{}R =|0A B x x ()≠ ,D 错误.7.【答案】B【解析】方法一:11a a ⇒⇒>,1011a a ⇒-⇒)>>,∴甲是乙的充要条件,故选B .方法二:20a a a a ⎧⇔⎨⎩>,>,,1a ∴>,故选B .8.【答案】C【解析】由题意得N M ⊆,由Venn 图(图略)可知选C . 9.【答案】C【解析】由题意知,0=2bx a-为函数2=y ax bx c ++图象的对称轴方程,所以0y 为函数y 的最小值,即对所有的实数x ,都有0y y ≥,因此对任意x ∈R ,0y y ≤是错误的,故选C .10.【答案】D【解析】{}=|1U B x x - > ,{}=|0U A B x x ∴ > .{}=|0U A x x ≤ ,{}=|1U B A x x ∴- ≤ .{=|0U U A B B A x x ∴ ()()> 或}1x -≤.11.【答案】A【解析】一元二次方程2=0x x m ++有实数解1=1404m m ⇔∆-⇔≥≤.当14m <时,14m ≤成立,但14m ≤时,14m <不一定成立.故“14m <”是“一元二次方程2=0x x m ++有实数解”的充分不必要条件.12.【答案】C【解析】A C A B ⊇ ()(),U U A C A B∴⊆ ()() ,∴①为真命题.A C A B ⊆ ()(),U U A C A B∴⊇ ()() ,即U U U U A C A B ⊇ ()() ,∴②为真命题.由Venn 图(图略)可知,③为假命题.故选C . 二、13.【答案】x ∀∈R ,210x +≥【解析】存在量词命题的否定是全称量词命题. 14.【答案】0【解析】依题意得,23=3m m ,所以=0m 或=1m .当=1m 时,违反集合中元素的互异性(舍去). 15.【答案】充分不必要【解析】由=2a 能得到1)(2)0(=a a --,但由1)(2)0(=a a --得到=1a 或=2a ,而不是=2a ,所以=2a 是1)(2)0(=a a --的充分不必要条件. 16.【答案】12【解析】设全集U 为某班30人,集合A 为喜爱篮球运动的15人,集合B 为喜爱乒乓球运动的10人,如图.设所求人数为x ,则108=30x ++,解得=12x . 三、17.【答案】(1)命题的否定:有的正方形不是矩形,假命题(2.5分) (2)命题的否定:不存在实数x ,使31=0x +,假命题.(5分) (3)命题的否定:x ∀∈R ,2220x x ++>,真命题.(7.5分)(4)命题的否定:存在0x ,0y ∈R ,00110x y ++-<,假命题.(10分)18.【答案】(1){=|1U A x x - < 或1x ≥,{=|12U A B x x ∴()≤≤ .(6分) (2){}=|01A B x x <<,{=|0U A Bx x ∴ ()≤ 或}1x ≥.(12分) 19.【答案】①若=A ∅,则2=240p ∆+-()<,解得40p -<<.(4分)②若方程的两个根均为非正实数,则12120=200.10.=x x p p x x ∆⎧⎪+-+⎨⎪⎩≥,()≤,解得≥>(10分) 综上所述,p 的取值范围是{}|4p p ->.(12分) 20.【答案】证明:①充分性:若存在0x ∈R ,使00ay <,则2220004=4b ab b a y ax bx ----() 222000=444b abx a x ay ++-200=240b ax ay +-()>,∴方程=0y 有两个不等实数根.(6分)②必要性:若方程=0y 有两个不等实数根. 则240b ab ->,设0=2bx a-, 则20=22b b ay a a b c a a ⎡⎤-+-+⎢⎥⎣⎦()() 2224==0424b b ac b ac --+<(10分) 由①②知,“方程=0y 有两个不等实根”的充要条件是“存在0x ∈R ,使00ay <”.(12分) 21.【答案】(1)当=2a 时,{}=|17A x x ≤≤,{}=|27AUB x x -≤≤,(3分){R =|1A x x < 或}7x >,{}R =|21A B x x - ()≤< .(6分)(2)=A B A ,A B ∴⊆.①若=A ∅,则123a a -+>,解得4a -<;(8分)②若A ∅≠,则12311212234.a a a a a -+⎧⎪⎪---⎨⎪+⎪⎩≤,≥,解得≤≤≤,(10分)综上可知,a 的取值范围是1|412a a a ⎧⎫--⎨⎬⎩⎭<或≤≤.(12分)22.【答案】设选修甲、乙、丙三门课的同学分别组成集合A ,B ,C ,全班同学组成的集合为U ,则由已知可画出Venn 图如图所示.(2分)选甲、乙而不选丙的有2924=5-(人), 选甲、丙而不选乙的有2824=4-(人), 选乙、丙而不选甲的有2624=2-(人),(6分) 仅选甲的有382454=5---(人), 仅选乙的有352452=4---(人), 仅选丙的有312442=1---(人),(8分)所以至少选一门的人数为24542541=45++++++,(10分) 所以三门均未选的人数为5045=5-.(12分)第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}=|23M x x -<<,则下列结论正确的是( ) A .2.5M ∈ B .0M ⊆C .M ∅∈D .集合M 是有限集2.已知集合{}=023A ,,,{}=|=B x x ab a b A ∈,,,则集合B 的子集的个数是( ) A .4B .8C .15D .163.下列存在量词命题中,真命题的个数是( )①存在一个实数a 为正整数;②存在一个实数x ,使为正整数;③存在一个实数y 为正整数. A .0B .1C .2D .34.已知1231p x --:<<,30q x x -:()<,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.设集合{}2=|=+M x y y x x (,),{}N=|=+16x y y x (,),则M N 等于( ) A .416(,)或412-(,)B .{420,,}412-, C .{412(,),}420-(,)D .{420(,),}412-(,)6.若集合{}=|1A x x ≥,{}=012B ,,,则下列结论正确的是( ) A .{}=|0A B x x ≥B .{}=12A B ,C .{}R =01A B (),D .{}R =|1A B x x()≥7.甲:“1a >”是乙:“a ”的( ) A .既不充分也不必要条件 B .充要条件 C .充分不必要条件D .必要不充分条件8.已知全集*=U N ,集合{}*=|=2M x x n n ∈N ,,{}*=|=4N x x n n ∈N ,,则( )A .=U M NB .=U U M N ()C .=U U M N ()D .=U U M N ()9.已知0a >,函数2=++y ax bx c .若0x 满足关于x 的方程2+b=0ax ,则下列选项中的命题为假命题的是( )A .存在x ∈R ,y y 0≤B .存在x ∈R ,0y y ≥C .对任意x ∈R ,y y 0≤D .对任意x ∈R ,0y y ≥10.已知=U R ,{}=|0A x x >,{}=|1B x x -≤,则U U A B B A ()() 等于( )A .∅B .{}|0x x ≤C .{}|1x x ->D .{|0x x >或}1x -≤11.“14m <”是“一元二次方程2++=0x x m 有实数解”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件12.已知U 为全集,A ,B ,C 是U 的子集,A C A B ⊆ ()(),A C A B ⊇ ()(),则下列命题中,正确的个数是( )①U U A C A B ⊆ ()() ; ②U U U U A C A B ⊇ ()() ;③C B ⊆. A .0B .1C .2D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.命题:“0x ∃∈R ,2+10x <”的否定是________.14.设集合{}2=33A m ,,{}=33B m ,,且=A B ,则实数m 的值是________. 15.若a ∈R ,则“=2a ”是“(1)(2)=0a a --”的________条件.16.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)写出下列命题的否定并判断其真假. (1)所有正方形都是矩形;(2)至少有一个实数0x 使3+1=0x ;(3)0x ∃∈R ,2+2+20x x ≤;(4)任意x ,y ∈R ,+1+10x y -≥.18.(本小题满分12分)设全集=U R ,集合{}=|11A x x -≤<,{}=|02B x x <≤.(1)求U A B () ;(2)求U A B() .19.(本小题满分12分)已知{}2=|+2++1=0A x x p x x ∈Z (),,若{}|0=A x x ∅ >,求p 的取值范围.20.(本小题满分12分)已知2=0y ax bx c a b c a ++∈R (,,,且≠).证明:“方程=0y 有两个不相等的实数根”的充要条件是“存在0x ∈R ,使00ay <”.21.(本小题满分12分)已知集合{}=|12+3A x a x a -≤≤,{}=|24B x x -≤≤,全集=.U R(1)当=2a 时,求A B 和R A B () ;(2)若=A B A ,求实数a 的取值范围.22.(本小题满分12分)某班有学生50人,学校开设了甲、乙、丙三门选修课,选修甲的有38人,选修乙的有35人,选修丙的有31人,兼选甲、乙两门的有29人,兼选甲、丙两门的有28人,兼选乙、丙两门的有26人,甲、乙、丙三门均选的有24人,那么这三门均未选的有多少人?。
人教版高中数学必修一第一章单元测试(含答案)
高中数学《必修一》第一章教学质量检测卷佛冈中学全校学生家长的全体 1、下列各组对象中不能构成集合的是()A 、佛冈中学高一(20)班的全体男生B 、C 、李明的所有家人D 王明的所有好朋友 选择 (将 题的 填入2、 已知集合A x R|x 5 ,B x R x 1 ,那么AI B 等于3、4、5、 A 、6、 7、 A. C. {2, 2,3,4,5 3,4} D.B.2, 3,4,12,3,4,5,6,7,8 ,集合 A {1,2,315}, 设全集U 则图中的阴影部分表示的集合为()A. 2B. 4,6C. 1,3,5D. 4,6,7,8 下列四组函数中表示同一函数的是 A. f(x) x , g(x) (Tx )2B. f (x) C. f (x)廉,g(x) |x|D. f(x) 函数 f(x)= 2x 2- 1 , x? (0,3) o1B 1C 、2D B {2,4,6} ()x 2,g(x) x 1 0 , g(x) < x 1 ■. 1 x若f (a )= 7,则a 的值是() x 2,(x 0)血 设f(x) !,(x 0),则f[f(1)]() A 3B 1C.0D.-1 函数f (x ) = . x + 3的值域为() A 、[3 , +x ) B 、(一x, 3]C 、[0 , +x )D R 8、下列四个图像中,不可能是函数图像的是 () 9、设f (x )是R上 的偶函数,且在 [0,+ x )上单调 递增,则f(-2),f(3),f(- )的大小顺序是:() A f(- )>f(3)>f(-2)B 、f(- )>f(-2)>f(3) C 、f(-2)>f(3)>f(- )D 、f(3)>f(-2)>f(- ) 10、在集合{a , b , c , d }上定义两种运算 和 如下:那么 b (a c)() A. aB. bC. cD. d二、填空题(本大题共4小题,每小题5分,共20分) 11、 函数y 1 (x 3)0的定义域为12、 函数f(x) x 2 6x 10在区间[0,4]的最大值是Q I /'13、 若 A { 2,2,3,4} , B {x|x t 2,t A},用列举法表示 B 是.14、 下列命题:①集合a,b,c,d 的子集个数有16个;②定义在R 上的奇函数f(x)必满足f (0) 0 ; ③f(x) 2x 1 2 2 2x 1既不是奇函数又不是偶函数;④偶函数的图像一定与y 轴相交;⑤f(x)」x在 ,0 U 0, 上是减函数。
人教版高一数学必修一各章节同步练习(含答案)
第一章 1.1 1.1.1集合的含义与表示基础巩固一、选择题1.在“①高一数学中的难题;②所有的正三角形;③方程x 2-2=0的实数解”中,能够构成集合的是( )A .②B .③C .②③D .①②③[答案] C[解析] 高一数学中的难题的标准不确定,因而构不成集合,而正三角形标准明确,能构成集合,方程x 2-2=0的解也是确定的,能构成集合,故选C.2.已知集合A ={x |x ≤10},a =2+3,则a 与集合A 的关系是( ) A .a ∈A B .a ∉A C .a =A D .{a }∈A[答案] A[解析] 由于2+3<10,所以a ∈A .3.(2015·山东临沂检测)集合{x ∈N *|x -2<3}的另一种表示形式是( ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5} D .{1,2,3,4,5}[答案] B[解析] 由x -2<3,得x <5,又x ∈N *,所以x =1,2,3,4,即集合的另一种表示形式是{1,2,3,4}.4.方程组⎩⎪⎨⎪⎧3x +y =22x -3y =27的解集是( )A.⎩⎪⎨⎪⎧x =3y =-7B .{x ,y |x =3且y =-7}C .{3,-7}D .{(x ,y )|x =3且y =-7} [答案] D[解析] 解方程组⎩⎪⎨⎪⎧3x +y =22x -3y =27得⎩⎪⎨⎪⎧x =3y =-7,用描述法表示为{(x ,y )|x =3且y =-7},用列举法表示为{(3,-7)},故选D. 5.已知集合S ={a ,b ,c }中的三个元素是△ABC 的三边长,那么△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形[答案] D[解析] 由集合中元素的互异性知a ,b ,c 互不相等,故选D.6.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 的值为( )A .2B .3C .0或3D .0或2或3[答案] B[解析] 因为2∈A ,所以m =2或m 2-3m +2=2,解得m =0或m =2或m =3.又集合中的元素要满足互异性,对m 的所有取值进行一一检验可得m =3,故选B.二、填空题7.用符号∈与∉填空:(1)0________N *;3________Z ; 0________N ;(-1)0________N *; 3+2________Q ;43________Q .(2)3________{2,3};3________{(2,3)}; (2,3)________{(2,3)};(3,2)________{(2,3)}. (3)若a 2=3,则a ________R ,若a 2=-1,则a ________R . [答案] (1)∉ ∉ ∈ ∈ ∉ ∈ (2)∈ ∉ ∈ ∉ (3)∈ ∉[解析] (1)只要熟记常用数集的记号所对应的含义就很容易辨别.(2)中3是集合{2,3}的元素;但整数3不是点集{(2,3)}的元素;同样(2,3)是集合{(2,3)}的元素;因为坐标顺序不同,(3,2)不是集合{(2,3)}的元素.(3)平方等于3的数是±3,当然是实数,而平方等于-1的实数是不存在的.8.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,ba,b ,则b -a =________.[答案] 2[解析] 显然a ≠0,则a +b =0,a =-b ,b a=-1,所以a =-1,b =1,b -a =2. 三、解答题9.已知集合A 含有a -2,2a 2+5a,12三个元素,且-3∈A ,求a 的值. [解析] ∵-3∈A ,则-3=a -2或-3=2a 2+5a , ∴a =-1或a =-32.当a =-1时,a -2=-3,2a 2+5a =-3,不满足集合中元素的互异性,∴a =-1舍去. 当a =-32时,经检验,符合题意.故a =-32.[注意] (1)分类讨论意识的建立.解答含有字母的元素与集合之间关系的问题时,要有分类讨论的意识,如本例按照元素-3与a -2,2a 2+5a,12的关系分类 ,即可做到不重不漏.(2)注意集合中元素的互异性.求解与集合有关的字母参数时,需利用集合元素的互异性来检验所求参数是否符合要求,如本例在求出a 的值后,需代入验证是否满足集合中元素的互异性.10.已知集合A ={x |ax 2-3x +2=0}. (1)若A 是单元素集合,求集合A ;(2)若A 中至少有一个元素,求a 的取值范围.[分析] 将求集合中元素问题转化为方程根问题.(1)集合A 为单元素集合,说明方程有唯一根或两个相等的实数根.要注意方程ax 2-3x +2=0可能不是一元二次方程.(2)至少有一个元素,说明方程有一根或两根.[解析] (1)因为集合A 是方程ax 2-3x +2=0的解集,则当a =0时,A ={23},符合题意;当a ≠0时,方程ax 2-3x +2=0应有两个相等的实数根, 则Δ=9-8a =0,解得a =98,此时A ={43},符合题意.综上所述,当a =0时,A ={23},当a =98时,A ={43}.(2)由(1)可知,当a =0时,A ={23}符合题意;当a ≠0时,要使方程ax 2-3x +2=0有实数根, 则Δ=9-8a ≥0,解得a ≤98且a ≠0.综上所述,若集合A 中至少有一个元素,则a ≤98.[点评] “a =0”这种情况容易被忽视,如“方程ax 2+2x +1=0”有两种情况:一是“a =0”,即它是一元一次方程;二是“a ≠0”,即它是一元二次方程,只有在这种情况下,才能用判别式“Δ”来解决.能力提升一、选择题1.(2015·河北衡水中学期末)下列集合中,不同于另外三个集合的是( )A .{x |x =1}B .{x |x 2=1} C .{1} D .{y |(y -1)2=0}[答案] B[解析] {x |x 2=1}={-1,1},另外三个集合都是{1},选B.2.下列六种表示法:①{x =-1,y =2};②{(x ,y )|x =-1,y =2};③{-1,2};④(-1,2);⑤{(-1,2)};⑥{(x ,y )|x =-1或y =2}.能表示方程组⎩⎪⎨⎪⎧2x +y =0,x -y +3=0的解集的是( )A .①②③④⑤⑥B .②③④⑤C .②⑤D .②⑤⑥[答案] C [解析] 方程组⎩⎪⎨⎪⎧2x +y =0,x -y +3=0的解是⎩⎪⎨⎪⎧x =-1,y =2.故选C.3.已知x ,y ,z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合是M ,则下列判断正确的是( )A .0∉MB .2∈MC .-4∉MD .4∈M[答案] D[解析] 当x >0,y >0,z >0时,代数式的值为4,所以4∈M ,故选D.4.设A ,B 为两个实数集,定义集合A +B ={x |x 1+x 2,x 1∈A ,x 2∈B },若A ={1,2,3},B ={2,3},则集合A +B 中元素的个数为( )A .3B .4C .5D .6[答案] B[解析] 当x 1=1时,x 1+x 2=1+2=3或x 1+x 2=1+3=4;当x 1=2时,x 1+x 2=2+2=4或x 1+x 2=2+3=5;当x 1=3时,x 1+x 2=3+2=5或x 1+x 2=3+3=6.∴A +B ={3,4,5,6},共4个元素.二、填空题5.已知P ={x |2<x <k ,x ∈N ,k ∈R },若集合P 中恰有3个元素,则实数k 的取值范围是________.[答案] {k |5<k ≤6}[解析] x 只能取3,4,5,故5<k ≤6.6.(2015·湖南郴州模拟)用列举法写出集合{33-x ∈Z |x ∈Z }=________.[答案] {-3,-1,1,3} [解析] ∵33-x∈Z ,x ∈Z , ∴3-x 为3的因数. ∴3-x =±1,或3-x =±3. ∴33-x =±3,或33-x=±1. ∴-3,-1,1,3满足题意. 三、解答题7.数集A 满足条件:若a ∈A ,则1+a 1-a ∈A (a ≠1).若13∈A ,求集合中的其他元素.[分析] 已知a ∈A ,1+a 1-a ∈A ,将a =13代入1+a1-a 即可求得集合中的另一个元素,依次,可得集合中的其他元素.[解析] ∵13∈A ,∴1+131-13=2∈A ,∴1+21-2=-3∈A ,∴1-31+3=-12∈A ,∴1-121+12=13∈A . 故当13∈A 时,集合中的其他元素为2,-3,-12.8.若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”. (1)判断集合A ={-1,1,2}是否为可倒数集; (2)试写出一个含3个元素的可倒数集.[解析] (1)由于2的倒数为12不在集合A 中,故集合A 不是可倒数集.(2)若a ∈A ,则必有1a ∈A ,现已知集合A 中含有3个元素,故必有一个元素有a =1a,即a =±1,故可以取集合A ={1,2,12}或{-1,2,12}或{1,3,13}等.第一章 1.1 1.1.2集合间的基本关系基础巩固一、选择题1.对于集合A,B,“A⊆B”不成立的含义是( )A.B是A的子集B.A中的元素都不是B的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A[答案] C[解析] “A⊆B”成立的含义是集合A中的任何一个元素都是B的元素.不成立的含义是A中至少有一个元素不属于B,故选C.2.下列命题中,正确的有( )①空集是任何集合的真子集;②若A B,B C,则A C;③任何一个集合必有两个或两个以上的真子集;④如果不属于B的元素也不属于A,则A⊆B.A.①②B.②③C.②④D.③④[答案] C[解析] ①空集只是空集的子集而非真子集,故①错;②真子集具有传递性;故②正确;③若一个集合是空集,则没有真子集,故③错;④由韦恩(Venn)图易知④正确,故选C.3.已知集合A={x|x是三角形},B={x|x是等腰三角形},C={x|x是等腰直角三角形},D={x|x是等边三角形},则( )A.A⊆B B.C⊆BC.D⊆C D.A⊆D[答案] B[解析] ∵正方形必为矩形,∴C⊆B.4.下列四个集合中,是空集的是( )A.{0} B.{x|x>8,且x<5}C.{x∈N|x2-1=0} D.{x|x>4}[答案] B[解析] 选项A、C、D都含有元素.而选项B无元素,故选B.5.若集合A⊆{1,2,3},且A中至少含有一个奇数,则这样的集合A有( )A.3个B.4个C.5个D.6个[答案] D[解析] 集合{1,2,3}的子集共有8个,其中至少含有一个奇数的有{1},{3},{1,2},{1,3},{2,3},{1,2,3},共6个.6.设集合A ={x |1<x <2},B ={x |x <a },若A B ,则实数a 的取值范围为( ) A .a ≥2 B .a ≤1 C .a ≥1 D .a ≤2[答案] A[解析] 在数轴上表示出两个集合(图略),因为A B ,所以a ≥2. 二、填空题7.用适当的符号填空:(1){x |x 是菱形}________{x |x 是平行四边形}; {x |x 是三角形}________{x |x 是斜三角形}. (2)Z ________{x ∈R |x 2+2=0}; 0________{0};Ø________{0};N ________{0}. [答案] (1)(2) ∈[解析] (1)判断两个集合之间的关系,可以根据子集的定义来加以判断,特别要注意判断出包含关系后,还要进一步判断是否具有真包含关系.(2)集合{x ∈R |x 2+2=0}中,由于实数范围内该方程无解,因此{x ∈R |x 2+2=0}=Ø;0是集合{0}中的元素,它们之间是属于关系;{0}是含有一个元素0的集合;Ø是不含任何元素的集合,故Ø{0};自然数集N 中含有元素0,但不止0这一个元素.8.(2012·大纲全国改编)已知集合A ={1,2,m 3},B ={1,m },B ⊆A ,则m =________. [答案] 0或2或-1[解析] 由B ⊆A 得m ∈A ,所以m =m 3或m =2,所以m =2或m =-1或m =1或m =0,又由集合中元素的互异性知m ≠1.所以m =0或2或-1.三、解答题9.判断下列集合间的关系:(1)A ={x |x -3>2},B ={x |2x -5≥0}; (2)A ={x ∈Z |-1≤x <3},B ={x |x =|y |,y ∈A }. [解析] (1)∵A ={x |x -3>2}={x |x >5},B ={x |2x -5≥0}={x |x ≥52},∴利用数轴判断A 、B 的关系. 如图所示,AB .(2)∵A ={x ∈Z |-1≤x <3}={-1,0,1,2},B ={x |x =|y |,y ∈A ,∴B ={0,1,2},∴B A .10.已知集合M ={x |x =m +16,m ∈Z },N ={x |x =n 2-13,n ∈Z },P ={x |x =p 2+16,p ∈Z },试确定M ,N ,P 之间的关系.[解析] 解法一:集合M ={x |x =m +16,m ∈Z },对于集合N ,当n 是偶数时,设n =2t (t ∈Z ), 则N ={x |x =t -13,t ∈Z };当n 是奇数时,设n =2t +1(t ∈Z ),则N ={x |x =2t +12-13,t ∈Z }={x |x =t +16,t ∈Z }.观察集合M ,N 可知M N .对于集合P ,当p 是偶数时,设p =2s (s ∈Z ),则P ={x |x =s +16,s ∈Z },当p 是奇数时,设p =2s -1(s ∈Z ),则P ={x |x =2s -12+16,s ∈Z } ={x |x =s -13,s ∈Z }.观察集合N ,P 知N =P . 综上可得:MN =P .解法二:∵M ={x |x =m +16,m ∈Z }={x |x =6m +16,m ∈Z }={x |x =3×2m +16,m ∈Z },N ={x |x =n 2-13,n ∈Z }={x |x =3n -26,n ∈Z }={x |x =3n -1+16,n -1∈Z },P ={x |x =p 2+16,p ∈Z }={x |x =3p +16,p ∈Z },比较3×2m +1,3(n -1)+1与3p +1可知,3(n -1)+1与3p +1表示的数完全相同, ∴N =P,3×2m +1只相当于3p +1中当p 为偶数时的情形, ∴MP =N .综上可知M P =N .能力提升一、选择题1.(2015·瓮安一中高一期末试题)设集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k∈Z },则( )A .M =NB .M NC .M ND .M 与N 的关系不确定[答案] B[解析] 解法1:用列举法,令k =-2,-1,0,1,2…可得M ={…-34,-14,14,34,54…}, N ={…0,14,12,34,1…},∴MN ,故选B.解法2:集合M 的元素为:x =k 2+14=2k +14(k ∈Z ),集合N 的元素为:x =k 4+12=k +24(k ∈Z ),而2k +1为奇数,k +2为整数,∴M N ,故选B.[点评] 本题解法从分式的结构出发,运用整数的性质方便地获解.注意若k 是任意整数,则k +m (m 是一个整数)也是任意整数,而2k +1,2k -1均为任意奇数,2k 为任意偶数.2.(2015·湖北孝感期中)集合A ={(x ,y )|y =x }和B =⎩⎨⎧⎭⎬⎫x ,y |⎩⎪⎨⎪⎧2x -y =1x +4y =5,则下列结论中正确的是( )A .1∈AB .B ⊆AC .(1,1)⊆BD .Ø∈A[答案] B[解析] B =⎩⎨⎧⎭⎬⎫x ,y |⎩⎪⎨⎪⎧2x -y =1x +4y =5={(1,1)},故选B. 3.已知集合A ={1,2},B ={x |ax -2=0},若B ⊆A ,则a 的值不可能是( ) A .0 B .1 C .2 D .3[答案] D[解析] 由题意知,a =0时,B =Ø,满足题意;a ≠0时,由2a∈A ⇒a =1,2,所以a 的值不可能是3.4.集合P ={3,4,5},Q ={6,7},定义P *Q ={(a ,b )|a ∈P ,b ∈Q },则P *Q 的子集个数为( )A .7B .12C .32D .64[答案] D[解析] 集合P *Q 的元素为(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),共6个,故P *Q 的子集个数为26=64.二、填空题5.已知集合M ={x |2m <x <m +1},且M =Ø,则实数m 的取值范围是________. [答案] m ≥1[解析] ∵M =Ø,∴2m ≥m +1,∴m ≥1.6.集合⎩⎨⎧x ,y ⎪⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y =-x +2,y =12x +2⊆{(x ,y )|y =3x +b },则b =________.[答案] 2[解析] 解方程组⎩⎪⎨⎪⎧y =-x +2y =12x +2得⎩⎪⎨⎪⎧x =0y =2,代入y =3x +b 得b =2. 三、解答题7.设集合A ={-1,1},集合B ={x |x 2-2ax +b =0},若B ≠Ø且B ⊆A ,求实数a 、b 的值.[解析] ∵B 中元素是关于x 的方程x 2-2ax +b =0的根,且B ⊆{-1,1},∴关于x 的方程x 2-2ax +b =0的根只能是-1或1,但要注意方程有两个相等根的条件是Δ=0.∵B ={x |x 2-2ax +b =0}⊆A ={-1,1},且B ≠Ø, ∴B ={-1}或B ={1}或B ={-1,1}. 当B ={-1}时,Δ=4a 2-4b =0且1+2a +b =0,解得a =-1,b =1. 当B ={1}时,Δ=4a 2-4b =0且1-2a +b =0,解得a =b =1. 当B ={-1,1}时,有(-1)+1=2a ,(-1)×1=b ,解得a =0,b =-1.8.设集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}.(1)若B ⊆A ,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集个数;(3)当x ∈R 时,不存在元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.[解析] (1)当m +1>2m -1,即m <2时,B =Ø,满足B ⊆A .当m +1≤2m -1,即m ≥2时,要使B ⊆A 成立,只需⎩⎪⎨⎪⎧ m +1≥-2,2m -1≤5,即2≤m ≤3.综上,当B ⊆A 时,m 的取值范围是{m |m ≤3}.(2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5},∴集合A 的非空真子集个数为28-2=254.(3)∵x ∈R ,且A ={x |-2≤x ≤5}, B ={x |m +1≤x ≤2m -1},又不存在元素x 使x ∈A 与x ∈B 同时成立,∴当B =Ø,即m +1>2m -1,得m <2时,符合题意;当B ≠Q ,即m +1≤2m -1,得m ≥2时,⎩⎪⎨⎪⎧ m ≥2,m +1>5,或⎩⎪⎨⎪⎧ m ≥2,2m -1<-2,解得m >4.综上,所求m 的取值范围是{m |m <2或m >4}.第一章 1.1 1.1.3 第一课时并集和交集基础巩固一、选择题1.下面四个结论:①若a ∈(A ∪B ),则a ∈A ;②若a ∈(A ∩B ),则a ∈(A ∪B );③若a ∈A ,且a ∈B ,则a ∈(A ∩B );④若A ∪B =A ,则A ∩B =B .其中正确的个数为( )A .1B .2C .3D .4[答案] C[解析] ①不正确,②③④正确,故选C.2.已知集合M ={x |-3<x ≤5},N ={x |x >3},则M ∪N =( )A .{x |x >-3}B .{x |-3<x ≤5}C .{x |3<x ≤5}D .{x |x ≤5}[答案] A[解析] 在数轴上表示集合M,N,如图所示,则M∪N={x|x>-3}.3.(2015·全国高考卷Ⅰ文科,1题)已知集合A={x|x=3n+2,n∈N},B={6,8,12,14},则集合A∩B中元素的个数为( )A.5 B.4C.3 D.2[答案] D[解析] A∩B={8,14},故选D.4.(2015·浙江省期中试题)集合A={1,2},B={1,2,3},C={2,3,4},则(A∩B)∪C=( )A.{1,2,3} B.{1,2,4}C.{2,3,4} D.{1,2,3,4}[答案] D[解析] A∩B={1,2},(A∩B)∪C={1,2,3,4},故选D.5.若A∪B=Ø,则( )A.A=Ø,B≠ØB.A≠Ø,B=ØC.A=Ø,B=ØD.A≠Ø,B≠Ø[答案] C6.设集合A={x|-1≤x≤2},集合B={x|x≤a},若A∩B=Ø,则实数a的取值集合为( )A.{a|a<2} B.{a|a≥-1}C.{a|a<-1} D.{a|-1≤a≤2}[答案] C[解析] 如图.要使A∩B=Ø,应有a<-1.二、填空题7.若集合A={2,4,x},B={2,x2},且A∪B={2,4,x},则x=________.[答案] 0,1或-2[解析] 由已知得B⊆A,∴x2=4或x2=x,∴x=0,1,±2,由元素的互异性知x≠2,∴x =0,1或-2.8.已知集合A ={x |x ≥5},集合B ={x |x ≤m },且A ∩B ={x |5≤x ≤6},则实数m =________.[答案] 6[解析] 用数轴表示集合A 、B 如图所示.由于A ∩B ={x |5≤x ≤6},得m =6.三、解答题9.设集合A ={a 2,a +1,-3},B ={a -3,2a -1,a 2+1},A ∩B ={-3},求实数a 的值.[解析] ∵A ∩B ={-3},∴-3∈B .∵a 2+1≠-3,∴①若a -3=-3,则a =0,此时A ={0,1,-3},B ={-3,-1,1},但由于A ∩B ={1,-3}与已知A ∩B ={-3}矛盾,∴a ≠0.②若2a -1=-3,则a =-1,此时A ={1,0,-3},B ={-4,-3,2},A ∩B ={-3}.综上可知a =-1.10.已知集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}.(1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围.[解析] (1)∵B ={x |x ≥2},A ={x |-1≤x <3},∴A ∩B ={x |2≤x <3}.(2)∵C ={x |x >-a 2},B ∪C =C ⇔B ⊆C , ∴-a 2<2,∴a >-4. 能力提升一、选择题1.已知集合M ={-1,0,1},N ={x |x =ab ,a ,b ∈M 且a ≠b },则M ∪N =( )A .{0,1}B .{-1,0}C .{-1,0,1}D .{-1,1} [答案] C[解析] 由题意可知,集合N ={-1,0},所以M ∪N =M .2.若集合M ={(x ,y )|x +y =0},P ={(x ,y )|x -y =2},则M ∩P 等于( )A .(1,-1)B .{x =1或y =-1}C .{1,-1}D .{(1,-1)} [答案] D[解析] M ∩P 的元素是方程组⎩⎪⎨⎪⎧ x +y =0x -y =2的解∴M ∩P ={(1,-1)}.3.(2015·衡水高一检测)若集合A ,B ,C 满足A ∩B =A ,B ∪C =C ,则A 与C 之间的关系为( )A .C AB .AC C .C ⊆AD .A ⊆C [答案] D[解析] ∵A ∩B =A ,∴A ⊆B ,又B ∪C =C ,∴B ⊆C ,∴A ⊆C ,故选D.4.当x ∈A 时,若x -1∉A ,且x +1∉A ,则称x 为A 的一个“孤立元素”,由A 的所有孤立元素组成的集合称为A 的“孤星集”,若集合M ={0,1,3}的孤星集为M ′,集合N ={0,3,4}的孤星集为N ′,则M ′∪N ′=( )A .{0,1,3,4}B .{1,4}C .{1,3}D .{0,3} [答案] D[解析] 由条件及孤星集的定义知,M ′={3},N ′={0},则M ′∪N ′={0,3}.二、填空题5.以下四个推理:①a ∈(A ∪B )⇒a ∈A ;②a ∈(A ∩B )⇒a ∈(A ∪B );③A ⊆A ⇒A ∪B =B ;④A ∪B =A ⇒A ∩B =B .其中正确的为________.[答案] ②③④[解析] ①是错误的,a ∈(A ∪B )时可推出a ∈A 或a ∈B ,不一定推出a ∈A .6.已知集合A ={x |x 2+px +q =0},B ={x |x 2-px -2q =0},且A ∩B ={-1},则A ∪B =________.[答案] {-2,-1,4}[解析] 因为A ∩B ={-1},所以-1∈A ,-1∈B ,即-1是方程x 2+px +q =0和x 2-px -2q =0的解,所以⎩⎪⎨⎪⎧ -12-p +q =0,-12+p -2q =0,解得⎩⎪⎨⎪⎧p =3,q =2, 所以A ={-1,-2},B ={-1,4},所以A ∪B ={-2,-1,4}.三、解答题7.已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},A ∪B =R ,求a 的取值范围.[解析] ∵B ={x |x <-1或x >5},A ∪B =R ,∴⎩⎪⎨⎪⎧2a <-1,a +8≥5,解得-3≤a <-12. 8.设A ={x |x 2+8x =0},B ={x |x 2+2(a +2)x +a 2-4=0},其中a ∈R .如果A ∩B =B ,求实数a 的取值范围.[解析] ∵A ={x }x 2+8x =0}={0,-8},A ∩B =B ,∴B ⊆A .当B =Ø时,方程x 2+2(a +2)x +a 2-4=0无解,即Δ=4(a +2)2-4(a 2-4)<0,得a <-2.当B ={0}或{-8}时,这时方程的判别式 Δ=4(a +2)2-4(a 2-4)=0,得a =-2.将a =-2代入方程,解得x =0,∴B ={0}满足.当B ={0,-8}时,⎩⎪⎨⎪⎧ Δ>0,-2a +2=-8,a 2-4=0,可得a =2.综上可得a =2或a ≤-2. [点评] (1)当集合B ⊆A 时,如果集合A 是一个确定的集合,而集合B 不确定,运算时,要考虑B =Ø的情形,切不可漏掉.(2)利用集合运算性质化简集合,有利于准确了解集合之间的关系.第一章 1.1 1.1.3 第二课时补集基础巩固一、选择题1.(2015·重庆三峡名校联盟)设全集I ={1,2,3,4,5},集合A ={2,3,5},集合B ={1,2},则(∁I B )∩A 为( )A .{2}B .{3,5}C .{1,3,4,5}D .{3,4,5}[答案] B[解析] 因为全集I ={1,2,3,4,5},集合B ={1,2},则∁I B ={3,4,5}.所以(∁I B )∩A 为{3,5}.故选B.[易错警示] 本小题的关键是先求出集合B的补集,再求交集.集合的运算是集合关系的基础知识,要理解清楚,可能渗透在一个大题中,不熟练会导致整体看不懂或理解错误.2.设全集U={1,2,3,4,5},A={1,3,5},则∁U A的所有非空子集的个数为( )A.4 B.3C.2 D.1[答案] B[解析] ∵∁U A={2,4},∴非空子集有22-1=3个,故选B.3.若P={x|x<1},Q={x|x>-1},则( )A.P⊆Q B.Q⊆PC.(∁R P)⊆Q D.Q⊆∁R P[答案] C[解析] ∵P={x|x<1},∴∁R P={x|x≥1}.又Q={x|x>-1},∴(∁R P)⊆Q,故选C.4.若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于( )A.M∪N B.M∩NC.(∁U M)∪(∁U M) D.(∁U M)∩(∁U N)[答案] D[解析] ∵M∪N={1,2,3,4},∴(∁U M)∩(∁U N)=∁U(M∪N)={5,6},故选D.5.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∪(∁U B)等于( )A.{x|-2≤x≤4}B.{x|x≤3,或x≥4}C.{x|-2≤x<-1}D.{x|-1≤x≤3}[答案] A[解析] 由题意可得∁U B={x|-1≤x≤4},A={x|-2≤x≤3},所以A∪(∁U B)={x|-2≤x≤4},故选A.6.已知集合A={x|x<a},B={x|x<2},且A∪(∁R B)=R,则a满足( )A.a≥2B.a>2C.a<2 D.a≤2[答案] A[解析] ∁R B={x|x≥2},则由A∪(∁R B)=R得a≥2,故选A.二、填空题7.已知集合A={3,4,m},集合B={3,4},若∁A B={5},则实数m=________.[答案] 58.U =R ,A ={x |-2<x ≤1或x >3},B ={x |x ≥4},则∁U A =________,∁A B =________.[答案] {x |x ≤-2或1<x ≤3} {x |-2<x ≤1或3<x <4}三、解答题9.已知全集U ={2,3,a 2-2a -3},A ={2,|a -7|},∁U A ={5},求a 的值.[解析] 解法1:由|a -7|=3,得a =4或a =10.当a =4时,a 2-2a -3=5,当a =10时,a 2-2a -3=77∉U ,∴a =4.解法2:由A ∪∁U A =U 知⎩⎪⎨⎪⎧ |a -7|=3a 2-2a -3=5,∴a =4.10.(2015·唐山一中月考试题)已知全集U ={x |x ≤4},集合A ={x |-2<x <3},B ={x |-3≤x ≤2},求A ∩B ,(∁U A )∪B ,A ∩(∁U B ).[分析] 利用数轴,分别表示出全集U 及集合A ,B ,先求出∁U A 及∁U B ,然后求解.[解析] 如图所示,∵A ={x |-2<x <3},B ={x |-3≤x ≤2},∴∁U A ={x |x ≤-2或3≤x ≤4},∁U B ={x |x <-3或2<x ≤4}.∴A ∩B ={x |-2<x ≤2},(∁U A )∪B ={x |x ≤2或3≤x ≤4},A ∩(∁UB )={x |2<x <3}.[点评] (1)数轴与Venn 图有同样的直观功效,在数轴上可以直观地表示数集,所以进行数集的交、并、补运算时,经常借助数轴求解.(2)不等式中的等号在补集中能否取到要引起重视,还要注意补集是全集的子集.能力提升一、选择题1.如图,阴影部分用集合A 、B 、U 表示为( )A .(∁U A )∩BB .(∁U A )∪(∁U B )C .A ∩(∁U B )D .A ∪(∁U B )[答案] C[解析] 阴影部分在A中,不在B中,故既在A中也在∁U B中,因此是A与∁U B的公共部分.2.设S为全集,则下列说法中,错误的个数是( )①若A∩B=Ø,则(∁S A)∪(∁S B)=S;②若A∪B=S,则(∁S A)∩(∁S B)=Ø;③若A∪B=Ø,则A=B.A.0 B.1C.2 D.3[答案] A[解析] 借助文氏图可知,①②正确,对于③于由A∪B=Ø,∴A=Ø,B=Ø,∴A=B,故选A.3.设全集U={1,2,3,4,5},集合S与T都是U的子集,满足S∩T={2},(∁U S)∩T={4},(∁U S)∩(∁U T)={1,5}则有( )A.3∈S,3∈T B.3∈S,3∈∁U TC.3∈∁U S,3∈T D.3∈∁U S,3∈∁U T[答案] B[解析] 若3∈S,3∈T,则3∈S∩T,排除A;若3∈∁U S,3∈T,则3∈(∁U S)∩T,排除C;若3∈∁U S,3∈∁U T,则3∈(∁U S)∩(∁U T),排除D,∴选B,也可画图表示.4.(2008·北京)已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∩(∁U B)等于( )A.{x|-2≤x<4} B.{x|x≤3或x≥4}C.{x|-2≤x<-1} D.{x|-1≤x≤3}[答案] D[解析] ∁U B={x|-1≤x≤4},A∩∁U B={x|-1≤x≤3},故选D.二、填空题5.已知全集为R,集合M={x∈R|-2<x<2},P={x|x≥a},并且M⊆∁R P,则a的取值范围是________.[答案] a≥2[解析] M={x|-2<x<2},∁R P={x|x<a}.∵M⊆∁R P,∴由数轴知a≥2.6.已知U =R ,A ={x |a ≤x ≤b },∁U A ={x |x <3或x >4},则ab =________.[答案] 12[解析] ∵A ∪(∁U A )=R ,∴a =3,b =4,∴ab =12.三、解答题7.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足(∁U A )∩B ={2},A ∩(∁U B )={4},U =R ,求实数a ,b 的值.[提示] 由2∈B,4∈A ,列方程组求解.[解析] ∵(∁U A )∩B ={2},∴2∈B ,∴4-2a +b =0.①又∵A ∩(∁U B )={4},∴4∈A ,∴16+4a +12b =0.②联立①②,得⎩⎪⎨⎪⎧ 4-2a +b =0,16+4a +12b =0,解得⎩⎪⎨⎪⎧ a =87,b =-127.经检验,符合题意:∴a =87,b =-127. [点评] 由题目中所给的集合之间的关系,通过分析得出元素与集合之间的关系,是解决此类问题的关键.8.已知全集U =R ,集合A ={x |x <-1},B ={x |2a <x <a +3},且B ⊆∁R A ,求a 的取值范围.[分析] 本题从条件B ⊆∁R A 分析可先求出∁R A ,再结合B ⊆∁R A 列出关于a 的不等式组求a 的取值范围.[解析] 由题意得∁R A ={x |x ≥-1}.(1)若B =Ø,则a +3≤2a ,即a ≥3,满足B ⊆∁R A .(2)若B ≠Ø,则由B ⊆∁R A ,得2a ≥-1且2a <a +3,即-12≤a <3. 综上可得a ≥-12.第一章 1.1 1.1.3 第三课时习题课基础巩固一、选择题1.(2015·全国高考卷Ⅱ文科,1题)已知集合A ={x |-1<x <2},B ={x |0<x <3},则A ∩B =( )A .{x |-1<x <3}B .{x |-1<x <0}C.{x|0<x<2} D.{x|2<x<3}[答案] A[解析] A∪B={x|-1<x<3},故选A.2.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)等于( )A.{x|0≤x<1} B.{x|0<x≤1}C.{x|x<0} D.{x|x>1}[答案] B[解析] 画出数轴,如图所示,∁U B={x|x≤1},则A∩∁U B={x|0<x≤1},故选B.3.图中阴影部分所表示的集合是( )A.B∩(∁U(A∪C))B.(A∪B)∪(B∪C)C.(A∪C)∩(∁U B)D.[∁U(A∩C)]∪B[答案] A[解析] 阴影部分位于集合B内,且位于集合A、C的外部,故可表示为B∩(∁U(A∪C)),故选A.4.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-2或x>4},那么集合(∁U A)∩(∁U B)等于( )A.{x|3<x≤4}B.{x|x≤3或x≥4}C.{x|3≤x<4} D.{x|-1≤x≤3}[答案] A[解析] 方法1:∁U A={x|x<-2或x>3},∁U B={x|-2≤x≤4}∴(∁U A)∩(∁U B)={x|3<x≤4},故选C.方法2:A∪B={x|x≤3或x>4},(∁U A)∩(∁U B)=∁U(A∪B)={x|3<x≤4}.故选A.5.已知集合A={x|-1≤x≤1},B={x|-1≤x≤a},且(A∪B)⊆(A∩B),则实数a=( )A.0 B.1C.2 D.3[答案] B[解析] ∵(A ∪B )⊆(A ∩B ),∴(A ∪B )=(A ∩B ), ∴A =B ,∴a =1.6.设U 为全集,对集合X ,Y 定义运算“*”,X *Y =∁U (X ∩Y ),对于任意集合X ,Y ,Z ,则(X *Y )*Z =( )A .(X ∪Y )∩∁U ZB .(X ∩Y )∪∁U ZC .(∁U X ∪∁U Y )∩ZD .(∁U X ∩∁U Y )∪Z [答案] B[解析] X *Y =∁U (X ∩Y )(X *Y )*Z =∁U [∁U (X ∩Y )∩Z ]=∁U (∁U (X ∩Y ))∪∁U Z =(X ∩Y )∪∁U Z ,故选B. 二、填空题7.(河北孟村回民中学2014~2015学年高一九月份月考试题)U ={1,2},A ={x |x 2+px +q =0},∁U A ={1},则p +q =________.[答案] 0[解析] 由∁U A ={1},知A ={2}即方程x 2+px +q =0有两个相等根2,∴p =-4,q =4,∴p +q =0.8.已知集合A ={(x ,y )|y =2x -1},B ={(x ,y )|y =x +3},若m ∈A ,m ∈B ,则m 为________.[答案] (4,7)[解析] 由m ∈A ,m ∈B 知m ∈(A ∩B ), 由⎩⎪⎨⎪⎧y =2x -1y =x +3,得⎩⎪⎨⎪⎧x =4y =7,∴A ∩B ={(4,7)}.三、解答题9.已知全集U =R ,A ={x |2≤x <5},B ={x |3≤x <7},求: (1)(∁R A )∩(∁R B ) (2)∁R (A ∪B ) (3)(∁R A )∪(∁R B ) (4)∁R (A ∩B )[分析] 在进行集合运算时,充分利用数轴工具是十分有效的手段,此例题可先在数轴上画出集合A 、B ,然后求出A ∩B ,A ∪B ,∁R A ,∁R B ,最后可逐一写出各小题的结果.[解析] 如图所示,可得A ∩B ={x |3≤x <5},A ∪B ={x |2≤x <7}.∁R A ={x |x <2或x ≥5}, ∁R B ={x |x <3或x ≥7}. 由此求得(1)(∁R A )∩(∁R B )={x |x <2或x ≥7}. (2)∁R (A ∪B )={x |x <2或x ≥7}.(3)(∁R A )∪(∁R B )={x |x <2或x ≥5}∪{x <3或x ≥7}={x |x <3或x ≥5}. (4)∁R (A ∩B )={x |x <3或x ≥5}.[点评] 求解集合的运算,利用数轴是有效的方法,也是数形结合思想的体现. 10.已知U =R ,A ={x |x 2+px +12=0},B ={x |x 2-5x +q =0},若(∁U A )∩B ={2},(∁UB )∩A ={4},求A ∪B .[分析] 先确定p 和q 的值,再明确A 与B 中的元素,最后求得A ∪B . [解析] ∵(∁U A )∩B ={2},∴2∈B 且2∉A . ∵A ∩(∁U B )={4},∴4∈A 且4∉B .∴⎩⎪⎨⎪⎧42+4p +12=0,22-5×2+q =0.解得p =-7,q =6,∴A ={3,4},B ={2,3},∴A ∪B ={2,3,4}.能力提升一、选择题1.设A 、B 、C 为三个集合,(A ∪B )=(B ∩C ),则一定有( ) A .A ⊆C B .C ⊆A C .A ≠C D .A =Ø[答案] A[解析] ∵A ∪B =(B ∩C )⊆B , 又B ⊆(A ∪B ),∴A ∪B =B ,∴A ⊆B , 又B ⊆(A ∪B )=B ∩C ,且(B ∩C )⊆B , ∴(B ∩C )=B ,∴B ⊆C ,∴A ⊆C .2.设P ={3,4},Q ={5,6,7},集合S ={(a ,b )|a ∈P ,b ∈Q },则S 中元素的个数为( )A .3B .4C .5D .6[答案] D[解析] S ={(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)}共6个元素,故选D. 3.(2015·陕西模拟)已知全集U ={1,2,3,4,5},集合A ={x |x 2-3x +2=0},B ={x |x =2a ,a ∈A },则集合∁U (A ∪B )中元素的个数为( )A.1 B.2C.3 D.4[答案] B[解析] 因为集合A={1,2},B={2,4},所以A∪B={1,2,4},所以∁U(A∪B)={3,5}.4.设全集U=R,集合A={x|x≤1或x≥3},集合B={x|k<x<k+1,k<2},且B∩(∁U A)≠Ø,则( )A.k<0 B.k<2C.0<k<2 D.-1<k<2[答案] C[解析] ∵U=R,A={x|x≤1或x≥3},∴∁U A={x|1<x<3}.∵B={x|k<x<k+1,k<2},∴当B∩(∁U A)=Ø时,有k+1≤1或k≥3(不合题意,舍去),如图所示,∴k≤0,∴当B∩(∁U A)≠Ø时,0<k<2,故选C.二、填空题5.(2014·福建,理)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2,④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是________.[答案] 6[解析] 根据题意可分四种情况:(1)若①正确,则a=1,b=1,c≠2,d=4,符合条件的有序数组有0个;(2)若②正确,则a≠1,b≠1,c≠2,d=4,符合条件的有序数组为(2,3,1,4)和(3,2,1,4);(3)若③正确,则a≠1,b=1,c=2,d=4,符合条件的有序数组为(3,1,2,4);(4)若④正确,则a≠1,b=1,c≠2,d≠4,符合条件的有序数组为(2,1,4,3),(4,1,3,2),(3,1,4,2).所以共有6个.故答案为6.6.设数集M={x|m≤x≤m+34},N={x|n-13≤x≤n},且M,N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N的“长度”的最小值是________.[答案]1 12[解析] 如图,设AB 是一长度为1的线段,a 是长度为34的线段,b 是长度为13的线段,a ,b 可在线段AB 上自由滑动,a ,b 重叠部分的长度即为M ∩N 的“长度”,显然,当a ,b各自靠近线段AB 两端时,重叠部分最短,其值为34+13-1=112.三、解答题7.已知集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0},试探求a 取何实数时,(A ∩B )Ø与A ∩C =Ø同时成立.[解析] B ={x |x 2-5x +6=0}={2,3},C ={x |x 2+2x -8=0}={2,-4},由A ∩BØ与A ∩C =Ø同时成立可知,3是方程x 2-ax +a 2-19=0的解,将3代入方程得a 2-3a -10=0,解得a =5或a =-2.当a =5时,A ={x |x 2-5x +6=0}={2,3},此时A ∩C ={2},与此题设A ∩C =Ø矛盾,故不适合.当a =-2时,A ={x |x 2+2x -15=0}={3,-5},此时(A ∩B )Ø与A ∩C =Ø同时成立,则满足条件的实数a =-2.8.设A ,B 是两个非空集合,定义A 与B 的差集A -B ={x |x ∈A ,且x ∉B }. (1)试举出两个数集,求它们的差集;(2)差集A -B 与B -A 是否一定相等?说明理由;(3)已知A ={x |x >4},B ={x |-6<x <6},求A -(A -B )和B -(B -A ). [解析] (1)如A ={1,2,3},B ={2,3,4}, 则A -B ={1}. (2)不一定相等,由(1)B -A ={4},而A -B ={1}, 故A -B ≠B -A .又如,A =B ={1,2,3}时,A -B =Ø,B -A =Ø,此时A -B =B -A ,故A -B 与B -A 不一定相等. (3)因为A -B ={x |x ≥6},B -A ={x |-6<x ≤4}, A -(A -B )={x |4<x <6}, B -(B -A )={x |4<x <6}.第一章 1.2 1.2.1函数的概念基础巩固一、选择题1.下列四种说法中,不正确的是( )A .在函数值域中的每一个数,在定义域中都至少有一个数与之对应B .函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数的值域也就确定了D .若函数的定义域中只含有一个元素,则值域也只含有一个元素 [答案] B2.f (x )=1+x +x1-x 的定义域是( )A .[-1,+∞)B .(-∞,-1]C .RD .[-1,1)∪(1,+∞)[答案] D[解析] ⎩⎪⎨⎪⎧1+x ≥01-x ≠0,解得⎩⎪⎨⎪⎧x ≥-1,x ≠1,故定义域为[-1,1)∪(1,+∞),选D.3.各个图形中,不可能是函数y =f (x )的图象的是( )[答案] A[解析] 因为垂直x 轴的直线与函数y =f (x )的图象至多有一个交点,故选A. 4.(2015·曲阜二中月考试题)集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f x →y =12xB .f x →y =13xC .f x →y =23xD .f x →y =x[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C.5.下列各组函数相同的是( )A .f (x )=x 2-1x -1与g (x )=x +1B .f (x )=-2x 3与g (x )=x ·-2x C .f (x )=2x +1与g (x )=2x 2+xxD .f (x )=|x 2-1|与g (t )=t 2-12[答案] D[解析] 对于A.f (x )的定义域是(-∞,1)∪(1,+∞),g (x )的定义域是R ,定义域不同,故不是相同函数;对于B.f (x )=|x |·-2x ,g (x )=x ·-2x 的对应法则不同;对于C ,f (x )的定义域为R 与g (x )的定义域是{x |x ≠0},定义域不同,故不是相同函数;对于D.f (x )=|x 2-1|,g (t )=|t 2-1|,定义域与对应关系都相同,故是相同函数,故选D.6.函数y =f (x )的图象与直线x =a 的交点个数有( ) A .必有一个 B .一个或两个 C .至多一个 D .可能两个以上[答案] C[解析] 当a 在f (x )定义域内时,有一个交点,否则无交点. 二、填空题 7.已知函数f (x )=11+x,又知f (t )=6,则t =________. [答案] -56[解析] f (t )=1t +1=6.∴t =-568.用区间表示下列数集: (1){x |x ≥1}=________; (2){x |2<x ≤4}=________; (3){x |x >-1且x ≠2}=________.[答案] (1)[1,+∞) (2)(2,4] (3)(-1,2)∪(2,+∞) 三、解答题9.求下列函数的定义域,并用区间表示:(1)y =x +12x +1-1-x ;(2)y =5-x|x |-3.[分析] 列出满足条件的不等式组⇒解不等式组⇒求得定义域[解析] (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠01-x ≥0,解得x ≤1且x ≠-1,即函数定义域为{x |x ≤1且x ≠-1}=(-∞,-1)∪(-1,1].(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0|x |-3≠0,解得x ≤5,且x ≠±3,即函数定义域为{x |x ≤5,且x ≠±3}=(-∞,-3)∪(-3,3)∪(3,5]. [规律总结] 定义域的求法:(1)如果f (x )是整式,那么函数的定义域是实数集R ;(2)如果f (x )是分式,那么函数的定义域是使分母不为0的实数的集合;(3)如果f (x )为偶次根式,那么函数的定义域是使根号内的式子大于或等于0的实数的集合;(4)如果f (x )是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合.(5)如果函数有实际背景,那么除符合上述要求外,还要符合实际情况. 函数定义域要用集合或区间形式表示,这一点初学者易忽视. 10.已知函数f (x )=x +3+1x +2. (1)求函数的定义域; (2)求f (-3),f (23)的值;(3)当a >0时,求f (a ),f (a -1)的值.[解析] (1)使根式x +3有意义的实数x 的集合是{x |x ≥-3},使分式1x +2有意义的实数x 的集合是{x |x ≠-2},所以这个函数的定义域是{x |x ≥-3}∩{x |x ≠-2}={x |x ≥-3,且x ≠-2}. (2)f (-3)=-3+3+1-3+2=-1; f (23)=23+3+123+2=113+38=38+333. (3)因为a >0,故f (a ),f (a -1)有意义.f (a )=a +3+1a +2;f (a -1)=a -1+3+1a -1+2=a +2+1a +1.能力提升一、选择题1.给出下列从A 到B 的对应:①A =N ,B ={0,1},对应关系是:A 中的元素除以2所得的余数 ②A ={0,1,2},B ={4,1,0},对应关系是f :x →y =x 2③A ={0,1,2},B ={0,1,12},对应关系是f :x →y =1x其中表示从集合A 到集合B 的函数有( )个.( ) A .1 B .2 C .3 D .0[答案] B[解析] 由于③中,0这个元素在B 中无对应元素,故不是函数,因此选B. 2.(2012·高考安徽卷)下列函数中,不满足:f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1 D .f (x )=-x [答案] C[解析] f (x )=kx 与f (x )=k |x |均满足:f (2x )=2f (x )得:A ,B ,D 满足条件. 3.(2014~2015惠安中学月考试题)A ={x |0≤x ≤2},B ={y |1≤y ≤2},下列图形中能表示以A 为定义域,B 为值域的函数的是( )[答案] B[解析] A 、C 、D 的值域都不是[1,2],故选B. 4.(2015·盘锦高一检测)函数f (x )=11-2x 的定义域为M ,g (x )=x +1的定义域为N ,则M ∩N =( )A .[-1,+∞)B .[-1,12)C .(-1,12)D .(-∞,12)[答案] B 二、填空题5.若函数f (x )的定义域为[2a -1,a +1],值域为[a +3,4a ],则a 的取值范围是________. [答案] (1,2)[解析] 由区间的定义知⎩⎪⎨⎪⎧2a -1<a +1,a +3<4a⇒1<a <2.6.函数y =f (x )的图象如图所示,那么f (x )的定义域是________;其中只与x 的一个值对应的y 值的范围是________.[答案] [-3,0]∪[2,3] [1,2)∪(4,5] [解析] 观察函数图象可知f (x )的定义域是[-3,0]∪[2,3];只与x 的一个值对应的y 值的范围是[1,2)∪(4,5]. 三、解答题7.求下列函数的定义域: (1)y =31-1-x;(2)y =x +10|x |-x;(3)y =2x +3-12-x +1x.[解析] (1)要使函数有意义,需⎩⎨⎧1-x ≥0,1-1-x ≠0⇔⎩⎪⎨⎪⎧x ≤1,x ≠0⇔x ≤1且x ≠0,所以函数y =31-1-x的定义域为(-∞,0)∪(0,1].(2)由⎩⎪⎨⎪⎧x +1≠0,|x |-x ≠0得⎩⎪⎨⎪⎧x ≠-1,|x |≠x ,∴x <0且x ≠-1,∴原函数的定义域为{x |x <0且x ≠-1}. (3)要使函数有意义,需⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0.解得-32≤x <2且x ≠0,所以函数y =2x +3-12-x +1x 的定义域为[-32,0)∪(0,2).[点评] 求给出解析式的函数的定义域的步骤为:(1)列出使函数有意义的x 所适合的式子(往往是一个不等式组);(2)解这个不等式组;(3)把不等式组的解表示成集合(或者区间)作为函数的定义域.8.已知函数f (x )=1+x 21-x 2,(1)求f (x )的定义域. (2)若f (a )=2,求a 的值.(3)求证:f ⎝ ⎛⎭⎪⎫1x=-f (x ). [解析] (1)要使函数f (x )=1+x 21-x 2有意义,只需1-x 2≠0,解得x ≠±1,所以函数的定义域为{x |x ≠±1}. (2)因为f (x )=1+x21-x2,且f (a )=2,所以f (a )=1+a 21-a 2=2,即a 2=13,解得a =±33. (3)由已知得f ⎝ ⎛⎭⎪⎫1x =1+⎝ ⎛⎭⎪⎫1x 21-⎝ ⎛⎭⎪⎫1x 2=x 2+1x 2-1,-f (x )=-1+x 21-x 2=x 2+1x 2-1, ∴f ⎝ ⎛⎭⎪⎫1x =-f (x ).第一章 1.2 1.2.2 第一课时函数的表示方法基础巩固一、选择题1.已知y 与x 成反比,且当x =2时,y =1,则y 关于x 的函数关系式为( ) A .y =1xB .y =-1xC .y =2xD .y =-2x[答案] C[解析] 设y =k x ,由1=k 2得,k =2,因此,y 关于x 的函数关系式为y =2x.2.一等腰三角形的周长是20,底边长y 是关于腰长x 的函数,则它的解析式为( ) A .y =20-2xB .y =20-2x (0<x <10)C .y =20-2x (5≤x ≤10)D .y =20-2x (5<x <10)[答案] D[解析] 由题意得y +2x =20,∴y =20-2x .又∵2x >y ,∴2x >20-2x ,即x >5.由y >0,即20-2x >0得x <10,∴5<x <10.故选D.3.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的解析式是( ) A .g (x )=2x +1 B .g (x )=2x -1 C .g (x )=2x -3 D .g (x )=2x +7[答案] B[解析] ∵g (x +2)=f (x )=2x +3,∴令x +2=t ,则x =t -2,g (t )=2(t -2)+3=2t -1.∴g (x )=2x -1.4.(2015·安丘一中月考)某同学在一学期的5次大型考试中的数学成绩(总分120分)如下表所示:A .成绩y 不是考试次数x 的函数B .成绩y 是考试次数x 的函数C .考试次数x 是成绩y 的函数D .成绩y 不一定是考试次数x 的函数 [答案] B5.如果二次函数的二次项系数为1,图象开口向上,且关于直线x =1对称,并过点(0,0),则此二次函数的解析式为( )A .f (x )=x 2-1 B .f (x )=-(x -1)2+1 C .f (x )=(x -1)2+1 D .f (x )=(x -1)2-1[答案] D6.(2015·武安中学周测题)若f (x )满足关系式f (x )+2f (1x)=3x ,则f (2)的值为( )。
最新版人教A版高中数学必修一第一章测试题含答案
第一章章末检测题一、选择题(本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项是符合题目要求的)1 .全集U = {0, 1, 2, 3}且?U A={0, 2},那么集合A的真子集共有()A.3个B.4个C.5个D.6个答案 A2 .设S, T是两个非空集合,且它们互不包含,那么SU(SAT)等于()A.SATB.SC.?D.T答案 B解析,.,sn T? S, . .su(SAT)= S.3 .全集U = Z, A = {- 1, 0, 1, 2}, B = {x|x2=x},那么An(?uB)为( )A.{ -1 , 2}B.{ - 1, 0}C.{0 ,1}D.{1 , 2}答案 A4 .A = {0, 1}, B = {-1, 0, 1}, f是从A到B的映射,那么满足f(0)>f(1)的映射有()A.3个B.4个C.5个D.2个答案 Ax-5x2(x<5),…,一5 .f(x)= 那么f(8)的函数值为()f (x —2) (x>5),A.-312B. — 174C.174D.-76答案 D6 .函数y=f(x)在区间[—5, 5]上是增函数,那么以下不等式中成立的是()A.f(4)>f(—兀)>f(3)B.f(兀)>f(4)>f(3)C.f(4)>f(3)>f(兀)D.f( — 3)>f(—兀)>f( — 4)答案D精品文档7 .设f(x)是R上的偶函数,且当xC(0, +8)时,f(x) =x(1 + 3x),那么当xC( —8, 0)时, f(x)等于()A.x(1 + 就)B. — x(1 + 版)C. — x(1 —3X)D.x(1 — 3X)答案C8 .当1WxW3时,函数f(x) =2x2 —6x+c的值域为(),,,,3A.[f(1) , f(3)]B.[f(1),0]C.[f(2), f(3)]D.[c, f(3)]答案 C9 .集合M? {4, 7, 8},且M中至多有一个偶数,那么这样的集合共有()A.5个B.6个C.7个D.8个答案 B解析M 可能为?,{7} , {4} , {8} , {7, 4} , {7 , 8}共6 个.f (2x)10 .假设函数f(x)的定义域是[0, 2],那么函数g(x)= :的定义域是( )x 1A.[0 , 2]B.(1 , 2]C.[0, 1)D.以上都不对答案C11 .二次函数f(x) =x2—2x+m,对任意xC R有( )A.f(1 —x) = f(1+x)B.f( -1-x) = f(- 1 + x)C.f(x-1) = f(x+1)D.f( —x) = f(x)答案Ac g (x),假设f (x) > g (x),12 . f(x) =3—2|x|, g(x) =x2-2x, F(x)= 那么F(x)的最值是f (x),右f (x) <g (x).( ) A.最大值为3,最小值—1 B.最大值为7— 25,无最小值C.最大值为3,无最小值D.既无最大值,又无最小值答案B二、填空题(本大题共4小题,每题5分,共20分)13 .集合A = {x C N|B X C N}用列举法表示A,那么人=.答案{0, 1}8 .解析由------ C N,知 2 —x=1, 2, 4, 8,又xCN,2- x. .x=1或0.14 .集合A = {1 , 3, m} , B = {3 , 4} , A U B= {1 , 2, 3, 4},那么m =.答案215 .国家规定个人稿费的纳税方法是:不超过800元的不纳税;超过800元而不超过4 000元的按超过800元的14%纳税;超过4 000元的按全部稿酬的11%纳税.某人出版了一本书, 共纳税420元,那么这个人的稿费为元.答案 3 80016 .假设直线y=1与曲线y=x2—|x|十a有四个交点,那么a的取值范围是. 55答案1<a<54解析由图知a>1且抛物线顶点的纵坐标小于 1.a>1,一一 5即4a- 1 ? 1<a<4.丁<1三、解做题(本大题共6个小题,共70分,解容许写出文字说明,证实过程或演算步骤)17.(10 分)全集U = {x|x —2>0 或x—1W0}, A = {x|x<1 或x>3} , B = {x|x < 1 或x>2}, 求A AB, AU B, (?U A) A (?U B),(?U A) U (?U B).解析全集U = {x|x > 2 或xW 1},,A CB = A ={x|x<1 或x>3};AU B=B = {x|x <1 或x>2} ; (?U A) A (?U B)=?U(A U B) = {2};(?U A) U (?U B)=?U(A A B) = {x|2 WxW 3 或x= 1}.18.(12 分)设A={ —3, 4}, B = {x|x2-2ax+b=0}, B w ?,且A n B= B,求a, b 的值.解析. An B=B, .£? A,.6=?或{—3}或{4}或{ —3, 4}.精品文档(1)假设B=?,不满足题意.,舍去.A= (— 2a) 6 7—4b=0,(2)假设 B = { —3},那么 9+6a+b= 0,a= - 3, 解得 b= 9.A= (一 2a) 2—4b=0,a=4, ⑶假设B = {4},那么解得16-8a+b=0,b=16.⑴判断函数f(x)在( — 8, 0)上的单调性,并证实你的结论; (2)求出函数f(x)在[ — 3, — 1]上的最大值与最小值.1 1斛析 (1)设任思 X 1 , X 2 C ( — 8 , 0),且 X 1<X 2 ,而 f(x 1) — f(X 2)= ------------------------------- - - --------- ;1+X 12 1+X 22(X2+ X1) ( X2— X1)2 ---------- 21,由 X 1+X 2<0, X 2-X 1>0,得 f(x 1)— f(X 2)<0,得 f(X 1)<f(X 2),故函数 f(x) (1 +X 12) ( 1+ X 22)1 , ......... .. .. ......= -------- 2在(—00 , 0)上为单倜递增函数. 1 + x 2 1 (1)(2)f(x) min= f( - 3) = 10, f(x) max = f(- 1)=2,6 1 - 1故f(x)在[-3, —1]上的取大值为2,取小值为 —.20.(12分)某厂生产某种零件,每个零件的本钱为 40元,出厂单价为60元,该厂为鼓励销 售订购,决定当一次订量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰好降为 51元?(2)设一次订购量为x 个,零件的实际出厂单价为P 元,写出函数P=f(x)的表达式;(3)当销售商一次订购 500个零件时,该厂获得的利润是多少元?如果订购 1 000个,利润又 是多少元(工厂售出一个零件的利润=实际出厂单价一本钱价 )?解析(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为X 0个,那么x 0 = 100 +(4)假设 B = { —3, 4},那么 19.(12分)函数f(x)=A= (— 2a) 2-4b>0,9+ 6a+b=0,16-8a+b=0,1a=3,解得b=- 12.1 + x 2.因此,当一次订购量为 550个时,每个零件的实际出厂价格为 51元.(2)当 0<xw 100 时,P=60., —x当 100Vx<550 时,P= 60-0.02(x- 100) = 62- — 当 x>550 时,P= 51.60, 0<x< 100所以 P=f(x)= 62 —高,100Vx<550, xCN 5051 , x>550.(3)设销售商的一次订购量为 x 个时,工厂获得的利润为 L 元,那么20x, 0<x< 100,小〜 “ x 2 ................................. ......... L = (P-40)x= 22x--, 100Vx<550, (xCN) 5011x, x> 550.当 x= 500 时,L= 6 000; 当 x= 1 000 时,L= 11 000. 因此,当销售商一次订购 500个零件时,该厂获得的利润是6 000元;如果订购1 000个,禾I 」润是11 000元.21 .(12分)求函数f(x) =x 2-2ax- 1在区间[0, 2]上的最值.解析 f(x) = x 2 — 2ax — 1 = (x — a)2 — a 2 — 1, (1)当aW0时,f(x)在[0, 2]上为增函数,f(x)的最小值为f(0) = —1,最大值为f(2)=3—4a.(2)当0<aW1, f(x)在[0, a ]上为减函数,在[a, 2]上为增函数,且 f(2)>f(0).f(x)的最大值为 f(2) = 3-4a, f(x)的最小值为一a 2 — 1.(3)当1<a<2时,f(x)在[0, a ]上为减函数,在[a, 2]上为增函数,且f(0)>f(2) ,,f(x)的最大值 为 f(0) = - 1, f(x)的最小值为 f(a) = - a 2-1.(4)当a>2时,f(x)在[0, 2]上为减函数,f(x)的最大值为f(0)=—1, f(x)的最小值为3-4a. 22 .(12分)函数f(x)的定义域是(0, +8), 当 x>1 时,f(x)>0,且 f(x • y)f(x) +f(y).60— 510.02 = 550.(1)求f(1);(2)证实f(x)在定义域上是增函数;(3)如果f(1)= — 1 ,求满足不等式f(x) — f(x — 2) > 2的x的取值范围. 3解析(1)令x=y=1,得f(1) = 2f(1),故f(1) = 0.(2)证实:令y = 11,得f(1) = f(x) +f(1)= 0,故f(1) = — f(x).任取x1,xzC (0, + 00),且x1<x2, -, , , .1 . x2那么f(x 2) - f(x1) = f(x2) + f( -) = f(—).x 1 x 1,一x2 _ x2 __由于媪>1,故f(G>°,从而f(x 2)>f(x 1 ).x1 x 1. f(x)在(0, + 8)上是增函数.(3)由于f(1)=- 1,而f(1)=-f(3),故f(3)= 1. 3 3在f(x -=y(x) + f(y)中,令x=y=3,得f(9) = f(3) + f(3) = 2................... .... .... 9 一故所给不等式可化为f(x) — f(x —2)>f(9),.」仅)>f[9(x—2)], ..xwz.又x-2>0,9 . 2<x W4.一,...一9,x的取值范围是(2, 4].1.集合A = {x|x>1} , B = {x| — 1<x<2},那么APB 等于()A.{x| — 1<x<2} C.{x| — 1<x<1} B.{x|x> — 1} D.{x|1<x<2}答案D2 .函数f: A-B〔A, B为非空数集〕,定义域为M,值域为N,那么A, B, M, N的关系是〔〕A.M = A, N= BB.M? A, N = BC.M = A, N? BD.M? A, N? B答案C解析值域N应为集合B的子集,即N? B,而不一定有N=B.3 .根据市场调查,某种新产品投放市场的30天内,每件销售价格P〔元〕与时间t〔天tCN*〕的关系满足以下图,日销售Q〔件〕与时间t〔天〕之间的关系是Q=—t+40〔tC N*〕.〔1〕写出该产品每件销售价格P与时间t的函数关系;〔2〕在这30 天内,哪一天的日销售金额最大?〔日销售金额=每件产品销售价格X日销量〕解析〔1〕根据图像,每件销售价格P 与时间t 的函数关系为:_ *.t+30 (0<t<20, te N ),P=50 (20<t<30, tCN*).(t+30) (― t+40) (0<tw20, te N ), (2)设日销售金额为y元,那么y =-50t+2 000 (20<t<30, tC N )-t2+10t + 1 200 (0<t<20, tCN*), =-50t+2 000 (20<t<30, tCN*).假设0<tW20, tC N*时,y=-t2+10t+ 1 200=- (t-5)2+ 1 225,・・・当t=5 时,y max= 1 225;假设20<tW30, tC N* 时,y=—50t+2 000 是减函数.•♦.y< —50X20+2 000 =1 000,因此,这种产品在第5天的日销售金额最大,最大日销售金额是1 225元.1c 3..4.右函数f(x) =/2—x + 2的7E义域和值域都是[1, b],求b的值.1 一3斛析由条件知,f(b) = b,且b>1 ,即2b2—b +2 = b.解得b= 3.。
新教材人教版高一数学上册单元测试题含答案全套
新教材人教版高一数学上册单元测试题含答案全套人教版高中数学必修第一册第一章测试题集合与常用逻辑用语注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,,则等于( )A .B .C .D .【答案】B【解析】集合,,.2.是的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要 【答案】B【解析】由不能推得,反之由可推得, 所以是的必要不充分条件. 3.已知集合,,若,则实数的值为( )A .B .C .D .【答案】B【解析】∵集合,,且,∴,因此. 4.下列命题中正确的是( ){}1,2,3,4,5A ={}21,B y y x x A ==-∈A B {2,4}{1,3,5}{2,4,7,9}{1,2,3,4,5,7,9}{}1,2,3,4,5A ={}{}21,1,3,5,7,9B y y x x A ==-∈={}1,3,5A B =1x >4x >1x >4x >4x >1x >1x >4x >{1,3}A =-2{2,}B a ={1,2,3,9}A B =-a 1±3±1-3{1,3}A =-2{2,}B a ={1,2,3,9}A B =-29a =3a =±A .任何一个集合必有两个以上的子集B .空集是任何集合的子集C .空集没有子集D .空集是任何集合的真子集 【答案】B【解析】空集只有一个子集,故A 错;B 正确; 空集是本身的子集,故C 错;空集不能是空集的真子集,故D 错. 5.已知集合,则中元素的个数为( )A .B .C .D .【答案】A【解析】因为集合,所以满足且,的点有,,,,,,,,共个.6.已知,则( )A .B .C .D .【答案】B 【解析】,故A 错,B 对,显然,所以C 不对,而,所以D 也不对,故本题选B .7.命题“存在实数,使”的否定是( ) A .对任意实数,都有 B .对任意实数,都有 C .不存在实数,使 D .存在实数, 【答案】B【解析】命题“存在实数,使”的否定是“对任意实数,都有”. 8.集合中的不能取的值的个数是( ) A .B .C .D .【答案】B【解析】由题意可知,且且, 故集合中的不能取的值的个数是个. 9.下列集合中,是空集的是( ) A . B .C .D .【答案】B(){}22,3,,A x y xy x y =+≤∈∈Z Z A 9854(){}22,3,,A x y xy x y =+≤∈∈Z Z 223x y +≤x ∈Z y ∈Z (1,1)--(1,0)-(1,1)-(0,1)-(0,0)(0,1)(1,1)-(1,0)(1,1)9a ={A x x =≥a A ∉a A ∈{}a A ={}a a ∉>a A ∈{}a A ≠{}a a ∈x 1x >x 1x >x 1x ≤x 1x ≤x 1x ≤x 1x >x 1x ≤{}22,4,0x x --x 2345222040224x x x x x -≠-≠⇒≠-≠⎧⎪⎨⎪⎩-2x ≠-1x ≠-{}22,4,0x x --x 3{}0|2x x +={}210,x x x +=∈R {}1|x x <(){}22,,,x y yx x y =-∈R【解析】对于A 选项,,不是空集, 对于B 选项,没有实数根,故为空集, 对于C 选项,显然不是空集,对于D 选项,集合为,故不是空集. 10.下列各组集合中表示同一集合的是( ) A ., B ., C ., D .,【答案】B【解析】对于A ,,表示点集,,表示数集,故不是同一集合; 对于B ,,,根据集合的无序性,集合表示同一集合; 对于C ,集合的元素是数,集合的元素是等式;对于D ,,集合的元素是点,, 集合的元素是点,集合不表示同一集合.11.学校先举办了一次田径运动会,某班共有名同学参赛,又举办了一次球类运动会,这个班有名同学参赛,两次运动会都参赛的有人.两次运动会中,这个班总共的参赛人数为( ) A . B . C . D . 【答案】B【解析】因为参加田径运动会的有名同学,参加球类运动会的有名同学,两次运动会都参加的有人,所以两次运动会中,这个班总共的参赛人数为.12.已知集合,.若, 则实数的取值范围为( ) A . B .C .D .【答案】D【解析】, 当为空集时,;当不为空集时,,综上所述得.第Ⅱ卷二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.集合,则集合的子集的个数为 个.2x =-210x +={(0,0)}{(3,2)}M ={3,2}N ={2,3}M ={3,2}N ={2,3}M ={2,3}N x y ==={(2,3)}M ={(5,4)}N ={(3,2)}M =M {3,2}N =N {2,3}M ={3,2}N =,M N M N {(2,3)}M =M (2,3){(5,4)}N =N (5,4),M N 8123201714238123812317+-={}|25A x x =-≤≤{}|121B x m x m =+≤≤-B A ⊆m 3m ≥23m ≤≤2m ≥3m ≤{}|121B x m x m =+≤≤-B 2112m m m -<+⇒<B 22152312m m m m ≥⎧⎪-≤⇒≤≤⎨⎪+≥-⎩3m ≤2{}1,A =A【答案】【解析】由已知,集合的子集个数为.14.命题“”是命题“”的 (“充分不必要,必要不充分,充要,既不充分也不必要”)条件. 【答案】必要不充分【解析】的解为或,所以当“”成立时,则“”未必成立; 若“”,则“”成立,故命题“”是命题“”的必要不充分条件.15.命题“,”的否定是 .【答案】,【解析】由全称量词命题的否定是存在量词命题可知,命题“,”的否定是“,”.16.设全集是实数集,,, 则图中阴影部分所表示的集合是 .【答案】【解析】由图可知,阴影部分为,∵,∴,∴.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知集合,且,求的取值集合. 【答案】.【解析】∵,∴或,即或.4A 224=220x x --=1x =-220x x --=1x =-2x =220x x --=1x =-1x =-220x x --=220x x --=1x =-x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤U R {}22M x x x =<->或{}13N x x =<<{}12x x <≤Venn ()UN M {}22M x x x =<->或{}22UM x x -=≤≤(){}12UNM x x =<≤{}21,2,4M m m =++5M ∈m {}1,3{}251,2,4m m ∈++25m +=245m +=3m =1m =±当时,;当时,; 当时,不满足互异性, ∴的取值集合为{}1,3.18.(12分)已知集合,,若,求实数,的值.【答案】或.【解析】由已知,得①,解得或, 当时,集合不满足互异性, 当时,集合,集合,符合题意; ②,解得(舍)或,当时,集合,集合符合题意,综上所述,可得或.19.(12分)设集合,. (1)若,试判定集合与的关系; (2)若,求实数的取值集合.【答案】(1)是的真子集;(2).3m ={}1,5,13M =1m ={}1,3,5M =1m =-{}1,1,5M =m {,,2}A a b =2{2,,2}B b a =A B =a b 01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩A B =22a a b b =⎧⎨=⎩00a b =⎧⎨=⎩01a b =⎧⎨=⎩00a b =⎧⎨=⎩{0,0,2}A =01a b =⎧⎨=⎩{0,1,2}A ={2,1,0}B =22a b b a ⎧=⎨=⎩00a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩11{,,2}42A =11{2,,}42B =01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩{}28150A x x x =-+={}10B x ax =-=15a =A B B A ⊆a B A 110,,35⎧⎫⎨⎬⎩⎭【解析】(1),,∴是的真子集. (2)当时,满足,此时;当时,,集合,又,得或,解得或. 综上,实数的取值集合为.20.(12分)已知全集,集合,.求: (1),,;(2),;(3)设集合且,求的取值范围.【答案】(1)见解析;(2)见解析;(3). 【解析】(1),∵,,.(2),∴.(3)由(2)可知,∵,∴,解得.21.(12分)已知集合为全体实数集,,. (1)若,求;(2)若,求实数的取值范围. 【答案】(1);(2).【解析】(1)当时,,所以,所以.(2)①,即时,,此时满足.②当,即时,,由得,或, 所以.{3,5}A ={5}B =B A B =∅B A ⊆0a =B ≠∅0a ≠1B a ⎧⎫=⎨⎬⎩⎭B A ⊆13a =15a=13a =15a 110,,35⎧⎫⎨⎬⎩⎭{}6U x x =∈<N {}1,2,3A ={}2,4B =A B UA UB AB ()UA B {|21}C x a x a =-<≤-()UA CB ⊆a 3a ≥2A B ={0,1,2,3,4,5}U ={0,4,5}UA ={0,1,3,5}UB ={1,2,3,4}AB =(){0,5}UA B =(){0,5}UA B =()U A C B ⊆021521a a a a -<⎧⎪-≥⎨⎪->-⎩3a ≥U {}25M x x x =≤-≥或{}121N x a x a =+≤≤-3a =UMN N M ⊆a {}45Ux x x MN =<≥或{}24a a a <≥或3a ={}45|N x x =≤≤{}45UN x x x =<>或{}45Ux x x MN =<≥或211a a -<+2a <N =∅N M ⊆211a a -≥+2a ≥N ≠∅N M ⊆15a +≥212a -≤-4a ≥综上,实数的取值范围为.22.(12分)已知二次函数,非空集合.(1)当时,二次函数的最小值为,求实数的取值范围;(2)是否存在整数的值,使得“”是“二次函数的大值为”的充分条件, 如果存在,求出一个整数的值,如果不存在,请说明理由. 【答案】(1);(2)见解析.【解析】(1),当且仅当时,二次函数有最小值为,由已知时,二次函数的最小值为,则,所以. (2)二次函数,开口向上,对称轴为,作出二次函数图象如图所示,由“”是“二次函数的大值为”的充分条件, 即时,二次函数的最大值为,,即为,令,解得或,由图像可知,当或时,二次函数的最大值不等于,不符合充分条件, 则,即可取的整数值为,,,,任意一个.第一册第二章测试题一元二次函数、方程和不等式注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
新教材人教版高一数学上册单元测试题含答案全套
新教材人教版高一数学上册单元测试题含答案全套人教版高中数学必修第一册第一章测试题第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,,则等于( )A .B .C .D .【答案】B【解析】集合,,.2.是的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要 【答案】B【解析】由不能推得,反之由可推得, 所以是的必要不充分条件. 3.已知集合,,若,则实数的值为( )A .B .C .D .【答案】B【解析】∵集合,,且,∴,因此.4.下列命题中正确的是( )A .任何一个集合必有两个以上的子集B .空集是任何集合的子集C .空集没有子集D .空集是任何集合的真子集 【答案】B【解析】空集只有一个子集,故A 错;B 正确; 空集是本身的子集,故C 错;空集不能是空集的真子集,故D 错. 5.已知集合,则中元素的个数为( )A .B .C .D .【答案】A【解析】因为集合,{}1,2,3,4,5A ={}21,B y y x x A ==-∈A B {2,4}{1,3,5}{2,4,7,9}{1,2,3,4,5,7,9}{}1,2,3,4,5A ={}{}21,1,3,5,7,9B y y x x A ==-∈={}1,3,5A B =1x >4x >1x >4x >4x >1x >1x >4x >{1,3}A =-2{2,}B a ={1,2,3,9}A B =-a 1±3±1-3{1,3}A =-2{2,}B a ={1,2,3,9}AB =-29a =3a =±(){}22,3,,A x y xy x y =+≤∈∈Z Z A 9854(){}22,3,,A x y xy x y =+≤∈∈Z Z所以满足且,的点有,,,,,,,,共个.6.已知,则( )A .B .C .D .【答案】B 【解析】,故A 错,B 对,显然,所以C 不对,而,所以D 也不对,故本题选B .7.命题“存在实数,使”的否定是( ) A .对任意实数,都有 B .对任意实数,都有 C .不存在实数,使 D .存在实数, 【答案】B【解析】命题“存在实数,使”的否定是“对任意实数,都有”. 8.集合中的不能取的值的个数是( ) A .B .C .D .【答案】B【解析】由题意可知,且且, 故集合中的不能取的值的个数是个. 9.下列集合中,是空集的是( ) A . B .C .D .【答案】B【解析】对于A 选项,,不是空集, 对于B 选项,没有实数根,故为空集, 对于C 选项,显然不是空集,对于D 选项,集合为,故不是空集. 10.下列各组集合中表示同一集合的是( ) A ., B ., C ., D .,【答案】B223x y +≤x ∈Z y ∈Z (1,1)--(1,0)-(1,1)-(0,1)-(0,0)(0,1)(1,1)-(1,0)(1,1)9a ={A x x =≥a A ∉a A ∈{}a A ={}a a ∉>a A ∈{}a A ≠{}a a ∈x 1x >x 1x >x 1x ≤x 1x ≤x 1x ≤x 1x >x 1x ≤{}22,4,0x x --x 2345222040224x x x x x -≠-≠⇒≠-≠⎧⎪⎨⎪⎩-2x ≠-1x ≠-{}22,4,0x x --x 3{}0|2x x +={}210,x x x +=∈R {}1|x x <(){}22,,,x y yx x y =-∈R 2x =-210x +={(0,0)}{(3,2)}M ={3,2}N ={2,3}M ={3,2}N ={2,3}M ={2,3}N x y ==={(2,3)}M ={(5,4)}N =【解析】对于A ,,表示点集,,表示数集,故不是同一集合; 对于B ,,,根据集合的无序性,集合表示同一集合; 对于C ,集合的元素是数,集合的元素是等式;对于D ,,集合的元素是点,, 集合的元素是点,集合不表示同一集合.11.学校先举办了一次田径运动会,某班共有名同学参赛,又举办了一次球类运动会,这个班有名同学参赛,两次运动会都参赛的有人.两次运动会中,这个班总共的参赛人数为( ) A . B . C . D . 【答案】B【解析】因为参加田径运动会的有名同学,参加球类运动会的有名同学,两次运动会都参加的有人,所以两次运动会中,这个班总共的参赛人数为.12.已知集合,.若, 则实数的取值范围为( ) A . B .C .D .【答案】D【解析】, 当为空集时,;当不为空集时,,综上所述得.第Ⅱ卷二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.集合,则集合的子集的个数为 个. 【答案】【解析】由已知,集合的子集个数为.14.命题“”是命题“”的 (“充分不必要,必要不充分,充要,既不充分也不必要”)条件. 【答案】必要不充分【解析】的解为或,所以当“”成立时,则“”未必成立; 若“”,则“”成立,{(3,2)}M =M {3,2}N =N {2,3}M ={3,2}N =,M N M N {(2,3)}M =M (2,3){(5,4)}N =N (5,4),M N 8123201714238123812317+-={}|25A x x =-≤≤{}|121B x m x m =+≤≤-B A ⊆m 3m ≥23m ≤≤2m ≥3m ≤{}|121B x m x m =+≤≤-B 2112m m m -<+⇒<B 22152312m m m m ≥⎧⎪-≤⇒≤≤⎨⎪+≥-⎩3m ≤2{}1,A =A 4A 224=220x x --=1x =-220x x --=1x =-2x =220x x --=1x =-1x =-220x x --=故命题“”是命题“”的必要不充分条件.15.命题“,”的否定是 .【答案】,【解析】由全称量词命题的否定是存在量词命题可知,命题“,”的否定是“,”.16.设全集是实数集,,, 则图中阴影部分所表示的集合是 .【答案】【解析】由图可知,阴影部分为,∵,∴,∴.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知集合,且,求的取值集合. 【答案】.【解析】∵,∴或,即或.当时,;当时,; 当时,不满足互异性, ∴的取值集合为{}1,3.18.(12分)已知集合,,若,求实数,的值.【答案】或.220x x --=1x =-x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤U R {}22M x x x =<->或{}13N x x =<<{}12x x <≤Venn ()UN M {}22M x x x =<->或{}22UM x x -=≤≤(){}12UNM x x =<≤{}21,2,4M m m =++5M ∈m {}1,3{}251,2,4m m ∈++25m +=245m +=3m =1m =±3m ={}1,5,13M =1m ={}1,3,5M =1m =-{}1,1,5M =m {,,2}A a b =2{2,,2}B b a =A B =a b 01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩【解析】由已知,得①,解得或, 当时,集合不满足互异性, 当时,集合,集合,符合题意;②,解得(舍)或,当时,集合,集合符合题意,综上所述,可得或.19.(12分)设集合,. (1)若,试判定集合与的关系; (2)若,求实数的取值集合.【答案】(1)是的真子集;(2). 【解析】(1),,∴是的真子集. (2)当时,满足,此时;当时,,集合,又,得或,解得或. 综上,实数的取值集合为.20.(12分)已知全集,集合,.求:A B =22a a b b =⎧⎨=⎩00a b =⎧⎨=⎩01a b =⎧⎨=⎩00a b =⎧⎨=⎩{0,0,2}A =01a b =⎧⎨=⎩{0,1,2}A ={2,1,0}B =22a b b a ⎧=⎨=⎩00a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩11{,,2}42A =11{2,,}42B =01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩{}28150A x x x =-+=}10B =-=15a =A B B A ⊆a B A 110,,35⎧⎫⎨⎬⎩⎭{3,5}A ={5}B =B A B =∅B A ⊆0a =B ≠∅0a ≠1B a ⎧⎫=⎨⎬⎩⎭B A ⊆13a =15a=13a =15a 110,,35⎧⎫⎨⎬⎩⎭{}6U x x =∈<N {}1,2,3A ={}2,4B =(1),,;(2),;(3)设集合且,求的取值范围.【答案】(1)见解析;(2)见解析;(3). 【解析】(1),∵,,.(2),∴.(3)由(2)可知,∵,∴,解得.21.(12分)已知集合为全体实数集,,. (1)若,求;(2)若,求实数的取值范围. 【答案】(1);(2).【解析】(1)当时,,所以,所以.(2)①,即时,,此时满足.②当,即时,,由得,或, 所以.综上,实数的取值范围为.22.(12分)已知二次函数,非空集合.(1)当时,二次函数的最小值为,求实数的取值范围;(2)是否存在整数的值,使得“”是“二次函数的大值为”的充分条件, 如果存在,求出一个整数的值,如果不存在,请说明理由. 【答案】(1);(2)见解析.【解析】(1),当且仅当时,二次函数有最小值为,由已知时,二次函数的最小值为,则,所以. (2)二次函数,开口向上,对称轴为,作出二次函数图象如图所示,由“”是“二次函数的大值为”的充分条件, 即时,二次函数的最大值为,A B UA UB AB ()UA B {|21}C x a x a =-<≤-()UA CB ⊆a 3a ≥2A B ={0,1,2,3,4,5}U ={0,4,5}UA ={0,1,3,5}UB ={1,2,3,4}AB =(){0,5}UA B =(){0,5}UA B =()U A C B ⊆021521a a a a -<⎧⎪-≥⎨⎪->-⎩3a ≥U {}25M x x x =≤-≥或{}121N x a x a =+≤≤-3a =UMN N M ⊆a {}45Ux x x MN =<≥或{}24a a ≥或3a ={}45|N x x =≤≤{}45UN x x x =<>或{}45Ux x x MN =<≥或211a a -<+2a <N =∅N M ⊆211a a -≥+2a ≥N ≠∅N M ⊆15a +≥212a -≤-4a ≥a {}24a a a <≥或243y x x =-+{}|0A x x a =≤≤x A ∈1-a a x A ∈3a 2a ≥2243(2)1y x x x =-+=--2x =1-x A ∈1-2A ∈2a ≥2(2)1y x =--2x =x A ∈3x A ∈3,即为,令,解得或,由图像可知,当或时,二次函数的最大值不等于,不符合充分条件, 则,即可取的整数值为,,,,任意一个.第一册第二章测试题一元二次函数、方程和不等式注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
(人教版A版2017课标)高中数学必修第一册:第一章综合测试(附答案)
第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集{|13}U x Z x =∈-≤≤,集合{|03}A x x =∈Z ≤≤,则u A =ð( )A .{1}-B .{1,0}-C .{1,0,1}--D .{|10}x x -≤<2.已知集合{|32},{| 4 1}A x x B x x x =-=-<<<或>,则A B =I ( )A .{}|43x x --<<B .1{|}3x x -<<C .{}|12x x <<D .|31{}x x x -<或>3.命题“2,210x x x ∀∈-+R ≥”的否定是( )A .2,210x x x ∃∈-+R ≤B .2,210x x x ∃∈-+R ≥C .2,210x x x ∃∈-+R <D .2,210x x x ∀∈-+R <4.设x ∈R ,则“3x <”是“1x -<<3”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.已知全集U =R ,{|1}M x x =<-,{|(2)0}N x x x =+<,则图中阴影部分表示的集合是( )A .{|10}A x x -≤<B .{|10}x x -<<C .{|21}x x --<<D .{|1}x x -<6.下列语句是存在量词命题的是( )A .整数n 是2和5的倍数B .存在整数n ,使n 能被11整除C .若370x -=,则73x = D .,()x M p x ∀∈7.已知{1,2,3},{2,4},A B ==定义集合,A B 间的运算*{|}A B x x A x B =∈∉且,则集合*A B 等于()A .{1,2,3}B .{2,4}C .{1,3}D .{2}8若命题“0x ∃∈R ,使得2003210x ax ++<”是假命题,则实数a 的取值范围是( )A .aB .a a ≤C .aD .a a <9.对于实数1,:01a a a α-+>,β:关于x 的方程210x ax -+=有实数根,则α是β成立的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 10.已知命题00:0,10p x x a ∃+-=>,若p 为假命题,则a 的取值范围是( )A .1a <B .1a ≤C .1a >D .1a ≥11.不等式组1,24x y x y +⎧⎨-⎩≥≤的解集为D ,下列命题中正确的是( ) A .(,),21x y D x y ∀∈+-≤B .(,),22x y D x y ∀∈+-≥C .(,),23x yD x y ∀∈+≤ D .(,),22x y D x y ∀∈+≥12.已知非空集合,A B 满足以下两个条件:(1){1,2,3,4,5,6},A B A B ==∅U I ;(2)若x A ∈,则1x B +∈.则有序集合对(,)A B 的个数为( )A .12B .13C .14D .15二、填空题(本大题共4小题,每小题5分,共20分.把答案写在题中的横线上)13.已知集合{|21,},{|2,}A x x k k B x x k k ==-∈==∈Z Z ,则A B =I ________.14某中学开展小组合作学习模式,高二某班某组同学甲给组内同学乙出题如下:若命题“2,20x x x m ∃∈++R ≤”是假命题,求m 的范围.同学乙略加思索,反手给了同学甲一道题:若命题“2,20x x x m ∀∈++R >”是真命题,求m 的范围.你认为,两位同学题中m 的范围是否一致?________(填“是”或“否”)15.设,a b 为正数,则“1a b ->”是“221a b ->”的________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)16.已知集合{}22,,{0,1,3}A a a B =+=,且A B ⊆,则实数a 的值是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.[10分]判断下列命题是全称量词命题还是存在量词命题,并判断其真假.(1)至少有一个整数,它既能被11整除,又能被9整除.(2)末位是0的实数能被2整除.(3)21,20x x ∃>->18.[12分]设全集U =R ,已知集合{1,2}A =,{|03}B x x =≤≤,集合C 为不等式组10,360x x +⎧⎨-⎩≥≤的解集. (1)写出集合A 的所有子集;(2)求u B ð和B C U .19.[12分]已知集合{}2|30,A x x ax a =-+=∈R .(1)若1A ∈,求实数a 的值;(2)若集合{}2|20,B x x bx b b =-+=∈R ,且{3}A B =I ,求A B U .20.[12分]已知集合{|32}A x x =-<<,{|05}B x x =≤<,{|}x m C x =<,全集为R .(1)求()A B R I ð;(2)若()A B C ⊆U ,求实数m 的取值范围.21.[12分]已知20,::11,0100,x p q m x m m x +⎧-+⎨-⎩≥≤≤>≤,若p 是q 的必要条件,求实数m 的取值范围.22.[12分]已知:20,:40p x q ax -->>,其中a ∈R 且0a ≠.(1)若p 是q 的充分不必要条件,求实数a 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围.第一章综合测试答案解析一、1.【答案】A2.【答案】C3.【答案】C4.【答案】C5.【答案】A6.【答案】B7.【答案】C8.【答案】C9.【答案】B10.【答案】D11.【答案】B【解析】Q 不等式组1,24,x y x y +⎧⎨-⎩≥≤1,24,x y x y +⎧∴⎨-+-⎩≥≥ 1,201,x y x y y +⎧∴∴+⎨-⎩≥≥≥,即22x y +-≥成立. ∴若124x y x y +⎧⎨-⎩≥≤的解集为D 时,(,),22x y D x y ∀∈+-≥成立,故选B . 12.【答案】A【解析】由题意分类讨论,得若{}1A =,则{2,3,4,5,6}B =;若{}2A =,则B {1,3,4,5,6}=;若{}3A =,则B {1,2,4,5,6}=;若{}4A =,则{1,2,3,5,6}B =;若{}5A =,则{1,2,3,4,6}B =;若{1,3}A =,则{2,4,5,6}B =;若{1,4}A =,则{2,3,5,6}B =;若{1,5}A =,则{2,3,4,6}B =;若{2,4}A =,则{1,3,5,6}B =;若{2,5}A =,则{1,3,4,6}B =;若{3,5}A =,则{1,2,4,6}B =;若{1,3,5}A =,则{2,4,6}B =.综上可得,有序集合对(,)A B 的个数为12.故选A .二、13.【答案】∅14.【答案】是15.【答案】充分不必要【解析】1a b -Q >,即1a b +>.又,a b Q 为正数,2222(1)121a b b b b ∴+=+++>>,即221a b ->成立;反之,当1a b =时,满足221a b ->,但1a b ->不成立.∴“1a b ->”是“221a b ->”的充分不必要条件.16.【答案】1【解析】:①0a =,{0,2}A =与A B ⊆矛盾,舍去;②1a =,{1,3}A =,满足A B ⊆;③3a =,{3,11}A =与A B ⊆矛盾,舍去.1a ∴=.三、17.【答案】(1)命题中含有存在量词“至少有一个”,因此是存在量词命题,真命题.(2)命题中省略了全称量词“所有”,是全称量词命题,真命题.(3)命题中含有存在量词“∃”,是存在量词命题,真命题.18.【答案】(1)A 的所有子集为,{1},{2},{1,2}∅.(2){|12}C x x =-≤≤,{|0 3}u B x x x =<或>ð,{|13}B C x x ∴⋃=-≤≤.19.【答案】(1)1,130,4A a a ∈∴-+=∴=Q(2){3},3,3A B A B ⋂=∴∈∈Q9330,1830,a b b -+=⎧∴⎨-+=⎩解得4,9.a b =⎧⎨=⎩{}2|430{1,3}A x x x ∴=-+==,{}23|29903,2B x x x ⎧⎫=-+==⎨⎬⎩⎭. 31,,32A B ⎧⎫∴⋃=⎨⎬⎩⎭. 20.【答案】(1){|05}B x x x =R <或≥ð,(){}|30A B x x ∴⋂=-R <<ð(2){|35}A B x x ⋃=-<<,()A B C ⋃Q ≤,5m ∴…,∴实数m 的取值范围为{|5}m m ≥.21.【答案】20:100x p x +⎧⎨-⎩≥,≤,Q :[2,10]p x ∴∈-. 又:[1,1],0q x m m m ∈-+Q >,且p 是q 的必要条件.[1,1][2,10]m m ∴-+⊆-012110m m m ⎧⎪∴--⎨⎪+⎩>≥≤03m ∴<≤.∴实数m 的取值范围是03m <≤.22.【答案】(1)设:{|20}p A x x =->,即:{|2}p A x x =>,:{|40}q B x ax =->,因为p 是q 的充分不必要条件,则A B Ü, 即0,42,a a⎧⎪⎨⎪⎩><解得2a >.所以实数a 的取值范围为2a >. (2)由(1)及题意得B A Ü.①当0a >时,由B A Ü得42a>,即02a <<; ②当0a <时,显然不满足题意.综上可得,实数a 的取值范围为02a <<.。
人教版高中数学必修一第一章《集合与函数》检测习题(含答案解析)
人教版高中数学必修一第一章《集合与函数》单元检测精选(含答案解析)(时间:120分钟 满分:150分)第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U 是实数集R ,M ={x |x 2>4},N ={x |x -12≥1},则上图中阴影部分所表示的集合是( )A .{x |-2≤x <1}B .{x |-2≤x ≤2}C .{x |1<x ≤2}D .{x |x <2}2.设2a =5b =m ,且a 1+b 1=2,则m 等于( )A. B .10C .20D .1003.设函数f (x )满足:①y =f (x +1)是偶函数;②在[1,+∞)上为增函数,则f (-1)与f (2)的大小关系是( )A .f (-1)>f (2)B .f (-1)<f (2)C .f (-1)=f (2)D .无法确定4.若集合A ={y |y =2x ,x ∈R },B ={y |y =x 2,x ∈R },则( )A .A ⊆B B .A BC .A =BD .A ∩B =∅5.某企业去年销售收入1000万元,年成本为生产成本500万元与年广告成本200万元两部分.若年利润必须按p %纳税,且年广告费超出年销售收入2%的部分也按p %纳税,其他不纳税.已知该企业去年共纳税120万元,则税率p %为( )A .10%B .12%C .25%D .40% 6.设则f (f (2))的值为( ) A .0B .1C .2D .37.定义运算:a *b =如1*2=1,则函数f(x)的值域为( ) A .RB .(0,+∞)C .(0,1]D .[1,+∞)8.若2lg(x -2y )=lg x +lg y ,则log 2y x 等于( )A .2B .2或0C .0D .-2或09.设函数,g (x )=log 2x ,则函数h (x )=f (x )-g (x )的零点个数是( ) A .4B .3C .2D .110.在下列四图中,二次函数y =ax 2+bx 与指数函数y =(a b )x 的图象只可为( )11.已知f (x )=a x -2,g (x )=log a |x |(a >0且a ≠1),若f (4)g (-4)<0,则y =f (x ),y =g (x )在同一坐标系内的大致图象是( )12.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( )A .f (31)<f (2)<f (21)B .f (21)<f (2)<f (31)C .f (21)<f (31)<f (2)D .f (2)<f (21)<f (31)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (f (3))的值等于________.14.已知集合A ={x |x ≥2},B ={x |x ≥m },且A ∪B =A ,则实数m 的取值范围是________.15.若函数f (x )=x x2+(a +1x +a 为奇函数,则实数a =________.16.老师给出一个函数,请三位同学各说出了这个函数的一条性质:①此函数为偶函数;②定义域为{x ∈R |x ≠0};③在(0,+∞)上为增函数.老师评价说其中有一个同学的结论错误,另两位同学的结论正确.请你写出一个(或几个)这样的函数________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设集合A 为方程-x 2-2x +8=0的解集,集合B 为不等式ax -1≤0的解集.(1)当a =1时,求A ∩B ;(2)若A ⊆B ,求实数a 的取值范围.18.(本小题满分12分)设全集为R ,A ={x |3<x <7},B ={x |4<x <10},(1)求∁R (A ∪B )及(∁R A )∩B ;(2)C ={x |a -4≤x ≤a +4},且A ∩C =A ,求a 的取值范围.19.(本小题满分12分)函数f (x )=x +12x -1,x ∈3,5].(1)判断单调性并证明;(2)求最大值和最小值.20.(本小题满分12分)已知二次函数f(x)=-x2+2ax-a在区间0,1]上有最大值2,求实数a的值.21.(本小题满分12分)已知函数f(x)的值满足f(x)>0(当x≠0时),对任意实数x,y都有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当0<x<1时,f(x)∈(0,1).(1)求f(1)的值,判断f(x)的奇偶性并证明;(2)判断f (x )在(0,+∞)上的单调性,并给出证明;(3)若a ≥0且f (a +1)≤93,求a 的取值范围.22.(本小题满分12分)已知函数f (x )=x 2+x a(x ≠0).(1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在2,+∞)上的单调性.参考答案与解析1.C [题图中阴影部分可表示为(∁U M )∩N ,集合M ={x |x >2或x <-2},集合N ={x |1<x ≤3},由集合的运算,知(∁U M )∩N ={x |1<x ≤2}.]2.A [由2a =5b =m 得a =log 2m ,b =log 5m ,∴a 1+b 1=log m 2+log m 5=log m 10.∵a 1+b 1=2,∴log m 10=2,∴m 2=10,m =.]3.A [由y =f (x +1)是偶函数,得到y =f (x )的图象关于直线x =1对称,∴f (-1)=f (3). 又f (x )在[1,+∞)上为单调增函数,∴f (3)>f (2),即f (-1)>f (2).]4.A [∵x ∈R ,∴y =2x >0,即A ={y |y >0}.又B ={y |y =x 2,x ∈R }={y |y ≥0},∴A ⊆B .]5.C [利润300万元,纳税300·p %万元,年广告费超出年销售收入2%的部分为200-1000×2%=180(万元),纳税180·p %万元,共纳税300·p %+180·p %=120(万元),∴p %=25%.]6.C [∵f (2)=log 3(22-1)=log 33=1,∴f (f (2))=f (1)=2e 1-1=2.]7.C[由题意可知f (x )=2-x ,x>0.2x x ≤0,作出f (x )的图象(实线部分)如右图所示;由图可知f (x )的值域为(0,1].]8.A [方法一 排除法.由题意可知x >0,y >0,x -2y >0,∴x >2y ,y x >2,∴log 2y x >1.方法二 直接法.依题意,(x -2y )2=xy ,∴x 2-5xy +4y 2=0,∴(x -y )(x -4y )=0,∴x =y 或x =4y ,∵x -2y >0,x >0,y >0,∴x >2y ,∴x =y (舍去),∴y x =4,∴log 2y x =2.]9.B [当x ≤1时,函数f (x )=4x -4与g (x )=log 2x 的图象有两个交点,可得h (x )有两个零点,当x >1时,函数f (x )=x 2-4x +3与g (x )=log 2x 的图象有1个交点,可得函数h (x )有1个零点,∴函数h (x )共有3个零点.]10.C [∵a b >0,∴a ,b 同号.若a ,b 为正,则从A 、B 中选.又由y =ax 2+bx 知对称轴x =-2a b <0,∴B 错,但又∵y =ax 2+bx 过原点,∴A 、D 错.若a ,b 为负,则C 正确.]11.B [据题意由f (4)g (-4)=a 2×log a 4<0,得0<a <1,因此指数函数y =a x (0<a <1)是减函数,函数f (x )=a x -2的图象是把y =a x 的图象向右平移2个单位得到的,而y =log a |x |(0<a <1)是偶函数,当x >0时,y =log a |x |=log a x 是减函数.]12.C [由f (2-x )=f (x )知f (x )的图象关于直线x =22-x +x =1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|31-1|>|21-1|,∴f (21)<f (31)<f (2).]13.2 解析:由图可知f (3)=1,∴f (f (3))=f (1)=2.14.2,+∞) 解析:∵A ∪B =A ,即B ⊆A ,∴实数m 的取值范围为2,+∞).15.-1 解析:由题意知,f (-x )=-f (x ),即-x x2-(a +1x +a =-x x2+(a +1x +a ,∴(a +1)x =0对x ≠0恒成立,∴a +1=0,a =-1.16.y =x 2或y =1+x ,x<01-x ,x>0,或y =-x 2(答案不唯一)解析:可结合条件来列举,如:y =x 2或y =1+x ,x<01-x ,x>0或y =-x 2.解题技巧:本题为开放型题目,答案不唯一,可结合条件来列举,如从基本初等函数中或分段函数中来找.17.解:(1)由-x 2-2x +8=0,解得A ={-4,2}.当a =1时,B =(-∞,1].∴A ∩B =.(2)∵A ⊆B ,∴2a -1≤0,-4a -1≤0,∴-41≤a ≤21,即实数a 的取值范围是21.18.解:(1)∁R (A ∪B )={x |x ≤3或x ≥10},(∁R A )∩B ={x |7≤x <10}.(2)由题意知,∵A ⊆C ,∴a -4≤3,a +4≥7,解得3≤a ≤7,即a 的取值范围是3,7].19.解:(1)f (x )在3,5]上为增函数.证明如下:任取x 1,x 2∈3,5]且x 1<x 2.∵ f (x )=x +12x -1=x +12(x +1-3=2-x +13,∴ f (x 1)-f (x 2)=x1+13-x2+13=x2+13-x1+13=(x1+1(x2+13(x1-x2,∵ 3≤x 1<x 2≤5,∴ x 1-x 2<0,(x 2+1)(x 1+1)>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴ f (x )在3,5]上为增函数.(2)根据f (x )在3,5]上单调递增知,f (x )]最大值=f (5)=23,f (x )]最小值=f (3)=45.解题技巧:(1)若函数在闭区间a ,b ]上是增函数,则f (x )在a ,b ]上的最大值为f (b ),最小值为f (a ).(2)若函数在闭区间a ,b ]上是减函数,则f (x )在a ,b ]上的最大值为f (a ),最小值为f (b ).20.解:由f (x )=-(x -a )2+a 2-a ,得函数f (x )的对称轴为x =a .①当a <0时,f (x )在0,1]上单调递减,∴f (0)=2,即-a =2,∴a =-2.②当a >1时,f (x )在0,1]上单调递增,∴f (1)=2,即a =3.③当0≤a ≤1时,f (x )在0,a ]上单调递增,在a,1]上单调递减,∴f (a )=2,即a 2-a =2,解得a =2或-1与0≤a ≤1矛盾.综上,a =-2或a =3.21.解:(1)令x =y =-1,f (1)=1.f (x )为偶函数.证明如下:令y =-1,则f (-x )=f (x )·f (-1),∵f (-1)=1,∴f (-x )=f (x ),f (x )为偶函数.(2)f (x )在(0,+∞)上是增函数.设0<x 1<x 2,∴0<x2x1<1,f (x 1)=f ·x2x1=f x2x1·f (x 2),Δy =f (x 2)-f (x 1)=f (x 2)-f x2x1f (x 2)=f (x 2)x2x1.∵0<f x2x1<1,f (x 2)>0,∴Δy >0,∴f (x 1)<f (x 2),故f (x )在(0,+∞)上是增函数.(3)∵f (27)=9,又f (3×9)=f (3)×f (9)=f (3)·f (3)·f (3)=f (3)]3,∴9=f (3)]3,∴f (3)=93,∵f (a +1)≤93,∴f (a +1)≤f (3),∵a ≥0,∴a +1≤3,即a ≤2,综上知,a 的取值范围是0,2].22.解:(1)当a =0时,f (x )=x 2,f (-x )=f (x ).∴函数f (x )是偶函数.当a ≠0时,f (x )=x 2+x a (x ≠0),而f (-1)+f (1)=2≠0,f (-1)-f (1)=-2a ≠0,∴ f (-1)≠-f (1),f (-1)≠f (1).∴ 函数f (x )既不是奇函数也不是偶函数.(2)f (1)=2,即1+a =2,解得a =1,这时f (x )=x 2+x 1.任取x 1,x 2∈2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=x11-x21=(x 1+x 2)(x 1-x 2)+x1x2x2-x1=(x 1-x 2)x1x21, 由于x 1≥2,x 2≥2,且x 1<x 2,∴ x 1-x 2<0,x 1+x 2>x1x21,f (x 1)<f (x 2),故f (x )在2,+∞)上单调递增.。
人教版高中数学必修一 第一章 1.2.2 复合函数问题练习(含答案)
( x1 2 x1 3) ( x 2 2 x 2 3) = ( x 2 x1 )( x 2 x1 2)
∵ x 2 x1 3
2
2
2
∴ x 2 x1 0
2
x2 x1 2 0
又底数 0
∴ ( x1 2 x1 3) > ( x 2 2 x 2 3) ∴ y 2 y1 0 即 y 2 y1
2
整理得 y x 7 x 6 ,
g ( x) x 2 7 x 6 .
5、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造 方程组,通过解方程组求得函数解析式. 例5 设 f ( x)满足f ( x) 2 f ( ) x, 求 f ( x) .
三 复合函数定义域问题 (1)、已知
n(n 1) , 2
f ( x)
的定义域 ,所以 ,E 为 的作用范围为 D,又 f 对 的定义域。 的定义域为_____________。 ,所以 的作用范围为(0,1)
思路:设函数
的定义域为 D,即
x x 2 x x 4 则 2 ,解得: , y y 6 y y 3 2
点 M ( x , y ) 在 y g ( x) 上 , y x 2 x .
把
x x 4 2 代入得: 6 y ( x 4) ( x 4) . y 6 y
① 1得 :
式 中 的 x= 1, 2, …, n- f (2) f (1) 2,f (3) f (2) 3, ,f (n) f (n 1) n
将上述各式相加得: f ( n) f (1) 2 3 n ,
(完整word版)人教版高中数学必修一第一章单元测试(含
第3题图高中数学《必修一》第一章教学质量检测卷一、选择题(将选择题的答案填入下面的表格.本大题共10小题,每小题5分,共50分。
)题号12345678910答案1、下列各组对象中不能构成集合的是( )A、佛冈中学高一(20)班的全体男生B、佛冈中学全校学生家长的全体C、李明的所有家人D、王明的所有好朋友( )A.{1,2,3,4,5} B.{2,3,4,5}C.{2,3,4},则图中的阴影部分表示的集合为( )的值是 ( )A、3B、1 C. 0 D。
-18、下列四个图像中,不可能是函数图像的是 ( )9、设f(x)是R上的偶函数,且在[0,+∞)上单调递增,则f(—2),f题号一二151617181920总分得分10、在集合{a,b,c,d}上定义两种运算和如下:A.a B.b C.c D.d二、填空题(本大题共4小题,每小题5分,共20分)的定义域为在区间[0,4]的最大值是B是 .16上是减函数。
其中真命题的序号是 (把你认为正确的命题的序号都填上)。
三、解答题(本大题6小题,共80分。
解答时应写出文字说明、证明过程或演算步骤).15、(本题满分12分)已知集合a的取值范围.16、(本题满分1217、(本题满分1418、 (本题满分14分)已知函(1)用分段函数的形式表示该函数;(2)画出该函数的图象;(3)写出该函数的值域.19、(本题满分1420、 (本题满分14高中数学《必修一》第一章教学质量检测卷参考答案一、选择题题号12345678910答案D D B C C A A B A C二、填空题12、-1 13、 14、①②三、解答题15、解:(1)A∪B={x∣2<x<10}……………..4分(2)(C R A)∩B={ x∣2〈x〈3或7≤x<10}...。
..。
.。
.。
.。
..。
...。
8分(3)a≥7.。
..。
.。
.。
..。
12分16.解:.2分证明:的定义域是,定义域关于原点对称…………….4分内任取一个x,则有。
人教版A版27课标高中数学必修第一册第一章综合测试试题试卷含答案
第一章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,则下列关系正确的是( ) A .A B =B .A B ⊆C .B A ⊆D .AB =∅∩ 2.已知集合{}2|320A x ax x =-+=中有且只有一个元素,那么实数a 的取值集合是( )A .98⎧⎫⎨⎬⎩⎭B .908⎧⎫⎨⎬⎩⎭,C .{}0D .203⎧⎫⎨⎬⎩⎭, 3.已知函数()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩>,,≤,则()2f 的值等于( )A .4B .3C .2D .无意义4.已知函数()f x =的定义域为R ,则实数k 的取值范围是( )A .()()00-∞+∞,∪,B .[]04,C .[)04,D .()04,5.已知两个函数()f x 和()g x 的定义域和值域都是集合{}123,,,其定义如表所示,则()()f g x 对应的三个值依次为( )x1 2 3 ()f x 2 3 1 ()g x 1 3 2 ()()f g xA .2,1,3B .1,2,3C .3,2,1D .1,3,26.已知函数()221x f x x =+,则()()()()1111234234f f f f f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .3B .4C .72D .927.设全集为R ,函数()0f x =定义域为M ,则M =R ( )A .{}|2x x ≥B .{}|21x x x -<且≠C .{}|21x x x -≥或=D .{}|21x x x ->或=8.若函数()()221341x x x f x a x a x ⎧-+⎪=⎨-+⎪⎩,<,,≥满足对任意实数12x x ≠,都有()()12120f x f x x x --成立,则实数a 的取值范围是( )A .()1+∞,B .[)13,C .233⎡⎫-⎪⎢⎣⎭D .()3-∞,9.已知()f x 是奇函数,()g x 是偶函数,且()()112f g -+=,()()114f g +-=,则()1g 等于( ) A .4B .3C .2D .110.已知()22f x x ax =-+与()ag x x=在区间[]12,上都是减函数,则a 的取值范围为( ) A .()01,B .(]01,C .()()1001-,∪,D .[)(]1001-,∪, 11.已知(){}2min 26f x x x x x =--,,,则()f x 的值域是( ) A .(]2-∞,B .(]3-∞,C .[]02,D .[)2+∞,12.已知定义域为R 的函数()f x 在区间()4+∞,上为减函数,且函数()4y f x =+为偶函数,则( ) A .()()23f f >B .()()25f f >C .()()35f f >D .()()36f f >二、填空题:本大题共4小题,每小题5分,共20分.13.设集合{}24A t =-,,集合{}591B t t =--,,,若9A B ∈∩,则实数t =________.14.)13fx =+,则()f x =________.15.若函数y =的定义域为R ,则a 的取值范围为________. 16.已知函数()y f x =在()()00-∞+∞,∪,上为奇函数,且在()0+∞,上为增函数,()20f -=,则不等式()x f x ⋅<0的解集为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知函数()mf x x x=+,且()13f =. (1)求m ;(2)判断函数()f x 的奇偶性.18.(本小题满分12分)设全集U =R ,{}|13A x x =≤≤,{}|23B x a x a =+<<. (1)当1a =时,求()U A B ∩ ;(2)若()U A B B =∩ ,求实数a 的取值范围.19.(本小题满分12分)设函数()()21f x ax bx a b =++,为实数,()()()00.f x x F x f x x ⎧⎪=⎨-⎪⎩,>,,<(1)若()10f -=,且对任意实数x 均有()0f x ≥成立,求()F x 的表达式;(2)在(1)的条件下,当[]22x ∈-,时,()()g x f x kx =-是单调函数,求实数k 的取值范围.20.(本小题满分12分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2千克/年;当420x <≤时,v 是x 的一次函数;当20x >时,因缺氧等原因,v 的值为0千克/年.(1)当020x <≤时,求v 关于x 的函数表达式.(2)当养殖密度x 为多少时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.21.(本小题满分12分)定义在()11-,上的函数()f x 满足()()f x f x -=-,且()()1120f a f a -+-<.若()f x 是()11-,上的减函数,求实数a 的取值范围.22.(本小题满分12分)已知()f x 是二次函数,()()050f f ==,且()112f -=. (1)求()f x 的解析式;(2)求()f x 在[]0m ,上的最小值()g m ;(3)对(2)中的()g m ,求不等式()()21g t g t -<的解集.第一章综合测试答案解析一、 1.【答案】C【解析】由集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,得{}101B =-,,.又因为集合{}21,0,1,2A =--,,所以B A ⊆,故选C . 2.【答案】B【解析】 集合{}2|320A x ax x =-+=中有且只有一个元素,0a ∴=或0980a a ⎧⎨∆=-=⎩≠,,解得0a =或98a =,∴实数a 的取值集合是908⎧⎫⎨⎬⎩⎭,.3.【答案】C【解析】()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩,>,,≤,()()5125252f f +∴===-.故选C .4.【答案】B【解析】()f x 的定义域为R ,∴不等式210kx kx ++≥的解集为R .①当0k =时,10≥恒成立,满足题意;②当0k ≠时,2040k k k ⎧⎨∆=-⎩>,≤,解得04k <≤.综上,04k ≤≤.故选B . 5.【答案】A【解析】当1x =时,()11g =,()()()112f g f ==;当2x =时,()23g =,()()()231f g f ==;当3x =时,()32g =,()()()323f g f ==,故选A . 6.【答案】C【解析】因为()221x f x x =+,所以222111111x f x x x ⎛⎫⎪⎛⎫⎝⎭== ⎪+⎝⎭⎛⎫+ ⎪⎝⎭,所以()11f x f x ⎛⎫+= ⎪⎝⎭, 故()()()()1111712343234112f f f f f f f ⎛⎫⎛⎫⎛⎫++++++=+= ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭.故选C . 7.【答案】C【解析】要使函数有意义,则120x x +⎧⎨-⎩≠0,>,得2x <且1x -≠,所以{}|21M x x x =<且≠-,所以{}|2M x x x ==R ≥或-1 .故选C .8.【答案】C【解析】 对任意实数12x x ≠,都有()()12120f x f x x x -->成立,()f x ∴在R 上是增函数,()230314121a a a -⎧⎪∴⎨-⨯+-+⨯⎪⎩>,≥,解得233a -≤<.故选C . 9.【答案】B【解析】()f x 是奇函数,()()11f f -=-. 又()g x 是偶函数,()()11g g ∴-=.()()()()112112f g g f -+=∴-= ,.① ()()()()114114f g f g +-=∴+= ,.②由①②,得()13g =. 10.【答案】B【解析】()()2222f x x ax x a a =-+=--+,其单调递减区间为()a ∞,+,()f x 在区间[]12,上是减函数,则1a ≤.又()ag x x=在区间[]12,上是减函数,则0a >.01a ∴<≤. 11.【答案】B【解析】(){}2min 26f x x x x x =-- ,,,的同一平面直角坐标系中分别作出22y x x =-,6y x =-,y x =的图像,并取其函数值较小的部分,如图所示.则由图像可知函数(){}2min 26f x x x x x =--,,的值域为(]3-∞,,故选B .12.【答案】D【解析】()4y f x =+ 为偶函数,()()44f x f x ∴-+=+.令2x =,得()()()()224246f f f f =-+=+=,同理,()()35f f =.又知()f x 在()4+∞,上为减函数,56 <,()()56f f ∴>.()()23f f ∴<,()()()265f f f =<,()()()356f f f =>.故选D .二、13.【答案】3-【解析】{}24A t =- ,,{}591B t t =--,,,且9A B ∈∩,29t ∴=,解得3t =或3t =-,当3t =时,根据集合元素互异性知不符合题意,舍去;当3t =-时,符合题意. 14.【答案】()()2131x x -+≥1t =,()21x t ∴=-,1t ≥,()()213f t t ∴=-+,()()()2131f x x x ∴=-+≥.15.【答案】[]19,【解析】 函数y =的定义域为R ,()()2221101a x a x a ∴-+-++恒成立.当210a -=时,1a =±,当1a =时,不等式恒成立,当1a =-时,无意义;当210a -≠时,()()22210214101a a a a ⎧-⎪⎨∆=---⋅⎪+⎩>,,解得19a <≤.综上所述,a 的取值范围为[]19,. 16.【答案】()()2002-,∪, 【解析】根据题意画出()f x 的大致图像,如图所示.由图像可知当20x -<<或02x <<时,()0x f x ⋅<. 三、17.【答案】解(1)()13f = ,13m ∴+=,2m ∴=. (2)由(1)知,()2f x x x=+,其定义域是{}|0x x x ∈R ≠,,关于原点对称.又()()22f x x x f x x x ⎛⎫-=--=-+=- ⎪⎝⎭ ,∴函数()f x 是奇函数. 18.【答案】解(1)当1a =时,{}|24B x x =<<.{}|13A x x = ≤≤,{}|13U A x x x ∴=<或> , (){}|34U A B x x ∴=∩<< .(2)若()U A B B =∩ ,则U B A ⊆ . ①B =∅时,23a a +≥,则3a ≥;②B ∅≠时,2331a a a +⎧⎨+⎩<,≤或2323a a a +⎧⎨⎩<,≥,则2a -≤或332a ≤<.综上,实数a 的取值范围是(]322⎡⎫-∞-+∞⎪⎢⎣⎭,∪,. 19.【答案】解(1)()10f -= ,1b a ∴=+,由()0f x ≥恒成立,知0a >且()()22241410b a a a a ∆=-=+-=-≤, 1a ∴=,从而()221f x x x =++,()()()221010.x x F x x x ⎧+⎪∴=⎨-+⎪⎩,>,,< (2)由(1)可知()221f x x x =++,()()()221g x f x kx x k x ∴=-=+-+. ()g x 在[]22-,上是单调函数, 222k -∴--或222k --,解得2k -≤或6k ≥. 即实数k 的取值范围是(][)26-∞-+∞,∪,. 20.【答案】解(1)由题意得当04x <≤时,2v =. 设当420x <≤时,v ax b =+,由已知得20042a b a b +=⎧⎨+=⎩,,解得1852a b ⎧=-⎪⎪⎨⎪=⎪⎩,,所以1582v x =-+.故函数20415420.82x v x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤ (2)设鱼的年生长量为()f x 千克/立方米,依题意,由(1)可得()220415420.82x x f x x x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤当04x <≤时,()f x 为增函数,故()()max 4428f x f ==⨯=;当420x <≤时,()()2215125108282f x x x x =-+=--+,()()max 1012.5f x f ==.所以当020x <≤时,()f x 的最大值为12.5,即当养殖密度x 为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米.21.【答案】解:由()()1120f a f a -+-<, 得()()112f a f a ---<.()()f x f x -=- ,()11x ∈-,, ()()121f a f a ∴--<. 又()f x 是()11-,上的减函数, 1111211121,a a a a --⎧⎪∴--⎨⎪--⎩<<,<<,>解得203a <<. 故实数a 的取值范围是203⎛⎫⎪⎝⎭,.22.【答案】解(1)因为()f x 是二次函数,且()()050f f ==, 所以设()()()50f x ax x a =-≠. 又因为()1612f a -==,所以2a =, 所以()()225210f x x x x x =-=-. (2)由(1)知()f x 的对称轴为52x =,当502m <≤时,()f x 在区间[]0m ,上单调递减,所以()f x 的最小值为()2210f m m m =-;当52m >时,()f x 在区间502⎡⎤⎢⎥⎣⎦,上单调递减,在区间52m ⎡⎤⎢⎥⎣⎦,上单调递增,所以()f x 的最小值为52522f ⎛⎫=- ⎪⎝⎭.综上所述,()()2min521002255.22m m m f x g m m ⎧-⎪⎪==⎨⎪-⎪⎩,<≤> (3)因为()()21g t g t -<,所以210215212t t t t ⎧⎪-⎪-⎨⎪⎪-⎩>,<,<,解得112t <,即不等式()()21g t g t -<的解集为1|12t t ⎧⎫⎨⎬⎩⎭<<.。
高一数学必修一第一章测试题及答案
高中数学必修1检测题一、选择题: 每小题5分, 12个小题共60分 1. 已知全集 )等于 ( )A. {2, 4, 6}B. {1, 3, 5}C. {2, 4, 5}D. {2, 5}2.已知集合 , 则下列式子表示正确的有( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A. 1个B. 2个C. 3个D. 4个3.若 能构成映射, 下列说法正确的有 ( ) (1)A 中的任一元素在B 中必须有像且唯一; (2)A 中的多个元素可以在B 中有相同的像; (3)B 中的多个元素可以在A 中有相同的原像; (4)像的集合就是集合B .A.1个B.2个C.3个D.4个4、如果函数 在区间 上单调递减, 则实数 的取值范围是( ) A. B. C. D. 5.下列各组函数是同一函数的是 ( )①()f x =()g x =f(x)=x与()g x = ③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。
A.①② B.①③ C.③④ D.①④A. (-1, 0)B. (0, 1)C. (1, 2)D. (2, 3)7. 若 ( )A. B. C. D.8、 若定义运算 , 则函数 的值域是( ) A [)0,+∞ B (]0,1 C [)1,+∞ D R 9. 函数 上的最大值与最小值的和为3, 则 ( ) A. B. 2 C. 4 D.10.下列函数中,在 上为增函数的是... )A. B、A. 一次函数模型B. 二次函数模型C. 指数函数模型D. 对数函数模型12.下列所给4个图象中, 与所给3件事吻合最好的顺序为 ( ) (1)我离开家不久, 发现自己把作业本忘在家里了, 于是立刻返回家里取了作业本再上学;(2)我骑着车一路以常速行驶, 只是在途中遇到一次交通堵塞, 耽搁了一些时间; (3)我出发后, 心情轻松, 缓缓行进, 后来为了赶时间开始加速。
人教版本高中高一数学必修一第一章练习试题与包括答案
集合与函数根底测试一、选择题 ( 共 12 小题,每题 5 分,四个选项中只有一个符合要求 ).函数 y == x2- x + 10在区间〔 , 〕上是〔〕16 2 4A .递减函数B .递增函数C .先递减再递增D .选递增再递减.x y 22.方程组 { x y 0 的解构成的集合是〔〕A . {( 1,1)}B . {1,1}C .〔1,1〕D . {1}3.集合 A={ a ,b ,c}, 以下可以作为集合 A 的子集的是〔〕A. aB. {a ,c} C. {a , eD.{a ,b ,c ,d}} 4.以下图形中,表示 MN 的是〔〕MNNM M NMNABCD5.以下表述正确的选项是〔〕A. { 0}B.{ 0}C.{ 0}D.{ 0}6、设集合 A ={x|x 参加自由泳的运发动 } ,B ={x|x 参加蛙泳的运发动 } ,对于“既参 加自由泳又参加蛙泳的运发动〞用集合运算表示为 ( ) ∩B B ∪B B7. 集合 A={x x2k, k Z } ,B={ x x2k 1, k Z } ,C={ x x 4k1, kZ } 又 aA,bB, 那么有〔 〕A. 〔 a+b 〕 AB. (a+b) BC.(a+b) CD. (a+b)A 、B 、C 任一个〕8.函数 f 〔x 〕=- x 2+ 〔 a - 〕 x +2 在〔-∞, 〕上是增函数,那么 a 的范围是〔a ≥ 2 1 4.a ≤-A . 5.a ≥3.a ≤35B CD9. 满足条件 {1,2,3} M {1,2,3,4,5,6} 的集合 M 的个数是〔〕A. 8B. 7C. 6D. 510. 全集 U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 } , A= {3 ,4 ,5 } , B= {1 ,3 ,6 } ,那么集 合 { 2 ,7 ,8} 是 〔 〕A. A BB. A BC. C U A C U BD. C U A C U B11. 以下函数中为偶函数的是〔〕A . yxB . y xC . y x 2D . y x 3 1 12. 如果集合 A={ x | ax 2 + 2x + 1=0} 中只有一个元素,那么 a 的值是〔 〕 A .0 B . 0 或 1 C .1 D .不能确定 二、填空题 ( 共 4 小题,每题 4 分,把答案填在题中横线上 ).函数 f 〔x 〕= × - | x |的单调减区间是.132 2 3___________14.函数 y =1的单调区间为 ___________.x +115. 含 有 三 个 实 数 的 集 合 既 可 表 示 成 { a, b,1} , 又 可 表 示 成 { a 2 , ab,0}, 那么 a2 0 0 3b2 0 0 4. a16. 已知集合U{ x | 3 x 3} , M { x |1x 1} ,C U N { x | 0 x 2} 那么集合N, M (C U N ), M N.三、解答题 ( 共 4 小题,共 44 分〕17. 集合A{ x x2 4 0} ,集合 B { x ax20} ,假设B A ,求实数a的取值集合.18.设 f 〔x〕是定义在 R上的增函数, f 〔 xy〕= f 〔x〕+ f 〔 y〕,f 〔3〕= 1,求解不等式 f 〔x〕+ f 〔x-2〕> 1.19.函数 f 〔x〕是奇函数,且当 x> 0 时, f 〔x〕= x3+2x2— 1,求 f 〔x〕在 R 上的表达式.20.二次函数 f (x)x 22(m1)x2m m 2的图象关于y 轴对称,写出函数的解析表达式,并求出函数 f (x)的单调递增区间.必修 1 第一章 集合测试集合测试参考答案:一、 1~5 CABCB6~10ABACC11~12cB二、 13 [ 0, 3],〔-∞,- 3 〕4414 〔-∞,- 1〕,〔- 1,+∞〕15 -1 16N { x | 3 x 0 或 2x3} ;M(C U N ) { x | 0 x 1} ;MN { x | 3 x 1或 2 x 3} .三、17 .{0.-1,1} ;18.解:由条件可得 f 〔 x 〕+ f 〔x - 〕= f [x 〔x - 〕],2 2 1 = f 〔 〕.3所以 f [x 〔x -2〕]>f 〔3〕,又 f 〔x 〕是定义在 R 上的增函数,所以有 x 〔x -2〕> 3,可解得 x >3 或 x <- 1.答案: x >3 或 x <- 1.19..解析:此题主要是培养学生理解概念的能力.f 〔 x 〕= x 3+2x 2 -1.因 f 〔 x 〕为奇函数,∴ f 〔0〕= -1 .当 x <0 时,- x >0,f 〔- x 〕=〔- x 〕3+ 2〔- x 〕2- 1=- x 3+2x 2-1,∴f 〔x 〕= x 3-2x 2+1.20.二次函数f ( x)x 22(m1) x2mm 2 的图象关于 y 轴对称,∴ m1,那么f (x)x 21,函数f ( x)的单调递增区间为,0 ..。
人教版高中数学必修第一册第一单元《集合与常用逻辑用语》测试(含答案解析)
一、选择题1.已知集合()(){}225A x x x =+-<,(){}2log 1,B x x a a N =->∈,若A B =∅,则a 的可能取值组成的集合为( )A .{}0B .{}1C .{}0,1D .*N2.已知全集U =R ,集合{|01},{1,0,1}A x R x B =∈<=-,则()UA B =( )A .{}1-B .{1}C .{1,0}-D .{0,1}3.已知集合{}2|40A x R x x =∈-<,{}|28xB x R =∈<,则A B =( )A .()0,3B .()3,4C .()0,4D .(),3-∞4.设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x R x =∈-≤<,则()A B C ⋃⋂=A .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}5.设集合{}125S x x x =-++>,{}4T x x a =-≤,S T R ⋃=,则a 的取值范围为( ) A .2a ≤-或1a ≥ B .21a -≤≤ C .21a -<<D .2a <-或1a >6.“1x >”是“12log (2)0x +<”的 ( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件7.若命题“∃x 0∈R ,x +(a -1)x 0+1<0”是真命题,则实数a 的取值范围是( ) A .(-1,3)B .[-1,3]C .(-∞,-1)∪(3,+∞)D .(-∞,-1]∪[3,+∞)8.“3k >”是“方程22133x y k k -=-+表示双曲线”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件9.设集合{}1,0,1,2,3A =-, 2{|30}B x x x =->,则()R A C B ( )A .{-1}B .{0,1,2,3}C .{1,2,3}D .{0,1,2}10.已知命题P :∃0x R ∈,20010x x -+≥;命题Q :若a <b ,则1a >1b,则下列为真命题的是( ) A .P Q ∧B .P Q ⌝∧ C .P Q ⌝∧D .P Q ⌝⌝∧11.命题“∀a ,b >0,a +1b≥2和b +1a ≥2至少有一个成立”的否定为( )A .∀a ,b >0,a +1b<2和b +1a <2至少有一个成立B .∀a ,b >0,a +1b≥2和b +1a ≥2都不成立C .∃a ,b >0,a +1b<2和b +1a <2至少有一个成立D .∃a ,b >0,a +1b≥2和b +1a ≥2都不成立12.已知函数()31f x x ax =--,则()f x 在()1,1-上不单调的一个充分不必要条件是( ) A .[]0,3a ∈B .()0,5a ∈C .()0,3a ∈D .()1,3a ∈二、填空题13.已知命题:“∃x ∈{ x |1≤x ≤2},使x 2+2x +a ≥0”为真命题,则实数a 的取值范围是______.14.①一个命题的逆命题为真,它的否命题一定也为真:②在ABC 中,“60B ∠=︒”是“,,A B C ∠∠∠三个角成等差数列”的充要条件; ③1{2x y >>是3{2x y xy +>>的充要条件;④“22am bm <”是“a b <”的充分必要条件; 以上说法中,判断错误的有_______________. 15.给出下列三种说法:①命题p :∃x 0∈R ,tan x 0=1,命题q :∀x ∈R ,x 2-x +1>0,则命题“p ∧(q ⌝)”是假命题.②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab=-3. ③命题“若x 2-3x +2=0,则x =1”的逆否命题为“若x≠1,则x 2-3x +2≠0”. 其中所有正确说法的序号为________________.16.已知“21[2]102x ,,x mx ∃∈-+≤”是假命题,则实数m 的取值范围为________. 17.若命题:“2000,10x R ax ax ∃∈-->”为假命题,则实数a 的取值范围是__________.18.下列命题中,正确的是___________.(写出所有正确命题的编号) ①在中,是的充要条件;②函数的最大值是;③若命题“,使得”是假命题,则; ④若函数,则函数在区间内必有零点.19.给出下列四个命题:⑴“直线a ∥直线b ”的必要不充分条件是“a 平行于b 所在的平面”; ⑵“直线l ⊥平面α”的充要条件是“l 垂直于平面α内的无数条直线”; ⑶“平面α∥平面β”是“α内有无数条直线平行于平面β”的充分不必要条件; ⑷“平面α⊥平面β”的充分条件是“有一条与α平行的直线l 垂直于β”. 上面命题中,所有真命题的序号为______. 20.集合{}*110,,S x x x N n N=≤≤∈∈共有120个三元子集()1,2,...,120iA i =,若将i A 的三个元素之和记为()1,2,...,120i a i =,则12120...a a a +++=______.三、解答题21.已知全集U =R ,集合{}2|2150A x x x =--<,集合()(){}2|210B x x a x a =-+-<.(1)若1a =,求UA 和B ;(2)若A B A ⋃=,求实数a 的取值范围.22.已知集合2102x a A x x a ⎧⎫--⎪⎪=<⎨⎬-⎪⎪⎩⎭,集合{}|32B x x =-<.(Ⅰ)当2a =时,求A B ;(Ⅱ)设p :x A ∈,q :x B ∈,若p 是q 的充分条件,求实数a 的取值范围.23.设命题p :12≤x ≤1,命题q :x 2-(2a +1)x +a (a +1)≤0.若q 是p 的必要而不充分条件,求实数a 的取值范围.24.已知集合{}220A x x x =--<,()(){}30,B x x a x a a R =--<∈.(1)当1a =时,求集合A 和A B ;(2)若()R B C A ⊆,求实数a 的取值范围.25.已知集合121284xA x ⎧⎫=≤≤⎨⎬⎩⎭,21log ,,328B y y x x ⎧⎫⎡⎤==∈⎨⎬⎢⎥⎣⎦⎩⎭. (1)若{}|121C x m x m =+≤≤-,()C A B ⊆⋂,求实数m 的取值范围; (2)若{}|61D x x m =>+,且()A B D =∅,求实数m 的取值范围.26.已知()1f x x a x =-++.(1)若不等式()21f x x <++的解集是区间3,2的子区间,求实数a 的取值范围;(2)若对任意的x ∈R ,不等式()21>+f x a 恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】解不等式确定集合,A B ,然后由交集的结果确定参数a 的取值范围. 【详解】()(){}{}22533A x x x x x =+-<=-<<, (){}{}2log 1,2,B x x a a N x x a a N =->∈=>+∈,因为AB =∅,所以23a +≥,1a ≥.又a N ∈,∴*a N ∈.故选:D . 【点睛】本题考查由集合交集的结果求参数范围,解题时可先确定两个集合中的元素,然后分析交集的结果得出结论.2.C解析:C 【分析】根据补集的运算,求得{|0Ux A x =≤或1}x >,再结合交集的运算,即可求解.【详解】由题意,全集U =R ,集合{|01}A x R x =∈<≤, 可得{|0Ux A x =≤或1}x >,又由集合{1,0,1}B =-,所以(){1,0}UA B ⋂=-.故选:C. 【点睛】本题考查集合的补集与交集概念及运算,其中解答中熟记集合的交集、补集的概念和运算方法是解答的关键,着重考查了运算与求解能力.3.A解析:A 【分析】解不等式确定集合,A B 后再由交集定义计算. 【详解】由题意{|04}A x x =<<,{|3}B x x =<,∴{|03}(0,3)A B x x =<<=.故选:A . 【点睛】本题考查求集合的交集运算,考查解一元二次不等式和指数不等式,属于基本题.4.C【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果. 详解:由并集的定义可得:{}1,0,1,2,3,4A B =-,结合交集的定义可知:(){}1,0,1A B C =-.本题选择C 选项.点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.5.B解析:B 【解析】{|32},[4,=4]S x x x T a a =-=-或 ,所以432142a a a -≤-⎧⇒-≤≤⎨+≥⎩ ,选A. 点睛:形如|x -a |+|x -b |≥c (或≤c )型的不等式主要有三种解法:(1)分段讨论法,利用绝对值号内式子对应方程的根,将数轴分为(-∞,a ],(a ,b ],(b ,+∞)(此处设a <b )三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集;(2)几何法,利用|x -a |+|x -b |>c (c >0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体;(3)图象法:作出函数y 1=|x -a |+|x -b |和y 2=c 的图象,结合图象求解.6.B解析:B 【详解】 试题分析:12log (2)0x +<211x x ⇒+>⇒>-,故正确答案是充分不必要条件,故选B.考点:充分必要条件.7.C解析:C 【分析】根据二次函数的图象与性质,得到关于a 的不等式,即可求解. 【详解】由题意,2000,(1)10x R x a x ∃∈+-+<,则2(1)40a ∆=-->,解得3a >或1a <-, 所以实数a 的取值范围是(,1)(3,)-∞-+∞,故选C.【点睛】本题主要考查了存在性命题的真假判定及应用,其中熟记转化为二次函数,利用二次函数的图象与性质是解答的关键,着重考查了推理与计算能力.8.A【分析】根据充分条件、必要条件的定义,结合双曲线的方程即可判定. 【详解】因为当3k >时,30k ->,30k +>,方程22133x y k k -=-+表示双曲线;当方程22133x y k k -=-+表示双曲线时,(3)(3)0k k -+>,即3k >或3k <-,不能推出3k >,所以“3k >”是“方程22133x y k k -=-+表示双曲线”的充分不必要条件,故选:A 【点睛】本题主要考查了充分条件、必要条件,双曲线的标准方程,属于中档题.9.B解析:B 【分析】解出集合B ,进而求出R C B ,即可得到()R A C B ⋂. 【详解】{}{}{}23003,03,R B x x x x x x C B x x =->=∴=≤≤或故(){}{}{}1,0,1,2,3030,1,2,3R A C B x x ⋂=-⋂≤≤=. 故选B. 【点睛】本题考查集合的综合运算,属基础题.10.B解析:B 【分析】判断命题P 为真命题,命题Q 为假命题,再依次判断每个选项得到答案. 【详解】取00x =,则200110x x -+=≥,故命题P 为真命题;取2a =-,1b =,满足a b <,但是11a b<,故命题Q 为假命题. 故P Q ∧为假命题,P Q ⌝∧为真命题,P Q ⌝∧为假命题,P Q ⌝⌝∧为假命题.故选:B. 【点睛】本题考查了命题的真假判断,命题的否定,且命题,意在考查学生的计算能力和推断能力.11.D解析:D 【分析】将“全称量词”改“存在量词”,“至少有一个成立”改为“都不成立”即可得到. 【详解】 “∀a ,b >0,a +1b≥2和b +1a ≥2至少有一个成立”的否定为:∃a ,b >0,a +1b≥2和b +1a ≥2都不成立.故选:D 【点睛】本题考查了全称命题的否定,属于基础题.12.D解析:D 【分析】先求出()f x 在()1,1-上单调的范围,其补集即为不单调的范围,结合选项即可得到答案. 【详解】由已知,()23[,3)f x x a a a =-∈--‘,当0a ≤时,'()0f x ≥,当3a ≥时,'()0f x ≤,所以()f x 在()1,1-上单调,则0a ≤或3a ≥,故()f x 在()1,1-上不单调时,a 的范围为(0,3),A 、B 是必要不充分条件,C 是充要条件,D 是充分不必要条件.故选:D 【点睛】本题主要考查利用导数研究函数的单调性,涉及到充分条件、必要条件的判断,考查学生的逻辑推理能力,数学运算能力,是一道中档题.二、填空题13.a≥-8【分析】等价于∃x ∈{x|1≤x≤2}求出函数在的最小值即得解【详解】由题得∃x ∈{x|1≤x≤2}x 2+2x +a≥0所以∃x ∈{x|1≤x≤2}因为函数在的最小值为此时所以故答案为:【点睛解析:a ≥-8【分析】等价于∃x ∈{ x |1≤x ≤2},2(1)1a x ≥-++,求出函数2(1)1y x =-++在[1,2]的最小值即得解. 【详解】由题得∃x ∈{ x |1≤x ≤2},x 2+2x +a ≥0,所以∃x ∈{ x |1≤x ≤2},222(1)1a x x x ≥--=-++,因为函数2(1)1y x =-++在[1,2]的最小值为8-,此时2x =. 所以8a ≥-. 故答案为:8a ≥- 【点睛】本题主要考查特称命题,考查一元二次不等式的能成立问题的求解,意在考查学生对这些知识的理解掌握水平.14.③④【解析】对于①一个命题的逆命题与其否命题互为逆否命题则若其逆命题为真其否命题也一定为真①正确;对于②若则有则三个角成等差数列反之若三个角成等差数列有又由则故在中是三个角成等差数列的充要条件②正确解析:③④ 【解析】对于①,一个命题的逆命题与其否命题互为逆否命题,则若其逆命题为真,其否命题也一定为真,①正确;对于②,若60B ∠=,则120A C ∠+∠=,有2A C B ∠+∠=∠,则,,A B C ∠∠∠三个角成等差数列,反之若,,A B C ∠∠∠三个角成等差数列, 有2A C B ∠+∠=∠,又由3=180A B C B ∠+∠+∠=∠,则60B ∠=,故在ABC ∆中,“60B ∠=”是“,,A B C ∠∠∠三个角成等差数列”的充要条件,②正确;对于③, 当19,22x y ==,则满足32x y xy +>⎧⎨>⎩,而不满足12x y >⎧⎨>⎩,则12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的不必要条件,③错误;对于④,若a b <,当0m =时,有22am bm =,则“22am bm <”是“a b <”的不必要条件,④错误,故答案为③④.15.①③【解析】试题分析:①若命题p :存在x ∈R 使得tanx=1;命题q :对任意x ∈Rx2-x+1>0则命题p 且¬q 为假命题此结论正确对两个命题进行研究发现两个命题都是真命题故可得p 且¬q 为假命题②已知解析:①③ 【解析】试题分析:①若命题p :存在x ∈R ,使得tanx=1;命题q :对任意x ∈R ,x 2-x+1>0,则命题“p 且¬q”为假命题,此结论正确,对两个命题进行研究发现两个命题都是真命题,故可得“p 且¬q”为假命题.②已知直线l 1:ax+3y-1=0,l 2:x+by+1=0.则l 1⊥l 2的充要条件为ab=−3,若两直线垂直时,两直线斜率存在时,斜率乘积为a b =−3,当a=0,b=0时,此时两直线垂直,但不满足ab=−3,故本命题不对.③命题“若x 2-3x+2=0,则x=1”的逆否命题为:“若x≠1则x 2-3x+2≠0”,由四种命题的书写规则知,此命题正确;考点:复合命题的真假;四种命题16.【分析】求出命题的否定由原命题为假命题得命题的否定为真命题参变分离得到构造函数求在所给区间上的最小值【详解】解:由题意可知是真命题对恒成立令令则;令则;即在上单调递减上单调递增;故答案为:【点睛】本 解析:(,2)-∞【分析】求出命题的否定,由原命题为假命题,得命题的否定为真命题,参变分离得到1m x x <+,构造函数()1g x x x=+求()g x 在所给区间上的最小值.【详解】解:由题意可知,21[2]102x ,,x mx ∀∈-+>是真命题 1m x x ∴<+对1[2]2x ,∀∈恒成立, 令()1g x x x =+()211g x x '∴=-令()0g x '>则12x <≤;令()0g x '<则112x ≤<; 即()1g x x x =+在1,12⎛⎫⎪⎝⎭上单调递减,()1,2上单调递增; ()()min 11121g x g ∴==+=2m <∴故答案为:(,2)-∞ 【点睛】本题考查根据命题的真假求参数的取值范围,关键是将问题进行转化,属于中档题.17.【解析】由题意得 解析:[]4,0-【解析】 由题意得204040a a a a a <⎧=∴-≤≤⎨∆=+≤⎩或18.①③④【分析】根据正弦定理及三角形的性质可判断(1);利用均值不等式可判断(2);利用假命题求参数的范围可判断(3);利用零点存在性定理可判断(4)【详解】解:对于(1)sinA >sinB ⇔2Rsi 解析:①③④【分析】根据正弦定理,及三角形的性质,可判断(1);利用均值不等式,可判断(2);利用假命题求参数的范围,可判断(3);利用零点存在性定理,可判断(4).【详解】解:对于(1),sin A>sin B⇔2R sin A>2R sin B⇔a>b⇔A>B(其中R为△ABC外接圆半径),故(1)正确;对于(2),x21x+=--(1﹣x21x+-)+1≤﹣1=﹣+1,当且仅当x=12)错误;对于(3),若命题“x R∃∈,使得()2310ax a x+-+≤”是假命题⇔命题:“∀x∈R,使得ax2+(a﹣3)x+1>0”恒成立.∵a=0时,不符合题意,∴2(3)40aa a⎧⎨=--<⎩>∴1a9<<,故(3)正确;对于(4),∵()12af a b c=++=-,∴3a+2b+2c=0,∴32c a b=--.又f(0)=c,f(2)=4a+2b+c,∴f(2)=a﹣c.(i)当c>0时,有f(0)>0,又∵a>0,∴()102af=-<,故函数f(x)在区间(0,1)内有一个零点,故在区间(0,2)内至少有一个零点.(ii)当c≤0时,f(1)<0,f(0)=c≤0,f(2)=a﹣c>0,∴函数f(x)在区间(1,2)内有一零点,故(4)正确.故正确答案为:①③④【点睛】本题考查的知识点是命题的真假判断与应用,熟练掌握正弦定理,均值不等式,二次函数的,图象和性质,函数零点存在定理,是解答的关键.19.⑶⑷【分析】根据线面位置关系以及充要关系概念进行逐一判断【详解】(1)a平行于b所在的平面是直线a∥直线b的既不充分也不必要条件;所以(1)错;(2)l垂直于平面α内的无数条直线是直线l⊥平面α的必解析:⑶⑷【分析】根据线面位置关系以及充要关系概念进行逐一判断.【详解】(1)“a平行于b所在的平面” 是“直线a∥直线b”的既不充分也不必要条件;所以(1)错;(2)“l垂直于平面α内的无数条直线” 是“直线l⊥平面α”的必要不充分条件;所以(2)错;(3)若“平面α∥平面β”则“α内有无数条直线平行于平面β”,若 “α内有无数条直线平行于平面β”则“平面α,平面β不一定平行”,所以“平面α∥平面β”是“α内有无数条直线平行于平面β”的充分不必要条件;(4)若“有一条与α平行的直线l 垂直于β”,则α内存在一条直线垂直于β,即“平面α⊥平面β”,所以“平面α⊥平面β”的充分条件是“有一条与α平行的直线l 垂直于β”. 综上填(3)(4)【点睛】本题考查线面位置关系以及充要关系,考查基本分析判断能力,属基础题.20.1980【分析】根据题意将所有元素在子集中的个数算出然后再求和即可【详解】因为集合所以含元素1的子集有同理含2345678910的子集也各有所以故答案为:1980【点睛】本题主要考查集合的新定义以及解析:1980【分析】根据题意,将所有元素在子集中的个数算出,然后再求和即可.【详解】 因为集合{}{}*110,,1,2,3,4,5,6,7,8,9,10S x x x N n N=≤≤∈∈=, 所以含元素1的子集有29C ,同理含2,3,4,5,6,7,8,9,10的子集也各有29C ,所以2121209...(123...10)a a a C +++=++++⨯,()1011098198022+⨯=⨯=. 故答案为:1980【点睛】 本题主要考查集合的新定义以及组合问题,还考查了分析推理的能力,属于中档题.三、解答题21.(1)U A ={x ∣x ≤−3或x ≥5};B =∅;(2)−1≤a【分析】(1)利用一元二次不等式的解法化简集合A 、B ,利用集合的基本运算即可算出结果; (2)因为A B A ⋃=,所以B A ⊆,对集合B 分等于空集和不等于空集两种情况讨论,求出a 的取值范围.【详解】(1)若1a =,则集合2{|2150}{|35}A x x x x x =--<=-<<,{|3U A x x ∴=-或5}x , 若1a =,则集合22{|(21)()0}{|(1)0}B x x a x a x x =-+-<=-<=∅,(2)因为A B A ⋃=,所以B A ⊆,①当B =∅时,221a a =-,解1a =,②当B ≠∅时,即1a ≠时,2{|21}B x a x a =-<<,又由(1)可知集合{|35}A x x =-<<,∴22135a a --⎧⎨⎩,解得15a -,且1a ≠, 综上所求,实数a 的取值范围为:15a-. 【点睛】 本题主要考查了集合的基本运算,考查了一元二次不等式的解法,是基础题. 22.(Ⅰ){|45}A B x x ⋂=<<;(Ⅱ)1,22⎡⎤⎢⎥⎣⎦【分析】(Ⅰ)当2a =时,求出集合A ,集合B ,由此能求出A B . (Ⅱ)设:p x A ∈,:q x B ∈,p 是q 的充分条件,从而A B ⊆,由此能求出实数a 的取值范围.【详解】解:(Ⅰ)当2a =时,集合215|0{|0}{|45}24x a x A x x x x x a x ⎧⎫---=<=<=<<⎨⎬--⎩⎭, 集合{||3|2}{|15}B x x x x =-<=<<.{|45}A B x x ∴=<<.(Ⅱ)设:p x A ∈,:q x B ∈,p 是q 的充分条件,A B ∴⊆,当221a a <+时,1a ≠,集合221|0{|21}2x a A x x a x a x a ⎧⎫--=<=<<+⎨⎬-⎩⎭, 集合{||3|2}{|15}B x x x x =-<=<<.∴22115a a ⎧⎨+⎩,且1a ≠,解得122a .且1a ≠, 当1a =时,A =∅,成立. 综上,实数a 的取值范围是1,22⎡⎤⎢⎥⎣⎦. 【点睛】本题考查交集、实数的取值范围的求法,考查充分条件、交集、子集等基础知识,考查运算求解能力,属于中档题. 23.[0,1]2【分析】求出q 的等价条件,结合充分条件和必要条件的定义转化为集合子集关系进行求解即可.【详解】由2(21)(1)0x a x a a -+++得1a x a +,若q 是p 的必要不充分条件, 则1[2,1][a ,1]a +, 即1211a a ⎧⎪⎨⎪+⎩,得120a a ⎧⎪⎨⎪⎩,得102a , 即实数a 的取值范围是[0,1]2, 【点睛】本题主要考查充分条件和必要条件的应用,求出命题的等价条件,转化为集合关系是解决本题的关键,属于容易题.24.(1){}12A x x =-<<,{}13A B x x ⋃=-<<;(2)0a =或1a ≤-或2a ≥.【分析】(1)先求出集合A ,B ,再根据并集的定义即可求出;(2)先求出A R ,再根据题意讨论a 的范围即可求出. 【详解】(1)由不等式220x x --<解得12x -<<,{}12A x x ∴=-<<,当1a =时,()(){}{}13013B x x x x x =--<=<<, {}13A B x x ∴⋃=-<<;(2){}12A x x =-<<,{1R A x x ∴=≤-或}2x ≥,当0a =时,{}20B x x =<=∅,满足题意; 当0a >时,{}3B x a x a =<<,要使()R B A ⊆,则2a ≥;当0a <时,{}3B x a x a =<<,要使()RB A ⊆,则1a ≤-; 综上,0a =或1a ≤-或2a ≥.【点睛】本题考查集合的并集、补集运算,考查根据集合的包含关系求参数,其中涉及一元二次不等式的求解,属于基础题.25.(1)3m ≤;(2)m 1≥.【分析】(1)化简集合A ,B ,求出AB ,分类讨论C =∅和C ≠∅情况,求解,再取并集即可得出结果.(2)求出AB ,结合数轴列不等式,即可得出结果.【详解】(1){}|27A x x =-≤≤,{}|35B y y =-≤≤,{}|25AB x x =-≤≤,①若C =∅,则121m m +>-,∴2m <; ②若C ≠∅,则12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩,∴23m ≤≤;综上3m ≤.(2){}|37A B x x ⋃=-≤≤,∴617m +≥,∴1m ≥.【点睛】本题考查了指数不等式和对数不等式,集合的运算等基本数学知识,考查了运算求解能力和逻辑推理能力,属于基础题目.26.(1)[]1,0-(2)(),0-∞【分析】(1)首先求出不等式的解集,再根据集合的包含关系求出参数的取值范围;(2)根据绝对值的三角不等式可得()1111f x x a x a x x a x x a =-++=-++≥-++=+,故对任意的x ∈R ,()21>+f x a 恒成立可转化为121a a +>+, 分类讨论计算可得;【详解】解:(1)因为()1f x x a x =-++,且()21f x x <++,2x a ∴-< ,22a x a ∴-+<<+,由题意知,()[]2,23,2a a -+⊆-,所以2322a a -≥-⎧⎨+≤⎩, 解得10a -≤≤,所以实数a 的取值范围是[]1,0-.(2)()1111f x x a x a x x a x x a =-++=-++≥-++=+,当且仅当()()10a x x -+≥时,等号成立,所以()f x 的最小值为1a +.故对任意的x ∈R ,()21>+f x a 恒成立可转化为121a a +>+,所以10121a a a +≥⎧⎨+>+⎩或10121a a a +<⎧⎨-->+⎩,解得0a <. 所以实数a 的取值范围是(),0-∞.【点睛】本题考查绝对值不等式的解法,集合的包含关系及绝对值三角不等式的应用,属于中档题.。
高中数学人教版必修1第一章集合与函数概念单元测试卷(A)(含答案)
第一章 集合与函数概念 单元测试卷(A )时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.已知集合A ={1,2},B ={2,4},则A ∪B =( ) A .{2} B .{1,2,2,4} C .{1,2,4}D .∅2.设全集U =R ,集合M ={y |y =x 2+2,x ∈U },集合N ={y |y =3x ,x ∈U },则M ∩N 等于( ) A .{1,3,2,6} B .{(1,3),(2,6)} C .MD .{3,6}3.如图1所示,阴影部分表示的集合是( ) A .(∁U B )∩A B .(∁U A )∩B C .∁U (A ∩B )D .∁U (A ∪B )图14.设全集U ={x |0<x <10,x ∈Z },A ,B 是U 的两个真子集,(∁U A )∩(∁U B )={1,9},A ∩B ={2},(∁U A )∩B ={4,6,8},则( )A .5∈A ,且5∉B B .5∉A ,且5∉B C .5∈A ,且5∈BD .5∉A ,且5∈B5.下列各图中,可表示函数y =f (x )的图象的只可能是( )6.下表表示y 是x 的函数,则函数的值域是( )A .[2,5] C .(0,20)D .N7.图中给出的对应是从A 到B 的映射的是( )8.已知函数f (x )=⎩⎪⎨⎪⎧x ,x ≥0,x 2,x <0,则f [f (-2)]的值是( )A .2B .-2C .4D .-49.函数y =x 2-2x +3,-1≤x ≤2的值域是( )A .RB .[3,6]C .[2,6]D .[2,+∞)10.已知函数f (x )是(-∞,0)∪(0,+∞)上的奇函数,且当x <0时,函数的部分图象如图4所示,则不等式xf (x )<0的解集是( )图4A .(-2,-1)∪(1,2)B .(-2,-1)∪(0,1)∪(2,+∞)C .(-∞,-2)∪(-1,0)∪(1,2)D .(-∞,-2)∪(-1,0)∪(0,1)∪(2,+∞)11.定义在R 上的偶函数f (x )在[0,7]上是增函数,在[7,+∞)上是减函数,f (7)=6,则f (x )( )A .在[-7,0]上是增函数,且最大值是6B .在[-7,0]上是减函数,且最大值是6C .在[-7,0]上是增函数,且最小值是6D .在[-7,0]上是减函数,且最小值是612.定义在R 上的偶函数f (x )满足:对任意x 1,x 2∈(-∞,0](x 1≠x 2),都有x 2-x 1f (x 2)-f (x 1)>0,则( )A .f (-5)<f (4)<f (6)B .f (4)<f (-5)<f (6)C .f (6)<f (-5)<f (4)D .f (6)<f (4)<f (-5)第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },若P ={1,2,3,4},Q ={x |x +12<2,x ∈R },则P -Q =________.14.函数y =x 2+2x -3的单调递减区间是________.15.若函数f (x )=kx 2+(k -1)x +2是偶函数,则f (x )的递减区间是________.16.设函数f (x )=⎩⎪⎨⎪⎧|x -1|(0<x <2),2-|x -1|(x ≤0,或x ≥2),则函数y =f (x )与y =12的图象的交点个数是________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知集合A ={x |2≤x ≤8},B ={x |1<x <6},C ={x |x >a },U =R . (1)求A ∪B ,(∁U A )∩B ;(2)若A ∩C ≠∅,求a 的取值范围.18.(12分)设A ={x |x 2+2(a +1)x +a 2-1=0},B ={x |x (x +4)(x -12)=0,x ∈Z }.若A ∩B =A ,求a 的取值范围.19.(12分)已知函数f (x )=-2x +m ,其中m 为常数. (1)求证:函数f (x )在R 上是减函数; (2)当函数f (x )是奇函数时,求实数m 的值.20.(12分)某公司生产的水笔上年度销售单价为0.8元,年销售量为1亿支.本年度计划将销售单价调至0.55~0.75元(含端点值),经调查,若销售单价调至x元,则本年度新增销售量y(亿支)与x-0.4成反比,且当x=0.65时,y=0.8.(1)求y与x的函数关系式;(2)若每支水笔的成本价为0.3元,则水笔销售单价调至多少时,本年度该公司的收益比上年度增加20%?21.(12分)已知函数f(x)是正比例函数,函数g(x)是反比例函数,且f(1)=1,g(1)=2,(1)求函数f(x)和g(x);(2)判断函数f(x)+g(x)的奇偶性.(3)求函数f(x)+g(x)在(0,2]上的最小值.22.(12分)函数f(x)=ax+b1+x2是定义在(-1,1)上的奇函数,且f(12)=25.(1)求f(x)的解析式;(2)证明f(x)在(-1,1)上为增函数;(3)解不等式f(t-1)+f(t)<0.第一章集合与函数概念单元综合测试一答案第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.答案:C2.解析:M=[2,+∞),N=R.答案:C3.解析:因为阴影部分既在集合∁U B中又在集合A中,所以阴影部分为(∁B)∩A.U答案:A4.解析:可借助V enn图(如图2)解决,数形结合.图2答案:A5.解析:根据函数的概念知,只有“一对一”或“多对一”对应才能构成函数关系.答案:A6.答案:B7.解析:根据映射定义,A中每一个元素在B中仅有1个元素与之对应,仅D适合.答案:D8.解析:∵x =-2,而-2<0, ∴f (-2)=(-2)2=4. 又4>0,∴f [f (-2)]=f (4)=4. 答案:C9.解析:画出函数y =x 2-2x +3,-1≤x ≤2的图象,如图3所示,观察函数的图象可得图象上所有点的纵坐标的取值范围是[2,6],所以值域是[2,6].图3答案:C10.解析:xf (x )<0⇔x 与f (x )异号,由函数图象及奇偶性易得结论. 答案:D11.解析:∵f (x )是偶函数,∴f (x )的图象关于y 轴对称.∴f (x )在[-7,0]上是减函数,且最大值为6. 答案:B12.解析:∵对任意x 1,x 2∈(-∞,0](x 1≠x 2),都有x 2-x 1f (x 2)-f (x 1)>0,∴对任意x 1,x 2∈(-∞,0],若x 1<x 2,总有f (x 1)<f (x 2),∴f (x )在(-∞,0]上是增函数.∴f (-4)>f (-5)>f (-6).又∵函数f (x )是偶函数,∴f (-6)=f (6), f (-4)=f (4),∴f (6)<f (-5)<f (4). 答案:C第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.解析:因为x ∉Q ,所以x ∈∁R Q ,又Q ={x |-12≤x <72}, 故∁R Q ={x |x <-12,或x ≥72},故P -Q ={4}. 答案:{4}14.解析:由x 2+2x -3≥0,得x ≥1或x ≤-3, ∴函数减区间为(-∞,-3]. 答案:(-∞,-3]15.解析:∵f (x )是偶函数,∴f (-x )=kx 2-(k -1)x +2=kx 2+(k -1)x +2=f (x ). ∴k =1.∴f (x )=x 2+2,其递减区间为(-∞,0]. 答案:(-∞,0]16.解析:函数y =f (x )的图象如图5所示,则函数y =f (x )与y =12的图象的交点个数是4.图5答案:4三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.解:(1)A ∪B ={x |2≤x ≤8}∪{x |1<x <6}={x |1<x ≤8}. ∁U A ={x |x <2或x >8}. ∴(∁U A )∩B ={x |1<x <2}. (2)∵A ∩C ≠∅,∴a <8.18.解:由B ={x |x (x +4)(x -12)=0,x ∈Z },得B ={-4,0}.由A ∩B =A ,得A ⊆B .于是,A 有四种可能,即A =∅,A ={-4},A ={0},A ={-4,0}.以下对A 分类讨论:(1)若A =∅,则Δ=4(a +1)2-4a 2+4=8a +8<0,解得a <-1; (2)若A ={-4},则Δ=8a +8=0,解得a =-1.此时x 2+2(a +1)x +a 2-1=0可化为x 2=0,所以x =0,这与x =-4是矛盾的;(3)若A ={0},则由(2)可知,a =-1; (4)若A ={-4,0},则⎩⎪⎨⎪⎧Δ=8a +8>0,-2(a +1)=-4,a 2-1=0,解得a =1.综上可知,a 的取值范围是{a |a ≤-1,或a =1}.19.解:(1)证明:设x 1,x 2是R 上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=(-2x 1+m )-(-2x 2+m )=2(x 2-x 1),∵x 1<x 2,∴x 2-x 1>0. ∴f (x 1)>f (x 2).∴函数f (x )在R 上是减函数. (2)∵函数f (x )是奇函数,∴对任意x ∈R ,有f (-x )=-f (x ). ∴2x +m =-(-2x +m ).∴m =0.20.解:(1)设y =kx -0.4,由x =0.65,y =0.8,得k =0.2,所以y =15x -2(0.55≤x ≤0.75).(2)依题意,(1+15x -2)·(x -0.3)=1×(0.8-0.3)×(1+20%),解得x =0.6或x =0.5(舍去),所以水笔销售单价应调至0.6元. 21.解:(1)设f (x )=k 1x ,g (x )=k 2x ,其中k 1k 2≠0. ∵f (1)=1,g (1)=2,∴k 1×1=1,k 21=2. ∴k 1=1,k 2=2.∴f (x )=x ,g (x )=2x . (2)设h (x )=f (x )+g (x ),则h (x )=x +2x , ∴函数h (x )的定义域是(-∞,0)∪(0,+∞). ∵h (-x )=-x +2-x=-(x +2x )=-h (x ),∴函数h (x )是奇函数,即函数f (x )+g (x )是奇函数.(3)由(2)知h (x )=x +2x ,设x 1,x 2是(0,2]上的任意两个实数,且x 1<x 2, 则h (x 1)-h (x 2)=(x 1+2x 1)-(x 2+2x 2)=(x 1-x 2)+(2x 1-2x 2)=(x 1-x 2)(1-2x 1x 2)=(x 1-x 2)(x 1x 2-2)x 1x 2,∵x 1,x 2∈(0,2],且x 1<x 2,∴x 1-x 2<0,0<x 1x 2<2. ∴x 1x 2-2<0,(x 1-x 2)(x 1x 2-2)>0. ∴h (x 1)>h (x 2).∴函数h (x )在(0,2]上是减函数,函数h (x )在(0,2]上的最小值是h (2)=2 2.即函数f (x )+g (x )在(0,2]上的最小值是2 2.22.解:(1)由题意得⎩⎨⎧f (0)=0,f (12)=25,解得⎩⎪⎨⎪⎧a =1,b =0.所以f (x )=x 1+x 2. (2)证明:任取两数x 1,x 2,且-1<x 1<x 2<1,则f (x 1)-f (x 2)=x 11+x 21-x 21+x 22=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22).因为-1<x 1<x 2<1,所以x 1-x 2<0,x 1x 2<1,故1-x 1x 2>0,所以f (x 1)-f (x 2)<0,故f (x )在(-1,1)上是增函数.(3)因为f (x )是奇函数,所以由f (t -1)+f (t )<0,得f (t -1)<-f (t )=f (-t ).由(2)知, f (x )在(-1,1)上是增函数,所以-1<t -1<-t <1,解得0<t <12,所以原不等式的解集为{t |0<t <12}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3题图
2011-2012学年度第一学期佛冈中学高一级 高中数学《必修一》第一章教学质量检测卷
时间:120分钟。
总分:150分。
命题者:XJL
班别: 姓名: 座号:
一、选择题(将选择题的答案填入下面的表格。
本大题共10小题,每小题5分,共50分。
) 题号 1 2 3 4 5 6 7 8 9 10 答案
1、下列各组对象中不能构成集合的是( )
A 、佛冈中学高一(20)班的全体男生
B 、佛冈中学全校学生家长的全体
C 、李明的所有家人
D 、王明的所有好朋友 2、已知集合{}{}
5,1,A x R x B x R x =∈≤=∈>那么A
B 等于
( )
A.{1,2,3,4,5} B.{2,3,4,5} C.{2,3,4} D.{}
15x R x ∈<≤ 3、设全集{}1,2,3,4,5,6,7,8U =,集合{1,2,3,5}A =,{2,4,6}B =,
则图中的阴影部分表示的集合为( )
A .{}2
B .{}4,6
C .{}1,3,5
D .{}4,6,7,8 4、下列四组函数中表示同一函数的是( )
A.x x f =)(,2())g x x =
B.()2
2
1)(,)(+==x x g x x f
C.2()f x x =
()g x x = D.()0f x =,()11g x x x
=--
5、函数2
()
21f x x ,(0,3)x。
()
7,f a 若则a 的值是 ( )
A 、1
B 、1-
C 、2
D 、2±
6、2,
0()[(1)]1 0x x f x f f x ()设,则 ,(
)+≥⎧=-=⎨
<⎩( ) A 、3 B 、1 C. 0 D.-1
题号 一 二 15 16 17 18 19 20 总分 得分
7、()
3f x x 函数的值域为( )
A 、[3,
) B 、(
,3] C 、[0),
D 、R
8、下列四个图像中,不可能是函数图像的是 ( )
9、设f(x)是R 上的偶函数,且在[0,+∞)上单调递增,则f(-2),f(3),f(-π)的大小顺序是:( ) A 、 f(-π)>f(3)>f(-2) B 、f(-π) >f(-2)>f(3) C 、 f(-2)>f(3)> f(-π) D 、 f(3)>f(-2)> f(-π) 10、在集合{a ,b ,c ,d}上定义两种运算⊕和⊗如下:
那么b ⊗ ()a c ⊕=( )
A .a
B .b
C .c
D .d 二、填空题(本大题共4小题,每小题5分,共20分) 11、函数0(3)2
y x x =
+--的定义域为
12、函数2()610f x x x =-+-在区间[0,4]的最大值是
13、若}4,3,2,2{-=A ,},|{2
A t t x x
B ∈==,用列举法表示B 是 . 14、下列命题:①集合{},,,a b c d 的子集个数有16个;②定义在R 上的奇函数()f x 必满足(0)0f =;
③()()2
()21221f x x x =+--既不是奇函数又不是偶函数;④偶函数的图像一定与y 轴相交;⑤1()f x x
=在()(),00,-∞+∞上是减函数。
其中真命题的序号是
(把你认为正确的命题的序号都填上).
三、解答题(本大题6小题,共80分.解答时应写出文字说明、证明过程或演算步骤). 15、(本题满分12分)已知集合A ={x| 73<≤x }, B={x| 2<x<10}, C={x|x<a} (1)求;B A ⋃ (2)求()R C A B ; (3)若A C ⊆,求a 的取值范围.
x
O
y
x
y
y
y
O
O
O
A
B
C
D
16、(本题满分12分)已知函数31
()
f x x
x ,判断()
f x的奇偶性并且证明。
17、(本题满分14分)已知函数
3
()
1
x
f x
x
,求()
f x在区间[2,5]上的最大值和最小值
18、(本题满分14分)已知函()11
f x x
(1)用分段函数的形式表示该函数;
(2)画出该函数的图象;
(3)写出该函数的值域。
19、(本题满分14分)已知定义在[]3,2-的一次函数()f x 为单调增函数,且值域为[]2,7,
(I )求()f x 的解析式;
(II )求函数[]()f f x 的解析式并确定其定义域。
20、 (本题满分14分)已知二次函数()f x 的最小值为1,且(0)(2)3f f ==。
(1)求()f x 的解析式;
(2)若()f x 在区间[2,1]a a +上不单调...
,求实数a 的取值范围; (3)在区间[1,1]-上,()y f x =的图象恒在221y x m =++的图象上方,试确定实数m 的取值范围。
2011-2012学年度第一学期佛冈中学高一级 高中数学《必修一》第一章教学质量检测卷
参考答案
11、|2,3x
R x
x
且 12、-1 13、4,9,16 14、 ① ②
三、解答题
15、解:(1)A ∪B={x ∣2<x<10}……………..4分 (2)|37R C A
x x
x
或
(C R A)∩B={ x ∣2<x<3或7≤x<10}.........................8分
(3)a≥7........................12分 16.解: ()f x 是奇函数…………….2分
证明: ()f x 的定义域是(-,0)(0,+)
,定义域关于原点对称…………….4分 在()f x 的定义域内任取一个x,则有 3
3
3
31
1()
()()()()f x x x f x x x
…………….10分
所以, ()f x 是奇函数…………….12分
17.解:在[2,5]上任取两个数1
2x x ,则有…………….2分
1212121212333()()
()
011(1)(1)
x x x x f x f x x x x x …………….8分
所以,()f x 在[2,5]上是增函数。
…………….10分 所以,当2x 时,min ()(2)2f x f …………….12分
当5x
时,max
5
()(5)
2
f x f …………….14分
18、
解: (1)
…………….6分
(2)画图(略)…………….10分
(3)值域[]1,+∞ ……………14分
19、解:(1)设()(0)f x kx b k =+>…………….2分
由题意有:3227k b k b -+=⎧⎨+=⎩
…………….6分
1
5
k b =⎧∴⎨=⎩ …………….8分 ()5f x x ∴=+,[]3,2x ∈-………….10分
(2)(())(5)10f f x f x x =+=+ {}3x ∈-…………….14分 20、.解:(1)由已知,设2()(1)1f x a x =-+,…………….2分
由(0)3f =,得2a =,故2
()243f x x x =-+。
…………………4分 (2)要使函数不单调,则211a a <<+,则1
02
a <<。
……………8分 (3)由已知,即2
243221x x x m -+>++,化简得2
310x x m -+->…………10分 设2
()31g x x x m =-+-,则只要min ()0g x >,……………12分 而min ()(1)1g x g m ==--,得1m <-。
……………14分
,(1)2,(1)
x x y
x x。