高三数学空间向量及其坐标运算
空间向量的坐标运算
(x2 x1 ) (y2 y1 ) (z2 z1 ) ;
例3 已知A(3,3,1),B(1,0,5)求
线段 AB的中点坐标和长度.
z 解:设M(x,y,z)是AB的中点,则 B(1,0,5)
OM=
M
1 2
(OA+OB)
AM=MB
o y
x
d A, B 1 3 0 3 5 1 29
2 2 2
A(3,3,1)
例4 已知A(3,3,1),B(1,0,5)求 到A,B两点距离相等的点P(x,y,z)的坐
标x,y,z满足的条件. 解:设点P到A,B的距离相等,则
2 2 2 2 2
( x 3) y 3 z 1 x 1 y 0 z 5
例2 已知向量a=(-2,2,0),b=(-2,0,2), 求向 量n使n⊥a,且n⊥b. 解:设n=(x, y, z,)则 n•a=(x, y, z,)•(-2,2,0)=-2x+2y=0 n•b=(x, y, z,)•(-2,0,2)=-2x+2z=0 所以y=x, z=x
于是n= (x, x, x)=x(1,1,1),
C 1 A1 N C A B
B1
M
课后作业
课本:P94 练习
P97 练习
z
D1
A1
F1 E1
B1
C1
D(0,0,0)
1 F1(O, 4
,1)
O D
A
C
y
x
B (1,,1) E1 3
4
思考题:直三棱柱ABC A1B1C1 , 底面ABC中, CA=CB=1,BCA=90o,棱AA1=2,M , N 分别为A1B1 ,AA1的中点. (1)求BN的长; (2)求 cos BA1 , CB1 的值; (3)求证:A1 B C1M .
2024年高考数学总复习第八章《立体几何与空间向量》空间向量及其运算
2024年高考数学总复习第八章《立体几何与空间向量》§8.5空间向量及其运算最新考纲1.经历向量及其运算由平面向空间推广的过程.2.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.3.掌握空间向量的线性运算及其坐标表示.4.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.1.空间向量的有关概念名称概念表示零向量模为0的向量0单位向量长度(模)为1的向量相等向量方向相同且模相等的向量a =b相反向量方向相反且模相等的向量a 的相反向量为-a共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量a ∥b 共面向量平行于同一个平面的向量2.空间向量中的有关定理(1)共线向量定理空间两个向量a 与b (b ≠0)共线的充要条件是存在实数λ,使得a =λb .(2)共面向量定理共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量.(3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,{a ,b ,c }叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉.(2)空间向量数量积的运算律①(λa )·b =λ(a ·b );②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c .4.空间向量的坐标表示及其应用设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示坐标表示数量积a·ba 1b 1+a 2b 2+a 3b 3共线a =λb (b ≠0,λ∈R )a 1=λb 1,a 2=λb 2,a 3=λb 3垂直a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模|a |a 21+a 22+a 23夹角〈a ,b 〉(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23概念方法微思考1.共线向量与共面向量相同吗?提示不相同.平行于同一平面的向量就为共面向量.2.零向量能作为基向量吗?提示不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.3.空间向量的坐标运算与坐标原点的位置选取有关吗?提示无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)空间中任意两个非零向量a ,b 共面.(√)(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).(×)(3)对于非零向量b ,由a ·b =b ·c ,则a =c .(×)(4)两向量夹角的范围与两异面直线所成角的范围相同.(×)(5)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.(√)(6)若a·b <0,则〈a ,b 〉是钝角.(×)题组二教材改编2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是()A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案A解析BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________.答案2解析|EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)=12+22+12+2(1×2×cos 120°+0+2×1×cos 120°)=2,∴|EF →|=2,∴EF 的长为2.题组三易错自纠4.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是()A .垂直B .平行C .异面D .相交但不垂直答案B解析由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),∴AB →=-3CD →,∴AB →与CD →共线,又AB 与CD 没有公共点,∴AB ∥CD .5.已知a =(2,3,1),b =(-4,2,x ),且a ⊥b ,则|b |=________.答案26解析∵a ⊥b ,∴a ·b =2×(-4)+3×2+1·x =0,∴x =2,∴|b |=(-4)2+22+22=2 6.6.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C四点共面,则实数t =______.答案18解析∵P ,A ,B ,C 四点共面,∴34+18+t =1,∴t =18.题型一空间向量的线性运算例1如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)MP →+NC 1→.解(1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点,所以MP →=MA →+AP →=12A 1A →+AP→=-12a +c +12b =12a +12b +c .又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a ,所以MP →+NC 1→+12b ++12c =32a +12b +32c .思维升华用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1(1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.答案12AB →+12AD →+AA 1→解析∵OC →=12AC →=12(AB →+AD →),∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→.(2)如图,在三棱锥O —ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →等于()A.12(-a +b +c )B.12(a +b -c )C.12(a -b +c )D.12(-a -b +c )答案B解析NM →=NA →+AM →=(OA →-ON →)+12AB→=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC→=12(a +b -c ).题型二共线定理、共面定理的应用例2如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证:BD ∥平面EFGH .证明(1)连接BG ,则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH→=EF →+EH →,由共面向量定理的推论知E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH ,所以BD ∥平面EFGH .思维升华证明三点共线和空间四点共面的方法比较三点(P ,A ,B )共线空间四点(M ,P ,A ,B )共面PA →=λPB →且同过点P MP →=xMA →+yMB→对空间任一点O ,OP →=OA →+tAB →对空间任一点O ,OP →=OM →+xMA →+yMB →对空间任一点O ,OP →=xOA →+(1-x )OB→对空间任一点O ,OP →=xOM →+yOA →+(1-x -y )OB→跟踪训练2如图所示,已知斜三棱柱ABC —A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面?(2)直线MN 是否与平面ABB 1A 1平行?解(1)∵AM →=kAC 1→,BN →=kBC →,∴MN →=MA →+AB →+BN →=kC 1A →+AB →+kBC →=k (C 1A →+BC →)+AB →=k (C 1A →+B 1C 1→)+AB →=kB 1A →+AB →=AB →-kAB 1→=AB →-k (AA 1→+AB →)=(1-k )AB →-kAA 1→,∴由共面向量定理知向量MN →与向量AB →,AA 1→共面.(2)当k =0时,点M ,A 重合,点N ,B 重合,MN 在平面ABB 1A 1内,当0<k ≤1时,MN 不在平面ABB 1A 1内,又由(1)知MN →与AB →,AA 1→共面,∴MN ∥平面ABB 1A 1.综上,当k =0时,MN 在平面ABB 1A 1内;当0<k ≤1时,MN ∥平面ABB 1A 1.题型三空间向量数量积的应用例3如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ;(2)求异面直线AN 与CM 所成角的余弦值.(1)证明设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p ,q ,r 三个向量两两夹角均为60°.MN →=AN →-AM →=12(AC →+AD →)-12AB→=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0.∴MN →⊥AB →,即MN ⊥AB .同理可证MN ⊥CD .(2)解设向量AN →与MC →的夹角为θ.∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r -12p2-12q ·p +r ·q -12r ·2-12a 2cos 60°+a 2cos 60°-12a 2cos2-a 24+a 22-=a 22.又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cosθ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华(1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角.(3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.跟踪训练3如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值.解(1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2+12+6,∴|AC 1→|=6,即AC 1的长为6.(2)BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1,∴cos 〈BD 1→,AC →〉=BD 1,→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.1.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于()A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)答案B解析由b =12x -2a ,得x =4a +2b =(8,12,-16)+(-8,-6,-4)=(0,6,-20).2.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面;③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是()A .0B .1C .2D .3答案A解析a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.3.已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于()A.32B .-2C .0 D.32或-2答案B解析当m =0时,a =(1,3,-1),b =(2,0,0),a 与b 不平行,∴m ≠0,∵a ∥b ,∴2m +12=3m =m -1-m ,解得m =-2.4.在空间直角坐标系中,已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且满足|PA |=|PB |,则P 点坐标为()A .(3,0,0)B .(0,3,0)C .(0,0,3)D .(0,0,-3)答案C 解析设P (0,0,z ),则有(1-0)2+(-2-0)2+(1-z )2=(2-0)2+(2-0)2+(2-z )2,解得z =3.5.已知a =(1,0,1),b =(x ,1,2),且a·b =3,则向量a 与b 的夹角为()A.5π6 B.2π3 C.π3 D.π6答案D解析∵a·b =x +2=3,∴x =1,∴b =(1,1,2),∴cos 〈a ,b 〉=a·b |a||b |=32×6=32,又∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π6,故选D.6.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是()A.3B.2C .1 D.3-2答案D 解析∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2,故|BD→|=3-2.7.已知a=(2,1,-3),b=(-1,2,3),c=(7,6,λ),若a,b,c三向量共面,则λ=________.答案-9解析由题意知c=x a+y b,即(7,6,λ)=x(2,1,-3)+y(-1,2,3),x-y=7,+2y=6,3x+3y=λ,解得λ=-9.8.已知a=(x,4,1),b=(-2,y,-1),c=(3,-2,z),a∥b,b⊥c,则c=________.答案(3,-2,2)解析因为a∥b,所以x-2=4y=1-1,解得x=2,y=-4,此时a=(2,4,1),b=(-2,-4,-1),又因为b⊥c,所以b·c=0,即-6+8-z=0,解得z=2,于是c=(3,-2,2).9.已知V为矩形ABCD所在平面外一点,且VA=VB=VC=VD,VP→=13VC→,VM→=23VB→,VN→=23VD→.则VA与平面PMN的位置关系是________.答案平行解析如图,设VA→=a,VB→=b,VC→=c,则VD→=a+c-b,由题意知PM→=23b-13c,PN→=23VD→-13VC→=23a-23b+13c.因此VA→=32PM→+32PN→,∴VA→,PM→,PN→共面.又VA⊄平面PMN,∴VA∥平面PMN.10.已知ABCD -A 1B 1C 1D 1为正方体,①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2;②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|.其中正确的序号是________.答案①②解析①中,(A 1A →+A 1D 1→+A 1B 1→)2=A 1A →2+A 1D 1→2+A 1B 1→2=3A 1B 1→2,故①正确;②中,A 1B 1→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④也不正确.11.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面;(2)判断点M 是否在平面ABC 内.解(1)由题意知OA →+OB →+OC →=3OM →,∴OA →-OM →=(OM →-OB →)+(OM →-OC →),即MA →=BM →+CM →=-MB →-MC →,∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且过同一点M ,∴M ,A ,B ,C 四点共面.∴点M 在平面ABC 内.12.已知a =(1,-3,2),b =(-2,1,1),A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE →⊥b ?(O 为原点)解(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a +b |=02+(-5)2+52=5 2.(2)令AE →=tAB →(t ∈R ),所以OE →=OA →+AE →=OA →+tAB→=(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t ,4-2t ),若OE →⊥b ,则OE →·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95.因此存在点E ,使得OE →⊥b ,此时E -65,-145,13.如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x +y +z =________.答案56解析连接ON ,设OA →=a ,OB →=b ,OC →=c ,则MN →=ON →-OM →=12(OB →+OC →)-12OA →=12b +12c -12a ,OG →=OM →+MG →=12OA →+23MN →=12a+12c -12a =16a +13b +13c .又OG →=xOA →+yOB →+zOC →,所以x =16y =13,z =13,因此x +y +z =16+13+13=56.14.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 是()A .钝角三角形B .锐角三角形C .直角三角形D .不确定答案C 解析∵M 为BC 中点,∴AM →=12(AB →+AC →),∴AM →·AD →=12(AB →+AC →)·AD →=12AB →·AD →+12AC →·AD →=0.∴AM ⊥AD ,△AMD 为直角三角形.15.已知O (0,0,0),A (1,2,1),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB→取最小值时,点Q 的坐标是________.答案(1,1,2)解析由题意,设OQ →=λOP →,则OQ →=(λ,λ,2λ),即Q (λ,λ,2λ),则QA →=(1-λ,2-λ,1-2λ),QB →=(2-λ,1-λ,2-2λ),∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(1-2λ)(2-2λ)=6λ2-12λ+6=6(λ-1)2,当λ=1时取最小值,此时Q 点坐标为(1,1,2).16.如图,在直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为棱AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明设CA →=a ,CB →=b ,CC ′→=c ,根据题意得|a |=|b |=|c |,且a ·b =b ·c =c ·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a ,∴CE →·A ′D →=-12c 2+12b 2=0,∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |,AC ′→·CE →=(-a +c +12c =12c 2=12|a |2,∴cos 〈AC ′→,CE →〉=AC ′,→·CE →|AC ′→||CE →|=12|a |22×52|a |2=1010,即异面直线CE 与AC ′所成角的余弦值为1010.。
空间向量数量积及坐标运算
空间向量数量积及坐标运算在空间解析几何中,向量是研究的重要对象之一,而向量的数量积和坐标运算是向量运算中的基本概念。
本文将介绍空间向量的数量积及其坐标运算方法。
一、空间向量的数量积空间中的向量可以用其坐标表示,记作a = (x1, y1, z1)和b = (x2, y2,z2),其中a、b分别是空间中的两个向量,xi、yi、zi为它们在笛卡尔坐标系中的坐标。
向量的数量积(又称点积或内积)定义为两个向量的对应坐标的乘积之和,即:a ·b = x1 * x2 + y1 * y2 + z1 * z2其中·表示数量积运算。
性质:1.数量积是实数。
2.数量积的结果等于向量乘积和坐标乘积之和。
3.数量积满足交换律:a · b = b · a。
4.数量积满足分配率:(a + b) · c = a · c + b · c。
二、向量的坐标运算1. 向量的加法设a = (x1, y1, z1)和b = (x2, y2, z2)是空间中的两个向量,它们的和记为c,则c的坐标为:x = x1 + x2y = y1 + y2z = z1 + z2即向量的和的每个坐标等于对应向量的坐标之和。
性质:1.向量的加法满足交换律:a + b = b + a。
2.向量的加法满足结合律:(a + b) + c = a + (b + c)。
2. 向量的减法设a = (x1, y1, z1)和b = (x2, y2, z2)是空间中的两个向量,它们的差记为c,则c的坐标为:x = x1 - x2y = y1 - y2z = z1 - z2即向量的差的每个坐标等于对应向量的坐标之差。
3. 向量的数乘设k为实数,a = (x, y, z)是空间中的一个向量,ka为向量a的数乘,即ka 的坐标为:x' = k * xy' = k * yz' = k * z性质:1.数乘满足结合律:k(ka) = (k * k')a。
空间向量及其运算的坐标表示_课件
数量积
a·
b
_____a_1_b__1+__a__2b__2_+_______ a3b3
已知a=(1,-2,1),a-b=(-1,2,-1),则b 等于( )
A.(2,-4,2)
B.(-2,4,-2)
C.(-2,0,-2)
D.(2,1,-3)
解析 依题意,得b=a-(-1,2,-1)=a+(1,-2,1)=2(1,-2,1) =(2,-4,245°), ∠yOz=90°,如下图
空间直角坐标系
空间直角坐标系
坐标表示:对于空间任意一个向量p,存在有序实数组{x,y,z} , 使得p=xi+yj+zk,则把x,y,z称作向量p在单位正交基底i,j , k下的坐标,记作p=(x,y,z),其中数x就叫做点P的横坐标,数 y就叫做点P的纵坐标,数z就叫做点P的竖坐标
在棱长为1的正方体ABCD—A1B1C1D1中,E,F分别是D1D , B中D点的,中试点建,立点适G当在的棱坐CD标上系,,且写|C出GE|=,F|,CDG|,,HH的坐 标.
解 建立如图所示的空间直角坐标系 . 点E在z轴上,它的横坐标、纵坐标均为0
, 而过EF作为FDMD⊥1的A中D点, F故N⊥其D坐C标, 由为平面几何知识 ,
空间向量运算的坐标表示
空间向量a,b,其坐标形式为a=(a1,a2,a3),b=(b1,b2,
b3). 向量运算
向量表示
坐标表示
加法 减法 数乘
a+b a-b λa
(_a_1_+__b__1,___a_2_+__b_2_,__a_3_+___ b_(_3a)_1_-_b__1,__a__2-_b__2,___a_3_-_b_3_)_ _____(λ__a_1_,__λ_a_2_,__λ_a__3)____
空间向量及其坐标运算
高三第一轮复习数学---空间向量的坐标运算一、教学目标::向量的坐标运算和建系意识. 二、教学重点:向量的坐标运算 三、教学过程:(一)主要知识: 1.空间直角坐标在空间选定一点O 和一个单位正交基底{ī,j ,k },以点O 为原点,分别以ī,j ,k 的正方向建立三条坐标轴: x 轴,y 轴,z 轴,使∠xOy=135°(或45°),∠yOz=90°,就建立了一个空间直角坐标系O-xyz 。
点O 叫原点,ī,j ,k 叫坐标向量,一般作右手直角坐标系。
任一点A 对应一个向量OA ,存在唯一的实数组x 、y 、z. =OA x ī+y j+z k . 记为A (x 、y 、z ),叫空间直角坐标系中的坐标。
其中x 叫点A 的横坐标,y 叫点A 的纵坐标,z 叫点A 的竖坐标2.向量的直角坐标运算 (1)设a=(a 1,a 2,a 3),b=(b 1,b 2,b 3)则a+b =( a 1 +b 1 ,a 2 +b 2,a 3+b 3) a-b =( a 1 -b 1 ,a 2 -b 2,a 3-b 3) λa=(λa 1,λa 2,λa 3)(λ∈R ) a·b =a 1b 1+a 2b 2+a 3b 3a ∥b ↔ a 1 =λb 1 ,a 2=λb 2,a 3=λb 3(λ∈R ) a ⊥b ↔ a 1b 1+ a 2b 2 +a 3b 3=0 (2)设A (a 1,a 2,a 3),B (b 1,b 2,b 3)则=-=OA OB AB (b 1,b 2,b 3)-(a 1,a 2,a 3)=( b 1 -a 1 ,b 2-a 2,b 3-a 3)。
即一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
3.夹角和距离公式设a=(a 1,a 2,a 3),b=(b 1,b 2,b 3)则232221a a a a a a ++=⋅=232221b b b b b b ++=⋅=a·b = a 1b 1+a 2 b 2+a 3b 3 232221232221332211b a b a b a cosbb b a a a ba ++⋅++++=⋅已知),,(111z y x A ,),,(222z y x B 则()()()221221221z z y y x x -+-+-==空间两点间距离公式4.如果表示向量a 的有向线段所在的直线垂直于平面α,则称这个向量垂直于平面α,记为α⊥a 如果α⊥a ,那么向量a 叫做平面α的法向量 5. 设A (a 1,a 2,a 3),B (b 1,b 2,b 3)则AB 中点坐标为)2,2,2(332211b a b a b a +++6.向量位置与立体几何中位置对照:⑴AB//CD CD AB CD AB λ=⇔⇔// ⑵0=⋅⇔⊥CD AB CD AB⑶证A 、B 、C 、D 四点共面可通过证1=++++=+=r q p OD r OC q OB p OA AD y AC x AB 且或⑷AB ==⑸线线角即为两向量的夹角或其补角⑹线面角即为线所在向量与面的法向量的夹角的余角或再减90⑺面面角即为两面的法向量的夹角或其补角 ⑻距离可通过求在法向量上投影的长度得到(二)例题分析:例1(1) 已知直角坐标系内三点A (2,4,1),B (3,7,5),C (4,10,9),判断A 、B 、C 三点是否共线?(2)已知直角坐标系内四点A (2,3,1),B (4,1,-2),C (6,3,7),D (-5,4,8),判断A 、B 、C 、D 四点是否共线?解:(1)),8,6,2(),4,3,1(==AC AB 可见AB AC AB AC 和故,2=共线,即A,B,C 三点共线。
空间向量的直角坐标及其运算
∴ AP AB , AP AD,又 AB AD A , AP 平面 ABCD,
∴ AP 是平面 ABCD的法向量; 解:(2) AB 22 12 42 21 , AD 42 22 02 2 5 ,
∴ SABC
1 2
AB
AC
sin
A
101 。 2
7、在棱长为1的正方体 ABCD A1B1C1D1 中,E, F 分别是 DD1、DB 中点,G 在棱CD 上,
CG
1 4
CD
,
H
是
C1G
的中点;
(1)求证: EF B1C ;(2)求 EF 与C1G 所成的角的余弦;(3)求 FH 的长。
解:如图以 D 为原点建立直角坐标系 D xyz ,
(3)证明线面平行:若直线的方向向量与平面的一个法向量垂直,则这直线与该平面平行;
(4)证明面面平行:若两个不重合平面的法向量平行,则这两个平面就互相平行。 11、用向量求异面直线所成角:
找出两条异面直线各自的一个方向向量,计算这两个向量的夹角 ,则 (或 的补角)
即为两条异面直线所成的角。
设 a、b 是异面直线, d1 是直线 a 的一个方向向量, d2 是直线b 的一个方向向量,异面
一、基本概念:
1、空间直角坐标系:
(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用 i, j,k
表示;
(2)在空间选定一点O 和一个单位正交基底 i, j,k ,以点O 为原点,分别以 i, j,k 的方向
为正方向建立三条数轴:x 轴、 y 轴、z 轴,它们都叫坐标轴;我们称建立了一个空间 直角坐标系 O xyz ,点O 叫原点,向量 i, j, k 都叫单位向量;通过每两个坐标轴的平
空间向量的坐标和运算
空间向量的坐标和运算一、空间向量的坐标和运算1.空间直角坐标系在单位正方体$oabc$-$d$′$a$′$b$′$c$′中,以$o$点为原点,分别以射线$oa$,$oc$,$od$′的方向为正方向,以线段$oa$,$oc$,$od$′的长为单位长,建立三条数轴:$x$轴、$y$轴、$z$轴。
这时我们说建立了一个空间直角坐标系$oxyz$,其中点$o$叫做坐标原点,$x$轴、$y$轴、$z$轴叫做坐标轴。
通过每两个坐标轴的平面叫做坐标平面,分别称为$xoy$平面、$yoz$平面、$xoz$平面。
2.空间矢量的坐标一个向量在空间直角坐标系中的坐标等于表示向量的有向线段的终点坐标减去起点坐标。
如果$a(x_1,y_1,z_1)$,$B(x_2,y_2,z_2)$,那么$\overrightarrow{AB}=\overrightarrow{ob}-\overrightarrow{OA}$=$(x_2-x_1$,$y_2-y_1$,$z_2-z_1)$。
3、空间向量的坐标运算设置$\boldsymbol(x_1,y_1,z_1)$,$\boldsymbol B(x_2,y_2,z_2)$,然后(1)$\boldsymbola+\boldsymbolb$=$(x_1+x_2,y_1+y_2,z_1+z_2)$。
(2) $\boldsymbola-\boldsymbolb$=$(x_1-x_2,y_1-y_2,z_1-z_2)$(3)$\boldsymbola·\boldsymbolb$=$x_1x_2+y_1y_2+z_1z_2$。
(4) $|\boldsymbola |=\sqrt{x^2_1+y^2_1+z^2_1}$(5)$λ\boldsymbola=(λx_1,λy_1,λz_1)$。
4.平行(共线)和垂直空间向量的充要条件设非零向量$\boldsymbola(x_1,y_1,z_1)$,$\boldsymbolb(x_2,y_2,z_2)$,则$\boldsymbola∥\boldsymbolb\leftrightarrow\frac{x_1}{x_2}=\frac{y_1}{y_2}=\frac{z_1}{z_2}=λ(λ∈\mathbf{r})$$\boldsymbola⊥\boldsymbolb\leftrightarrow\boldsymbola·\boldsymbolb=0\leftrig htarrow$$x_1x_2+y_1y_2+z_1z_2=0$。
高三数学空间向量及其坐标运算
[单选]VCO电路中,通过改变回路电抗元件参数改变频率,此可变器件为()。A.电感B.电容C.变容二极管 [单选]甲与乙订立了一份合同,约定甲供给乙狐皮围脖200条,总价6万元,但合同未规定狐皮围脖的质量标准和等级,也未封存样品。甲如期发货,乙验收后支付了货款。后乙因有20条围脖未能销出,便以产品质量不合格为由,向法院起诉,其诉讼代理人在审理过程中又主张合同无效。本案中, [单选]下面哪种病一般不引起血性白带()A.宫颈癌B.子宫内膜癌C.宫颈息肉D.重度宫颈靡烂E.阴道炎 [单选]下列属于颈椎病X线表现的有()A.可伴有小关节面硬化B.椎体边缘骨质增生、硬化C.椎间孔狭窄D.椎间隙变窄E.以上都是 [单选,A2型题,A1/A2型题]女性,60岁,颈后局限性肿痛6天,伴有畏寒、发热38.5℃,来急诊时已用抗生素治疗3天。体格检查见颈后发际下方肿胀,皮肤红肿,质地坚韧,界限不清,中央多个小脓头伴坏死组织,白细胞数16×10/L,中性粒细胞0.90(90%)。此时最恰当的治疗是选择()A.继 [单选]在保险合同履行过程中,按照约定交付保险费义务的人是()。A.受益人B.被保险人C.利益关系人D.投保人 [单选]患者咳嗽剧烈,气粗,喉燥咽痛,咯痰不爽,痰粘色黄,常伴鼻塞流黄涕,口渴,头痛,发热恶风,舌苔薄黄,脉浮数。其证属()A.痰湿犯肺B.痰热郁肺C.风热犯肺D.风寒袭肺E.风燥伤肺 [单选]操作员判定为无正当理由的超时车,系统默认为(),操作员可根据实际情况输入入口收费站的代码,确认后收取相应通行费。A.最近入口的收费站B.随机选择收费站C.相应路程入口的收费站D.最远入口收费站 [单选,A1型题]提示膀胱损伤的表现是()A.血尿B.假性尿失禁C.排尿障碍而膀胱空虚D.导尿管不易插入E.下腹部腹膜刺激征 [单选]能源效率标识中等级的数字越小,标明该用能产品能源效率()。A.越
空间向量坐标运算
空间向量坐标运算空间向量是指在空间中有大小和方向的线段。
空间向量的坐标运算包括向量的加法、减法、数乘和内积。
下面将对这些运算进行详细介绍。
一、向量的加法设空间中有两个向量A和B,它们的坐标分别为(Ax, Ay, Az)和(Bx, By, Bz)。
向量的加法即将两个向量的对应分量相加得到一个新的向量C。
它的坐标为(Ax+Bx, Ay+By, Az+Bz)。
例如,设A = (1, 2, 3)和B = (4, 5, 6),则A+B = (1+4, 2+5, 3+6) = (5, 7, 9)。
二、向量的减法向量的减法是指将一个向量减去另一个向量。
设向量A和B的坐标分别为(Ax, Ay, Az)和(Bx, By, Bz),则向量A减去向量B的坐标为(Ax-Bx, Ay-By, Az-Bz)。
例如,设A = (1, 2, 3)和B = (4, 5, 6),则A-B = (1-4, 2-5, 3-6) = (-3, -3, -3)。
三、向量的数乘向量的数乘是指一个向量乘以一个实数。
设向量A的坐标为(Ax, Ay, Az),实数k,则向量A乘以实数k的坐标为(kAx, kAy, kAz)。
例如,设A = (1, 2, 3),k = 2,则kA = (2*1, 2*2, 2*3) = (2, 4,6)。
四、向量的内积向量的内积又称为点乘,它是两个向量之间的一种运算。
设向量A和B的坐标分别为(Ax, Ay, Az)和(Bx, By, Bz),则向量A与向量B的内积为Ax*Bx + Ay*By + Az*Bz。
例如,设A = (1, 2, 3)和B = (4, 5, 6),则A·B = 1*4 + 2*5 +3*6 = 32。
向量的内积有以下几个性质:1. 交换律:A·B = B·A;2. 分配律:(A+B)·C = A·C + B·C;3. 数乘结合律:(kA)·B = k(A·B) = A·(kB)。
空间向量坐标运算
空间向量坐标运算空间向量是指具有大小和方向的直线段,在三维空间中通常用坐标表示。
空间向量的坐标运算包括向量的加法、减法、数量乘法、点乘和叉乘等。
下面将详细介绍这些运算。
1. 向量的加法和减法向量的加法和减法是指将两个向量相加或相减得到一个新的向量,其坐标运算规律如下:- 加法:若向量u的坐标为(u1, u2, u3),向量v的坐标为(v1, v2, v3),则向量u和v的和的坐标为(u1+v1, u2+v2, u3+v3);- 减法:若向量u的坐标为(u1, u2, u3),向量v的坐标为(v1, v2, v3),则向量u和v的差的坐标为(u1-v1, u2-v2, u3-v3)。
2. 向量的数量乘法向量的数量乘法是指将一个向量乘以一个实数得到一个新的向量,其坐标运算规律如下:- 数量乘法:若向量u的坐标为(u1, u2, u3),实数k,则向量u 乘以k的坐标为(k*u1, k*u2, k*u3)。
3. 向量的点乘向量的点乘又称为内积,是指将两个向量进行乘法运算得到一个标量(实数),其计算公式如下:- 点乘:若向量u的坐标为(u1, u2, u3),向量v的坐标为(v1, v2, v3),则向量u和v的点乘的结果为u1*v1 + u2*v2 + u3*v3。
4. 向量的叉乘向量的叉乘又称为外积,是指将两个向量进行乘法运算得到一个新的向量,其计算公式如下:- 叉乘:若向量u的坐标为(u1, u2, u3),向量v的坐标为(v1, v2, v3),则向量u和v的叉乘的坐标为((u2*v3 - u3*v2), (u3*v1 -u1*v3), (u1*v2 - u2*v1))。
通过以上的描述可以看出,向量的加法、减法、数量乘法都是按照对应位置进行运算,只要对应坐标进行相加、相减或乘以相同的实数即可。
点乘和叉乘则需要对应坐标进行特定的运算。
需要注意的是,向量的坐标运算不关心向量的起点和终点,只关心向量的大小和方向。
高三数学空间向量及其坐标运算
金鼎博客新浪博客
[单选]全球所面临的城市问题有()。A.住房拥挤、交通堵塞、水源短缺B.空气污浊、土地紧张C.住房拥挤、交通堵塞、水源短缺、空气污浊、土地紧张D.住房拥挤、交通堵塞、水源短缺、空气污浊E.以上都不是 [单选]磁盘上的每个扇区可存放512字节的数据,但每个扇区其实并不仅有512字节组成,在这512字节的前、后两端,都还另有一些特殊数据,这些数据被称为(),其中存放着扇区的编号和其他信息。A、引导记录B、磁道号C、扇区标志D、扇区位置 [单选]下列哪两种药物均有预防局麻药毒性的作用()A.安定和吗啡B.苯巴比妥钠和安定C.吗啡和阿托品D.阿托品和苯巴比妥钠E.安定和阿托品 [问答题,简答题]苫盖蓬布货物货车的要求? [单选,A1型题]下列哪种中药既能杀虫止痒、燥湿,又能温肾壮阳()A.蟾酥B.蛇床子C.地肤子D.大蒜E.苦参 [单选]下列关于起征点与免征额的说法中,不正确的是()。A.征税对象的数额达到起征点的就全部数额征税B.征税对象的数额未达到起征点的不征税C.当课税对象小于免征额时,不予征税D.当课税对象大于免征额时,仅对免征额部分征税 [单选]通过不合理的价格因素,暗中向农民转嫁的负担属于()负担。A.国家B.隐性C.社会D.个人 [单选]痹证所以有风寒湿痹与热痹,大多数医家认为取决于()A.感邪性质的不同B.病变部位的不同C.感邪季节的不同D.地理、气候、环境的不同E.人体素质的阳气盛衰不同 [单选]丙烯塔回流泵全坏,操作调整中最应该注意()。A、塔顶压力B、塔底液面C、回流罐液面D、塔底温度 [单选]湿陷性黄土一般呈黄色或黄褐色,其中粉土含量常占()以上。A.50%B.60%C.70%D.80% [问答题,案例分析题]中兴公司拟在厂区内建造一幢新厂房,有关资料如下。(1)2013年1月1日专门向银行借入款项5000万元,期限为3年,年利率为12%,每年1月1日付息。(2)除上述借款外,还有两笔一般借款;2011年1月1日借入的长期借款6000万元,期限为5年,年利率为5%,每年12月31日 [单选]对本单位货币资金内部控制的建立健全和有效实施以及货币资金的安全完整负责的是()。A.出纳B.会计机构负责人C.总会计师D.单位负责人 [填空题]乙炔装置AR425分析仪的测量范围是()。 [问答题,简答题]国库单一账户开设在中央银行可获得哪些财政和宏观经济利益? [单选]经济全球化的基础是()A.战后多边贸易的迅速发展B.战后科学技术的迅猛发展C.战后金融市场的迅速发展D.布雷顿森林会议体系崩溃 [多选,共用题干题]患者女,48岁,因"关节肿痛5个月,累及双手关节和双膝关节"来诊。查体:双膝关节肿胀,压痛(+),左腕关节肿胀,压痛(+),左手第二掌指关节(ⅡMCP)、右手ⅡMCP和近端指间关节(PIP)压痛(+);实验室检查:红细胞沉降率10mm/1h,C-反应蛋白5mg/L(0~8mg/ [单选]根据《药品类易制毒化学品管理办法》(2010年)规定,下列关于药品类易制毒化学品叙述不正确的是()A.麦角酸、麻黄素等物质国家将其列入药品类易制毒化学品B.医疗机构凭《药品类易制毒化学品购用证明》(以下简称《购用证明》)购买药品类易制毒化学品单方制剂和小包装麻黄 [单选,A1型题]革兰阳性细菌败血症很少表现为()。A.转移性脓肿B.稽留热C.寒战D.皮疹E.昏迷 [单选]引起艾滋病的病毒是()A.HPVB.HSVC.HIVD.HCV [单选,A2型题,A1/A2型题]石棉引起的法定职业肿瘤为()A.白血病B.直肠癌C.肺癌D.间皮瘤E.肺癌、间皮瘤 [单选,A1型题]现代医学模式是指()A.生物-心理-社会医学模式B.生物医学模式C.高新技术医学模式D.整体医学模式E.分子医学模式 [单选,A2型题,A1/A2型题]与郁证发病关系最为密切的脏腑是()A.心B.肝C.脾D.肺E.肾 [单选]在大气层内,大气压强().A、随高度增加而增加。B、随高度增加而减小。C、在同温层内随高度增加保持不变。D、随高度增加可能增加,也可能减小。 [单选]因重大误解和显失公平等原因引起的无效是()。A.绝对无效B.相对无效C.法定无效D.约定无效 [单选,B型题]稽留热()。A.常见于登革热的热型B.常见于伤寒、大叶性肺炎的高热期的热型C.常见于流行性感冒的热型D.常见于败血症、伤寒缓解期的热型E.常见于疟疾、淋巴瘤的热型 [单选,A1型题]下列药物除哪项外均有止呕作用()A.半夏B.藿香C.佩兰D.豆蔻E.竹茹 [问答题,简答题]为什么不能用清水冲洗电器设备及开关? [单选]小陈是某中学初三学生。临近中考,学校进行了一次摸底考试,并划定了分数线,规定凡低于这个分数的学生都将被班主任“劝退”,不能报名参加当年的中考。考试结果出来,小陈的名字赫然在被“劝退”之列。小陈的父亲曾找过班主任和学校领导,要求学校准许孩子报名,但被学校拒 [单选]出境、入境的人员,必须遵守。()A.中华人民共和国的法律、行政法规B.中华人民共和国行政法规C.以上都是D.以上都不是 [单选]以下哪条不符合主动脉瓣关闭不全超声表现A.左心室增大B.左室流出道变窄C.室壁活动幅度增大D.主动脉运动幅度增大E.主动脉瓣关闭呈双线 [单选]债权人在破产申请受理前对债务人负有债务的,可以向管理人主张()A.解除B.抵消C.撤销D.赔付 [单选]哪项不是早产原因()A.子宫畸形B.宫颈内口松弛C.胎儿生长受限D.妊娠期高血压疾病E.前置胎盘 [单选]下列关于仓库流量的计算公式正确的是()。A.仓库流量=入库货量/出库货量B.仓库流量=出库货量/入库货量+出库货量C.仓库流量=(入库货量+出库货量)/存货量D.仓库流量=(入库货量+出库货量)/(入库货量+出库货量+存()。 [单选,A2型题,A1/A2型题]正常肌肉在针电极停止活动后,插入活动()A.持续时间少于100msB.持续时间少于200msC.持续时间少于300msD.持续时间少于400msE.持续时间少于500ms [单选]仓储管理的目标是()。A.适时适量保证库存B.仓库空间利用与库存货品的处置成本之间的平衡C.实现库存最低、费用最省D.管理协调供应商,管理供应链 [单选]产地加工中,刮去大黄外皮时忌用A.竹器B.木器C.瓷器D.铜器E.铁器 [单选]下列选项中哪项不属于前肢的主要肌肉?()A、斜方肌B、半腱肌C、菱形肌D、背阔肌 [单选,A2型题,A1/A2型题]关于恶性肿瘤的转移方式,不正确的是()A.直接浸润转移B.血液循环转移C.通常自下而上转移D.种植性转移E.淋巴道转移 [单选]某工商局任意改变了其所分属的营业执照中所确定的营业范围,从行政法理论上说,该工商局违反了行政行为效力的()方面。A.确定力B.拘束力C.执行力D.公定力
空间向量及其运算的坐标表示
平面向量
平面向量的坐标运算: a ( x1 , y1 ), b ( x2 , y2 ) a b ( x1 x2 , y1 y2 );
空间向量
空间向量的坐标运算: a ( x1 , y1 , z1 ), b ( x2 , y2 , z 2 ) a b ( x1 x2 , y1 y2 , z1 z 2 );
空间向量
空间向量的夹角: a ( x1 , y1 , z1 ), b ( x2 , y2 , z 2 ) ab cos a,b | a || b | x1 x2 y1 y2 z1 z 2 2 2 2 2 2 x1 y1 z12 x2 y2 z 2
垂直与平行: a ( x1 , y1 , z1 ), b ( x2 , y2 , z 2 ) x1 y1 z1 a // b (?) x2 y 2 z 2 a b x1 x2 y1 y2 z1 z 2 0
x1 x 2 y1 y 2 z1 z 2 (3)中点坐标公式: ( , , ) 2 2 2
2.两个向量夹角公式
a1b1 a2b2 a3b3 a b cos a, b ; 2 2 2 2 2 2 | a || b | a1 a2 a3 b1 b2 b3
垂直与平行: a ( x1 , y1 ), b ( x2 , y2 ) a // b x1 y2 x2 y1 0 a b x1 x2 y1 y2 0
对比表4
平面向量
平面向量基本定理: 如果e1 , e 2是同一平面内的两个不 共线 的向量,那么对于这个 平面内的任一 向量a,有且仅有一对实数 x, y,使a xe1 ye 2 .
空间向量的坐标运算
9.6空间向量的坐标运算亠、空间直角坐标系:如果空间的一个基底的三个基向量互相垂直,且长都为1,这个基底叫做单位正交基底,常用{i, j,k}表示。
r r u 在空间选定一点0和一个单位正交基底{i, j,k},r r u J 以点O为原点,分别以i、j、k的方向为正方向建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴。
这时我们称建立了一个空间直角坐标系O- xyz,点0叫r r u做原点,向量i、j、k都叫做坐标向量。
通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面,yOz 平面,zOx平面。
u注意:①作空间直角坐标系O- xyz时,一般使? xOy 135 °(或45 °), ? yOz 90 °。
②在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系。
说明右手直角坐标系的特点是:从Ox到Oy是逆时针方向。
③如无特别说明,以后建立的坐标系都是右手直角坐标系。
给定一个空间直角坐标系和向量a,且设i、j、k 为坐标向量,根据空间向量基本定理可知:存在唯一的有序实数组(a i,a2, a3),使r r r ua = a i i + a2 j + a3 k有序实数组(a i,a2,a3)叫做向量\在空间直角坐标系O- xyz中的坐标,可简记作ra = (a i, a2, a3)z在空间直角坐标系O- xyz中,对空间任一点A,r对应一个向量OA,于是存在唯一的有序实数组x、y、z,使um r r uOA = xi + yj + zk有序实数组(x, y, z)叫做点A的坐标,记作A (x,y,z ),其中x 叫做点A 的横坐标,y 叫做点A 的 纵坐标,z 叫做点A 的竖坐标。
二、空间向量的直角坐标运算:r rI •设 a = (a i , a 2, a 3)? b = (bi ,6 ,b s ),则 ① a + b = (a i + b,a 2 + 6,a 3+ b 3); r r② a - b = (a i - b i ,a 2- b 2,a 3- b s );r③ I a = (l a i ,l a 2,l a 3)(l ? R );r r④ a ?b a i b i + a 2 b 2 + a 3 b s ;r r⑤ a 八 b ? a i b i a 26+ a 3b s = 0;l a i = l bi ^a 2 l b 2(l ? R ) =l b 3①AB 的中点坐标是 严产,皿产,电产); uuur uuur uuur② AB = OB - OA =(X 2- x i , y 2- y i 卫-Z i )。
空间向量及其运算的坐标表示
探•知1究识梳 在理空间直角坐标系Oxyz中, 对空间任意一点A, 或任意一个向量OA, 你能
借助几何直观确定它们的坐标( x, y, z)吗 ? 事实上,如图1.3 5,过点A分别作垂直于x轴、y轴和z轴的平面, 依次交
x轴、y轴和z轴于点B, C, D, 可以证明OA
z
在x轴、y轴和z轴上的投影向量分别为
以
1 3
OA,
1 4
OC ,
1 2
OD 为单位正交基底,
建立如图所示的空间直角坐
标系Oxyz.
(1) 写出D, C, A, B四点的坐标z ;
(2) 写出向量AB, BB, AC, AC 的坐标.
D
C
A O
B
C y
A x
B 图1.3-6
•向2 量运算的坐 标表示
探究 有了空间向量的坐标表示,你能类比平面向量的坐标运算,得出 空间向量运算的坐标表示并给出证明吗?
由上述结论可知,空间向量运算的坐标表示与平面向量运算的坐 标表示是完全一致的.
例如,我们有:
一个空间向量的坐标等于表示此向量的有向线段的终点坐标减去 起点坐标.
•向2 量运算的坐 标表示
类似平面向量运算的坐标表示,我们还可以得到:
当b 0时, a // b a b a1 b1, a2 b2,a3 b3( R);
C1
A1
E1
B1
M
DO
C y
A练习4】如图,在直三棱柱(侧棱垂直于底面的棱柱)ABCA1B1C1中,CA =CB=1,∠BCA=90°,棱AA1=2,N为A1A的中点. (1)求BN的长; (2)求A1B与B1C所成角的余弦值.
5 课堂小结
不属于∉
高中数学-空间向量及其运算的坐标表示
第3讲 空间向量及其运算的坐标表示知识梳理1.空间向量运算的坐标表示若a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则: (1)a +b =(a 1+b 1,a 2+b 2,a 3+b 3); (2)a -b =(a 1-b 1,a 2-b 2,a 3-b 3); (3)λa =(λa 1,λa 2,λa 3)(λ∈R ); (4)a ·b =a 1b 1+a 2b 2+a 3b 3;(5)a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ); (6)a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0; (7)|a |=a ·a =a 21+a 22+a 23;(8)cos 〈a ,b 〉=a ·b|a ||b |=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23. 2.空间中向量的坐标及两点间的距离公式在空间直角坐标系中,设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则: (1)AB →=(a 2-a 1,b 2-b 1,c 2-c 1); (2)d AB =|AB→|= (a 2-a 1)2+(b 2-b 1)2+(c 2-c 1)2 .考点1 空间直角坐标系【例1-1】(武汉期末)点(1P ,2,3)-关于xOz 平面对称的点的坐标是( ) A .(1,2,3)B .(1,2-,3)-C .(1-,2,3)-D .(1-,2-,3)【变式训练1-1】(河南月考)在空间直角坐标系Oxyz 中,点(1,2-,4)关于y 轴对称的点为( ) A .(1-,2-,4)- B .(1-,2-,4) C .(1,2,4)-D .(1,2,4)考点2 空间向量的坐标运算【例2-1】(钦州期末)已知(1a =,2,1),(2b =,4-,1),则2a b +等于( ) A .(4,2-,0)B .(4,0,3)C .(4-,0,3)D .(4,0,3)-【例2-2】(济南模拟)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)求a 与b 夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求k 的值; (3)设|c |=3,c ∥BC→,求c .【变式训练2-1】(菏泽期末模拟)已知a =(2,-1,3),b =(0,-1,2).求:(1)a +b ; (2)2a -3b ; (3)a ·b ;(4)(a +b )·(a -b ).【变式训练2-2】(烟台期末)已知A (1,0,0),B (0,-1,1),若OA →+λOB →与OB →(O 为坐标原点)的夹角为120°,则λ的值为( )A.66 B .-66C .±66D .±6考点3 空间两点间的距离【例3-1】(淄博调研)已知△ABC 的三个顶为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为( )A .2B .3C .4D .5【变式训练3-1】(温州期中)点(1M -,2,3)是空间直角坐标系Oxyz 中的一点,点M 关于x 轴对称的点的坐标为 ,||OM = .A 组-[应知应会]1.(安徽期末)空间直角坐标系中,点(2P ,1-,3)关于点(1M -,2,3)的对称点Q 的坐标为(( ) A .(4,1,1)B .(4-,5,3)C .(4,3-,1)D .(5-,3,4)2.(金牛区校级期中)点(3A ,2,1)关于xOy 平面的对称点为( ) A .(3-,2-,1)- B .(3-,2,1)C .(3,2-,1)D .(3,2,1)-3.(东阳市校级月考)已知点(1A ,2-,3),则点A 关于原点的对称点坐标为( ) A .(1-,2,3)B .(1-,2,3)-C .(2,1-,3)D .(3-,2,1)-4.(茂名期末)已知向量(1,1,2)a =--及(4,2,0)b =-则a b +等于( ) A .(3-,1,2)-B .(5,5,2)-C .(3,1-,2)D .(5-,5-,2)5.(高安市校级期末)已知空间向量()()()1,,1,3,1,,,0,0,,(a x b y c z a b c xyz =-==+=则的值为 ) A .2±B .2-C .2D .06.(丰台区期末)已知(2AB =,3,1),(4AC =,5,3),那么向量(BC = ) A .(2-,2-,2)- B .(2,2,2)C .(6,8,4)D .(8,15,3)7.(多选)(三明期末)如图,在长方体1111ABCD A B C D -中,5AB =,4AD =,13AA =,以直线DA ,DC ,1DD 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则( )A .点1B 的坐标为(4,5,3)B .点1C 关于点B 对称的点为(5,8,3)- C .点A 关于直线1BD 对称的点为(0,5,3) D .点C 关于平面11ABB A 对称的点为(8,5,0)8.(公安县期末)在空间直角坐标系中,已知两点(5P ,1,)a 与(5Q ,b ,4)关于坐标平面xOy 对称,则a b += .9.(温州期末)在平面直角坐标系中,点(1,2)A -关于x 轴的对称点为(1,2)A '--,那么,在空间直角坐标系中,(1B -,2,3)关于x 轴的对称轴点B '坐标为 ,若点(1C ,1-,2)关于xOy 平面的对称点为点C ',则||B C ''= .10.(浙江期中)空间直角坐标系O xyz -中,点(1M ,1-,1)关于x 轴的对称点坐标是 ;||OM = .11.(兴庆区校级期末)已知(2a =,3-,1),(2b =,0,3),(1c =,0,2),则68a b c +-= . 12.(辽阳期末)已知向量(2,3,1)a =-,(1,2,4)b =-,则a b += .13.(越秀区期末)已知点(1A ,2,0)和向量(3a =,4,12)-,若2AB a =,则点B 的坐标是 . 14.(黄浦区校级月考)已知向量(7,1,5),(3,4,7)a b =-=-,则||a b +=15.(青铜峡市校级月考)已知点A ,B 关于点(1P ,2,3)的对称点分别为A ',B ',若(1A -,3,3)-,(3A B ''=,1,5),求点B 的坐标.16.(福建期中)已知空间三点(1A -,2,1),(0B ,1,2)-,(3C -,0,2) (1)求向量AB AC 与的夹角的余弦值,(2)若向量3AB AC AB k AC -+与向量垂直,求实数k 的值.17.(扶余县校级月考)(Ⅰ)设向量(3a =,5,4)-,(2b =,0,3),(0c =,0,2),求:()a b c -+、68a b c +-. (Ⅱ)已知点(1A ,2-,0)和向量(1a =-,2,3)求点B 坐标,使向量AB 与a 同向,且.1.(襄阳期中)已知向量a ,b ,c 是空间的一个单位正交基底,向量a b +,a b -,c 是空间的另一个基底,若向量p 在基底a ,b ,c 下的坐标为(3,2,1),则它在a b +,a b -,c 下的坐标为( )A .15(,,1)22B .51(,1,)22C .15(1,,)22D .51(,,1)222. (安庆质检)已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).(1)若AP →∥BC →,且|AP →|=214,求点P 的坐标; (2)求以AB →,AC →为邻边的平行四边形的面积.。
高三数学空间向量及其坐标运算
https:///special/0077rt/?guoboyulejiesonganquanma.html 果博娱乐接送安全吗微电:l52-0622-6209 [单选,A1型题]下列一组病案中,没有明显不当的是() [单选]分离结合态与游离态放射性标记抗原不完全时会增加()A.特异性结合量B.非特异性结合量C.敏感度D.精确度E.反应速率 [单选,A2型题,A1/A2型题]鼻导管低流量(3L/min)给氧,FiO2可达()A.24%B.28%C.32%D.36%E.40% [单选]一般可于腹壁听到胎心音的最早时间是()A.30周后B.20周后C.8周后D.10周后E.25周后 [单选]交换机的配置线(console线)应该连接在PC的哪一个端口?()A、并口serialB、串口COMC、以太网端口Ethernet [单选,A1型题]高科技应用在医学中所产生的伦理负效应主要表现为下列现象,但应除外的是()A.诊治依赖高科技手段B.高技术-低情感C.高技术手段集中于"三级医院"中D.滥用高科技手段,造成看病贵E.医患关系的"物化"趋势 [填空题]三种常用的钢筋混凝土高层结构体系是指()、()、()。 [单选,A1型题]关于浸润型肺结核的叙述正确的是()A.临床上最常见的类型B.属于非活动性肺结核C.肺门淋巴结结核D.病人常无明显临床症状E.痰中结核菌常为阴性 [单选]女,26岁,因发作性喘息14年,再发一周入院,查体:右肺满布哮鸣音,左上肺呼吸音消失,心率118次/分。FEV1占预计值64%。经"氨茶碱、糖皮质激素"等静脉滴注治疗喘息仍不能缓解。考虑最可能的原因是并发()A.感染B.气胸C.严重缺氧D.严重脱水E.过敏源未能清除 [单选,A2型题,A1/A2型题]珠蛋白生成障碍性贫血最常见下列哪种异常形态红细胞增多()A.球形红细胞B.破碎红细胞C.靶形红细胞D.泪滴形红细胞E.镰形红细胞 [单选,案例分析题]66结果提示,胸片正常,心电图正常,针刺反应阳性,目前诊断为()A.单纯性口腔溃疡B.系统性红斑狼疮C.白塞病D.瑞特综合征E.血清阴性脊柱关节病F.系统性血管炎G.干燥综合征H.类风湿关节炎 [单选,A1型题]患者男,34岁。较长距离步行后,感下肢疼痛,肌肉抽搐,休息后症状消失,再走一段路后症状又出现。平时有右足发凉、怕冷及麻木感。检查:右足背动脉较左侧搏动减弱。应考虑为()A.静脉血栓形成B.血栓性静脉炎C.动静脉瘘D.雷诺综合征E.血栓闭塞性脉管炎 [填空题]如果需要在吊起的()、()以及汽缸盖下面进行清理结合面、涂抹涂料等工作时,应使用专用(),由检修工作负责人()后方可进行。 [填空题]犹豫期一般是()天,但对于银保渠道销售的保险产品犹豫期延长至()天。 [单选]1915年在经济学领域,明确提出将企业的流通活动分为创造需求的活动和物流活动的是()A.阿齐•箫B.美国物流管理协会C.琼西•贝克D.美国国防部 [单选]按《铁路技术管理规程》附件的编号,绿色许可证是()。A.附件1B.附件2C.附件3D.附件4 [名词解释]时距曲线 [单选,A4型题,A3/A4型题]26岁女性,已婚2年,G1P0,婚后一直服用短效口服避孕药避孕,但意外妊娠,于孕50天行人工流产术。患者放置宫内节育器后1个月,月经量增多1倍,且月经间期有点滴出血。B型超声检查提示环位置正常,血Hb:105g/L,对其处理错误的是()A.立即取出宫内节育器B 3个周期,如不见效取出IUDC.补充铁剂D.吲哚美辛25mg,tid×7E.氨基己酸2g,tid×7 [单选]患者外感风寒,恶寒发热,无汗,腹痛,吐泻,舌苔白腻。治疗宜选用()A.麻黄B.桂枝C.香薷D.防风E.白芷 [问答题,简答题]为什么在培训过程中的每个阶段都要重视评估问题? [单选]当组数等于2时,对于同一资料,方差分析结果与f检验结果()A.['完全等价且F=tB.完全等价且C.完全等价且D.方差分析结果更准确E.t检验结果更准确 [填空题]雷害一般有三种形式()、()、()。 [单选]雇主无故克扣、拖欠工资,家政服务员可以到()要求解决。A、劳动管理部门B、公安机关C、工商局D、税务局 [单选,A2型题,A1/A2型题]严重的中鼻甲下缘平面以上部位出血可结扎()。A.上颌动脉B.颈内动脉C.颈外动脉D.筛前动脉E.上唇动脉 [单选]关于鼻咽纤维血管瘤下列具有向邻近组织扩张能力C.肿瘤起源于枕骨底部、蝶骨体及翼突内侧的骨膜D.DSA及血管栓塞可减少术中出血E.活检确诊后手术切除 [单选,A型题]破伤风痉挛毒素()A.抑制多种细胞的蛋白质合成B.阻断上下神经元之间的正常抑制性神经冲动传递C.抑制胆碱能运动神经释放乙酰胆碱D.激活肠粘膜腺苷环化酶,增高细胞内cAMP水平E.作用于呕吐中枢 [单选]“钢船时期”的代表作“龙威”号被编入北洋舰队后,改名为“()”号,成为北洋八大远之一。A、威远B、平远C、定远D、镇远 [单选]冷却速度快,过冷度较大,经处理的工件强度、硬度、韧性较高,而且生产周期短,能量耗费少,应优先考虑的热处理方法是()。A.淬火B.回火C.正火D.高温回火 [单选]花卉园艺学研究的内容是()。A.花卉的种类、形态、产地B.花卉的繁殖、习性、栽培C.花卉的园林用途D.包括A、B和C等的一门综合性学科 [单选]新中国第一家面向外国来华旅客开展国际旅游业务的旅行社是()A、中国康辉旅行社B、中国青年旅行社C、中国旅行社D、中国国际旅行社 [判断题]根据室温组织不同,其组织为珠光体和铁素体的钢属于亚共析钢。()A.正确B.错误 [单选]我国对出口玩具及其生产企业实行()。A.登记制度B.卫生注册登记制度C.质量许可制度D.登记管理制度 [填空题]根据新城疫病毒感染鸡后的表现,可将病毒分为()五型。 [判断题]近交和早配都会导致后代的生活力减弱。()A.正确B.错误 [单选,A1型题]治风痰癫狂,常以白矾配()A.郁金B.磁石C.朱砂D.远志E.皂荚 [填空题]橄榄球在()年起源(),英文名为()。 [单选]关于单次颤搐刺激,以下哪种叙述错误()A.频率为0.1~1.0Hz,刺激间隔为0.2msB.用于粗略判断程度较深的神经肌肉阻滞C.能够区分神经,肌肉阻滞的性质D.用于判断呼吸抑制的原因是中枢性或外周性E.敏感性较差 [单选]下列哪项没有参与促进乳腺发育及泌乳功能?()A.皮质醇B.雌激素C.甲状旁腺素D.胎盘生乳素E.胰岛素 [填空题]煤在高温炼焦时,配合煤中的硫约有()转入到煤气中。 [单选]行政责任的特点里,法律责任区别的对象是()。A.内部责任B.行政相对人的责任C.民事、刑事责任D.道义责任
空间向量及其坐标的运算(精讲) 讲义
1.3 空间向量及其坐标的运算1.空间向量的坐标表示(1)设e1,e2,e3为有公共起点O的三个两两垂直的单位向量(我们称它们为单位正交基底),以e1,e2,e3的公共起点O为原点,分别以e1,e2,e3的方向为x轴、y轴、z轴的正方向建立空间直角坐标系Oxyz,那么对于空间任意一个向量p,一定可以把它平移,使它的起点与原点O重合,得到向量OP=p,由空间向量基本定理可知,存在有序实数组{x,y,z},使得p=xe1+ye2+ze3,我们把x,y,z称作向量p在单位正交基底e1,e2,e3下的坐标,记作p=(x,y,z),此时向量p的坐标恰是点P在空间直角坐标系Oxyz 中的坐标(x,y,z).(2)向量p的坐标是把向量p的起点平移到坐标原点O,则OP的终点P的坐标就是向量p的坐标,这样就把空间向量坐标化了.2.空间向量的坐标运算3.(1)空间向量a,b,其坐标形式为:a=(a1,a2,a3),b=(b1,b2,b3),则a+b=(a1+b1,a2+b2,a3+b3),a-b=(a1-b1,a2-b2,a3-b3),λa=(λa1,λa2,λa3),a·b=a1b1+a2b2+a3b3.(2)a·a=|a|2=222 123 a a a++.3.空间向量的平行、垂直及模、夹角设a=(a1,a2,a3),b=(b1,b2,b3),则【题型精讲】考点一坐标的运算【例1】(1)(2020·宜昌天问教育集团高二期末)设,x y R∈,向量(,1,1),b(1,,1),c(2,4,2)a x y===-,,ca c b⊥,则||a b+=()A.B C.3D.4(2)(2020·宜昌天问教育集团高二期末)已知空间向量()1,0,1a =,()1,1,b n =,3a b ⋅=则向量a 与bλ(0λ≠)的夹角为( )A .6πB .6π或56πC .3πD .3π或23π 【玩转跟踪】1.(2020·全国高二课时练习)下列向量中与向量()010a =,,平行的向量是( )A .()100b =,, B .()010c =-,,C .()111d =--,,D .()001e =-,,2.(2020·全国高二课时练习)已知向量()1,0,1a =,()2,0,2b =-,若()()2ka b a kb +⋅+=,则k 的值等于( )A .1B .35C .25D .153.(2020·广西北流市实验中学高一期中)在空间直角坐标系O ﹣xyz 中,点A (2,﹣1,3)关于yOz 平面对称的点的坐标是( )A .(2,1,3)B .(﹣2,﹣1,3)C .(2,1,﹣3)D .(2,﹣1,﹣3)4.(2020·全国高二课时练习)已知(1,1,2),(6,21,2)a b m λλ=+=-.(1)若//a b ,分别求λ与m 的值;(2)若||5a =,且与(2,2,)c λλ=--垂直,求a .考点二 坐标运算在几何中的运用【例2】(2020·全国高二课时练习)如图,在直三棱柱ABC -A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M ,N 分别是AA1,CB1的中点.(1)求BM ,BN 的长. (2)求△BMN 的面积.【玩转跟踪】1.(2020·天水市第一中学高二月考(理))如图,在空间直角坐标系中有直三棱柱111ABC A B C -,2CA CB=,13CC CB=,则直线1BC 与直线1AB 夹角的余弦值为( ).A. B.C. D .2352.(2020·全国高二课时练习) 在直三棱柱ABOA1B1 O1中,∠AOB =π2 ,AO =4,BO =2,AA1=4,D 为A1B1的中点,在如图所示的空间直角坐标系中,求1,DO A B 的坐标.考点三 最值问题【例3】(2020·全国高二课时练习)已知点()1,1,A t t t --,()2,,B t t ,则A ,B 两点的距离的最小值为( )B. C.D .35【玩转跟踪】1.(2020·江西高安中学高一期中(理))已知()1,2,3OA =,()2,1,2OB =,()1,1,2OP =,点Q 在直线OP上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为( )A .241,,33⎛⎫⎪⎝⎭B .448,,333⎛⎫ ⎪⎝⎭C .58,1,33⎛⎫ ⎪⎝⎭ D .258,,333⎛⎫ ⎪⎝⎭2.已知点(1,2,3)A ,(2,1,2)B ,(1,1,2)P ,(0,0,0)O ,点Q 在直线OP 上运动,当QA QB ⋅取得最小值时,点Q 的坐标为________________.。
高三数学空间向量及其坐标运算
[填空题]基础的埋置深度一般不宜小于()m,且基础顶面应低于设计地面()mm以上,以免基础外露。 [判断题]气囊控制模块备用电源的作用是,当车辆发生碰撞导致蓄电池或发电机与控制模块之间的电路切断时,能在一定的时间内提供足够的点火能量来引爆点火剂。()A.正确B.错误 [单选]房屋建筑工程施工总承包一级资质项目经理()人以上。A.50B.30C.15D.12 [问答题,简答题]正常运行中的空分设备,主冷液面涨不高,可能有哪些原因造成的? [单选]灰色鱼腥味白带多见于()A.细菌性阴道病B.滴虫阴道炎C.外阴阴道假丝酵母菌病D.输卵管癌E.外阴炎 [单选]在保险合同履行过程中,按照约定交付保险费义务的人是()。A.受益人B.被保险人C.利益关系人D.投保人 [单选]下列哪种抗原不是颗粒性抗原()A.金黄色葡萄球菌B.伤寒杆菌C.红细胞D.抗原包被的乳胶微粒E.细菌外毒素 [单选]狭义理解心理发展是指()。A.心理的种系发展B.心理的种族发展C.群体的心理发展D.个体的心理发展 [单选]交流电动机定子绕组一个线圈两个边所跨的距离称为()。A、节距B、长距C、短距D、极距 [单选]平安险不承保()。A.矿砂B.钢材C.黄金制品D.铸铁制品 [单选]项目范嗣管理计划应以()为根本目的。A.施工项目目标B.质量标准C.工期D.工程成本 [单选]“邪气淫泆”中“淫泆”的正确解释是()。A.浸淫扩散B.满溢C.充满D.流淫E.淫溢 [单选]按照抗震要求,梁端加密区的箍筋肢距正确的是()。A.一级不宜大于200ramB.二级不宜大于250ramC.三级不宜大于280ramD.四级不宜大于300mm [单选,A2型题,A1/A2型题]男性,43岁。3小时前呕血1次,自觉头晕、乏力、出汗。查体:心率110次/分,血压100/70mmHg,肝掌,腹壁静脉曲张,超声示腹水。该患者的出血量可能为()A.>5mlB.50~70mlC.250~300mlD.500~1000mlE.>1500ml [单选]放射免疫分析技术的优点不包括()A.灵敏度高B.特异性强C.重复性好D.样品及试剂用量小E.核素的放射性 [单选,A1型题]禁食24小时后,体内葡萄糖来源于体内蛋白质的糖异生,每日约耗损蛋白质()A.50gB.60gC.70gD.75gE.85g [单选]出境、入境的交通运输工具离、抵口岸时,必须接受()A、边防检查B、船体检查C、梯口监护D、驻船监护 [单选]开工前应按拟定的险工坝岸改建意见,结合坝岸的具体情况逐个(段)进行加高改建(),绘出断面图。A.设计B.施工C.计划D.规划 [单选,A1型题]具有收敛、固涩功效的中药所含的主要成分是()A.挥发油B.有机酸C.糖类D.蛋白质E.氨基酸 [单选]绝大部分碳酸盐岩形成于下列哪种环境?()A.滨海;B.干旱的高纬度地区;C.温暖的海洋;D.河流 [单选]131-45=53在()进制下成立。A.六B.七C.八D.九 [单选]直线定向采用盘左、盘右两次投点取中是为了消除()。A.度盘偏心差B.度盘分划误差C.视准轴不垂直于横轴误差 [单选,A1型题]对头静脉不准确的描述是A.起自手背静脉网的桡侧B.借肘正中静脉与贵要静脉交通C.沿上肢外侧部上行D.注入肱静脉E.注入腋动脉或锁骨下静脉 [单选]石油是天然生成的、液态的、以()为主的混合物。A.氢氧化合物B.碳氢化合物C.氧化物D.氢化物 [问答题,简答题]我国国库发展大体上经历了哪几个阶段? [单选,A1型题]逆没食子鞣质在酸的存在下加热后形成()A.没食子酸和葡萄糖B.黄烷-3-醇或黄烷-3,4-二醇和葡萄糖C.逆没食子酸和葡萄糖D.咖啡酸和葡萄糖E.咖啡酸和奎宁酸 [问答题,简答题]解释信息传输率、信道容量、最佳输入分布的概念,说明平均互信息与信源的概率分布、信道的传递概率间分别是什么关系? [单选]下列正常肾上腺声像图,哪一项描述正确A.正常肾上腺超声显示率左侧低于右侧B.新生儿肾上腺约为肾的1/3大小C.成人肾上腺约为肾的1/13大小D.新生儿肾上腺部位表浅,周围缺乏脂肪,其检出率高于成人E.以上描述均正确 [单选,A1型题]关于药品标签和包装的说法,不正确的是()A.药品的标签应当以说明书为依据,其内容不得超出说明书的范围B.药品标签上不得印有暗示疗效、误导使用的文字和标识C.药品包装上可印有宣传产品的文字和标识D.药品标签上应有指导安全、合理用药的文字和资料E.供上市销售的 [单选]已知某项资产收益率的期望值为20%,标准离差率为0.2,则该资产收益率的方差为()。A.4%B.20%C.16%D.0.16% [填空题]化工管路由()和()组成,它们把化工机器和静止设备联接起来构成一个整体。 [单选]逾期无人认领的拾到或寄存行李处置的时限规定:旅客放弃领取或无法联络到旅客时,保存期限为()天,自拾到或寄存的次日起算。A.40B.90C.30D.60 [单选]球后溃疡多发生于()A.十二指肠乳头近端B.十二指肠球部后壁C.十二指肠乳头远端D.十二指肠水平部E.十二指肠升部 [单选,A2型题,A1/A2型题]关于米氏常数,描述正确的是().A.与酶性质无关B.与酶浓度无关C.与底物浓度有关D.与酶浓度有关E.对不同底物具有相同的值 [单选,A2型题,A1/A2型题]关于颅脑MRI技术叙述错误的是()A.增强检查,注射对比剂后行T2WI成像B.增强扫描常用对比剂为顺磁性对比剂Gd-DTPAC.常规颅脑扫描横断位成像应在正中矢状位像上定位D.层厚4~8mm,层间距取层厚的10%~50%E.血管性病变常做平扫加血管成像 [单选,A2型题,A1/A2型题]一般血清总钙是下列哪项时,有临床症状()。A.≤2.8mmoL/LB.≤2.2mmol/LC.≤0.95mmol/LD.≤1.88mmol/LE.≤2.5mmoL/L [单选]湿地保护采取什么与什么相结合的方式,加大湿地恢复治理力度,增强净化水质、涵养水源、休养生息的能力。()A、工程治理与自然修复B、工程治理与退田为湖C、防治并举与自然修复 [单选]建筑高度不超过24m的病房楼、旅馆等建筑应设()楼梯间。A、开敞楼梯间B、敞开楼梯间C、封闭楼梯间D、防烟楼梯间 [单选,A4型题,A3/A4型题]男,50岁,因躯干、双下肢汽油火焰烧伤3小时入院,烧伤面积为60%,其中深Ⅱ度20%,Ⅲ度40%,入院后立即给予补液及应用广谱抗生素预防感染治疗。入院第3天行手术切痂自体微粒皮加大张异体皮移植术。术后因患者发热,给予持续大剂量广谱抗生素以控制感染,术 [单选]进行图书编校质量检查时,对每种书至少应检查内容(或页码)连续的()万字,而对全书总字数不足该数量的图书应检查全书。A.2B.5C.8D.10
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ቤተ መጻሕፍቲ ባይዱ