高一数学上学期期中考试
广东省深圳市2024-2025学年高一上学期期中考试数学试卷(含答案)
2024-2025学年高一年级第一学期中考试数学试卷考试时长:120分钟 卷面总分:150分本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷为1-11题,共58分,第Ⅱ卷为12-19题,共92分.全卷共计100分.考试时间为120分钟.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则( )A.B.C.D.2.命题“”的否定是( )A. B.C.D.3.已知幂函数图象过点,则等于( )A.12B.19C.24D.364.已知函数在区间上是增函数,在区间上是减函数,则等于()A.B.1C.17D.255.已知命题“,使”是假命题,则实数的取值范围为( )A.B.C.D.6.若是偶函数且在上单调递增,又,则不等式的解集为( )A. B.或C.或 D.或7.若函数的定义域为,则函数的定义域为( )A. B. C. D.{}1,0,1,2,3,{12}A B xx =-=-<∣…A B ⋂={}1,0-{}1,0,1-{}0,1{}0,1,22,12x x x ∀∈>-R 2,12x x x ∀∈<-R 2,12x x x ∀∈-R …2,12x x x ∃∈-R …2,12x x x∃∈<-R ()fx )2P ()6f ()245f x x mx =-+[)2,∞-+(,2]∞--()1f 7-x ∃∈R ()()22210m x m x -+-+...m 6m >26m <<26m < (2)m …()f x [)0,∞+()21f -=()1f x >{22}x x -<<∣{2xx <-∣2}x >{2xx <-∣02}x <<{2xx >∣20}x -<<()21f x -[]3,1-y ={}131,2⎛⎤ ⎥⎝⎦35,22⎛⎤ ⎥⎝⎦51,2⎛⎤⎥⎝⎦8.若,且,则的最小值为( )A.B.C.D.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是()A.命题“,都有”的否定是“,使得”B.当时,的最小值为C.若不等式的解集为,则D.“”是“”的充分不必要条件10.下列说法正确的是( )A.与B.命题,则C.已知函数在上是增函数,则实数的取值范围是D.函数的值域为11.已知函数,则下列判断中正确的有( )A.存在,函数有4个根B.存在常数,使为奇函数C.若在区间上最大值为,则的取值范围为或D.存在常数,使在上单调递减三、填空题:本题共3小题,每小题5分,共15分.12.已知集合,集合,若,则__________.13.已知函数在上单调递减,则实数的取值范围是__________.a b >2ab =22(1)(1)a b ab-++-24-4-2-0x ∀>21x x >-0x ∃…21x x -…1x >121x x +-2+220ax x c ++>{12}xx -<<∣2a c +=1a >11a<y =y =:,01x p x x ∀∈>-R :,01x p x x ⌝∃∈≤-R ()()()2511x ax x f x ax x ⎧---≤⎪=⎨>⎪⎩R a []3,1--1y x =-+1,2∞⎡⎫+⎪⎢⎣⎭(),f x x x a a =-∈R k ∈R ()y f x k =-a ()f x ()f x []0,1()1f a 2a ≤-2a ≥a ()f x []1,3{}1,3,2A m =-{}23,B m =B A ⊆m =()1ax f x x a-=-()2,∞+a14.若函数在区间上有最大值,则实数的取值范围是__________.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知:关于的不等式的解集为:不等式的解集为.(1)若,求;(2)若是的必要不充分条件,求的取值范围.16.(15分)某开发商计划2024年在泉州开发新的游玩项目,全年需投入固定成本300万元,若该项目在2024年有万人游客,则需另投入成本万元,且该游玩项目的每张门票售价为60元.(1)求2024年该项目的利润(万元)关于人数(万人)的函数关系式(利润=销售额-成本);(2)当2024年的游客为多少时,该项目所获利润最大?最大利润是多少.17.(15分)已知满足.(1)求的最小值;(2)若恒成立,求的取值范围.18.(17分)已知函数是定义在上的奇函数,且.(1)求函数的解析式;(2)判断函数在(上的单调性,并用定义证明;(3)解不等式.19.(17分)设定义在上的函数满足:①对,都有;②当时,;③不存在,使得.()()()2224,02,0x x x f x x x ⎧-+>⎪=⎨≤⎪⎩()1,32a a --a p x ()224300x ax a a -+>…,A q 502x x -≤-B 1a =A B ⋂p q a x ()R x ()()225,(05)20100,(520),90061565,20x R x x x x x x x ⎧⎪<<⎪=+-≤<⎨⎪⎪+-≥⎩()W x x ,0x y >6x y +=3y x y+()2244x y m x y +≥+m ()24ax b f x x +=+()2,2-()115f =()f x ()f x 2,2)-()()210f t f t +->R ()f x ,x y ∀∈R ()()()()()1f x f y f x y f x f y ++=+0x >()0f x >x ∈R ()1f x =(1)求证:为奇函数;(2)求证:在上单调递增;2024-2025学年第一学期期中考试高一年级数学试卷答案一、选择题(共小题)题号1234567891011()f x ()f x R 11选项B C D D C B D D BCD AD BC三、填空题(共3小题)12.13.14.四、解答题(共5小题)15.解:(1):关于的不等式的解集为:不等式的解集为.当时,,解得,所以,又,所以,解得,所以,所以;(2)若是的必要不充分条件,则是的真子集,由(1)知时,集合,所以,则,又时,,符合是的真子集,时,,符合是的真子集,所以,综上,实数的取值范围为.16.解:(1)某开发商计划2024年全年投入固定成本300万元,若该项目在2024年有万人游客,则需另投入成本万元,且,该游玩项目的每张门票售价为60元,则,又,2-(,1)(1,2]∞--⋃[)0,1p x ()224300x ax a a -+>…,A q 502x x --…B 1a =2430x x -+…13x ……{}13A xx =∣ (5)02x x --…()()52020x x x ⎧--⎨-≠⎩…25x <…{25}B xx =<∣…{23}A B xx ⋂=<∣…p q B A ()22{25},4300B xx x ax a a =<-+>∣……0a >{}3A xa x a =∣……235a a ⎧⎨⎩ (5)23a ……2a ={}26A xx =∣……B A 53a =553A x x ⎧⎫=⎨⎬⎩⎭……B A 523a ……a 523aa ⎧⎫⎨⎬⎩⎭……x ()R x ()225,0520100,52090061565,20x R x x x x x x x ⎧⎪<<⎪=+-<⎨⎪⎪+-⎩……()()60300W x x R x =--()225,0520100,52090061565,20x R x x x x x x x ⎧⎪<<⎪=+-<⎨⎪⎪+-⎩……所以,即W ;(2)当时,单调递增,且当时,所以,当时,,则在上单调递增,所以,当时,,当且仅当即时等号成立,故,,综上,游客为30万人时利润最大,最大为205万.17.解:(1),当且仅当,即时取等号,即取得最小值.(2)由,得,即,不等式恒成立,即恒成立,()()26030025,056030020100,5209006030061565,20x x W x x x x x x x x x ⎧⎪--<<⎪⎪=--+-<⎨⎪⎛⎫⎪--+- ⎪⎪⎝⎭⎩……()260325,0540200,520900265,20x x x x x x x x x ⎧⎪-<<⎪=-+-<⎨⎪⎪--+⎩……05x <<60325y x =-5x =25y =-()25W x <-520x <…()2240200(20)200W x x x x =-+-=--+()W x ()5,20()200W x <20x …()900900265265265205W x x x x x ⎛⎫=--+=-++-+= ⎪⎝⎭ (900)x x=30x =()max 205W x =20520025>>- ()33211211213113122y y x y x x y x y x y x y x y x y ⎛⎫⎛⎫⎛⎫++=+-=+-=++-=++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭113122⎛+-=+ ⎝…2y xx y=()62,61x y =-=3y x y +12+0,0,6x y x y >>+=60x y =->06y <<()2244x y m x y ++…2244x y m x y++…,当且仅当,即时取等号,因此当时,取得最小值,则,所以的取值范围.18.解:(1)函数是定义在上的奇函数,则,即,因为,解得,则,经检验,是奇函数.(2)在(上为增函数,证明如下:设,则,由于,则,即,又,则有,则在上是增函数.(3)由题意可得,在上为单调递增的奇函数,由可得,所以,解得,,故的范围为.19.解:(1)证明:的定义域为,关于原点对称,令,得,解得或,又不存在,使得,故,令,得,故,即,因此为奇函数;()()()2222225(2)322804(6)4512364363232y y x y y y y y x y y y y +-+++-+-+===++++()5163253282323333y y ⎡⎤=++-⋅=⎢⎥+⎣⎦…1622y y +=+2y =4,2x y ==2244x y x y ++8383m …m 83m m ⎧⎫⎨⎬⎩⎭ (2)4ax bx ++()2,2-()004bf ==0b =()11145a f ==+1a =()24xf x x =+()f x ()f x 2,2)-22m n -<<<()()()()()()222244444m n mn m nf m f n m n m n ---=-=++++22m n -<<<0,4m n mn -<<40mn ->()()22440m n++>()()0f m f n -<()f x ()2,2-()f x ()2,2-()()210f t f t +->()()()211f t f t f t >--=-2212t t >>->-131t <<t 1,13⎛⎫ ⎪⎝⎭()f x R 0x y ==()()()220010f f f =+()00f =()01f =±x ∈R ()1f x =()00f =y x =-()()()()()()001f x f x f x x f f x f x +--===+-()()0f x f x +-=()()f x f x -=-()f x(2)证明:时,,则,当且仅当,等号成立,又不存在,使得,则,于是时,,又为奇函数,则时,,于是对,任取,则,而,又,则,于是,故,因此在上单调递增;0x >0,022x x f ⎛⎫>> ⎪⎝⎭()22212212x f x x f x f x f ⎛⎫ ⎪⎛⎫⎝⎭=+= ⎪⎛⎫⎝⎭+ ⎪⎝⎭…12x f ⎛⎫= ⎪⎝⎭x ∈R ()1f x =12x f ⎛⎫≠ ⎪⎝⎭0x >()01f x <<()f x 0x <()()()1,0f x f x =--∈-(),11x f x ∀∈-<<R 12x x <()21210,0x x f x x ->->()()()()()()()()()()212121212121011f x f x f x f x f x x f x x f x f x f x f x +--⎡⎤-=+-==>⎣⎦+--()()()12,1,1f x f x ∈-()()()121,1f x f x ∈-()()1210f x f x ->()()()()21210,f x f x f x f x ->>()f x R。
浙江省宁波2023-2024学年高一上学期期中考试数学试卷含答案
浙江省宁波2023-2024学年高一上学期期中考试数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每个题给出的四个选项中,只有一项是符合题目要求的.(答案在最后)1.已知集合{||11},{14}A x x B x x =-<=≤≤∣∣,则A B = ()A.{12}x x <<∣B.{12}xx ≤<∣C .{04}xx <<∣ D.{04}xx <≤∣【答案】B 【解析】【分析】先求集合A ,再根据交集运算求解即可.【详解】由题意,因为集合{|02},{|14}A x x B x x =<<=≤≤所以{|12}A B x x =≤< .故选:B.2.已知命题2000:1,0p x x x ∃≥-<,则命题p 的否定为()A.200010x ,x x ∃≥-≥ B.200010x ,x x ∃<-≥C.210x ,x x ∀<-≥ D.210x ,x x ∀≥-≥【答案】D 【解析】【分析】根据存在量词命题的否定方法对命题p 否定即可.【详解】由命题否定的定义可知,命题2000:1,0p x x x ∃≥-<的否定是:210x ,x x ∀≥-≥.故选:D.3.对于实数a ,b ,c ,下列结论中正确的是()A.若a b >,则22>ac bcB.若>>0a b ,则11>a bC.若<<0a b ,则<a b b aD.若a b >,11>a b,则<0ab 【答案】D 【解析】【分析】由不等式的性质逐一判断.【详解】解:对于A :0c =时,不成立,A 错误;对于B :若>>0a b ,则11<a b,B 错误;对于C :令2,a =-1b =-,代入不成立,C 错误;对于D :若a b >,11>a b,则0a >,0b <,则<0ab ,D 正确;故选:D .4.已知0x 是函数1()33xf x x ⎛⎫=-+ ⎪⎝⎭的一个零点,则0x ∈()A.(1,2)B.(2,3)C.(3,4)D.(4,5)【答案】C 【解析】【分析】根据题意,由条件可得函数单调递减,再由零点存在定理即可得到结果.【详解】根据题意知函数1()3xf x ⎛⎫= ⎪⎝⎭在区间1,+∞上单调递减,函数()3f x x =-+在区间()1,∞+单调递减,故函数1()33xf x x ⎛⎫=-+ ⎪⎝⎭在区间1,+∞上单调递减,又因1>2>3>0,4<0,又因()133xf x x ⎛⎫=-+ ⎪⎝⎭在()1,∞+上是连续不中断的,所以根据零点存在定理即可得知存在()03,4x ∈使得()00f x =.故选:C5.“2a ≤”是“函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】A 【解析】【分析】根据复合函数的单调性求函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增的等价条件,在结合充分条件、必要条件的定义判断即可.【详解】二次函数21y x ax =-+图象的对称轴为2a x =,若函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增,根据复合函数的单调性可得2≤24−2+1>0,即52a <,若2a ≤,则52a <,但是52a <,2a ≤不一定成立,故“2a ≤”是“函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增”的充分不必要条件.故选:A 6.函数22()1xf x x =+的图象大致是()A. B.C. D.【答案】D 【解析】【分析】首先判断函数的奇偶性,即可判断A 、B ,再根据0x >时函数值的特征排除C.【详解】函数22()1x f x x =+的定义域为R ,且()()2222()11x x f x f x x x --==-=-+-+,所以22()1xf x x =+为奇函数,函数图象关于原点对称,故排除A 、B ;又当0x >时()0f x >,故排除C.故选:D7.已知42log 3x =,9log 16y =,5log 4z =,则x ,y ,z 的大小关系为()A.y x z >>B.z x y >>C.x y z >>D.y z x>>【答案】C 【解析】【分析】利用对数运算法则以及对数函数单调性可限定出x ,y ,z 的取自范围,即可得出结论.【详解】根据题意可得2222log 3log 3x ==,2233log 4log 4y ==,5log 4z =利用对数函数单调性可知32223log 3log log log 22x ===,即32x >;又323333331log 3log 4log log log 32y ====<,可得312y <<;而55log 4log 51z ==<,即1z <;综上可得x y z >>.故选:C8.已知函数323log ,03()1024,3x x f x x x x ⎧<≤=⎨-+>⎩,若方程()f x m =有四个不同的实根()12341234,,,x x x x x x x x <<<,则()()3412344x x x x x --的取值范围是()A.(0,1)B.(1,0)- C.(4,2)- D.(2,0]-【答案】B 【解析】【分析】根据图象分析可得121x x =,()()343410,3,4,6,7x x x x +=∈∈,整理得3431233(4)(4)2410x x x x x x x ⎛⎫--=-++ ⎪⎝⎭,结合对勾函数运算求解.【详解】因为op =3log 3,0<≤32−10+24,>3,当3x >时()22()102451f x x x x =-+=--,可知其对称轴为5x =,令210240x x -+=,解得4x =或6x =;令210243x x -+=,解得3x =或7x =;当03x <≤时3()3log f x x =,令33log 3x =,解得13x =或3x=,作出函数=的图象,如图所示,若方程()f x m =有四个不同的实根12341234,,,()x x x x x x x x <<<,即()y f x =与y m =有四个不同的交点,交点横坐标依次为12341234,,,()x x x x x x x x <<<,则12341134673x x x x <<<<<<<<<,对于12,x x ,则3132log log x x =,可得3132312log log log 0x x x x +==,所以121x x =;对于34,x x ,则()()343410,3,4,6,7x x x x +=∈∈,可得4310x x =-;所以()()3434333431233334161024(4)(4)2410x x x x x x x x x x x x x x x -++--⎛⎫--===-++ ⎪⎝⎭,由对勾函数可知332410y x x ⎛⎫=-++ ⎪⎝⎭在()3,4上单调递增,得()3324101,0x x ⎛⎫-++∈- ⎪⎝⎭,所以34123(4)(4)x x x x x --的取值范围是()1,0-.故选:B.【点睛】关键点点睛:本题解答的关键是画出函数图象,结合函数图象分析出121x x =,()()343410,3,4,6,7x x x x +=∈∈,从而转化为关于3x 的函数;二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.函数1()21x f x -=+恒过定点(1,1)B.函数3x y =与3log y x =的图象关于直线y x =对称C.0x ∃∈R ,当0x x >时,恒有32x x >D.若幂函数()f x x α=在(0,)+∞单调递减,则0α<【答案】BCD 【解析】【分析】由指数函数的性质可判断A ;由反函数的性质可判断B ;由指数函数的增长速度远远快于幂函数,可判断C ;由幂函数的性质可判断D .【详解】对于A ,函数1()21x f x -=+恒过定点(1,2),故A 错误;对于B ,函数3x y =与3log y x =的图象关于直线y x =对称,故B 正确;对于C ,因为指数函数的增长速度远远快于幂函数,所以0x x >时,恒有32x x >,故C 正确;对于D ,当0α<时,幂函数()f x x α=在(0,)+∞单调递减,故D 正确;故选:BCD .10.已知函数e 1()e 1x x f x +=-,则下列结论正确的是()A.函数()f x 的定义域为RB.函数()f x 的值域为(,1)(1,)-∞-+∞C.()()0f x f x +-=D.函数()f x 为减函数【答案】BC 【解析】【分析】根据分母不为0求出函数的定义域,即可判断A ;再将函数解析式变形为2()1e 1xf x =+-,即可求出函数的值域,从而判断B ;根据指数幂的运算判断C ,根据函数值的特征判断D.【详解】对于函数e 1()e 1x x f x +=-,则e 10x -≠,解得0x ≠,所以函数的定义域为{}|0x x ≠,故A 错误;因为e 1e 122()1e 1e 1e 1x x x x xf x +-+===+---,又e 0x >,当e 10x ->时20e 1x >-,则()1f x >,当1e 10x -<-<时22e 1x<--,则()1f x <-,所以函数()f x 的值域为(,1)(1,)-∞-+∞ ,故B 正确;又11e 1e 1e 1e 1e 1e ()()01e 1e 1e 11e e 11e xxxx x x x x x xx xf x f x --++++++-+=+=+=+------,故C 正确;当0x >时()0f x >,当0x <时()0f x <,所以()f x 不是减函数,故D 错误.11.已知0,0a b >>,且1a b +=,则()A.22log log 2a b +≥- B.22a b +≥C.149a b +≥ D.33114a b ≤+<【答案】BCD 【解析】【分析】利用基本不等式求出ab 的范围,即可判断A ;利用基本不等式及指数的运算法则判断B ;利用乘“1”法及基本不等式判断C ;利用立方和公式及ab 的范围判断D.【详解】因为0,0a b >>,且1a b +=,所以2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时取等号,所以()22221log log log log 24a b ab +=≤=-,当且仅当12a b ==时取等号,故A 错误;22a b +≥=22a b =,即12a b ==时取等号,故B 正确;()14144559b a a b a b a b a b ⎛⎫+=++=++≥+ ⎪⎝⎭,当且仅当4b a a b =,即13a =,23b =时取等号,故C 正确;()()()2332222313a b a b a ab b a ab b a b ab ab +=+-+=-+=+-=-,因为104ab <≤,所以3034ab <≤,所以11314ab ≤-<,即33114a b ≤+<,故D 正确.故选:BCD12.对于定义在[]0,1上的函数()f x 如果同时满足以下三个条件:①()11f =;②对任意[]()0,1,0x f x ∈≥成立;③当12120,0,1x x x x ≥≥+≤时,总有()()()1212f x f x f x x +≤+成立,则称()f x 为“天一函数”.若()f x 为“天一函数”,则下列选项正确的是()A.()00f =B.()0.50.5f ≤C.()f x 为增函数 D.对任意[0,1]x ∈,都有()2f x x ≤成立【答案】ABD【分析】对于A ,令120x x ==,结合题中条件即可求解;对于B ,令120.5x x ==,结合题中条件即可求解;对于C ,令2121101X x x x X +>≥=≥=,结合性质②③可得()()21f X f X ≥,因此有()f x 在[]0,1x ∈上有递增趋势的函数(不一定严格递增),即可判断;对于D ,应用反证法:若存在[]00,1x ∈,使0>20成立,讨论1,12x ⎡⎤∈⎢⎥⎣⎦,10,2x ⎡⎫∈⎪⎢⎣⎭,结合递归思想判断0x 的存在性.【详解】对于A ,令120x x ==,则()()()000f f f +≤,即()00f ≤,又对任意[]()0,1,0x f x ∈≥成立,因此可得()00f =,故A 正确;对于B ,令120.5x x ==,则()()()0.50.51f f f +≤,又()11f =,则()0.50.5f ≤,故B 正确;对于C ,令2121101X x x x X +>≥=≥=,则221(0,1]x X X -∈=,所以()()()()()()12122121f X f X X f X f X f X f X X +-≤⇒-≥-,又对任意[]()0,1,0x f x ∈≥成立,则()221()0f x f X X =-≥,即()()210f X f X -≥,所以()()21f X f X ≥,即对任意1201x x ≤<≤,都有()()12f x f x ≤,所以()f x 在[]0,1x ∈上非递减,有递增趋势的函数(不一定严格递增),故C 错误;对于D ,由对任意1201x x ≤<≤,都有()()12f x f x ≤,又()00f =,()11f =,故()[]0,1f x ∈,反证法:若存在[]00,1x ∈,使0>20成立,对于1,12x ⎡⎤∈⎢⎥⎣⎦,()1f x ≤,而21x ≥,此时不存在01,12x ⎡⎤∈⎢⎥⎣⎦使0>20成立;对于10,2x ⎡⎫∈⎪⎢⎣⎭,若存在010,2x ⎡⎫∈⎪⎢⎣⎭使0>20成立,则()()()002f f x f x ≥,而[)020,1x ∈,则()()()()000022f x f x f x f x ≥+=,即0≥20>40,由()[)00,1f x ∈,依次类推,必有[)0,1∈t ,0()2nf t x >且*n ∈N 趋向于无穷大,此时()[0,1)f t ∈,而02nx 必然会出现大于1的情况,与>20矛盾,所以在10,2x ⎡⎫∈⎪⎢⎣⎭上也不存在010,2x ⎡⎫∈⎪⎢⎣⎭使0>20成立,综上,对任意[]0,1x ∈,都有()2f x x ≤成立,故D 正确;故选:ABD.【点睛】关键点点睛:对于D ,应用反证及递归思想推出1,12x ⎡⎤∈⎢⎥⎣⎦,10,2x ⎡⎫∈⎪⎢⎣⎭情况下与假设矛盾的结论.三、填空题:本大题共4小题,每小题5分,共20分.13.若23(1)()log (1)x x f x x x ⎧≤=⎨>⎩,则(0)(8)f f +=______.【答案】4【解析】【分析】根据分段函数解析式计算可得.【详解】因为23(1)()log (1)x x f x x x ⎧≤=⎨>⎩,所以()0031f ==,()32228log 8log 23log 23f ====,所以(0)(8)4f f +=.故答案为:414.已知()f x 是定义在R 上的奇函数,当0x >时,()22xf x x =-,则()()10f f -+=__________.【答案】1-【解析】【分析】根据()f x 是定义在R 上的奇函数,可得(1)(1)f f -=-,(0)0f =,只需将1x =代入表达式,即可求出(1)f 的值,进而求出(1)(0)f f -+的值.【详解】因为()f x 是定义在R 上的奇函数,可得(1)(1)f f -=-,(0)0f =,又当0x >时,()22xf x x =-,所以12(1)211f =-=,所以(1)(0)101f f -+=-+=-.故答案为:1-【点睛】本题主要考查利用奇函数的性质转化求函数值,关键是定义的灵活运用,属于基础题.15.定义在R 上的偶函数()f x 满足:在[)0,+∞上单调递减,则满足()()211f x f ->的解集________.【答案】()0,1【解析】【分析】利用偶函数,单调性解抽象不等式【详解】因为()f x 为定义在R 上的偶函数,且在[)0,+∞上单调递减,所以()()()()211211f x f fx f ->⇔->,所以2111211x x -<⇔-<-<,即01x <<,故答案为:()0,116.设函数31()221x f x =-+,正实数,a b 满足()(1)2f a f b +-=,则2212b aa b +++的最小值为______.【答案】14##0.25【解析】【分析】首先推导出()()2f x f x +-=,再说明()f x 的单调性,即可得到1a b +=,再由乘“1”法及基本不等式计算可得.【详解】因为31()221x f x =-+,所以3132()221221xx xf x --=-=-++,所以331()()22221221x x x f x f x +-=-+-=++,又21x y =+在定义域R 上单调递增,且值域为()1,+∞,1y x =-在()1,+∞上单调递增,所以31()221x f x =-+在定义域R 上单调递增,因为正实数,a b 满足()(1)2f a f b +-=,所以10a b +-=,即1a b +=,所以()()222211212412b a b a a b a b a b ⎛⎫⎡⎤+=++++ ⎪⎣⎦++++⎝⎭()()2222211412b b a a b a a b ⎡⎤++=+++⎢⎥++⎣⎦()()22222111124444b a b a ab a b ⎡⎢≥++=++=+=⎢⎣,当且仅当()()222112b b a a a b ++=++,即35a =,25b =时取等号,所以2212b a a b +++的最小值为14.故答案为:14四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.计算下列各式的值.(1)20.5233727228)9643-⎛⎫⎛⎫⎛⎫+-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(2)2log 3223(lg5)lg2lg50log 3log 22+⨯+⋅+【答案】(1)229(2)5【解析】【分析】(1)根据指数幂的运算法则计算可得;(2)根据对数的运算性质及换底公式计算可得.【小问1详解】20.5233727229643-⎛⎫⎛⎫⎛⎫+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2223333212139245-⎡⎤⎛⎫⎛⎫⎛⎫=+-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦2323332521334⎛⎫⨯- ⎪⨯⎝⎭⎛⎫=+-+ ⎪⎝⎭5162221399=+-+=.【小问2详解】2log 3223(lg5)lg2lg50log 3log 22+⨯+⋅+()210lg 3lg 2(lg 5)lg lg 10535lg 2lg 3⎛⎫=+⨯⨯+⋅+ ⎪⎝⎭()()2(lg5)1lg51lg513=+-⨯+++()()22lg 51lg 5135=+-++=.18.设全集为R ,已知集合{}2|280A x R x x =∈--≤,(){}2|550B x R x m x m =∈-++≤.(1)若3m =,求A B ,R A ð;(2)若R B A ⊆ð,求实数m 的取值范围.【答案】(1){}25A B x R x ⋃=∈-≤≤;{2R A x x =<-ð或}4x >;(2)4m >.【解析】【分析】(1)先解不等式求出集合A ,B ,根据补集的概念,以及并集的概念,即可得出结果;(2)由(1)得出R A ð,再对m 分类讨论,即可得出结果.【详解】(1)因为{}{}228024A x R x x x R x =∈--≤=∈-≤≤,则{2R A x x =<-ð或}4x >;若3m =,则{}{}2815035B x R x x x R x =∈-+≤=∈≤≤,所以{}25A B x R x ⋃=∈-≤≤.(2)由(1){2R A x x =<-ð或}4x >,()(){}|50B x R x x m =∈--≤,当5m =时,则{5}B =,满足R B A ⊆ð;当5m >时,则[5,]B m =,满足R B A ⊆ð;当5m <时,则[,5]B m =,为使R B A ⊆ð,只需4m >,所以45m <<.综上,4m >.19.为了节能减排,某农场决定安装一个可使用10年旳太阳能供电设备.使用这种供电设备后,该农场每年消耗的电费C (单位:万元)与太阳能电池面积x (单位:平方米)之间的函数关系为4,0105(),10m xx C x m x x-⎧≤≤⎪⎪=⎨⎪>⎪⎩,(m 为常数),已知太阳能电池面积为5平方米时,每年消耗的电费为12万元.安装这种供电设备的工本费为0.5x (单位:1万元),记()F x 为该农场安装这种太阳能供电设备的工本费与该农场10年消耗的电费之和(1)写出()F x 的解析式;(2)当x 为多少平方米时,()F x 取得最小值?最小值是多少万元?【答案】(1)1607.5,010()8000.5,10x x F x x x x-≤≤⎧⎪=⎨+>⎪⎩;(2)40平方米,最小值40万元.【解析】【分析】(1)根据给定的条件,求出m 值及()C x 的解析式,进而求出()F x 的解析式作答.(2)结合均值不等式,分段求出()F x 的最小值,再比较大小作答.【小问1详解】依题意,当5x =时,()12C x =,即有45125m -⨯=,解得80m =,则804,0105()80,10xx C x x x -⎧≤≤⎪⎪=⎨⎪>⎪⎩,于是得1607.5,010()10()0.58000.5,10x x F x C x x x x x -≤≤⎧⎪=+=⎨+>⎪⎩,所以()F x 的解析式是1607.5,010()8000.5,10x x F x x x x-≤≤⎧⎪=⎨+>⎪⎩.【小问2详解】由(1)知,当010x ≤≤时,()1607.5F x x =-在[0,10]上递减,min ()(10)85F x F ==,当10x >时,800()402x F x x =+≥=,当且仅当8002x x =,即40x =时取等号,显然4085<,所以当x 为40平方米时,()F x 取得最小值40万元.【点睛】方法点睛:在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.20.已知函数1()2(R)2xx m f x m -=-∈是定义在R 上的奇函数.(1)求m 的值;(2)根据函数单调性的定义证明()f x 在R 上单调递增;(3)设关于x 的函数()()()9143xxg x f m f =++-⋅有零点,求实数m 的取值范围.【答案】(1)2m =(2)证明见解析(3)(],3-∞【解析】【分析】(1)由奇函数性质(0)0f =求得参数值,再验证符合题意即可;(2)根据单调性的定义证明;(3)令()0g x =,结合()f x 的单调性得到9431x x m +=⋅-,参变分离可得1943x x m =-+-⨯,依题意可得关于x 的方程1943x x m =-+-⨯有解,令()1943xxh x =-⨯+-,则y m =与()y h x =有交点,利用换元法求出()h x 的值域,即可得解.【小问1详解】因为1()2(R)2xxm f x m -=-∈是定义在R 上的奇函数,所以(0)1(1)0f m =--=,解得2m =,当2m =时,1()2222xx xx f x -=-=-,满足()()f x f x -=-,()f x 是奇函数,所以2m =;【小问2详解】由(1)可得1()22x x f x =-,设任意两个实数12,R x x ∈满足12x x <,则1212121212111()()22(22)(1)2222xx x x x x x x f x f x -=--+=-+⋅,∵12x x <,∴12022x x <<,1211022x x +>⋅,∴12())0(f x f x -<,即12()()f x f x <,所以()f x 在R 上为单调递增;【小问3详解】令()0g x =,则()()9143xxf m f +=--⋅,又()f x 是定义在R 上的奇函数且单调递增,所以()()1943xxf m f +=⋅-,则9431x x m +=⋅-,则1943x x m =-+-⨯,因为关于x 的函数()()()9143xxg x f m f =++-⋅有零点,所以关于x 的方程1943x x m =-+-⨯有解,令()1943xxh x =-⨯+-,则y m =与()y h x =有交点,令3x t =,则()0,t ∈+∞,令()214H t t t +--=,()0,t ∈+∞,则()()222314H t t t t +-==---+,所以()H t 在()0,2上单调递增,在()2,+∞上单调递减,所以()(],3H t ∈-∞,所以()(],3h x ∈-∞,则(],3m ∈-∞,即实数m 的取值范围为(],3-∞.21.设R a ∈,已知函数()y f x =的表达式为21()log f x a x ⎛⎫=+ ⎪⎝⎭.(1)当3a =时,求不等式()1f x >的解集;(2)设0a >,若存在1,12t ⎡⎤∈⎢⎥⎣⎦,使得函数()y f x =在区间[],2t t +上的最大值与最小值的差不超过1,求实数a 的取值范围.【答案】(1)(,1)(0,)-∞-⋃+∞(2)1,3⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)根据函数的单调性转化为自变量的不等式,解得即可;(2)根据函数的单调性求出最值,根据不等式有解分离参数求取值范围.【小问1详解】当3a =时,21()log 3f x x ⎛⎫=+⎪⎝⎭,不等式()1f x >,即21log 31x ⎛⎫+>⎪⎝⎭,所以132x +>,即10x x +>,等价于()10x x +>,解得1x <-或0x >;所以不等式()1f x >的解集为(,1)(0,)-∞-⋃+∞;【小问2详解】因为0a >,1[,1]2t ∈,所以当[,2]x t t ∈+时,函数1y a x=+为减函数,所以函数()21log f x a x ⎛⎫=+⎪⎝⎭在区间[],2t t +上单调递减,又函数()y f x =在区间[],2t t +上最大值和最小值的差不超过1,所以()()21f t f t -+≤,即2211log ()log ()12a a t t +-+≤+,即222111log ()1log ()log 2()22a a a t t t +≤++=+++所以112()2a a t t +≤++,即存在1[,1]2t ∈使122a t t ≥-+成立,只需min122a t t ⎛⎫≥- ⎪+⎝⎭即可,考虑函数121,[,1]22y t t t =-∈+,221,[,1]22t y t t t -=∈+,令321,2r t ⎡⎤=-∈⎢⎥⎣⎦,213,1,86826r y r r r r r⎡⎤==∈⎢⎥-+⎣⎦+-,设()8g r r r =+,其中31,2r ⎡⎤∈⎢⎥⎣⎦,任取123,1,2r r ⎡⎤∈⎢⎥⎣⎦,且12r r <,则()()()212121212121888r r g r g r r r r r r r r r ⎛⎫--=+--=- ⎪⎝⎭,因为12r r <,所以210r r ->,因为123,1,2r r ⎡⎤∈⎢⎥⎣⎦,所以2180r r -<,所以()()21g r g r <,所以函数()g r 在31,2⎡⎤⎢⎥⎣⎦上单调递减,所以86y r r =+-在31,2r ⎡⎤∈⎢⎥⎣⎦单调递减,所以856,36r r ⎡⎤+-∈⎢⎥⎣⎦,116,8356r r⎡⎤∈⎢⎥⎣⎦+-,所以13a ≥,所以a 的取值范围为1,3⎡⎫+∞⎪⎢⎣⎭.22.已知函数43()21x x f x +=+,函数2()||1g x x a x =-+-.(1)若[0,)x ∈+∞,求函数()f x 的最小值;(2)若对1[1,1]x ∀∈-,都存在2[0,)x ∈+∞,使得()()21f x g x =,求a 的取值范围.【答案】(1)2(2)1313,,44⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭【解析】【分析】(1)首先利用指数运算,化简函数()()421221xx f x =++-+,再利用换元,结合对勾函数的单调性,即可求解函数的最值;(2)首先将函数()f x 和()g x 在定义域的值域设为,A B ,由题意可知B A ⊆,()02g ≥,确定a 的取值范围,再讨论去绝对值,求集合B ,根据子集关系,比较端点值,即可求解.【小问1详解】若[)0,x ∈+∞,()()()()221221442122121x x x x xf x +-++==++-++,因为[)0,x ∈+∞,令212x t =+≥,则()42,2y t t t=+-≥,又因为42y t t=+-在[)2,+∞上单调递增,当2t =,即0x =时,函数取得最小值2;【小问2详解】设()f x 在[)0,+∞上的值域为A ,()g x 在[]1,1-上的值域为B ,由题意可知,B A ⊆,由(1)知[)2,A =+∞,因为()012g a =-≥,解得:3a ≥或3a ≤-,当3a ≥时,且[]11,1x ∈-,则10x a -<,可得()222111111151124g x x a x x x a x a ⎛⎫=-+-=-+-=-+- ⎪⎝⎭,可得()1g x 的最大值为()11g a -=+,最小值为1524g a ⎛⎫=-⎪⎝⎭,即5,14B a a ⎡⎤=-+⎢⎥⎣⎦,可得524a -≥,解得:134a ≥,当3a ≤-时,且[]11,1x ∈-,10x a ->,可得()222111111151124g x x a x x x a x a ⎛⎫=-+-=+--=+-- ⎪⎝⎭,可知,()1g x 的最大值为()11g a =-,最小值为1524g a ⎛⎫-=-- ⎪⎝⎭,即5,14B a a ⎡⎤=---⎢⎥⎣⎦,可得524a --≥,解得:134a ≤-,综上可知,a 的取值范围是1313,,44⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭.【点睛】关键点点睛:本题第二问的关键是求函数()g x 的值域,根据()02g ≥,缩小a 的取值范围,再讨论去绝对值.。
福建省厦门2024-2025学年高一上学期期中考试数学试卷(含答案)
厦门2024-2025学年第一学期期中考高一数学试卷(答卷时间:120分钟 卷面总分:150分)一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.设全集,集合,则( )A .B .C .D .2.若命题,则命题的否定为( )A .B .C .D .3.已知命题,若命题是命题的充分不必要条件,则命题可以为( )A .B .C .D .4.下列幕函数满足:“①;②当时,为单调通增”的是( )A . B .C .D .5.已知函数(其中)的图象如图所示,则函数的图像是( )A .B .C .D .6.已知且,则的最小值是( )A .B . 25C .5D .{}0,1,2,3,4,5,6U ={}{}1,2,3,3,4,5,6A B ==U ()A B = ð{}1,2{}2,3{}1,2,3{}0,1,2,32:0,320p x x x ∃>-+>p 20,320x x x ∃>-+≤20,320x x x ∃≤-+≤20,320x x x ∀≤-+>20,320x x x ∀>-+≤:32p x -<≤q p q 31x -≤≤1x <31x -<<3x <-,()()x R f x f x ∀∈-=-(0,)x ∈+∞()f x ()f x =3()f x x=1()f x x-=2()f x x=()()()f x x a x b =--a b >()2xg x a b =+-0,0x y >>3210x y +=32x y+52657.已知偶函数与奇函数的定义域都是,它们在上的图象如图所示,则使关于的不等式成立的的取值范围为( )A .B .C .D .8.已知,则与之间的大小关系是( )A .B .C .D .无法比较二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对得5分,部分选对得部分分.9.下列函数中,与不是同一函数的是( )A .B .C .D .10.若,则下列不等式成立的是( )A .B.C .D .11.设,用符号表示不大于的最大整数,如.若函数,则下列说法正确的是( )A .B .函数的值域是C .若,则D .方程有2个不同的实数根三、填空题:本大题共3小题,每小题5分,共15分.将答案填写在答题卷相应位置上.12.计算________.13.“不等式对一切实数都成立”,则的取值范围为________.()f x ()g x (2,2)-[0,2]x ()()0f x g x ⋅>x (2,1)(0,1)-- (1,0)(0,1)- (1,0)(1,2)- (2,1)(1,2)-- 45342024120241,2024120241a b ++==++a b a b>a b <a b =y x =2y =u =y =2n m n=,0a b c a b c >>++=22a b <ac bc <11a b<32a a a b b+>+x R ∈[]x x [1.6]1,[ 1.6]2=-=-()[]f x x x =-[(1.5)]1f =-()f x [1,0]-()()f a f b =1a b -≥2()30f x x -+=21232927()((1.5)48---+=23208x kx -+-<x k14.某学校高一年级一班48名同学全部参加语文和英语书面表达写作比赛,根据作品质量评定为优秀和合格两个等级,结果如表所示:若在两项比赛中都评定为合格的学生最多为10人,则在两项比赛中都评定为优秀的同学最多为________人.优秀合格合计语文202848英语301848四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知集合,集合.(1)当时,求,.(2)若,求的取值范围.16.(15分)已知函数.(1)判断函数的奇偶性并用定义加以证明;(2)判断函数在上的单调性并用定义加以证明.17.(15分)已知函数.(1)若函数图像关于对称,求不等式的解集;(2)若当时函数的最小值为2,求当时,函数的最大值.18.(17分)某游戏厂商对新出品的一款游戏设定了“防沉迷系统”规则如下①3小时内(含3小时)为健康时间,玩家在这段时间内获得的累积经验值(单位:EXP )与游玩时间(单位:小时)滴足关系式:;②3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为0(即累积经验值不变);③超过5小时为不健康时间,累积经验值开始损失,损失的经验值与不健康时国成正比例关系,正比例系数为50.(1)当时,写出累积经验值与游玩时间的函数关系式,求出游玩6小时的累积经验值;(2)该游戏厂商把累积经验值与游现时间的比值称为“玩家愉悦指数”,记为,若,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数的取值范围.19.(17分)《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂,从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是发现新问题、新结论的重要方法.例如,已知,求证:.{}34A x x =-<≤{}121B x k x k =+≤≤-2k ≠A B ()R A B ðA B B = k 2()f x x x=-()f x ()f x (0,)+∞2()23,f x x bx b R =-+∈()f x 2x =()0f x >[1,2]x ∈-()f x [1,2]e ∈-()f x E t 22016E t t a =++1a =E t ()E f t =E t ()H t 0a >a 1ab =11111a b+=++证明:原式.波利亚在《怎样解题》中也指出:“当你找到第一个蘑菇或作出第一个发现后,再四处看看,他们总是成群生长.”类似上述问题,我们有更多的式子满足以上特征.请根据上述材料解答下列问题:(1)已知,求的值;(2)若,解方程;(3)若正数满足,求的最小值.111111ab b ab a b b b=+=+=++++1ab =221111a b+++1abc =5551111ax bx cxab a bc b ca c ++=++++++,a b 1ab =11112M a b=+++高一数学期中考参考答案1234567891011A DCB DAABABDBDACD12.13.14.1215.解:(1)由题设,则,,则,(2)由,若时,,满足;若时,;综上,.16.解:(1)是奇函数,证明如下:由已知得的定义域是,则,都有,且,所以是定义域在上的奇函数.(2)在上单调递减,证明如下:,且,都有∵,∴,∵,∴∴,即,所以在上单调递减32({}3B ={}34A B x x =-<≤ {}()34R A x x x =≤->或ð()R A B = ð∅A B A B A =⇒⊆ B =∅1212k k k +>-⇒<B ≠∅12151322214k k k k k +≤-⎧⎪+>-⇒≤≤⎨⎪-≤⎩52k ≤()f x ()f x (,0)(0,)-∞+∞ (,0)(0,)x ∀∈-∞+∞ (,0)(0,)x -∈-∞+∞ 22()()()f x x x f x x x-=--=-=--()f x (,0)(0,)-∞+∞ ()f x (0,)+∞12,(0,)x x ∀∈+∞12x x <22212121121212122222()()x x x x x x f x f x x x x x x x --+-=--+=222112************222()()x x x x x x x x x x x x x x x x --+⨯---==211212()(2)x x x x x x -⨯+=12x x <210x x ->12,(0,)x x ∈+∞120x x >12()()0f x f x ->12()()f x f x >()f x (0,)+∞17.解:(1)因为图像关于对称,所以:,所以:得:,即,解得或所以,原不等式的解集为:(2)因为是二次函数,图像抛物线开口向上,对称轴为,①若,则在上是增函数所以:,解得:;所以:,②若,则在上是减函数,所以:,解得:(舍);③若,则在上是减函数,在上是增函数;所以,解得:或(舍),所以:综上,当时,的最大值为11;当时,最大值为6.18.解:(1)当时,,,当时,,当时,当时,所以,当时,.(2)当时,,整理得:恒成立,令函数的对称轴是,当时,取得最小值,即,()f x 2x =2b =22()43()43,1f x xx f x x x e e -+=-+=<2430x x ee -+<2430x x -+<1x <3x >{}13x x x <>或2()23f x x bx =-+x b =1b ≤-()f x [1,2]-min ()(1)422f x f b =-=+=1b =-max ()()7411f x f x b ==-=2b ≥()f x [1,2]-min ()(2)742f x f b ==-=54b =12b -<<()f x [1,]b -(,2]b 2min ()()32f x f b b ==-=1b =1b =-max ()(1)426f x f b =-=+=1b =-()f x 1b =()f x 03t <≤1a =22016E t t =++3t =85E =35t <≤85E =5t >8550(5)33550E t t=--=-22016,03()85,3533550,5t t t E t t t t ⎧++<≤⎪=<≤⎨⎪->⎩6t =()35E t =03t <≤22016()24t t aH t t++=≥24160t t a -+≥2()416f t t t a =-+2(0,3]t =∈2t =()f t 164a -1640a -≥14a ≥19.解:(1).(2)∵,∴原方程可化为:,即:,∴,即,解得:.(3)∵,当且仅当,即∴有最小值,此时有最大值,从而有最小值,即有最小值.222211111ab ab b aa b ab a ab b ab a b+=+=+=++++++1abc =55511(1)ax bx bcxab a abc bc b b ca c ++=++++++5551111x bx bcx b bc bc b bc b ++=++++++5(1)11b bc x b bc ++=++51x =15x =2221122111111211223123123ab b b b b M ab a b b b b b b b b b++=+=+==-=-++++++++++12b b +≥=12b b =1b a b===12b b +1123b b ++3-11123b b-++2-11112M a b=+++2。
江苏省扬州市扬州中学2024-2025学年高一上学期11月期中数学试题(含答案)
江苏省扬州中学2024-2025学年第一学期期中试题高一数学 2024.11试卷满分:150分,考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码2.将选择题答案填写在答题卡的指定位置上(用2B 铅笔填涂),非选择题一律在答题卡上作答(用0.5mm 黑色签字笔作答),在试卷上答题无效。
3.考试结束后,请将答题卡交监考人员。
一、单项选择题:本大题共8小题,每小题5分,共40分。
在每题给出的四个选项中只有一项是最符合题意的。
1.已知集合,,则( )A. B. C. D. 或2. 已知为常数,集合,集合,且,则的所有取值构成的集合元素个数为( )A. 1B. 2C. 3D.43.设为奇函数,且当时,,则当时,( )A. B. C. D. 4.函数的值域为( )A. B. C. D. 5.已知函数的定义域为,则函数)A. B. C. D. 6. 若不等式的解集为,那么不等式的解集为( ){|02}A x x =<<{|14}B x x =<<A B = {|02}x x <<{|24}x x <<{|04}x x <<{2|x x <4}x >a {}260A x x x =+-=∣{20}B x ax =-=∣B A ⊆a ()f x 0x ≥()2f x x x =+0x <()f x =2x x +2x x -2x x --2x x -+x x y 211-++=(]2,∞-()2,∞-()20,[)∞+,2(2)f x +(3,4)-()g x =(1,6)(1,2)(1,6)-(1,4)20ax bx c ++>{}12x x -<<()()2112a x b x c ax ++-+>A. B. 或C. 或 D. 7.命题在单调增函数,命题在上为增函数,则命题是命题的( )条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要8. 已知,则的最大值为( )A. B. C. D.二、多项选择题:本大题共3小题,每小题6分,共18分。
2024-2025学年四川省成都市九县区高一上学期期中考试数学试卷含答案
2024~2025学年度上期高中2024级期中考试数学考试时间120分钟,满分150分一,选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}22A x x =∈-≤≤Z ,{}03B x x =∈≤≤Z ,则A B = ()A.{}1,2 B.{}0,1,2 C.{}1,0,1,2- D.{}2,1,0,1,2,3--2.若命题p :x ∀∈R ,2230x x -+>,则p ⌝为()A.x ∀∈R ,2230x x -+< B.x ∀∈R ,2230x x -+≤C.x ∃∈R ,2230x x -+< D.x ∃∈R ,2230x x -+≤3.下列四个命题中的真命题有()①若a b >,c d >,则a c b d +>+②若a b >,c d >,则ac bd>③若a b >,则22ac bc >④若a b >,则()()2211a cbc +>+A.②③B.②④C.①④D.③④4.函数()2441xf x x =-+的图象大致为()A.B. C.D.5.函数()f x =的定义域为()1,2,则ab =()A.2B.-2C.-1D.16.已知()f x 为定义在R 上的奇函数,当0x ≤时,()221f x x x a =++-,则()1a f +=()A.-2B.-1C.1D.17.高一某班共有45名学生,该班参加数学强基班的学生有25人,参加物理强基班的学生有18人,既参加数学强基班又参加物理强基班的学生有8人,则既没有参加数学强基班又没有参加物理强基班的学生有()A.10人B.11人C.12人D.13人8.集合{}1,3,5,7M =的所有子集中的元素之和为()A.126B.128C.130D.132二,选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求。
北京市2024-2025学年高一上学期期中考试数学试题含答案
北京2024-2025学年度第一学期期中考试(答案在最后)高一年级数学学科本试卷共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.一、选择题(每题4分,共48分)1.已知集合{}12A x Z x =∈-≤<,则下列说法正确的是()A .0A⊆B .0A∉C .3A∈D .1A-∈2.记命题:0,3p x x ∃>≥,则p ⌝为()A .0,3x x ∀><B .0,3x x ∀≤<C .0,3x x ∃≤≥D .0,3x x ∃><3.集合{}0,1的真子集有()个A .1B .2C .3D .44.已知实数,a b c ,在数轴上对应的点如图所示,则下列式子中正确的是()A .b a c a -<+B .2c ab<C .c cb a>D .b c a c<5.下列函数中,在区间(0,)+∞上单调递减的是()A .1y x x=-B .y =C .2xy -=D .22y x x=-6.“12x -<<”是“12x>”的()条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要7.已知偶函数()f x 在区间(,1]-∞-上单调递减,则下列关系式中成立的是()A .5()(3)(2)2f f f -<<B .5(3)((2)2f f f <-<C .5(2)(3)(2f f f <<-D .5(2)((3)2f f f <-<8.若函数(0,1)xy a a a =>≠且的值域为(0,1],则函数log a x 的图象大致是()A .B .C .D .9.已知函数()21xf x x =--,则不等式()0f x >的解集是()A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,+-∞∞ )10.设 1.2 1.23log 6,2,0.5a b c ===,则()A .b a c <<B .c b a<<C .c a b<<D .a c b<<11.已知函数()f x =R ,则实数a 的取值范围为()A .[0,1]B .[0,1)C .(0,1]D .(0,1)12.设集合A 是集合N *的子集,对于i N *∈,定义1,()0,i i AA i A ϕ∈⎧=⎨∉⎩给出下列三个结论:①存在N *的两个不同子集,A B ,使得任意i N *∈都满足()0i A B ϕ= 且()1i A B ϕ= ;②任取N *的两个不同子集,A B ,对任意i N *∈都有()()()i i i A B A B ϕϕϕ=⋅ ;③任取N *的两个不同子集,A B ,对任意i N *∈都有()()()i i i A B A B ϕϕϕ=+ .其中所有正确结论的序号是()A .①②B .②③C .①③D .①②③二、填空题(每题5分,共30分)13.函数1()1f x x =-的定义域为________.14.已知函数3()27log x f x x =+,则13f ⎛⎫= ⎪⎝⎭________.15.若()g x 在R 上是增函数,能够说明“()y xg x =在R 上也是增函数”是假命题的一个()g x 的解析式()g x =________.16.函数221,1()2,1x x f x x x x ⎧-≤⎪=⎨->⎪⎩的值域为________.17.已知下列四个函数:1,,ln ,x y x y y x y e x====.从中选出两个函数分别记为()f x 和()g x ,若()F x =()()f x g x +的图象如图所示,则()F x =________.18.已知函数2,(),x a x a f x x x a+≤⎧=⎨>⎩.若存在非零实数0x ,使得00()()f x f x -=-成立,则实数a 的取值范围为________.三、解答题(每题12分,共72分)19.已知集合{}{}3,15A x a x a B x x x =≤≤+=<->或.(Ⅰ)若2a =-,求集合()()R R B A ;I 痧(Ⅱ)若A B A = ,求a 的取值范围.20.分别求下列关于x 的不等式的解集:(Ⅰ)2610x x --<;(Ⅱ)2(2)20x a x a +--≤.21.为打赢打好脱贫攻坚战,实现建档立卡贫困人员稳定增收,某地区把特色养殖确定为脱贫特色主导产业,助力乡村振兴.现计划建造一个室内面积为1500平方米的矩形温室大棚,并在温室大棚内建两个大小、形状完全相同的矩形养殖池,其中沿温室大棚前、后、左、右内墙各保留1.5米宽的通道,两养殖池之间保留2米宽的通道.设温室的一边长度为x 米,如图所示.(I )将两个养殖池的总面积y 表示为x 的函数,并写出定义域;(Ⅱ)当温室的边长x 取何值时,总面积y 最大?最大值是多少?22.已知函数()2,f x x x a a R =--∈.(I )当2a =时,直接写出函数()f x 的单调递增区间;(Ⅱ)当2a >时,求函数()f x 在区间[1,2]上的最小值.23.已知()y f x =是定义在[-3,3]上的奇函数,当[3,0]x ∈-]时,1()()94xx af x a R =+∈.(I )求()y f x =在(0,3]上的解析式;(Ⅱ)当1[1,2x ∈--时,不等式11()34x x m f x -≤-恒成立,求实数m 的取值范围.24.若集合A 具有以下性质:①0,1A A ∈∈;②若,x y A ∈,则x y A -∈,且0x ≠时,1A x∈.则称集合A 是“好集”.(I )分别判断集合{}1,0,1B =-,有理数集Q 是否是“好集”,并说明理由;(Ⅱ)设集合A 是“好集”,求证:若,x y A ∈,则x y A +∈;(Ⅲ)对任意的一个“好集”A ,分别判断下面命题的真假,并说明理由.命题p :若,x y A ∈,则必有xy A ∈;命题q :若,x y A ∈,且0x ≠,则必有yA x∈.参考答案一、选择题DACDC ,BDBDC ,BA 二、填空题13.{}1x x ≠或写为(,1)(1,)-∞+∞ 14.215.x (答案不唯一)16.(1,+-∞)17.1x e x+18.1[2,4-三、解答题19.(I )(1,5](Ⅱ)(,4)(5,)-∞-+∞ 20.(I )11(,)32-(Ⅱ)2a <-时,解集为[2,a -];2a =-时,解集为{}2;2a >-时,解集为[a -,2].21.解:(I )依题意得温室的另一边长为1500x米.因此养殖池的总面积1500(3)(5)y x x=--,因为150030,50x x->->,所以3300x <<.所以定义域为{}3300x x <<.(Ⅱ)15004500(3)(5)1515(5)151515153001215y x x x x =--=-+≤-=-=,当且仅当45005x x=,即30x =时上式等号成立,当温室的边长x 为30米时,总面积y 取最大值为1215平方米.22.解:(1)当2a =时,(2)2,2()22(2)2,2x x x f x x x x x x --≥⎧=--=⎨--<⎩,22(1)3,2()(1)1,2x x f x x x ⎧--≥⎪=⎨---<⎪⎩,由二次函数的性质知,单调递增区间为(-∞,1],[2,+∞).或写为(-∞,1),(2,+∞)(Ⅱ)∵2a >,x ∈[1,2]时,所以2()()22f x x a x x ax =--=-+-228(24a a x -=-+,当3122a <≤,即23a <≤时,min ()(2)26f x f a ==-;当322a >,即3a >时,min ()(1)3f x f a ==-;∴min26,23()3,3a a f x a a -<≤⎧=⎨->⎩.23.(I )因为()y f x =是定义在[-3,3]上的奇函数,x ∈[-3,0]时,1()()94x xaf x a R =+∈,所以001(0)094a f =+=,解得1a =-,所以x ∈(-3,0]时,11()94x xf x =-当(0,3]x ∈时,[3,0)x -∈-,所以11()9494x x x x f x ---=-=-,又()()49xxf x f x =--=-,即()y f x =在(0,3]上的解析式为()49xxf x =-,(Ⅱ)因为1[1,2x ∈--时,11()94x xf x =-,所以11()34x x m f x -≤-可化为11119434x x x x m --≤-,整理得13(334xx m ⎛⎫≥+⋅ ⎪⎝⎭,令13()334xxg x ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭,根据指数函数单调性可得,所以()g x 也是减函数.所以11max13()(1)3734g x g --⎛⎫⎛⎫=-=+⋅= ⎪ ⎪⎝⎭⎝⎭,所以7m ≥,故实数m 的取值范围是[7,+∞).24.解:(I )集合B 不是“好集”.理由是:假设集合B 是“好集”.因为1,1B B -∈∈,所以112B --=-∈.这与2B -∉矛盾.有理数集Q 是“好集”.因为0,1Q Q ∈∈,对任意的,x y Q ∈,有x y Q -∈,且0x ≠时,1Q x∈.所以有理数集Q 是“好集”.(Ⅱ)因为集合A 是“好集”,所以0A ∈.若,x y A ∈,则0y A -∈,即y A -∈.所以()x y A --∈,即x y A +∈.(Ⅲ)命题,p q 均为真命题.理由如下:对任意一个“好集”A ,任取,x y A ∈,若,x y 中有0或1时,显然xy A ∈.下设,x y 均不为0,1.由定义可知:111,,1x A x x-∈-.所以111A x x -∈-,即1(1)A x x ∈-.所以(1)x x A -∈.由(Ⅱ)可得:(1)x x x A -+∈,即2x A ∈.同理可得2y A ∈.若0x y +=或1x y +=,则显然2()x y A +∈.若0x y +≠且1x y +≠,则2()x y A +∈.所以2222()xy x y x y A =+--∈.所以12A xy∈.由(Ⅱ)可得:11122A xy xy xy=+∈.所以xy A ∈.综上可知,xy A ∈,即命题p 为真命题.若,x y A ∈,且0x ≠,则1A x∈.所以1y y A x x=⋅∈,即命题q 为真命题.。
北京市延庆区2024-2025学年高一上学期期中考试数学试卷含解析
延庆区2024-2025学年第一学期期中试卷高一数学(答案在最后)本试卷共4页,满分150分,考试时间120分钟第I 卷(选择题)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,0,1,2A =-,{}2,1,0,1B =--,则A B = ()A.{}0,1 B.{}1,0- C.{}2,1,0,1,2-- D.{}1,0,1-【答案】D 【解析】【分析】根据给定条件,利用交集的定义求解即得.【详解】集合{}1,0,1,2A =-,{}2,1,0,1B =--,所以{}1,0,1A B ⋂=-.故选:D2.若集合[]3,1A =-,()2,3B =-,则A B = ()A.(]2,1- B.[)2,1- C.(]3,3- D.[)3,3-【答案】D 【解析】【分析】根据条件,利用集合的运算,即可求解.【详解】因为[]3,1A =-,()2,3B =-,所以A B = [)3,3-,故选:D.3.已知全集{}N 6U x x =∈≤且{}25A x U x =∈≤,则集合U A ð中的元素有()A.2个B.4个C.5个D.7个【答案】B 【解析】【分析】利用列举法表示集合U ,解不等式化简集合A ,再求出U A ð即可得解.【详解】依题意,{0,1,2,3,4,5,6}U =,解不等式25x ≤,得x ≤≤,则{0,1,2}A =,所以{3,4,5,6}U A =ð,集合U A ð中的元素有4个.故选:B4.已知集合A 满足{}1A ⊆{}1,2,3,4,则A 有()A.2个 B.4个C.5个D.7个【答案】D 【解析】【分析】根据给定条件,求出集合{}2,3,4的真子集个数即可得解.【详解】集合A 满足{}1A⊆{}1,2,3,4,则集合A 可视为集合{1}与集合{}2,3,4的每个真子集的并集,而集合{}2,3,4的真子集个数为3217-=,所以A 有7个.故选:D5.若22P a a =-和24Q a =-,则P 和Q 的大小关系为()A.P Q >B.P Q< C.P Q≥ D.P Q≤【答案】C 【解析】【分析】根据条件,通过作差法,得到2(2)P Q a -=-,即可求解.【详解】因为22P a a =-,24Q a =-,所以2222(24)44(2)0P Q a a a a a a -=---=-+=-≥,当且仅当2a =时取等号,所以P Q ≥,故选:C.6.设,,a b c ∈R ,且a b <,c d <,则()A.22a b <B.d c a b> C.ac bd< D.33a b <【答案】D 【解析】【分析】举例说明判断ABC ;利用不等式的性质判断D.【详解】对于A ,取2,2a b =-=,满足a b <,而224a b ==,A 错误;对于B ,取2,1,1,4a b c d =-=-==满足,a b c d <<,而21d ca b=-<-=,B 错误;对于C ,取2,1,1,4a b c d =-=-==满足,a b c d <<,而24ac bd =->-=,C 错误;对于D ,由不等式性质知,由a b <,得33a b <,D 正确.故选:D7.下列函数中,既是偶函数又在区间(),0-∞上单调递增的是()A.21y x =B.1y x =+C.2y x =-,(),0x ∈-∞D.y x=【答案】A 【解析】【分析】利用奇偶函数的判断方法及基本函数的单调性,对各个选项逐一分析判断,即可求解.【详解】对于选项A ,因为221y x x-==,定义域为(,0)(0,)-∞+∞ ,关于原点对称,又2211()()()f x f x x x -===-,所以21y x=是偶函数,又由幂函数的性质知21y x =在区间()0,∞+上单调递减,所以21y x =在区间(),0-∞上单调递增,故选项A 正确,对于选项B ,因为1y x =+图象不关于y 轴对称,即1y x =+不是偶函数,所以选项B 错误,对于选项C ,因为2y x =-,(),0x ∈-∞的定义域不关于原点对称,即2y x =-,(),0x ∈-∞是非奇非偶函数,所以选项C 错误,对于选项D ,当(),0x ∈-∞时,y x x ==-在区间(),0-∞上单调递减,所以选项D 错误,故选:A.8.已知函数()f x 的定义域为R ,则“()f x 为奇函数”是“(0)=0f ”的A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【详解】试题分析:因函数的定义域是,故“是奇函数”是“”的充分条件;反之,若(0)0f =,则函数不一定是奇函数,“f (x )为奇函数”不是必要条件.应选A.考点:充分必要条件.9.已知函数2()2f x x ax =++有两个零点,在区间(1,2)-上是单调的,且在该区间中有且只有一个零点,则实数a 的取值范围是()A.(,)-∞-⋃+∞B.(,3)(3,)-∞-⋃+∞C.(,4](3,)-∞-+∞D.(,4][2,)-∞-+∞ 【答案】C 【解析】【分析】求出函数()f x 的单调区间,再结合集合的包含关系及零点存在性定理列式求解即得.【详解】函数2()2f x x ax =++在(,]2a -∞-上单调递减,在[,)2a-+∞上单调递增,由在区间(1,2)-上是单调的,且在该区间中有且只有一个零点,得(,](1,2)2a ∞---⊆且(1)0(2)0f f ->⎧⎨<⎩或[,)(1,22)a--+∞⊆且(1)0(2)0f f -<⎧⎨>⎩,则2230620a a a ⎧-≥⎪⎪->⎨⎪+<⎪⎩或1230620aa a ⎧-≤⎪⎪-<⎨⎪+>⎪⎩,解得4a ≤-或3a >,所以实数a 的取值范围是(,4](3,)-∞-+∞ .故选:C10.x ∀∈R ,设()f x 取41y x =+,1y x =+,24y x =-+三个函数值中的最小值,则()f x 的最大值为()A.1B.2C.3D.4【答案】B 【解析】【分析】作出函数()f x 的图象,利用图象求出其最大值.【详解】在同一坐标系内作出直线41y x =+,1y x =+,24y x =-+,由()f x 取41y x =+,1y x =+,24y x =-+三个函数值中的最小值,得()f x 的图象为下图中实线构成的折线图,则()f x 的最大值即为()f x 的图象最高点对应的纵坐标值,观察图象知,()f x 的图象最高点是直线1y x =+与24y x =-+的交点,由124y x y x =+⎧⎨=-+⎩,得12x y =⎧⎨=⎩,因此()f x 的图象最高点是(1,2),所以()f x 的最大值为2.故选:B第II 卷(非选择题)二、填空题:本大题共5小题,每小题5分,共25分.11.函数()124f x x =+______.【答案】(2,)-+∞【解析】【分析】利用函数有意义列式求出定义域.【详解】依题意,240x +>,解得2x >-,所以函数()124f x x =+的定义域是(2,)-+∞.故答案为:(2,)-+∞12.已知奇函数()f x 满足()()53f f -<-,则()5f ______()3f .【答案】大于【解析】【分析】利用奇函数的性质,结合不等式的性质求解即得.【详解】由奇函数()f x 满足()()53f f -<-,得()()53f f -<-,所以()()53f f >.故答案为:大于13.已知(],A a =-∞,(),3B =-∞,且x A ∈是x B ∈的必要不充分条件,则a 的取值范围是______【答案】3a ≥【解析】【分析】根据条件得到BA ,再利用集合间的关系,即可求解.【详解】因为x A ∈是x B ∈的必要不充分条件,则B A ,又(],A a =-∞,(),3B =-∞,所以3a ≥,故答案为:3a ≥.14.已知0x <,则812y x x=++的最大值是______,当且仅当x =______时,等号成立.【答案】①.7-②.2-【解析】【分析】根据给定条件,借助配凑的方法,利用基本不等式求出最大值及对应x 的值.【详解】由0x <,得0x ->,则81(2)17y x x =--+≤---,当且仅当82x x-=-,即2x =-时取等号,所以当2x =-时,812y x x=++取得最大值7-.故答案为:7-;2-15.已知函数2()2||1f x x x =--,给出下列四个结论:①函数()f x 是偶函数;②函数()f x 的增区间为[1,)+∞;③不等式()1f x x <-的解集是(1,3)-;④当3x >-时,令3()()g x f x x =+,则()g x 的最小值为4-.其中所有正确结论的序号是______.【答案】①④【解析】【分析】利用偶函数的定义判断①;求出函数的单调递增区间判断②;分段求出不等式的解集判断③;利用基本不等式分段求出最小值判断④.【详解】函数2()2||1f x x x =--的定义域为R ,对于①,22()()2||12||1()f x x x x x f x -=----=--=,函数()f x 是偶函数,①正确;对于②,2221,0()21,0x x x f x x x x ⎧+-≤=⎨-->⎩,函数()f x 的增区间为[1,0],[1,)-+∞,②错误;对于③,不等式()1f x x <-,则20211x x x x ≤⎧⎨+-<-⎩或20211x x x x >⎧⎨--<-⎩,解得10x -<<或03x <<,所以不等式()1f x x <-的解集是(1,0)(0,3)- ,③错误;对于④,依题意,2221,303()21,03x x x x g x x x x x ⎧+--<≤⎪⎪+=⎨--⎪>⎪+⎩,当30x -<≤时,2()(3)4443g x x x =++-≥=+,当且仅当233x x +=+,即3x =-时取等号;当0x >时,14()(3)88283x g x x =++-≥=+,当且仅当1433x x +=+,即3x =时取等号,而84)2)]0--=-+=>,即84->,所以()g x的最小值为4-,④正确.故所有正确结论的序号是①④.故答案为:①④【点睛】思路点睛:涉及分段函数解不等式问题,先在每一段上求解不等式,再求出各段解集的并集即可.三、解答题:本大题共6小题,共85分.解答应写出文字说明,证明过程或演算步骤.16.求下列方程(组)的解集..:(1)2560x x +-=(2)3ax =(3)10x +-=(4)2214112x y y x ⎧+=⎪⎪⎨⎪=+⎪⎩【答案】(1){6,1}-(2)当0a =时,解集为∅;当0a ≠时,方程解集为3a 禳镲睚镲铪.(3){3-(4){(0,1),(2,0)}-【解析】【分析】(1)解一元二次方程即可得解集.(2)对a 分类讨论即可得方程的解集.(3(0)t t =≥,把原方程化为一元二次方程,结合t 的取值范围即可得到原方程的解集.(4)利用代入消元法即可得到方程组的解集.【小问1详解】由2560x x +-=得,(6)(1)0x x +-=,解得126,1x x =-=,故方程的解集为{6,1}-.【小问2详解】当0a =时,方程无解,解集为∅,当0a ≠时,解方程得3x a =,方程解集为3a ⎧⎫⎨⎬⎩⎭.【小问3详解】(0)t t =≥,则方程可化为2210t t +-=,解方程得,1211t t =-+=-,22(13x t ==-=-{3-.【小问4详解】由2214112x y y x ⎧+=⎪⎪⎨⎪=+⎪⎩得,2240x x +=,解得120,2x x ==-,方程组的解为1101x y =⎧⎨=⎩,2220x y =-⎧⎨=⎩,故方程组解集为{(0,1),(2,0)}-.17.求下列不等式(组)的解集..:(1)2430x x -+≥(2)23210x x -++>(3)2112x x +≥+(4)221132340x x x ⎧+<⎪⎨⎪-+>⎩【答案】(1){|1x x ≤或}3x ≥(2)1|13x x ⎧⎫-<<⎨⎬⎩⎭(3){|2x x <-或 (4){}|21x x -<<【解析】【分析】(1)根据条件,因式分解得到(3)(1)0x x --≥,再利用一元二次不等式的解法,即可求解;(2)根据条件,变形得到23210x x --<,再因式分解得(31)(1)0x x +-<,即可求解;(3)先变形成102x x -≥+,再等价于(1)(2)0x x -+≥且2x ≠-,即可求解;(4)先利用绝对值不等式的解法,求2113x +<的解,再求22340x x -+>的解,再求交集,即可求解.【小问1详解】由2430x x -+≥,得到(3)(1)0x x --≥,所以1x ≤或3x ≥,故不等式2430x x -+≥的解集为{|1x x ≤或}3x ≥.【小问2详解】由23210x x -++>,即23210x x --<,得到(31)(1)0x x +-<,所以113-<<x ,故不等式23210x x -++>的解集为1|13x x ⎧⎫-<<⎨⎬⎩⎭.【小问3详解】由2112x x +≥+,得到102x x -≥+,等价于(1)(2)0x x -+≥且2x ≠-,所以2x <-或1x ≥,故不等式2112x x +≥+的解集为{|2x x <-或}1≥x .【小问4详解】由2113x +<,得到3213x -<+<,即2<<1x -,对22340x x -+>,因为9442230∆=-⨯⨯=-<,所以22340x x -+>的解集为R ,故不等式组221132340x x x ⎧+<⎪⎨⎪-+>⎩的解集为{}|21x x -<<.18.已知关于x 的方程220x x m +-=,m ∈R .(1)当1m =时,若方程的两根为1x 与2x ,求下列各式的值:①2212x x +;②12||x x -;③1222x x +;(2)若该方程的两根同号,求实数m 的取值范围.【答案】(1)①6;②;③4;(2)10m -<<.【解析】【分析】(1)把1m =代入,利用韦达定理列式,再逐一变形计算各个式子的值.(2)利用判别式及韦达定理列出不等式组求解.【小问1详解】当1m =时,方程2210x x +-=,224(1)80∆=-⨯-=>,则12122,1x x x x +=-=-,①222121212()26x x x x x x =-++=;②12||x x ==-=;③1212122()224x x x x x x ++==.【小问2详解】由方程的两根同号,得1212Δ440200m x x x x m =+>⎧⎪+=-<⎨⎪=->⎩,解得10m -<<,所以实数m 的取值范围是10m -<<.19.已知函数()21f x m x=+过点()1,2-.(1)求函数()f x 的解析式及定义域;(2)判断函数()f x 的奇偶性并证明;(3)令()()1g x f x =-,求()g x 的解析式,并证明()g x 的图像关于1x =对称.【答案】(1)()211f x x=+,定义域为{}|0x x ≠(2)偶函数,证明见解析(3)()211(1)(1)g x x x =+≠-,证明见解析【解析】【分析】(1)根据条件可得1m =,即可得()211f x x=+,由解析式可直接求出定义域,即可求解;(2)利用奇偶函数的判断方法,即可求解;(3)利用()211f x x=+,即可得()211(1)(1)g x x x =+≠-,再任取一点(,)P x y ,通过证明其关于1x =对称的点也在()g x 的图象上,即可求解.【小问1详解】因为函数()21f x m x =+过点()1,2-,则21m =+,得到1m =,所以()211f x x =+,定义域为{}|0x x ≠.【小问2详解】函数()f x 为偶函数,证明如下,因为()211f x x =+的定义域为{}|0x x ≠,关于原点对称,又()221111()()f x f x x x -=+=+=-,所以()f x 为偶函数.【小问3详解】因为()()2111(1)(1)g x f x x x =-=+≠-,设(,)P x y 是()g x 图象上任意一点,(,)P x y 关于1x =的对称点为(2,)P x y '-,因为()211(1)(1)g x x x =+≠-,所以()2221112111()(21)(1)(1)g x g x x x x -=+=+=+=----,即点(2,)P x y '-也在()g x 图象上,所以()g x 的图像关于1x =对称.20.已知函数()223f x x mx =++.(1)当1m =,[]2,2x ∈-时,求函数()f x 的值域;(2)若函数()f x 在[]22-,上是单调函数,求实数m 的取值范围;(3)当2m =时,比较()0f 与()()226f a a a -+-∈R 的次小.【答案】(1)[2,11](2)(,2][2,)-∞-+∞ (3)()2(0)26f f a a <-+-【解析】【分析】(1)利用二次函数的对称轴可求函数的单调性,求出最大值和最小值即可得到函数的值域.(2)讨论函数的单调性,利用定义域和对称轴的关系可求得参数的取值范围.(3)计算226a a -+-的取值范围,利用二次函数的单调性和对称轴可比较大小.【小问1详解】当1m =时,()223f x x x =++,对称轴为直线1x =-,()f x 在(2,1)--上为减函数,在(1,2)-上为增函数,min max ()(1)1232,()(2)44311f x f f x f =-=-+===++=,故函数()f x 的值域为[2,11].【小问2详解】函数()223f x x mx =++,对称轴为直线x m =-,当函数()f x 在[]22-,上是单调增函数时,2m -≤-,2m ≥,当函数()f x 在[]22-,上是单调减函数时,2m -≥,2m ≤-,综上得,实数m 的取值范围为(,2][2,)-∞-+∞ .【小问3详解】当2m =时,()243f x x x =++,对称轴为直线2x =-,()f x 在(,2)-∞-上为减函数,在(2,)-+∞上为增函数,且()0(4)f f =-,∵2226(1)55a a a -+-=---≤-,∴()226(5)(4)(0)f a a f f f -+-≥->-=,故()2(0)26f f a a <-+-.21.设集合(){}123,,,R,1,2,3k A a a x x x x k ==∈=,对于集合A 中的任意元素()123,,a x x x =和()123,,b y y y =及实数λ,定义:当且仅当()1,2,3i i x y i ==时a b =()112233,,a b x y x y x y +=+++;()123,,a x x x λλλλ=.若A 的子集{}123,,B a a a =满足:当且仅当1230λλλ===时,()1122330,0,0a a a λλλ++=,则称B 为A 的完美子集.(1)集合()()(){}11,0,0,0,2,0,0,0,3B =,()()(){}21,2,3,2,3,4,3,4,5B =,分别判断这两个集合是否为A 的完美子集,并说明理由;(2)集合()()(){}2,,2,,2,2,,2,2B m m m m m m m m m =---,若B 不是A 的完美子集,求m 的值.【答案】(1)1B 是A 的完美子集,2B 不是A 的完美子集,理由见解析;(2)12m =.【解析】【分析】(1)根据完美子集定义去计算验证是否当且仅当1230λλλ===时,()1122330,0,0a a a λλλ++=即可得解;(2)先计算112233a a a λλλ++()()()()1231231232,2,2222m m m m m m m m m λλλλλλλλλ=++++++---,接着由()1122330,0,0a a a λλλ++=得方程()()123042m λλλ+-=+,解该方程得12m =或1230λλλ+=+,再结合元素互异性分类讨论12m =和1230λλλ+=+这两种情况即可得解.【小问1详解】1B 是A 的完美子集,2B 不是A 的完美子集,理由如下:对于()()(){}11,0,0,0,2,0,0,0,3B =,因为()()()1231,0,0,0,2,0,0,0,3a a a ===,所以()()()()112233123123,0,00,2,00,0,3,2,3a a a λλλλλλλλλ++=+=+,所以当且仅当1230λλλ===时,()1122330,0,0a a a λλλ++=,所以1B 是A 的完美子集;对于()()(){}21,2,3,2,3,4,3,4,5B =,因为()()()1231,2,3,2,3,4,3,4,5a a a ===,所以()()()112233*********,2,32,3,43,4,5a a a λλλλλλλλλλλλ=++++()123123123,2323344,5λλλλλλλλλ=++++++,令1231231321232302*********λλλλλλλλλλλλ++=⎧⎪++=⇒==-⎨⎪++=⎩,所以123,,λλλ存在无数组解使得()1122330,0,0a a a λλλ++=,如当132222λλλ==-=-时,()1122330,0,0a a a λλλ++=,所以2B 不是A 的完美子集.【小问2详解】因为()()(){}2,,2,,2,2,,2,2B m m m m m m m m m =---,所以()()()1232,,2,,2,2,,2,2a m m m a m m m a m m m =-=--=,所以112233a a a λλλ++()()()()1231231232,2,2222m m m m m m m m m λλλλλλλλλ=++++++---,因为B 不是A 的完美子集,所以存在()()123,,0,0,0λλλ≠,使得1122330a a a λλλ+=+,即存在()()123,,0,0,0λλλ≠使得()()()123123123202202220m m m m m m m m m λλλλλλλλλ⎧++=⎪++-=⎨⎪-+-+=⎩,解方程组得()()123042m λλλ+-=+,由集合互异性可得2m m ≠且22m m ≠-,故0m ≠且2m ≠-,所以解()()123042m λλλ+-=+得12m =或1230λλλ+=+,且由12320m m m λλλ++=得12320λλλ++=,若12m =,则有123123123110221302233022λλλλλλλλλ⎧++=⎪⎪⎪+-=⇒⎨⎪⎪--+=⎪⎩1235573λλλ=-=-,所以123,,λλλ存在无数组解使得()1122330,0,0a a a λλλ++=,如当12355573λλλ=--==时,()1122330,0,0a a a λλλ++=,所以B 不是A 的完美子集,符合题意;当1230λλλ+=+且12m ≠时,则由12320λλλ++=得1230,λλλ==-,所以由()123022m m m λλλ+-=+得()320m λ--=,又2m ≠-得30λ=,故20λ=,不符合题意;综上m 的值为12.【点睛】方法点睛:解新定义题型的步骤:(1)理解“新定义”,明确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”,归纳“举例”提供的解题方法,归纳“举例”提供的分类情况;(3)类比新定义中的概念、原理、方法去解决题中需要解决的问题.。
2023-2024学年度上学期高一数学期中考试[含答案]
又 f (x) 是奇函数,所以 0 x 2 时, f (x) 0 , x 2 时, f (x) 0 ,且 f (0) f (2) 0 ,
不等式
xf
x
0
x
f
0
x
0
或
x
f
0 (x)
0
或
x
0
,所以 0
x
2 或 2
x
0
,
综上 2 x 2 .
故选:D.a 23 , b 45 , c 253 ,则
【解析】
【分析】根据交集含义即可得到答案.
A B 1, 0,1
【详解】根据交集含义即可得到
,
故选:B.
2. 命题: x R, x | x | 0 的否定为( )
A. x R, x | x | 0
B. x R, x | x | 0
C. x R, x | x | 0
D. x R, x | x | 0
【详解】因为
f
2x
1
x2
1 t
,令
2x
1,
x
t
1 2
,
f
(t)
t
1 2 2
1
,即
f
(x)
x 12 2
1
,
所以 f (3) 2 .
故选:B
6.
若定义在 R 的奇函数
f
x
,若
x
0
时
f
x
x 2
xf
,则满足
x 0 的 x 的取值范围是(
)
, 20, 2
A. 【答案】D 【解析】
, 2 2, , 20, 2
对于 C,
y∣y∣ x2 1, x R
2024-2025学年四川省成都市高一上学期期中考试数学检测试题(含解析)
一、2024-2025学年四川省成都市高一上学期期中考试数学检测试题单选题1. 已知集合A ={1 ,2,3,4,5},{},|15B x x =<<,则A ∩B 的元素个数为( )A. 2B. 3C. 4D. 5【答案】B【解析】【分析】直接根据集合的交集运算求解即可.【详解】因为集合A ={1 ,2,3,4,5},{}|15B x x =<<所以{}2,3,4A B =I ,即A ∩B 的元素个数为3个.故选:B2. 函数221y x mx =++在[2,+∞)单调递增,则实数m 的取值范围是( )A. [2,)-+¥B. [2,+∞)C. (,2)-¥D. (,2]-¥【答案】A【解析】【分析】直接由抛物线对称轴和区间端点比较大小即可.【详解】函数221y x mx =++为开口向上的抛物线,对称轴为x m=-函数221y x mx =++在[2,+∞)单调递增,则2m -£,解得2m ³-.故选:A.3. 若函数的定义域为{}22M x x =-££,值域为{}02N y y =££,则函数的图像可能是()A. B.的C. D.【答案】B【解析】【分析】根据函数的定义域与值域,结合函数的性质判断即可.【详解】对A,该函数的定义域为{}20x x-££,故A错误;对B,该函数的定义域为{}22M x x=-££,值域为{}02N y y=££,故B正确;对C,当()2,2xÎ-时,每一个x值都有两个y值与之对应,故该图像不是函数的图像,故C错误;对D,该函数的值域不是为{}02N y y=££,故D错误.故选:B.4. 已知函数()af x x=,则“1a>”是“()f x在()0,¥+上单调递增”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】由幂函数的单调性结合充分必要条件的定义判断.【详解】当0a>时,函数()af x x=在()0,¥+上单调递增,则1a>时,一定有()f x在()0,¥+上单调递增;()f x在()0,¥+上单调递增,不一定满足1a>,故“1a>”是“()f x在()0,¥+上单调递增”的充分不必要条件.故选:A.5. 已知0,0x y>>,且121yx+=,则12xy+的最小值为()A. 2B. 4C. 6D. 8【答案】D【解析】【分析】利用不等式的乘“1”法即可求解.【详解】由于0,0x y >>,故11112224448x y x xy y x y xy æöæö+=++=++³+=ç÷ç÷èøèø,当且仅当14,121,xy xy y xì=ïïíï+=ïî即2,14x y =ìïí=ïî时,等号成立,故12x y +的最小值为8.故选:D6. 已知定义域为R 的函数()f x 不是偶函数,则( )A. ()(),0x f x f x "Î-+¹R B. ()(),0x f x f x "Î--¹R C. ()()000,0x f x f x $Î-+¹R D. ()()000,0x f x f x $Î--¹R 【答案】D【解析】【分析】根据偶函数的概念得()(),0x f x f x "Î--=R 是假命题,再写其否定形式即可得答案.【详解】定义域为R 的函数()f x 是偶函数()(),0x f x f x Û"Î--=R ,所以()f x 不是偶函数()()000,0x f x f x Û$Î--¹R .故选:D .7. 若函数()22f x ax bx c=++的部分图象如图所示,则()1f =( ) A. 23- B. 112- C. 16- D. 13-【答案】D【解析】【分析】利用函数图象求得函数定义域,利用函数值可得出其解析式,代入计算即求得函数值.【详解】根据函数图象可知2x =和4x =不在函数()f x的定义域内,因此2x =和4x =是方程20ax bx c ++=的两根,因此可得()()()224f x a x x =--,又易知()31f =,所以可得2a =-;即()()()124f x x x =---,所以()113f =-.故选:D8. 奇函数()f x 在(),0-¥上单调递增,若()10f -=,则不等式()0xf x <的解集是( ).A. ()()101,∪,-¥- B. ()()11,∪,-¥-+¥C. ()()1001,∪,- D. ()()101,∪,-+¥【答案】C【解析】【分析】由()f x 奇偶性,单调性结合题意可得答案.【详解】因奇函数()f x 在(),0¥-上单调递增,()10f -=则()f x 在()0,¥+上单调递增,f (1)=0.得()()()01,01,f x x È¥>ÞÎ-+;()()()0,10,1f x x ¥È<ÞÎ--.则()()000x xf x f x <ì<Þí>î或()()()01,00,10x x f x È>ìÞÎ-í<î.故选:C二、多选题9. 下列关于集合的说法不正确的有( )A. {0}=ÆB. 任何集合都是它自身的真子集C. 若{1,}{2,}a b =(其中,a b ÎR ),则3a b +=D. 集合{}2y y x =∣与{}2(,)x y y x =∣是同一个集合【答案】ABD【解析】【分析】根据集合的定义,真子集的定义,集合相等的定义判断各选项.【详解】{0}中含有一个元素,不是空集,A 错;任何集合都是它自身的子集,不是真子集,B 错;由集合相等的定义得2,1a b ==,3a b +=,C 正确;集合{}2yy x =∣中元素是实数,集合{}2(,)x y y x =∣中元素是有序实数对,不是同一集合,D 错,故选:ABD .10. 已知二次函数()2223y m x mx m =-++-的图象与x 轴有两个交点()()12,0,,0x x ,则下面说法正确的是( )A. 该二次函数的图象一定过定点()1,5--;B. 若该函数图象开口向下,则m 的取值范围为:625m <<;C. 当2m >,且12x ££时,y 的最大值为45m -;D. 当2m >,且该函数图象与x 轴两交点的横坐标12,x x 满足1232,10x x -<<--<<时,m 的取值范围为:21114m <<【答案】ABD【解析】【分析】代入1x =-,解得5y =-,即可求解A ,根据判别式即可求解B ,利用二次函数的单调性即可求解C ,利用二次函数的图象性质即可列不等式求解.【详解】由()2223y m x mx m =-++-可得()22123y m x x =+--,当1x =-时,5y =-,故二次函数的图象一定过定点()1,5--,A 正确,若该函数图象开口向下,且与x 轴有两个不同交点,则()()220Δ44230m m m m -<ìí=--->î,解得:625m <<,故B 正确,当2m >,函数开口向上,对称轴为02m x m =-<-,故函数在12x ££时,单调递增,当2x =时,911y m =-,故y 的最大值为911m -;C 错误,当2m >,则开口向上,又1232,10x x -<<--<<时,则3,4210x y m =-=->,且2,110x y m =-=-<,且1,50x y =-=-<,且0,30x y m ==->,解得21114m <<,m 的取值范围为:21114m <<,D 正确,故选:ABD 11. 已知幂函数()()293m f x m x =-的图象过点1,n m æö-ç÷èø,则( )A. 23m =-B. ()f x 为偶函数C. n =D. 不等式()()13f a f a +>-的解集为(),1-¥【答案】AB【解析】【分析】利用幂函数的定义结合过点1,n m æö-ç÷èø,可求,m n 判断AC ;进而可得函数的奇偶性判断B ;解不等式可求解集判断D.【详解】因为函数()()293m f x m x =-为幂函数,所以2931m -=,解得23m =±,当23m =时,幂函数()23f x x =的图象不可能过点3,2n æö-ç÷èø,故23m ¹,当23m =-,幂函数()23f x x -=的图象过点3,2n æöç÷èø,则2332n -=,解得3232n -æö=±=ç÷èøA 正确,C 错误;()23f x x -=的定义域为{|0}x x ¹,且()2233()()f x x x f x ---=-==,故()f x 为偶函数,故B 正确;函数()23f x x -=在(0,)+¥上单调递减,由()()13f a f a +>-,可得()()13f a f a +>-,所以1310a a a ì+<-ïí+¹ïî,解得1a <且1a ¹-,故D 错误.故选:AB.三、填空题12. 满足关系{2}{2,4,6}A ÍÍ的集合A 有____________个.【答案】4【解析】【分析】由题意可得集合A 为{}2,4,6的子集,且A 中必包含元素2,写出满足条件的集合,即可得答案.【详解】即集合A 为{}2,4,6的子集,且A 中必包含元素2,又因为{2,4,6}的含元素2的子集为:{}2,{}2,4,{}2,6,{2,4,6}共4个.故答案为:4.13. 已知()f x 满足()()()2f x y f x f y +=++,且()22f =,则()3f =______.【答案】4【解析】【分析】令1x y ==得()10f =,再令1x =,2y = 即可求解.【详解】令1x y ==得()()()21122f f f =++=,所以()10f =,令1x =,2y =得()()()31224f f f =++=.故答案为:4.14. 已知函数()()()22223124,,4f x x ax ag x x x a a =-+-=-+-ÎR ,若[]10,1x "Î,[]20,1x $Î,使得不等式()()12f x g x >成立,实数a 的取值范围是__________.【答案】(),6-¥【解析】【分析】由题意将问题转化为()(),min max f x g x >[]0,1x Î,成立,利用二次函数的性质求解即可.【详解】若对任意[]10,1x Î,存在[]20,1x Î,使得不等式()()12f x g x >成立,即只需满足[]min min ()(),0,1f x g x x >Î,()22314g x x x a =-+-,对称轴()1,2x g x =在10,2éö÷êëø递减,在,1,12æùçúèû递增,()2min 18,2g x g a æö==-ç÷èø()[]2224,0,1f x x ax a x =-+-Î,对称轴4a x =,①04a £即0a £时,()f x 在[0,1]递增,()22min min ()04()8f x f a g x a ==->=-恒成立;②014a <<即04a <<时,()f x 在0,4a éö÷êëø递减,在,14a æùçúèû递增,22min min 7()4,()848a f x f a g x a æö==-=-ç÷èø,所以227488a a ->-,故04a <<;③14a ³即4a ³时,()f x 在[0,1]递减,()22min min ()12,()8f x f a a g x a ==--=-,所以2228a a a -->-,解得46a £<,综上(),6a ¥Î-.故答案为:(),6¥-【点睛】方法点睛:本题首先需要读懂题意,进行转化;其次需要分类讨论,结合二次函数的性质最后进行总结,即可求出结果.四、解答题15. 设全集R U =,集合{|23}P x x =-<<,{|31}.Q x a x a =<£+(1)若1a =-,求集合()U P Q I ð;(2)若P Q =ÆI ,求实数a 的取值范围.【答案】(1){|03}x x <<(2)][132,,æö-¥-+¥ç÷èøU 【解析】【分析】(1)先求出U Q ð,再求()U P Q Çð即可;(2)分Q =Æ和Q ¹Æ两种情况求解即可【小问1详解】解:当1a =-时,{|31}{|30}Q x a x a x x =<£+=-<£;{|3U C Q x x =£-或0}x >,又因为{}23P x x =-<<,所以(){|03}.U P Q x x Ç=<<ð【小问2详解】解:由题意知,需分为Q =Æ和Q ¹Æ两种情形进行讨论:当Q =Æ时,即31a a ³+,解得12a ³,此时符合P Q =ÆI ,所以12a ³;当Q ¹Æ时,因为P Q =ÆI ,所以1231a a a +£-ìí<+î或3331a a a ³ìí<+î,解之得3a £-.综上所述, a 的取值范围为][1,3,.2¥¥æö--È+ç÷èø16 已知二次函数()()20f x ax bx c a =++¹满足()()14f x f x x -+=,且()0 1.f =(1)求函数()f x 的解析式;(2)解关于x 的不等式()()2641f x t x t £-+-+.【答案】(1)()2221f x x x =-+(2)答案见解析.【解析】【分析】(1)利用待定系数法计算即可求解析式;(2)根据(1)的结论含参讨论解一元二次不等式即可.【小问1详解】因为()01f =,1c =,所以()21f x ax bx =++,又因为()()14f x f x x -+=,所以()(()22[1)1114a x b x ax bx x ù++++-++=û,所以24ax a b x ++=,所以240a a b =ìí+=î,所以22a b =ìí=-î,即()222 1.f x x x =-+.【小问2详解】由()()2641f x t x t £-+-+,可得不等式()222440x t x t +++£,即()2220x t x t +++£,所以()()20x x t ++£,当2-=-t ,即2t =时,不等式的解集为{|2}x x =-,当2t -<-,即2t >时,不等式的解集为{|2}x t x -££-,当2t ->-,即2t <时,不等式的解集为{|2}x x t -££-,综上所述,当2t =时,不等式的解集为{|2}x x =-,当2t >时,不等式的解集为{|2}x t x -££-,当2t <时,不等式的解集为{|2}.x x t -££-17. 已知函数()221x f x x-=.(1)用单调性的定义证明函数()f x 在()0,¥+上为增函数;(2)是否存在实数l ,使得当()f x 的定义域为11,m n éùêúëû(0m >,0n >)时,函数()f x 的值域为[]2,2m n l l --.若存在.求出l 的取值范围;若不存在说明理由.【答案】(1)证明见详解;(2)存在,()2,+¥.【解析】分析】(1)设()12,0,x x ¥Î+,且12x x <,然后作差、通分、因式分解即可判断()()12f x f x <,得证;(2)根据单调性列不等式组,将问题转化为210x x l -+=存在两个不相等的正根,利用判别式和韦达定理列不等式组求解可得.【小问1详解】()222111x f x x x-==-,设()12,0,x x ¥Î+,且12x x <,【则()()()()22121212122222222212211212111111x x x x x x f x f x x x x x x x x x -+æö--=---=-==ç÷èø,因为120x x <<,所以221212120,0,0x x x x x x <-+>>,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在(0,+∞)上为增函数.【小问2详解】由(1)可知,()f x 在11,m n éùêúëû上单调递增,若存在l 使得()f x 的值域为[]2,2m n l l --,则22112112f m m m f n n n l l ìæö=-=-ç÷ïïèøíæöï=-=-ç÷ïèøî,即221010m m n n l l ì-+=í-+=î,因为0m >,0n >,所以210x x l -+=存在两个不相等的正根,所以21212Δ40100x x x x l l ì=->ï=>íï+=>î,解得2l >,所以存在()2,l ¥Î+使得()f x 的定义域为11,m n éùêúëû时,值域为[]2,2m n l l --.18. 习总书记指出:“绿水青山就是金山银山”.淮安市一乡镇响应号召,因地制宜的将该镇打造成“生态水果特色小镇”.调研过程中发现:某珍稀水果树的单株产量W (单位:千克)与肥料费10x (单位:元)满足如下关系:()252,02()48,251x x W x x x x ì+££ï=í<£ï+î其它成本投入(如培育管理等人工费)为20x (单位:元).已知这种水果的市场售价大约为10元/千克,且供不应求.记该单株水果树获得的利润为()f x (单位:元).(1)求()f x 函数关系式;(2)当投入的肥料费用为多少时,该单株水果树获得的利润最大?最大利润是多少?的【答案】(1)25030100,02()48030,251x x x f x x x x xì-+££ï=í-<£ï+î; (2)当投入肥料费用为30元时,获得的利润最大,最大利润是270元.【解析】【分析】(1)由单株产量W 乘以售价减去肥料费和其它成本投入可得出的函数关系式;(2)利用二次函数的单调性求出当02x ££时,()f x 的最大值,由基本不等式求出当25x <£时,()f x 的最大值,即可得出答案.【小问1详解】(1)由题意可得()()()1020101030f x W x x x W x x=--=-()22105230,025030100,024804830,251030,2511x x x x x x x x x x x x x x ì´+-££ì-+££ïï==íí-<£´-<£ïï+î+î.故()f x 的函数关系式为25030100,02()48030,251x x x f x x x x xì-+££ï=í-<£ï+î.【小问2详解】(2)由(1)22319150,025030100,02102()48030,251651030(1),2511x x x x x f x x x x x x x x ììæö-+££ï-+££ïç÷ïïèø==íí-<£éùïï-++<£+êúïï+ëûîî,当02x ££时,()f x 在30,10éùêúëû上单调递减,在3,210æùçúèû上单调递增,且(0)100(2)240f f =<=,max ()(2)240f x f \==;当25x <£时,16()51030(1)1f x x x éù=-++êú+ëû,16181x x ++³=+Q 当且仅当1611x x=++时,即3x =时等号成立. max ()510308270f x \=-´=.的因为240270<,所以当3x =时,max ()270f x =.当投入的肥料费用为30元时,该单株水果树获得的利润最大,最大利润是270元.19. 已知集合,A B 中的元素均为正整数,且,A B 满足:①对于任意,i j a a A Î,若i j a a ¹,都有i j a a B Î;②对于任意,m k b b B Î,若m k b b <,都有k mb A b Î.(1)已知集合{}1,2,4A =,求B ;(2)已知集合{}()2,4,8,8A t t =>,求t ;(3)若A 中有4个元素,证明:B 中恰有5个元素.【答案】(1){}2,48B =,(2)16t =(3)证明见解析【解析】【分析】(1)根据①可得2,4,8都是B 中的元素,进而证明B 中除2,4,8外没有其他元素即可求解,(2)根据条件①②,即可求解,(3)根据题意可得41a a ,3324421123,,,,a a a a a a a a a a ,4321a a a a 是A 中的元素,进而根据11a =和12a ³可得{}2341111,,,A a a a a =,进而{}3456711111,,,,a a a a a B Í,接下来假设B 中还有其他元素,且该元素为k ,利用k 与31a 的关系得矛盾求解.【小问1详解】由①可得2,4,8都是B 中的元素.下面证明B 中除2,4,8外没有其他元素:假设B 中还有其他元素,分两种情况:第一种情况,B 中最小的元素为1,显然81不是A 中的元素,不符合题意;第二种情况,B 中最小的元素为2,设B 中除2,4,8外的元素为()2k k b b >,因为2k b 是A 中的元素,所以k b 为4或8,而4,8也是B 中的元素,所以B 中除2,4,8外没有其他元素.综上,{}2,4,8B =.【小问2详解】由①可得,8,16,32,2,4,8t t t 都是B 中的元素.显然84,82,162t t t <<<,由(2)可得,422,,8816t t t 是A 中的元素,即,,248t t t 是A 中的元素.因为842t t t t <<<,所以2,4,8842t t t ===,解得16t =.【小问3详解】证明:设{}12341234,,,,A a a a a a a a a =<<<.由①可得,1224,a a a a 都是B 中的元素.显然1224a a a a <,由②可得,2412a a a a 是A 中的元素,即41a a 是A 中的元素.同理可得3324421123,,,,a a a a a a a a a a ,4321a a a a 是A 中的元素.若11a =,则34344122a a a a a a a a =>,所以3412a a a a 不可能是A 中的元素,不符合题意.若12a ³,则32311a a a a a <<,所以321211,a a a a a a ==,即23213121,a a a a a a ===.又因为44443211a a a a a a a <<<<,所以444123321,,a a a a a a a a a ===,即441a a =,所以{}2341111,,,A a a a a =,此时{}3456711111,,,,a a a a a B Í.假设B 中还有其他元素,且该元素为k ,若31k a <,由(2)可得71a A k Î,而7411a a k>,与{}2341111,,,A a a a a =矛盾.若31k a >,因为31k A a Î,所以131,1,2,3,4i k a i a ==,则31,1,2,3,4i k a i +==,即{}45671111,,,k a a a a Î,所以B 中除3456711111,,,,a a a a a 外,没有其他元素.所以{}3456711111,,,,B a a a a a =,即B 中恰有5个元素.【点睛】方法点睛:对于以集合为背景的新定义问题的求解策略:1、紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;2、用好集合的性质,解题时要善于从试题中发现可以使用的集合的性质的一些因素.3、涉及有交叉集合的元素个数问题往往可采用维恩图法,基于课标要求的,对于集合问题,要熟练基本的概念,数学阅读技能、推理能力,以及数学抽象和逻辑推理能力.。
广西壮族自治区南宁市2024-2025学年高一上学期期中考试数学试题(含答案)
南宁市2024-2025学年秋季学期期中考试高一数学试卷考试时长: 120分钟满分: 150分一、选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 全称量词命题“∀x∈R,x²≥0”的否定是,( )^ ∀x∈R,x²≤0 B. ∃x∈R, x²<0C. ∃x∈R,x²≥0 D ∀x∈R, x²<02. 已知集合A={0,1,2}, B={x|-2<x≤3},则A∩B= ( )A. {1}B. {1,2}C. {0,1}D. {0,1,2}3. 集合{1,2}的子集个数为( )A. 1个B. 2个C. 3个D. 4个4. “我住在广西”是“我住在中国”的( )A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件5. 如果m>0, 那么m+4的最小值为( )mA. 2B. 22C. 4D. 86. 函数f(x)=x+3的定义域是( )A. {x|x≥-3}B. {x|x>0}C. {x|x≥3}D. {x|x≥4}7. 已知f(x―3)=2x²―3x+1,则f(1)= ( )A. 15B. 21C. 3D. 08. 若不等式kx²―6kx+k+8≥0的解集为R,则实数k的取值范围是 ( )A. 0≤k≤1B. 0<k≤1C. k<0或k>1D. k≤0或k≥1第1页,共4页二、选择题:本题共3小题,每小题6分,共18分. 在每小题给出的选项中,有多项符合题目要求. 全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 若a<b<0, 则下列不等式正确的是 ( )A1 a <1bB.ab<a⁷ c |a| D.1a>1b10. 下列各组函数表示同一函数的是( )A.f(x)=x,g(x)=x2B.f(x)=x²,g(x)=|x|²C.f(x)=x+1,g(x)=x2―1x―1D.f(x)=x0x,g(x)=xx211. 若函数y=x²+bx+c的图象与x轴的两个交点是A(-2,0),B(1,0),则下列结论正确的是( )A. b+c=-1B. 方程x²+bx+c=0的两根是-2, 1C. 不等式.x²+bx+c>0的解集是{x|-2<x<1}D. 不等式x²+bx+c≤0的解集是{x|-2≤x≤1}三、填空题:本题共3小题,每小题5分,共15分.12. 设集合A={2,1-a,5}, 若4∈A,则a= .13. 已知函数那么f(f(3))= .14. 不等式x+3x―5<0的解集为 .四、解答题:本题共5小题,共77分. 解答应写出文字说明、证明过程或演算步骤.15.(本题13分) 已知全集U=R, 集合.A=x|x≥4,B=x|―6≤x≤6.(1)求A∩B和A∪B;(2)求((C U A)∩(C U B)第2页,共4页16.(本题15分) 设集合U=R,A=x|0≤x≤3,B=x|m―1≤x≤2m.(1)m=3,求A∪(C U B);(2) 若B⊆A求m的取值范围.17.(本题15分) 已知二次函数f(x)=x²―ax+b,f(1)=2,f(3)=―6.(1) 求f(x)的解析式;(2) 写出f(x)的单调区间; 并求.x∈[―1,5]时,f(x)的最大值与最小值.第3页,共4页18.(本题17分) 求下列函数的最值. (1) 已知x>2, 求y=x+1x―2的最小值;(2) 已知:x>0,y>0,且2x+y=1.求1x +9y的最小值.(3) 已知(0<x<4,求x(4―3x)的最大值.19.(本题17分)已知函数f(x)=,且f(1)=10.(1) 求a的值;(2) 判断函数f(x)在[3,+∞)上的单调性,并用定义法证明;(3) 求函数f(x)在区间[3,6]上的最大值和最小值.第4页,共4页高一数学11月期中考试参考答案题号1234567891011答案BDDBCABABDBDABD1. B 【详解】全称量词命题“∀x∈R, x²≥0”的否定是 ∃x ∈R,x²<0,故选: B.2. D 【详解】由题意. A =0.1,2,B =x|―2<x ≤3,所以A∩B={0,1,2}.故选: D.3. D 【详解】因为A={0.1}, 所以集合A 有∅,{0},{1},{0,1}共4个子集.故选: D4. B 【详解】“我住在广西”则一定有“我住在中国”,反之不成立,所以“我住在广西”则一定有“我住在中国”的充分不必要条件.故选:B5. C 【详解】 m >0,m +4m ≥2m ⋅4m =4,当且仅当 m =4m ,即m=2时取等号,所以 m +4m 的最小值为4.故选:C6. A 【详解】要使函数 f (x )=x +3有意义, 需x+3≥0, 解得x≥-3, 即得函数的定义域为:{x|x≥-3}.故选: A.7. B 【详解】∵f(x-3)=2x²-3x+1, ∴f(1)=(4-3)=2×4²-3×4+1=21,故选B.8. A 【详解】若k=0, 则不等式为8>0, 满足条件,若k≠0,要使不等式恒成立,则满足 {k >0=36k 2―4k (k +8)≤0, 即 {k >0k 2―k ≤0 则 {k >00≤k ≤1,所以0<k≤1, 综上, 实数k 的取值范围为0≤k≤1. 故选: A9. BD 【详解】对于A 、D,因为a<b<0,所以 ab>0,则 1ab >0,所以 a ⋅1ab <b ⋅1ab ,即 1b <1a ,故A 错误, D 正确; 对于B, 因为a<b<0, 所以a·a>b·a, 即 ab <a²,故 B 正确;对于C, 若a<-1<b<0, 则|a|>1, 0<|b|<1, 所以有|a|>|b|, 故C 错误.故选: BD.10. BD 【分析】同一个函数的定义:如果两个函数的定义域相同,对应关系完全一致,那么这两个函数为同一个函数.根据定义判断选项.【详解】A. f(x)=x,g(x)=|x|,对应关系不一致,不是同一函数.B.f (x )=x²,g (x )=|x|²=x²,定义域相同,对应关系一致,是同一函数.C. f(x)定义域为R, g(x)定义域为{x|x≠1}, 定义域不同, 不是同一函数.D. f(x)定义域为{x|x≠0},可化为 f (x )=1x ,g(x)定义域为 x|x ≠0,可化为 g (x )=1x ,是同一函数.故选: BD.11. ABD 【详解】依题意, 方程 x²+bx +c =0的两根是-2, 1, B 正确;显然-b=-1,c=-2,即b=1,c=-2,b+c=-1, A 正确;不等式 x²+bx +c >0, 即 x²+x ―2>0的解集为{x|x<-2或x>1}, C 错误;不等式 x²+bx +c ≤0,即 x²+x ―2≤0的解集是 x|―2≤x ≤1,D 正确.故选: ABD 12. - 3【详解】集合A={2,1-a,5},若4∈A, 则1-a=4⇒a=-3.故答案为: - 313. - 1【详解】因为 f (x )={2―x (x ≥1)x 2+x ―1(x <1),所以f(3)=2-3=-1,所以 f (f (3))=f (―1)=(―1)²―1―1=―1, 故答案为: -1.14. {x|-3<x<5}【详解】 x +3x ―5<0(x +3)(x ―5)<0,解得 ―3<x <5..故答案为: x|―3<x <5答案第1页,共3页15.【详解】(1) A={x|x≥4},B={x|-6≤x≤6},A∩B={x|4≤x≤6}3分A∪B=x|x≥―6 .6分(2)C U A={x|x<4} .8分或x>6}- .10分(C U A)∩(C U B)={x|x<―6} .13分16. 【详解】A={x|0≤x≤3}(1)1分故可得或x>6}- .3分所以或x>6}-(2) 由题B⊆A:当B=∅时,m-1>2m,解得m<-1,符合题意;分 (9)分 (13)综上可得,m的取值范围为m<-1或 (15)17.【详解】(1) 因为f(x)=x²―ax+b,且f(1)=2,f(3)=-6,.............................................................................................2分解得(a=8, b=9, .........................................................5分(只有一个正确得2分)....................................................................................所以6分(2)由(1)知.对称轴为x=4,图象开口朝上分 (8)所以f(x)的减区间是(-∞,4],增区间是....................................[4,+∞)10又4∈[-1,5],所以f(x)在区间[-1,4]上单调递减,在区间[4,5]上单调递增, (12)所以f(x)ₘᵢₙ=f(4)=―7, ………………………………13分f(x)最大值在f(-1)或f(5)取到, f(-1)=18, f(5)=-6,∴f(-1)>f(5)·f(x)ₘₐₓ=f(―1)=18 ………………………………………15分18.【详解】(1)∵x>2,x―2>0,1x―2>0.6分…14分而y=x+1x―2=x―2+1x―2+2≥2(x―2)⋅1x―2+2=4, .3分当且仅当即x=3时取等号,所以……………………………………………………………5分(2)1x+9y=(1x+9y)(2x+y)=11+y x+18x y211+2yx ⋅18xy=11+62, ..8分当且仅当时,取等号,又2x+y=1,即时分101 x +9y取得最小值11+62 11分(3)15分当且仅当3x=4-3x时取等号,即(满足0<x<4)时x(4-3x)最大值为 (17)法二:函数y=x(4―3x)=―3x²+4x的开口向下,对称轴为x=―4―6=23, ..15分所以当时,x(4-3x)取得最大值为1719.【详解】(1) 函数f(x)=x2+ax,因为f(1)=10,…………………………………………………………………………………………………3分(2)函数f(x)在[3,+∞)上单调递增,知由下面证明单调区间,设3≤x₁<x₂,则f(x1)―f(x2)=x1―x2+9x1―9x2=(x1―x2)(x1x2―9x1x2), .8分由3≤x₁<x₂,则x₁x₂―9>0,x₁―x₂<0,x₁x₂>0, 11分所以(x1―x2)x1x2―9x1x2<0⇒f(x1)―f(x2)<0,即f(x₁)<f(x₂), ..12分……………………………………………………………………………………………13分(3)由(2)可知f(x)在区间[3,+∞)上单调递增,则在区间[3,6]上单调递增…………14分所以f(x)mn=f(3)=3+93=6,f(x)max=f(6)=6+96=152, 16分 (6)答案第3页,共3页。
福建省厦门双十中学2024-2025学年高一上学期11月期中考试 数学(含答案)
福建省厦门双十中学2024-2025学年高一上学期11月期中考试数学试题(时间:120分钟满分:150分)注意事项:1.答卷前,考生务必将己的姓名、考生号、考场号和座位号填写在答题卡上.2.选择题答案必须用2B 铅笔将答题卡对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔作答.答案必须写在各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新答案,不准使用铅笔和涂改液,不按以上方式作答无效.4.考试结束后,将答题卡交回.一、单项选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则()A. B. C. [0,1]D. 2. 命题“”的否定是()A. B. C. D. 3. 函数的单调递减区间是()A. B. C. D. 4. 已知函数(其中,为常数,且),若的图象如图所示,则函数的图象是(){1},{2}M xx N x x =≥=<∣∣R ()M N ⋂=ð[1,2)(,1)[2,)-∞+∞ (,0)[2,)-∞⋃+∞20,310x x x ∃>-->20,310x x x ∃>--≤20,310x x x ∃≤--≤20,310x x x ∀>--≤20,310x x x ∀≤--≤()22()log 2f x x x =--1,2⎛⎫-∞ ⎪⎝⎭(,1)∞--1,2⎛⎫+∞⎪⎝⎭(2,)+∞()()()f x x a x b =--a b b a <()f x ()x g x a b =+A. B. C. D.5. 已知,,,则( ).A. B. C. D.6. “函数的定义域为”是“”的()A 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7. 若函数(,为常数)在区间上有最大值,则在区间上()A. 有最大值B. 有最大值C. 有最小值D. 有最小值8. 已知函数对于任意、,总有,且当时,,若已知,则不等式的解集为()A. B. C. D. (4,+∞)二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 设正数,满足,则()A.的最小值为 B.C.的最大值为D. 的最小值为410. 声强级Li (单位:dB )与声强I (单位:)之间的关系是:,其中指的是人能听到的最低声强,对应的声强级称为闻阈.人能承受的最大声强为,对应的声强级为120dB ,称为痛阈.某歌唱家唱歌时,声强级范围为(单位:dB ).下列选项中正确的是()A. 闻阈声强为B. 声强级增加10dB ,则声强变为原来的2倍C. 此歌唱家唱歌时的声强范围(单位:)的132a -=21log 3b =121log 3c =a b c >>a c b >>c a b >>c b a>>()2()lg 1f x ax ax =-+R 04a <<)3()ln1f x mx n x =++m n []1,37()f x [3,1]--655-7-()f x x R y ∈()()()2f x f y f x y +=++0x >()2f x >()23f =()()226f x f x +->()2,∞+()1,+∞()3,+∞m n 1m n +=12m n+3+1444m n +2/m ω010lgILi I =⨯0I 21/m ω[]70,801210-2/m ω5410,10--⎡⎤⎣⎦2/m ωD. 如果声强变为原来的10倍,对应声强级增加10dB11. 已知函数,且,则下列说法正确的是()A. B. C. D. 的取值范围为三、填空题:本题共3小题,每小题5分,共15分.12. 已知幂函数的图象过点,则______.13. __________.14. 已知是定义在R 上偶函数,且对,都有,且当时,.若在区间内关于的方程至少有2个不同的实数根,至多有3个不同的实数根,则实数的取值范围是______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 在①,②,③这三个条件中任选一个,补充到下面的问题中,求解下列问题:已知集合,(1)当时,求;(2)若,求实数a 的取值范围.注:如果选择多个条件解答按第一个解答计分.16. 已知函数,关于的不等式的解集为,且.(1)求值;(2)是否存在实数,使函数的最小值为?若存在,求出的值;若不存在,说明理由.17. 已知的定义在R 上的奇函数,其中为指数函数,且的图象过点.的的()21,2,5,2,x x f x a b c d x x ⎧-≤⎪=<<<⎨->⎪⎩()()()()f a f b f d f c ==<1c ≥0a c +<25a d <222ab d ++()18,34()y f x =(()16f =411log 2324lg lg245(64)49---+-=()f x x ∀∈R (2)(2)f x f x -=+[]2,0x ∈-()112xf x ⎛⎫=- ⎪⎝⎭(]2,6-x ()()()log 201a f x x a -+=>a A B A = A B A = A B =∅ {}123A x a x a =-<<+{}2280B x x x =--≤2a =A B ()()log 1a f x x a =>x ()1f x <(),m n 103m n +=a λ()()()2123,,93g x f x f x x λ⎡⎤⎡⎤=-+∈⎣⎦⎢⎥⎣⎦34λ()()()1m g x f x g x -=+()g x ()g x ()2,9(1)求实数的值,并求的解析式;(2)判断的单调性,并用单调性的定义加以证明.(3)若对于任意的,不等式恒成立,求实数的取值范围.18. 随着城市居民汽车使用率的增加,交通拥堵问题日益严重,而建设高架道路、地下隧道以及城市轨道公共运输系统等是解决交通拥堵问题的有效措施.某市城市规划部门为提高早晚高峰期间某条地下隧道的车辆通行能力,研究了该隧道内的车流速度(单位:千米/小时)和车流密度(单位:辆/千米)所满足的关系式:.研究表明:当隧道内的车流密度达到120辆/千米时造成堵塞,此时车流速度是0千米/小时.(1)若车流速度不小于40千米/小时,求车流密度的取值范围;(2)隧道内的车流量(单位时间内通过隧道的车辆数,单位:辆/小时)满足,求隧道内车流量的最大值(精确到1辆/小时),并指出当车流量最大时的车流密度(精确到1辆/千米).(参考数据:)19. 若函数与区间同时满足:①区间为的定义域的子集,②对任意,存在常数,使得成立,则称是区间上的有界函数,其中称为的一个上界.(注:涉及复合函数单调性求最值可直接使用单调性,不需要证明)(1)试判断函数,是否为上的有界函数?并说明理由.(2)已知函数是区间上的有界函数,设在区间上的上界为,求的取值范围;(3)若函数,问:在区间上是否存在上界?若存在,求出取值范围;若不存在,请说明理由.的m ()f x ()f x []1,2t ∈()2132104f t t f mt ⎛⎫--+-≤ ⎪⎝⎭m v x ()60,030R 80,30120150x v k kx x <≤⎧⎪=∈⎨-<≤⎪-⎩v x y y x v =⋅2.236≈()f x D D ()f x x D ∈0M ≥()f x M ≤()f x D M ()f x ()1923xxf x =-⋅()22223xf x x x =-+R ()121log 1x g x x +=-[]2,3()g x []2,3M M ()2313xxm f x m +⋅=+⋅()f x []0,1M M福建省厦门双十中学2024-2025学年高一上学期11月期中考试数学试题一、单项选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B2.【答案】C3.【答案】B4.【答案】A5.【答案】C6.【答案】B7.【答案】C8.【答案】A二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.【答案】ABD10.【答案】ACD11.【答案】CD三、填空题:本题共3小题,每小题5分,共15分.12.【答案】413. 【答案】14.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 【解析】【分析】(1)代入的值表示出,求解出一元二次不等式的解集表示出,根据并集运算求解出结果;(2)若选①:根据条件得到,然后分类讨论是否为空集,由此列出不等式组求解出结果;若选②:根据条件得到,然后列出不等式组求解出结果;若选③:根据交集结果分析集合的端点值的关系,列出不等式并求解出结果.【小问1详解】当时,,,因此,.【小问2详解】选①,因为,可得.当时,即当时,,合乎题意;当时,即当时,,由可得,解得,此时.综上所述,实数a 的取值范围是或;选②,因为,可得.可得,此时不等式组无解,所以实数a 的取值范围是;选③,当时,即当时,,,满足题意;当时,即当时,,3-2a ≤<a A B A B ⊆A B A ⊆,A B 2a ={}17A x x =<<{}{}228024B x x x x x =--≤=-≤≤{}27A B x x ⋃=-≤<A B A = A B ⊆123a a -≥+4a ≤-A B =∅⊆123a a -<+4a >-A ≠∅A B ⊆12234a a -≥-⎧⎨+≤⎩112a -≤≤112a -≤≤{4a a ≤-112a ⎫-≤≤⎬⎭A B A = B A ⊆12234123a a a a -≤-⎧⎪+≥⎨⎪-<+⎩∅123a a -≥+4a ≤-A =∅A B =∅ 123a a -<+4a >-A ≠∅因为,则或,解得或,此时或,综上所述,实数a 的取值范围是或.16. 【解析】【分析】(1)先根据,求出不等式的解,结合可得的值;(2)利用换元法,把函数转化为二次函数,结合二次函数区间最值法求解.【小问1详解】由可得,又,所以,又因为的解集为,所以,因为,所以,即,解得或,因为,所以;【小问2详解】由(1)可得,令,则,设,①当时,在上单调递增,则,解得,符合要求;②当时,在上单调递减,在上单调递增,,解得,又,故;③当时,在上单调递减,,解得,不合题意;综上所述,存在实数或符合题意.17.A B =∅ 232a +≤-14a -≥52a ≤-5a ≥542a -<≤-5a ≥52a a ⎧≤-⎨⎩}5a ≥()1f x <103n m +=a ()g x log 1a x <1log 1a x -<<1a >1x a a <<()1f x <(),m n 1,n a m a==103n m +=1103a a +=()()231033130a a a a -+=--=3a =13a =1a >3a =()()2331log 2log 3,,93g x x x x λ⎡⎤=-+∈⎢⎥⎣⎦31log ,,93t x x ⎡⎤=∈⎢⎥⎣⎦[]1,2t ∈-()[]223,1,2h t t t t λ=-+∈-1λ≤-()h t []1,2-()()min 31424h t h λ=-=+=138λ=-12λ-<<()h t []1,λ-[],2λ()()22min 3234h t h λλλ==-+=32λ=±12λ-<<32λ=2λ≥()h t []1,2-()()min 324434h t h λ==-+=25216λ=<138λ=-32【解析】【分析】(1)利用待定系数法可求出的表达式,结合奇函数性质计算即可得解;(2)设,从而计算的正负即可得证;(3)由奇函数性质结合函数单调性可得对恒成立,构造二次函,结合二次函数性质可得,解出即可得.【小问1详解】设,由的图象过点,可得,∴(负值舍去),即,故函数,由为奇函数,可得,∴,即,满足,即为奇函数,故;【小问2详解】在上单调递减,证明如下:,设,则,则,结合,可得,∴,即,故在上单调递减;【小问3详解】()g x 12x x <()()12f x f x -212134mt t t -≥+[]1,2t ∈()()21284h t t m t =+-+()()1020h h ⎧≤⎪⎨≤⎪⎩()()0,1xg x aa a =>≠()g x ()2,929a =3a =()3xg x =()()()3113xxm g x m f x g x --==++()f x ()()()01001011m g m f g --===++1m =()1313x x f x -=+()()13311313x x x xf x f x -----===-++()f x 1m =()f x R ()()2131321131313xx x x xf x -+-===-+++12x x <12033x x <<()()()()()211212122332213131313x x x x x x f x f x --=-=++++12033x x <<()212330x x->()()120f x f x ->()()12f x f x >()f x R由且为奇函数,所以,又在上单调递减,所以对恒成立,所以对恒成立,令,所以有,即,解得.18.【解析】【分析】(1)根据题意得,再根据分段函数解不等式即可得答案;(2)由题意得,再根据基本不等式求解最值即可得答案【小问1详解】解:由题意知当(辆/千米)时,(千米/小时),代入,解得,所以.当时,,符合题意;当时,令,解得,所以.所以,若车流速度不小于40千米/小时,则车流密度的取值范围是.【小问2详解】解:由题意得,当时,为增函数,所以,当时等号成立;当时,()2132104f t t f mt ⎛⎫--+-≤ ⎪⎝⎭()f x ()212134f mt f t t ⎛⎫-≤+ ⎪⎝⎭()f x R 212134mt t t -≥+[]1,2t ∈()212840t m t +-+≤[]1,2t ∈()()21284h t t m t =+-+()()1020h h ⎧≤⎪⎨≤⎪⎩1128404241640m m +-+≤⎧⎨+-+≤⎩178m ≥2400k =60,030240080,30120150x x y xx x x <≤⎧⎪=⎨-<≤⎪-⎩120x =0v =80150kv x=--2400k =60,030240080,30120150x v x x <≤⎧⎪=⎨-<≤⎪-⎩030x <≤6040v =≥30120x <≤24008040150x-≥-90x ≤3090x <≤v x (]0,9060,030240080,30120150x x y xx x x <≤⎧⎪=⎨-<≤⎪-⎩030x <≤60y x =1800y ≤30x =30120x <≤.当且仅当,即时等号成立.所以,隧道内车流量的最大值约为3667辆/小时,此时车流密度约为83辆/千米.19. 【解析】【分析】(1)根据有界函数的定义,分别计算出及的值域即可判断;(2)先求解函数的值域,进而求解的取值范围,再根据有界函数的定义确定上界M 的取值范围;(3)先求解函数及,再根据有界函数的定义,讨论m 取不同数值时,函数是否存在上界,并求解出对应的上界范围.【小问1详解】,的值域为不是上的有界函数;,则,当时,,当时,则,当时,,当且仅当则()()2150180150450024004500808080180150150150150x x x y x x x x x --+--⎡⎤⎛⎫=-==--+ ⎪⎢⎥---⎝⎭⎣⎦4800(33667≤-≈4500150150x x-=-30(583x =≈()1f x ()2f x ()g x ()g x ()f x ()f x ()()21923311xxxf x =-⋅=-- ()1f x ∴[)1,-+∞()1f x ∴R ()22223xf x x x =-+()200f =0x ≠()22223232x f x x x x x ==-++-0x >3x x +≥=x =()20f x <≤=0x <33x x x x ⎛⎫+=--+≤-=- ⎪-⎝⎭x =()20f x >≥=综上可得,,即有上恒成立,是上的有界函数;【小问2详解】,易知在区间上单调递增,∴,∴,所以上界构成的集合为;【小问3详解】,当时,,,此时的取值范围是,当时,在上是单调递减函数,其值域为,故,此时的取值范围是,当时,,若在上是有界函数,则区间为定义域的子集,所以不包含0,所以或,解得:或,时,在上是单调递增函数,此时的值域为,①,即时,()2f x ∈()2f x ≤R ()2f x ∴R ()112212log log 111x g x x x +⎛⎫==+ ⎪--⎝⎭()g x []2,3()[][]2log 3,1,2,3g x x ∈--∈()[]1221log 1,log 31x g x x +=∈-M [)2log 3,+∞()23113311x x x m f x m m +⋅==++⋅+⋅0m =()2f x =()2f x =M [)2,+∞0m >()1311x f x m =++⋅[]0,1()232,131m m f x m m ++⎡⎤∈⎢⎥++⎣⎦()232,131m m f x m m ++⎡⎤∈⎢⎥++⎣⎦M 2,1m m +⎡⎫+∞⎪⎢+⎣⎭0m <[]1331,1x m m m +⋅∈++()f x []0,1[]0,1()f x []31,1m m ++310m +>10+<m 1m <-103m -<<0m <()1311xf x m =++⋅[]0,1()f x 232,131m m m m ++⎡⎤⎢⎥++⎣⎦232311m m m m ++≥++m ≤103m -<<,此时的取值范围是,②,即时,,此时的取值范围是,综上:当时,存在上界,;当或时,存在上界,;当时,存在上界,,当时,此时不存在上界.()32323131m m f x m m ++≤=++M 32,31m m +⎡⎫+∞⎪⎢+⎣⎭232311m m m m ++<++1m <<-()2211m m f x m m ++≤=-++M 2,1m m +⎡⎫-+∞⎪⎢+⎣⎭0m ≥M 2,1m M m +⎡⎫∈+∞⎪⎢+⎣⎭1m ≤--103m -<<M 32,31m M m +⎡⎫∈+∞⎪⎢+⎣⎭11m -<<-M 2,1m M m +⎡⎫∈-+∞⎪⎢+⎣⎭113m -≤≤-M。
湖北省四校2024-2025学年高一上学期期中考试数学试题(含答案)
2024-2025学年上学期高一期中考试数学试题注意事项:1.答卷前,考生务必将姓名、准考证号等在答卷上填写清楚2.选择题答案用2B 铅笔在答题卷把对应题目的答案标号涂黑,非选择题用0.5mm 黑色签字笔在每题对应的答题区内做答,答在试卷上无效。
第Ⅰ卷(选择题共58分)一、单选题:本题共8个小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.下列说法正确的有( )A .10以内的质数组成的集合是B .与是同一个集合C :方程的解集是D .集合中的元素是的三边长,则一定不是等腰三角形2.命题:p :,的否定为( )A .,B .,C .,D .,3.已知函数的定义域为,则函数的定义域为( )A .B .C .D .4下列函数中,既是奇函数,又在区间上是减函数的是( )A .B .C .D .5下列说法正确的是( )A .若,则B .若a ,b ,,则C .若,则D .若,,则6.不等式的一个必要不充分条件是( )A .B .C .D .7已知,,且恒成立,则实数m 的取值范围是( )A .B .C .D .{}0,2,3,5,7∅{}02210xx -+={}1,1{},,M a b c =ABC ∆ABC ∆x ∀∈R 0x x +≥x ∃∈R 0x x +≥x ∃∈R 0x x +<x ∃∈R 0x x +≤x ∀∈R 0x x +<()f x []0,1()1f x +[]0,1[]1,0-{}0[]1,2()0,+∞y x=3y x =2y x =3y x=-22acbc >a b>()0,m ∈+∞b b m a a m+<+a b >11a b<a b >x y >ax by>22530x x --<132x -<<16x -<<102x -<<132x <<0a >0b >211a b+=a b m +≥(,3-∞(],6-∞(,3-∞+(],7-∞8.今有一台坏天平,两臂长不等,其余均精确,有人要用它称物体的质量,他将物体放在左右托盘各称一次,记两次称量结果分别为a ,b ,设物体的真实质量为G ,则( )A .B .C .D二、选择题:本题共3小题,每小题6分,共18分。
江苏省天一中学2024-2025学年高一上学期期中考试数学试卷
17.已知函数
f
(x)
=
ax + b 16 - x2
是定义在 (-4, 4)
上的奇函数.且
f
(1)
=1.
(1)求实数 a , b 的值; (2)判断函数 f (x) 在 (-4, 4) 上的单调性,并用定义证明你的结论;
( ) (3)若 f t2 -1 + f (1- 5t) < 0 ,求 t 的取值范围.
<
1 b
=
1
,故
D
错误;
故选:A. 5.B 【分析】根据函数奇偶性和单调性即可求解.
【详解】因为
f
(x)
=
x3
-
1 x
,
x Î (-¥, 0) U (0, +¥),
f
(- x)
=
-x3
+
1 x
=
-
f
(x) ,
所以 f (x) 为奇函数,
当 x > 0 时, 1 为减函数, x3 为增函数,故 f (x) 为增函数,故 B 选项正确. x
B. a = m - 3
C. 4b + (2m - 3)2 = 0
D.
c
=
-
21 4
三、填空题
12.
æ çè
5
1 16
ö0.5 ÷ø
+ (-1)5
¸
æ çè
3 ö-2 4 ÷ø
+
æ çè
2
10 27
ö
-
2 3
÷ø
=
试卷第31 页,共33 页
13.已知函数 f (x) 是偶函数,当 x ³ 0 时, f (x) = -x(2x -1) ,则当 x < 0 时, f (x) =
上海市第二中学2024-2025学年高一上学期期中考试数学试题(含解析)
2024~2025学年市二中学高一(上)期中考试数学试卷一、填空题(第1-6题每題4分,第7-12题每题5分,满分54分)1.若,,则______.2.不等式的解集是______.3.已知,则______.4.不等式“”是“”______的条件.5.已知集合,集合,若集合M 满足,则这样的集合M 共有______个.6.已知,那么等于______.7.已知,,则用m ,n 表示______.8.若关于x 的不等式恰有两个整数解,则a 的取值范围是______.9.命题“任意,为真命题,则实数a 的取值范围是______.10.碳14是透过宇宙射线撞击空气中的氨14原子所产生.碳14原子经过衰变转变为氨原子.由于其半衰期达5730年,经常用于考古年代鉴定,半衰期(Half-life )是指放射性元素的原子核有半数发生衰变时所需要的时间,对北京人遗址中某块化石鉴定时,碳14含量约为原来的1%,则这块化石距今约为______万年.(四舍五入到0.1万年)11.已知,,,,,若且,,中各元素的和为256,则集合______.12.已知实数a ,b 满足,且,则的最小值为______.二、单选题(本大题共4题,满分20分)13.已知集合,,则( )A .B .C .D .14.关于x 的不等式的解集是,那么()A .1B .C .12D .{}|31A x x =-≥{}|15B x x =<<A B = 304x x -≤+12510a b ==11a b +=23x x ≤|2|1x -<{}2,3,5,8A ={}2,3,5,8,13,21B =A M B ⊂⊆()223350x x x -+=>1133x x -+9log 5m =3log 7n =35log 9=()22120x a x a -++<x ∈R ()()222240a x a x -+--<β14235{,,,,}A a a a a a =4222221235{,,,},B a a a a a =51234a a a a a <<<<i a ∈Z 1,2,3,4,5i ={}14,B a a A = 1410a a +=22a >A B A =11a b -<<<2a b +=1311a ab ++-4|,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N N {}|14Q x x =-≤≤P Q = {}1,2,4{}0,1,3{}|03x x ≤≤{}|14x x -≤≤2x ax b ≤-{}4log a b =344315.若,,则下列不等式中一定成立的是()A .B .C .D .16.定义集合运算;将称为集合A 与集合B 的对称差,命题甲::命题乙:则下列说法正确的是( )A .甲乙都是真命题B .只有甲是真命题C .只有乙是真命题D ,甲乙都不是真命题三、解答题(本大题共有5题,满分76分)17.已知集合,,若,,则实数a 、b 、c 的值为.18.设关于x 的方程的两个实根分别是,.(1)求实数p 的取值范围;(2)求的取值范围.19.近几年来,“盲盒文化”广为流行,这种文化已经在中国落地生根,并发展处具有中国特色的盲盒经济,某盲盒生产及销售公司今年初用98万购进一批盲盒生产线,每年可有50万的总收入,已知生产此盲盒x 年(x 为正整数)所用的各种费用总计为万元(1)该公司第几年首次盈利(总收入超过总支出,今年为第一年)?(2)该公司第几年年平均利润最大,最大是多少?20.某天数学课上,你突然惊醒,发现黑板上有如下内容:(1)老师请你模仿例题,研究,上的最小值;(提示:,当且仅当时,等号成立);(2)研究,上的最小值;(3)当时,求,的最小值.21.已知有限集,如果A 中的元素满足,就称A 为“完美集”.x a m -<y a n -<2x y m -<2x y n -<x y n m-<-x y n m -<+{}|A B x x A x B -=∈∉且()()A B A B B A ∆=-- ()()()A B C A B A C ∆=∆ △()()()A B C A B A C ∆=∆ {}2|0A x x ax b =++={}2|150B x x cx =++={}3,5A B = {}3A B = 22lg lg 30x x p -+=αβlog log βαβα+2210x x +44x x -()0,x ∈+∞a b c d +++≥a b c d ===3139x x -()0,x ∈+∞0a >3x ax -()0,x ∈+∞{}()12,,2,,n A a a a n n ⋅⋅⋅=≥∈N ()1,2,,i a i n =⋅⋅⋅1212n n a a a a a a ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯(1)判断:集合是否是“完美集”并说明理由:(2)、是两个不同的正数,且是“完美集”,求证:、至少有一个大于2;(3)若为正整数,求:“完美集”A .2024~2025学年市二中学高一(上)期中考试数学试卷一、填空题1.【答案】【解析】由题意知,,所以.2.【答案】【解析】,解得或,所以不等式的解集为.3.【答案】【解析】若,可得,,.4.【答案】必要不充分【解析】,,由于是的真子集,所以“”是“”的必要不充分条件.5.【答案】3【解析】因为集合,所以集合M 中包含2,3,5,8且至少包含13,21中的一个元素,所以或或,所以满足条件的M 个数为3.6.【解析】由,因,故,即得,.7.【答案】【解析】由,,可得,,又由{11---+1a 2a {}12,a a 1a 2a i a ()1,4(),4A =-∞()1,4A B = ()[),43,-∞-+∞ ()()34030440x x x x x -+≤⎧-⎪≤⇔⎨++≠⎪⎩4x <-3x ≥()[),43,-∞-+∞ 1-12510b a ==2log 10a =-5log 10b =-()521111lg 5lg 2lg101log 10log 10a b ⎛⎫+=-+=-+=-=- ⎪⎝⎭{}{}23|0|3x x x x x ≤=≤≤{}{}3|21|1x x x x -<=<<{}|13x x <<{}3|0x x ≤≤23x x ≤21x -<A M B ⊂⊆{}2,3,5,8,13M ={}2,3,5,8,21{}2,3,5,8,13,212112233332527x x x x --⎛⎪+=++⎫⎝⎭+ ==0x >11330x x -+>1133x x -+=22m n+9log 5m =3log 7n =31log 52m =3log 7n =8.【答案】【解析】令,解得或.当,即时,不等式,解得,则不等式中的两个整数解为2和3,有,解得;当,即时,不等式无解,所以不符合题意;当,即时,不等式解得,则不等式中的两个整数解为0和,有,解得.综上,a 的取值范围是9.【答案】【解析】因为“任意,”为真命题,所以不等式在上恒成立,当时,,显然成立,当时,有,解得,综上所述,实数a 的取值范围是.10.【答案】3.8【解析】设第n 个半衰期结束时,碳14含为,由题意可得,第一个半衰期结束时,碳14含量为,第二个半衰期结束时,碳14含量为;以此类推,为以首项,公比为的等比数列,所以第n 个半衰期结束时,碳14含量为,335333log 922log 9log 35log 5log 72m n===++3|21212a a a ⎭<≤⎧⎫-≤<-⎨⎬⎩或()22120x a x a -++=1x =2x a =21a >12a >()22120x a x a -++<12x a <<324a <≤322a <≤21a =12a =()22120x a x a -++<12a =21a <12a <()22120x a x a -++<21a x <<1-221a -≤<-112a -≤<-3|21212a a a ⎭<≤⎧⎫-≤<-⎨⎬⎩或(]2,2-x ∈R ()()222240a x a x -+--<()()222240a x a x -+--<R 2a =40-<2a ≠()()220421620a a a -<⎧⎪⎨∆=-+-<⎪⎩22a -<<(]2,2-n a 112a =214a ={}n a 112a =12q =12n n a ⎛⎫= ⎪⎝⎭令,解得所以这块化石距今约为年,即约为3.8万年:11.【答案】【解析】由,且,得到只可能,即或0,当时,,而,故舍去,则,又,∴,且,∴或,①若时,,不合题意;②若时,此时,,因,从而,又,则,当时,无整数解,当时,,所以,综上,12.【解析】因为,所以,,因为,所以,由,所以所以,11%2n n a ⎛⎫== ⎪⎝⎭2212lg102log 10 6.6410.301lg 2n ---===≈-5730 6.6438047.2⨯={}1,3,5,9,11{}14,A B a a = 12345a a aa a <<<<211a a =1a =11a =0410a ={}14,A B a a = =Z 1a =11410a a +=49a =()24923i a a i ==≤≤23a =33a =33a =22a =23a ={}531,3,,9,A a a ={}22531,9,,81,B a a =22353513981256a a a a +++++++=2255331620a a a a +++-=234a a a <<339a <<3a =4,6,7,85a 35a =511a ={}1,3,5,9,11A ={}1,3,5,9,11A =1-11a b -<<<10a +>10b ->2a b +=()()112a b ++-=2a b +=()32131133111111b a a b a b a b -+=+=+-+-+-+-()()13113311311211a b a b a b ⎡⎤⎢-+-=+++--⎡⎤⎣⎦+-+⎥⎣⎦()31111133432312112a b a b ⎛+- =+++-≥⎝⎛⎫ ⎪⎝+-=+-=- +⎭-当且仅当,即,二、单选题13.【答案】B 【解析】若,则是4的正因数,而4的正因数有1,2,4,所以,因为,所以,故选:B .14.【答案】D【解析】即,因为解集为,则根据韦达定理知,即,则故选:D .15.【答案】D 【解析】运用绝对值三角不等式,由于,,运用不等式性质得到故,故选:D .16.【答案】B【解析】对于甲,,故命题甲正确;对于乙,如图所示:所以,,故命题乙不正确三、解答题17.【答案】,,()31111a b a b +-=+-2a =-+4b =-41y x =+y ∈N 1x +{}4|,0,1,31P x y y x ⎧⎫=∈=∈=⎨⎬+⎩⎭N N {}|14Q x x =-≤≤{}0,1,3P Q = 2x ax b ≤-20x ax b -+≤{}42424a b =⨯⎧⎨=⎩816a b =⎧⎨=⎩32844log log 16log 23a b ===x y x a a y x a a y -=--≤-++-x a m -<y a n -<x a a y m n-+-<+x y m n -<+()()()()A B C A B B C B C A B C A B C ∆=-=- ()()()()()()A B A C A B A C A B A C =-=∆ ()()()A B C A B A C ∆≠∆ ()A B C ∆ ()()A B A C ∆ 6a =-9b =8c =-【解析】因为,所以,所以,得,所以,所以,即有且只有一个实根,所以,,解得,,综上可得,,,.18.【答案】(1);(2)【解析】(1)因为,即,设,则关于t 的方程:的两根为和,所以,解得.(2)由韦达定理,得,所以因为且,所以或,所以或,所以的取值范围为19.【答案】(1)第3年:(2)第7年平均利润最大,为12万元【解析】(1)设利润为y ,则,由整理得,,解得,由于,所以,所以第3年首次盈利.(2)首先,由(1)得平均利润万元,{}3AB = 3B ∈93150c ++=8c =-{}{}28150|3,5B x x x =-+=={}3A =20x ax b ++=3x =33a +=-33b ⨯=6a =-9b =6a =-9b =8c =-1,3⎛⎤-∞ ⎥⎝⎦()[),22,-∞-+∞ 22lg lg 30x x p -+=2lg 2lg 30x x p -+=lg t x =2230t t p -+=lg αlg β()22120p ∆=-≥-13p ≤lg lg 2lg lg 3pαβαβ+=⎧⎨=⎩22lg lg lg lg log log lg lg lg lg αββαβαβααβαβ++=+=2(lg lg )2lg lg 4642lg lg 33p p pβααβαβ+--===-31p ≤30p ≠443p ≥403p<4223p -≥4223p-<-log log αββα+()[),22,-∞-+∞ ()()22*509821024098y x x x x x x =-++=-+-∈N 2240980x x -+->220490x x -+<1010x -<<x *∈N {}|317x x x *∈∈≤≤N {}|317x x x *∈∈≤≤N 4924024012y x x x ⎛⎫=-++≤-⨯+= ⎪⎝⎭当且仅当,万元时等号成立,综上,第7年,平均利润最大,为12万元20.【答案】(1):(2);(3)【解析】(1)因为,利用,于是,,当且仅当时,取得最小值.(2)因为,利用,得到,于是,,当且仅当时,取得最小值.(3)因为利用,得到,于是,,当且仅当时,取得最小值21.【解析】(1)由,,则集合是“完美集”.(2)若、是两个不同的正数,且是“完美集”,设,根据根和系数的关系知,和相当于的两根,由,解得或(舍去),所以,又,均为正数所以、至少有一个大于2.(3)不妨设A中,49x x=7x =3-6-0x >a b c d +++≥41114x x ++≥+444111434433x x x x x x -=+++--≥--=-1x =3-0x >a b c ++≥313339x x ++≥331133363363699x x x x x x -=++--≥--=-3x =6-0x >a b c ++≥3x ax +≥33x ax x ax -=-≥x =((112-+-+=-(112--=-{11--+1a 2a {}12,a a 12120a a a a t +=⋅=>1a 2a 20x tx t -+=240t t ∆=->4t >0t <124a a ⋅>1a 2a 1a 2a 312n a a a a <<<⋅⋅⋅<由,得,当时,即有,又为正整数,所以,于是,则无解,即不存在满足条件的“完美集”;当时,,故只能,,求得,于是“完美集”A 只有一个,为.当时,由,即有,而,又,因此,故矛盾,所以当时不存在完美集A ,综上知,“完美集”A 为1212n n n a a a a a n a a ⋅⋅⋅=++⋅⋅<⋅+121n n a a a -⋅⋅<⋅2n =12a <i a 11a =2211a a +=⨯2a 3n =123a a <11a =2a =23a =3{}1,2,34n ≥()1211231n a a a n n -⋅⋅⋅≥⨯⨯⨯⋅⋅⋅⨯-()1231n n n ≥⨯⨯⨯⋅⋅⋅⨯-()()()221242220n n n n n n ---=-+-=--+<()()()121231n n n n --≤⨯⨯⨯⋅⋅⋅⨯-()1231n n n <⨯⨯⨯⋅⋅⋅⨯-4n ≥{}1,2,3。
四川省成都市2024-2025学年高一上学期期中考试数学试题含答案
成都市2024-2025学年上学期半期考试高一年级数学试题(答案在最后)考试时间120分钟满分150分一、单选题1.已知集合A ={1,2,3,4,5},{},|15B x x =<<,则A ∩B 的元素个数为()A.2B.3C.4D.5【答案】B 【解析】【分析】直接根据集合的交集运算求解即可.【详解】因为集合A ={1,2,3,4,5},{}|15B x x =<<所以{}2,3,4A B = ,即A ∩B 的元素个数为3个.故选:B2.函数221y x mx =++在[2,+∞)单调递增,则实数m 的取值范围是()A.[2,)-+∞B.[2,+∞)C.(,2)-∞ D.(,2]-∞【答案】A 【解析】【分析】直接由抛物线的对称轴和区间端点比较大小即可.【详解】函数221y x mx =++为开口向上的抛物线,对称轴为x m =-函数221y x mx =++在[2,+∞)单调递增,则2m -≤,解得2m ≥-.故选:A.3.若函数的定义域为{}22M x x =-≤≤,值域为{}02N y y =≤≤,则函数的图像可能是()A. B.C. D.【答案】B 【解析】【分析】根据函数的定义域与值域,结合函数的性质判断即可.【详解】对A ,该函数的定义域为{}20x x -≤≤,故A 错误;对B ,该函数的定义域为{}22M x x =-≤≤,值域为{}02N y y =≤≤,故B 正确;对C ,当()2,2x ∈-时,每一个x 值都有两个y 值与之对应,故该图像不是函数的图像,故C 错误;对D ,该函数的值域不是为{}02N y y =≤≤,故D 错误.故选:B.4.已知函数()af x x =,则“1a >”是“()f x 在()0,∞+上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】由幂函数的单调性结合充分必要条件的定义判断.【详解】当0a >时,函数()af x x =在()0,∞+上单调递增,则1a >时,一定有()f x 在()0,∞+上单调递增;()f x 在()0,∞+上单调递增,不一定满足1a >,故“1a >”是“()f x 在()0,∞+上单调递增”的充分不必要条件.故选:A.5.已知0,0x y >>,且121y x+=,则12x y +的最小值为()A.2B.4C.6D.8【答案】D 【解析】【分析】利用不等式的乘“1”法即可求解.【详解】由于0,0x y >>,故111122244428x y x xy y x y xy ⎛⎫⎛⎫+=++=++≥+ ⎪ ⎪⎝⎭⎝⎭,当且仅当14,121,xy xyy x⎧=⎪⎪⎨⎪+=⎪⎩即2,14x y =⎧⎪⎨=⎪⎩时,等号成立,故12x y +的最小值为8.故选:D6.已知定义域为R 的函数()f x 不是偶函数,则()A.()(),0x f x f x ∀∈-+≠RB.()(),0x f x f x ∀∈--≠RC.()()000,0x f x f x ∃∈-+≠RD.()()000,0x f x f x ∃∈--≠R 【答案】D 【解析】【分析】根据偶函数的概念得()(),0x f x f x ∀∈--=R 是假命题,再写其否定形式即可得答案.【详解】定义域为的函数()f x 是偶函数()(),0x f x f x ⇔∀∈--=R ,所以()f x 不是偶函数()()000,0x f x f x ⇔∃∈--≠R .故选:D .7.若函数()22f x ax bx c=++的部分图象如图所示,则()1f =()A.23-B.112-C.16-D.13-【答案】D 【解析】【分析】利用函数图象求得函数定义域,利用函数值可得出其解析式,代入计算即求得函数值.【详解】根据函数图象可知2x =和4x =不在函数()f x 的定义域内,因此2x =和4x =是方程20ax bx c ++=的两根,因此可得()()()224f x a x x =--,又易知()31f =,所以可得2a =-;即()()()124f x x x =---,所以()113f =-.故选:D8.奇函数()f x 在(),0-∞上单调递增,若()10f -=,则不等式()0xf x <的解集是().A.()()101,∪,-∞-B.()()11,∪,-∞-+∞C.()()1001,∪,- D.()()101,∪,-+∞【答案】C 【解析】【分析】由()f x 奇偶性,单调性结合题意可得答案.【详解】因奇函数()f x 在(),0∞-上单调递增,()10f -=则()f x 在()0,∞+上单调递增,1=0.得()()()01,01,f x x ⋃∞>⇒∈-+;()()()0,10,1f x x ∞⋃<⇒∈--.则()()000x xf x f x <⎧<⇒⎨>⎩或()()()01,00,10x x f x ⋃>⎧⇒∈-⎨<⎩.故选:C二、多选题9.下列关于集合的说法不正确的有()A.{0}=∅B.任何集合都是它自身的真子集C.若{1,}{2,}a b =(其中,a b ∈R ),则3a b +=D.集合{}2yy x =∣与{}2(,)x y y x =∣是同一个集合【答案】ABD 【解析】【分析】根据集合的定义,真子集的定义,集合相等的定义判断各选项.【详解】{0}中含有一个元素,不是空集,A 错;任何集合都是它自身的子集,不是真子集,B 错;由集合相等的定义得2,1a b ==,3a b +=,C 正确;集合{}2yy x =∣中元素是实数,集合{}2(,)x y y x =∣中元素是有序实数对,不是同一集合,D 错,故选:ABD .10.已知二次函数()2223y m x mx m =-++-的图象与x 轴有两个交点()()12,0,,0x x ,则下面说法正确的是()A.该二次函数的图象一定过定点()1,5--;B.若该函数图象开口向下,则m 的取值范围为:625m <<;C.当2m >,且12x ≤≤时,y 的最大值为45m -;D.当2m >,且该函数图象与x 轴两交点的横坐标12,x x 满足1232,10x x -<<--<<时,m 的取值范围为:21114m <<【答案】ABD 【解析】【分析】代入1x =-,解得5y =-,即可求解A ,根据判别式即可求解B ,利用二次函数的单调性即可求解C ,利用二次函数的图象性质即可列不等式求解.【详解】由()2223y m x mx m =-++-可得()22123y m x x =+--,当1x =-时,5y =-,故二次函数的图象一定过定点()1,5--,A 正确,若该函数图象开口向下,且与x 轴有两个不同交点,则()()220Δ44230m m m m -<⎧⎨=--->⎩,解得:625m <<,故B 正确,当2m >,函数开口向上,对称轴为02mx m =-<-,故函数在12x ≤≤时,单调递增,当2x =时,911y m =-,故y 的最大值为911m -;C 错误,当2m >,则开口向上,又1232,10x x -<<--<<时,则3,4210x y m =-=->,且2,110x y m =-=-<,且1,50x y =-=-<,且0,30x y m ==->,解得21114m <<,m 的取值范围为:21114m <<,D 正确,故选:ABD11.已知幂函数()()293mf x m x =-的图象过点1,n m ⎛⎫-⎪⎝⎭,则()A.23m =-B.()f x 为偶函数C.364n =D.不等式()()13f a f a +>-的解集为(),1-∞【答案】AB 【解析】【分析】利用幂函数的定义结合过点1,n m ⎛⎫- ⎪⎝⎭,可求,m n 判断AC ;进而可得函数的奇偶性判断B ;解不等式可求解集判断D.【详解】因为函数()()293mf x m x =-为幂函数,所以2931m -=,解得23m =±,当23m =时,幂函数()23f x x =的图象不可能过点3,2n ⎛⎫- ⎪⎝⎭,故23m ≠,当23m =-,幂函数()23f x x -=的图象过点3,2n ⎛⎫ ⎪⎝⎭,则2332n -=,解得3232629n -⎛⎫=±=±⎪⎝⎭,故A 正确,C 错误;()23f x x -=的定义域为{|0}x x ≠,且()2233()()f x x x f x ---=-==,故()f x 为偶函数,故B 正确;函数()23f x x-=在(0,)+∞上单调递减,由()()13f a f a +>-,可得()()13fa f a +>-,所以1310a a a ⎧+<-⎪⎨+≠⎪⎩,解得1a <且1a ≠-,故D 错误.故选:AB.三、填空题12.满足关系{2}{2,4,6}A ⊆⊆的集合A 有____________个.【答案】4【解析】【分析】由题意可得集合A 为{}2,4,6的子集,且A 中必包含元素2,写出满足条件的集合,即可得答案.【详解】即集合A 为{}2,4,6的子集,且A 中必包含元素2,又因为{2,4,6}的含元素2的子集为:{}2,{}2,4,{}2,6,{2,4,6}共4个.故答案为:4.13.已知()f x 满足()()()2f x y f x f y +=++,且()22f =,则()3f =______.【答案】4【解析】【分析】令1x y ==得()10f =,再令1x =,2y =即可求解.【详解】令1x y ==得()()()21122f f f =++=,所以()10f =,令1x =,2y =得()()()31224f f f =++=.故答案为:4.14.已知函数()()()22223124,,4f x x ax ag x x x a a =-+-=-+-∈R ,若[]10,1x ∀∈,[]20,1x ∃∈,使得不等式()()12f x g x >成立,实数a 的取值范围是__________.【答案】(),6-∞【解析】【分析】由题意将问题转化为()(),min max f x g x >[]0,1x ∈,成立,利用二次函数的性质求解即可.【详解】若对任意[]10,1x ∈,存在[]20,1x ∈,使得不等式()()12f x g x >成立,即只需满足[]min min ()(),0,1f x g x x >∈,()22314g x x x a =-+-,对称轴()1,2x g x =在10,2⎡⎫⎪⎢⎣⎭递减,在,1,12⎛⎤ ⎥⎝⎦递增,()2min 18,2g x g a ⎛⎫==- ⎪⎝⎭()[]2224,0,1f x x ax a x =-+-∈,对称轴4a x =,①04a≤即0a ≤时,()f x 在0,1递增,()22min min ()04()8f x f a g x a ==->=-恒成立;②014a<<即04a <<时,()f x 在0,4a ⎡⎫⎪⎢⎣⎭递减,在,14a ⎛⎤ ⎥⎝⎦递增,22min min 7()4,()848a f x f a g x a ⎛⎫==-=- ⎪⎝⎭,所以227488a a ->-,故04a <<;③14a≥即4a ≥时,()f x 在[0,1]递减,()22min min ()12,()8f x f a a g x a ==--=-,所以2228a a a -->-,解得46a ≤<,综上(),6a ∞∈-.故答案为:(),6∞-【点睛】方法点睛:本题首先需要读懂题意,进行转化;其次需要分类讨论,结合二次函数的性质最后进行总结,即可求出结果.四、解答题15.设全集R U =,集合{|23}P x x =-<<,{|31}.Q x a x a =<≤+(1)若1a =-,求集合()U P Q ð;(2)若P Q =∅ ,求实数a 的取值范围.【答案】(1){|03}x x <<(2)][132,,⎛⎫-∞-+∞ ⎪⎝⎭【解析】【分析】(1)先求出U Q ð,再求()U P Q ⋂ð即可;(2)分Q =∅和Q ≠∅两种情况求解即可【小问1详解】解:当1a =-时,{|31}{|30}Q x a x a x x =<≤+=-<≤;{|3U C Q x x =≤-或0}x >,又因为{}23P x x =-<<,所以(){|03}.U P Q x x ⋂=<<ð【小问2详解】解:由题意知,需分为Q =∅和Q ≠∅两种情形进行讨论:当Q =∅时,即31a a ≥+,解得12a ≥,此时符合P Q =∅ ,所以12a ≥;当Q ≠∅时,因为P Q =∅ ,所以1231a a a +≤-⎧⎨<+⎩或3331a a a ≥⎧⎨<+⎩,解之得3a ≤-.综上所述,a 的取值范围为][1,3,.2∞∞⎛⎫--⋃+ ⎪⎝⎭16.已知二次函数()()20f x ax bx c a =++≠满足()()14f x f x x -+=,且()0 1.f =(1)求函数()f x 的解析式;(2)解关于x 的不等式()()2641f x t x t ≤-+-+.【答案】(1)()2221f x x x =-+(2)答案见解析.【解析】【分析】(1)利用待定系数法计算即可求解析式;(2)根据(1)的结论含参讨论解一元二次不等式即可.【小问1详解】因为()01f =,1c =,所以()21f x ax bx =++,又因为()()14f x f x x -+=,所以()(()22[1)1114a x b x ax bx x ⎤++++-++=⎦,所以24ax a b x ++=,所以240a a b =⎧⎨+=⎩,所以22a b =⎧⎨=-⎩,即()222 1.f x x x =-+【小问2详解】由()()2641f x t x t ≤-+-+,可得不等式()222440x t x t +++≤,即()2220x t x t +++≤,所以()()20x x t ++≤,当2-=-t ,即2t =时,不等式的解集为{|2}x x =-,当2t -<-,即2t >时,不等式的解集为{|2}x t x -≤≤-,当2t ->-,即2t <时,不等式的解集为{|2}x x t -≤≤-,综上所述,当2t =时,不等式的解集为{|2}x x =-,当2t >时,不等式的解集为{|2}x t x -≤≤-,当2t <时,不等式的解集为{|2}.x x t -≤≤-17.已知函数()221x f x x -=.(1)用单调性的定义证明函数()f x 在()0,∞+上为增函数;(2)是否存在实数λ,使得当()f x 的定义域为11,m n ⎡⎤⎢⎥⎣⎦(0m >,0n >)时,函数()f x 的值域为[]2,2m n λλ--.若存在.求出λ的取值范围;若不存在说明理由.【答案】(1)证明见详解;(2)存在,()2,+∞.【解析】【分析】(1)设()12,0,x x ∞∈+,且12x x <,然后作差、通分、因式分解即可判断()()12f x f x <,得证;(2)根据单调性列不等式组,将问题转化为210x x λ-+=存在两个不相等的正根,利用判别式和韦达定理列不等式组求解可得.【小问1详解】()222111x f x x x-==-,设()12,0,x x ∞∈+,且12x x <,则()()()()22121212122222222212211212111111x x x x x x f x f x x x x x x x x x -+⎛⎫--=---=-== ⎪⎝⎭,因为120x x <<,所以221212120,0,0x x x x x x <-+>>,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在0,+∞上为增函数.【小问2详解】由(1)可知,()f x 在11,m n ⎡⎤⎢⎥⎣⎦上单调递增,若存在λ使得()f x 的值域为[]2,2m n λλ--,则22112112f m m m f n n n λλ⎧⎛⎫=-=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪=-=- ⎪⎪⎝⎭⎩,即221010m m n n λλ⎧-+=⎨-+=⎩,因为0m >,0n >,所以210x x λ-+=存在两个不相等的正根,所以21212Δ40100x x x x λλ⎧=->⎪=>⎨⎪+=>⎩,解得2λ>,所以存在()2,λ∞∈+使得()f x 的定义域为11,m n ⎡⎤⎢⎥⎣⎦时,值域为[]2,2m n λλ--.18.习总书记指出:“绿水青山就是金山银山”.淮安市一乡镇响应号召,因地制宜的将该镇打造成“生态水果特色小镇”.调研过程中发现:某珍稀水果树的单株产量W (单位:千克)与肥料费10x (单位:元)满足如下关系:()252,02()48,251x x W x x x x ⎧+≤≤⎪=⎨<≤⎪+⎩其它成本投入(如培育管理等人工费)为20x (单位:元).已知这种水果的市场售价大约为10元/千克,且供不应求.记该单株水果树获得的利润为()f x (单位:元).(1)求()f x 的函数关系式;(2)当投入的肥料费用为多少时,该单株水果树获得的利润最大?最大利润是多少?【答案】(1)25030100,02()48030,251x x x f x x x x x⎧-+≤≤⎪=⎨-<≤⎪+⎩;(2)当投入的肥料费用为30元时,获得的利润最大,最大利润是270元.【解析】【分析】(1)由单株产量W 乘以售价减去肥料费和其它成本投入可得出的函数关系式;(2)利用二次函数的单调性求出当02x ≤≤时,()f x 的最大值,由基本不等式求出当25x <≤时,()f x 的最大值,即可得出答案.【小问1详解】(1)由题意可得()()()1020101030f x W x x x W x x=--=-()22105230,025030100,024804830,251030,2511x x x x x x x x x x x x x x ⎧⨯+-≤≤⎧-+≤≤⎪⎪==⎨⎨-<≤⨯-<≤⎪⎪+⎩+⎩.故()f x 的函数关系式为25030100,02()48030,251x x x f x x x x x⎧-+≤≤⎪=⎨-<≤⎪+⎩.【小问2详解】(2)由(1)22319150,025030100,02102()48030,251651030(1),2511x x x x x f x x x x x x x x ⎧⎧⎛⎫-+≤≤⎪-+≤≤⎪ ⎪⎪⎪⎝⎭==⎨⎨-<≤⎡⎤⎪⎪-++<≤+⎢⎥⎪⎪+⎣⎦⎩⎩,当02x ≤≤时,()f x 在30,10⎡⎤⎢⎥⎣⎦上单调递减,在3,210⎛⎤ ⎥⎝⎦上单调递增,且(0)100(2)240f f =<=,max ()(2)240f x f ∴==;当25x <≤时,16()51030(1)1f x x x ⎡⎤=-++⎢⎥+⎣⎦,16181x x ++≥=+ 当且仅当1611x x=++时,即3x =时等号成立.max ()510308270f x ∴=-⨯=.因为240270<,所以当3x =时,max ()270f x =.当投入的肥料费用为30元时,该单株水果树获得的利润最大,最大利润是270元.19.已知集合,A B 中的元素均为正整数,且,A B 满足:①对于任意,i j a a A ∈,若i j a a ≠,都有i j a a B ∈;②对于任意,m k b b B ∈,若m k b b <,都有k mb A b ∈.(1)已知集合{}1,2,4A =,求B ;(2)已知集合{}()2,4,8,8A t t =>,求t ;(3)若A 中有4个元素,证明:B 中恰有5个元素.【答案】(1){}2,48B =,(2)16t =(3)证明见解析【解析】【分析】(1)根据①可得2,4,8都是B 中的元素,进而证明B 中除2,4,8外没有其他元素即可求解,(2)根据条件①②,即可求解,(3)根据题意可得41a a ,3324421123,,,,a a a a a a a a a a ,4321a a a a 是A 中的元素,进而根据11a =和12a ≥可得{}2341111,,,A a a a a =,进而{}3456711111,,,,a a a a a B ⊆,接下来假设B 中还有其他元素,且该元素为k ,利用k 与31a 的关系得矛盾求解.【小问1详解】由①可得2,4,8都是B 中的元素.下面证明B 中除2,4,8外没有其他元素:假设B 中还有其他元素,分两种情况:第一种情况,B 中最小的元素为1,显然81不是A 中的元素,不符合题意;第二种情况,B 中最小的元素为2,设B 中除2,4,8外的元素为()2k k b b >,因为2k b 是A 中的元素,所以k b 为4或8,而4,8也是B 中的元素,所以B 中除2,4,8外没有其他元素.综上,{}2,4,8B =.【小问2详解】由①可得,8,16,32,2,4,8t t t 都是B 中的元素.显然84,82,162t t t <<<,由(2)可得,422,,8816t t t 是A 中的元素,即,,248t t t 是A 中的元素.因为842t t t t <<<,所以2,4,8842t t t ===,解得16t =.【小问3详解】证明:设{}12341234,,,,A a a a a a a a a =<<<.由①可得,1224,a a a a 都是B 中的元素.显然1224a a a a <,由②可得,2412a a a a 是A 中的元素,即41a a 是A 中的元素.同理可得3324421123,,,,a a a a a a a a a a ,4321a a a a 是A 中的元素.若11a =,则34344122a a a a a a a a =>,所以3412a a a a 不可能是A 中的元素,不符合题意.若12a ≥,则32311a a a a a <<,所以321211,a a a a a a ==,即23213121,a a a a a a ===.又因为44443211a a a a a a a <<<<,所以444123321,,a a a a a a a a a ===,即441a a =,所以{}2341111,,,A a a a a =,此时{}3456711111,,,,a a a a a B ⊆.假设B 中还有其他元素,且该元素为k ,若31k a <,由(2)可得71a A k ∈,而7411a a k >,与{}2341111,,,A a a a a =矛盾.若31k a >,因为31k A a ∈,所以131,1,2,3,4i k a i a ==,则31,1,2,3,4i k a i +==,即{}45671111,,,k a a a a ∈,所以B 中除3456711111,,,,a a a a a 外,没有其他元素.所以{}3456711111,,,,B a a a a a =,即B 中恰有5个元素.【点睛】方法点睛:对于以集合为背景的新定义问题的求解策略:1、紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;2、用好集合的性质,解题时要善于从试题中发现可以使用的集合的性质的一些因素.3、涉及有交叉集合的元素个数问题往往可采用维恩图法,基于课标要求的,对于集合问题,要熟练基本的概念,数学阅读技能、推理能力,以及数学抽象和逻辑推理能力.。
四川省成都市2024-2025学年高一上学期期中考试 数学含答案
高2024级高一上学期11月半期测试数学试题(答案在最后)一、单选题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.1.设全集{0,1,2,3,4,5}U =,集合{1,2,3}A =,{5,4,3}B =,则=U A B ⋂ð()A.{1,2,3,4,5}B.{1,2}C.{0,1,2}D.{0,1,2,3}2.已知集合{}2|1,M y y x x R ==+∈,{}|1,N y y x x R ==+∈,则M N ⋂=A.()()0,1,1,2B.()(){}0,1,1,2C.{|1y y =或2}y =D.{}|1y y ≥3.已知函数()*(2),nf x x n =-∈N ,则“1n =”是“()f x 是增函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.下列说法正确的是()A.若a b >,则22a b >B.“2x >”是“112x <”的充分不必要条件C.若幂函数()22231m m y m m x--=--在区间 ㈮㔷∞上是减函数,则2m =D.命题“2,0x x x ∀∈+≥R ”的否定为“2,0x x x ∃∈+≥R ”;5.已知命题()()2:R,110p x m x ∃∈++≤,命题2:R,10q x x mx ∀∈-+>恒成立.若p 和q 都为真命题,则实数m 的取值范围为()A.2m ≥B.21m -<≤-C.2m ≤-或2m ≥D.12m -<≤6.已知函数()f x =,则()A.()1ff f >>- B.()1ff f >>-C.()1ff f>-> D.()1f ff ->>7.用()C A 表示非空集合A 中元素的个数,定义()()()()()()()(),*,C A C B C A C B A B C B C A C A C B ⎧-≥⎪=⎨-<⎪⎩.已知{}1,2A =,()(){}22|20B x x ax x ax =+++=,且*1A B =,设实数a 的所有可能取值构成集合S ,则()C S =()A .4B.3C.2D.18.已知函数()()()21,12,1x x f x f x x ⎧-≥⎪=⎨--<⎪⎩,若对于任意的实数x ,不等式()24()1f x a f x -≤+恒成立,则实数a 的取值范围为()A.1,2⎡⎫-+∞⎪⎢⎣⎭B.1,12⎡⎤-⎢⎥⎣⎦C.3,4⎡⎫-+∞⎪⎢⎣⎭D.3,14⎡⎤-⎢⎥⎣⎦二、多选题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.知函数()f x 满足1211x f x x +⎛⎫= ⎪+⎝⎭,则关于函数()f x 正确的说法是()A.()f x 的定义域为{}1x x ≠- B.()f x 值域为{1y y ≠,且2}y ≠C.()f x 在 ㈮㔷∞ 单调递减D.不等式()2f x >的解集为(1,0)-10.已知a ,b 均为正数,且1a b -=,则()A.a >B.221->a b C.411-≤a bD.13a b+>11.已知函数()2211x xf x x x +=++,则下列结论正确的是()A.()f x 在()1,+∞上单调递增B.()f x 值域为][(),22,∞∞--⋃+C.当0x >时,恒有()f x x >成立D.若12120,0,x x x x >>≠,且()()12f x f x =,则122x x +>三、填空题:本题共3小题,每小题5分,共15分.12.不等式3223x x -≥+的解集为________.13.若两个正实数x ,y 满足40x y xy +-=,且不等式26xy m m ≥-恒成立,则实数m 的取值范围是__________.14.已知函数()(),f x g x 都是定义在R 上的函数,()12f x -+是奇函数,()2g x -是偶函数,且()()()23,21f x g x g --=-=,则()()()234f f f ++=________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.设集合{}{}23,31P x x Q x a x a =-<<=<≤+.(1)若,x Q x P ∀∈∈,求a 的取值范围;(2)若,x P x Q ∃∈∈,求a 的取值范围.16.已知集合A为使函数y =R 的a 的取值范围,集合{}22210B x x ax a =++-≤(a 为常数,R a ∈).若x A ∈是x B ∈的必要条件,试求实数a 的取值范围.17.在园林博览会上,某公司带来了一种智能设备供采购商洽谈采购,并决定大量投放市场,已知该种设备年固定研发成本为50万元,每生产一台需另投入80万元,设该公司一年内生产该设备x 万台且全部售完,每万台的销售收入()G x (万元)与年产量x (万台)满足如下关系式:1802,020()2000900070,20(1)x x G x x x x x -<≤⎧⎪=⎨+->⎪+⎩(1)写出年利润()W x (万元)关于年产量x (万台)的函数解析式:(利润=销售收入-成本)(2)当年产量为多少万台时,该公司获得的年利润最大?并求最大利润.18.已知函数()f x 的定义域为()0,∞+,对任意正实数a b 、都有()()()1f ab f a f b +=+,且当1x >时,()1f x >.(1)求()120242024f f ⎛⎫+⎪⎝⎭的值,(2)判断函数()f x 的单调性并加以证明:(3)当[]1,3x ∈时,关于x 的不等式()()32f kx f x -+>恒成立,求实数k 的取值范围.19.设函数()2,y ax x b a b =+-∈∈R R .(1)若54b a =-,且集合{|0}x y =中有且只有一个元素,求实数a 的取值集合;(2)0a <时,求不等式(22)2y a x b <--+的解集;(3)当0,1a b >>时,记不等式0y >的解集为P ,集合{|22}Q x t x t =--<<-+,若对于任意正数t ,P Q ⋂≠∅,求11a b-的最大值.高2024级高一上学期11月半期测试数学试题一、单选题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.【1题答案】【答案】B 【2题答案】【答案】D 【3题答案】【答案】A 【4题答案】【答案】BC 【5题答案】【答案】B 【6题答案】【答案】A 【7题答案】【答案】B 【8题答案】【答案】A二、多选题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BCD 【10题答案】【答案】BC 【11题答案】【答案】ACD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】(,3)[8,)-∞-+∞【13题答案】【答案】[]28-,【14题答案】【答案】6-四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)2,3⎡⎫-+∞⎪⎢⎣⎭(2)13,2⎛⎫- ⎪⎝⎭【16题答案】【答案】11a -≤≤【17题答案】【答案】(1)2210050,020()9000101950,201x x x W x x x x ⎧-+-<≤⎪=⎨--+>⎪+⎩;(2)当年产量为29万台时,该公司获得的年利润最大为1360万元.【18题答案】【答案】(1)2(2)()f x 在()0,+∞上是增函数,证明见解析(3)()4,+∞【19题答案】【答案】(1)1{0,,1}4;(2)答案见解析;(3)12.。
浙江省宁波2024-2025学年高一上学期期中考试数学试卷含解析
宁波2024年度第一学期期中高一数学试卷(答案在最后)(满分150分,考试时间120分钟)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,2,4,7M =,{}4,6,7N =,则M N = ()A.{}1,2,4,6,7B.{}1,2,6C.{}4,7 D.{}2,4【答案】C 【解析】【分析】利用集合的交集运算即可得解.【详解】因为{}1,2,4,7M =,{}4,6,7N =,所以M N = {}4,7.故选:C.2.命题“N n ∀∈,22Z n n ++∈”的否定为()A.N n ∀∈,22Z n n ++∉B.N n ∀∉,22Z n n ++∉C.N n ∃∈,22Z n n ++∈D.N n ∃∈,22Zn n ++∉【答案】D 【解析】【分析】利用量词命题的否定方法即可得解.【详解】因为量词命题的否定方法为:改量词,否结论,所以命题“N n ∀∈,22Z n n ++∈”的否定为N n ∃∈,22Z n n ++∉.故选:D.3.已知0.23a =,0.33b =,0.22c =,则()A.b a c >>B.a b c >>C.b c a >>D.a c b >>【答案】A 【解析】【分析】利用指数函数的单调性与幂函数的单调性即可判断得解.【详解】因为3x y =为单调递增函数,所以0.30.233>,则b a >,因为0.2y x =为增函数,所以0.20.232>,则a c >,综上,b a c >>.故选:A.4.已知正实数a ,b 满足2a b +=,则312a b+的最小值为()A.272B.14C.15D.27【答案】A 【解析】【分析】利用基本不等式“1”的妙用即可得解.【详解】因正实数a ,b 满足2a b +=,所以31213121312127()15152222b a a b a b a b a b ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当312b a a b=,即24,33a b ==时取等号,所以312a b+的最小值为272.故选:A 5.函数3(e)x f xx =的图象大致为()A. B.C. D.【答案】D 【解析】【分析】先利用奇偶函数的定义判断得()f x 的奇偶性排除AB ,再利用指数函数的性质分析得()f x 的正负情况,从而排除C ,由此得解.【详解】对于3()ex xf x =,其定义域为R ,又33()()e ex xx xf x f x ---==-=-,则()f x 是奇函数,排除AB ,当0x >时,30x >,e e 0x x =>,所以()0f x >,排除C ,又选项D 的图象满足上述性质,故D 正确.故选:D.6.设m ∈R ,“12m <-”是“方程22(3)40m x m x -++=在区间(2,)+∞上有两个不等实根”的()条件.A.充分必要B.充分不必要C.必要不充分D.既不充分也不必要【答案】C 【解析】【分析】举反例说明充分性,利用二次方程根的分布说明必要性,从而得解.【详解】当12m <-时,取3m =-,则方程22(3)40m x m x -++=为2940x +=,显然无解,即充分性不成立;当方程22(3)40m x m x -++=在区间(2,)+∞上有两个不等实根时,则()22222Δ344032242(3)40m m m m x m m m ⎧>⎪=+-⨯>⎪⎪⎨+=>⎪⎪⎪-++>⎩,即0315********m m m m m m ≠⎧⎪⎪-<<⎪⎪⎨-<<<<⎪⎪⎪-⎪⎩或或,则3152m -<<-,此时12m <-成立,即必要性成立;所以前者是后者的必要不充分,故C 正确.故选:C.7.中国5G 技术领先世界,其数学原理之一便是香农公式:2log 1S C W N⎛⎫=+⎪⎝⎭,它表示:在受噪音干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中S N 叫信噪比.按照香农公式,若不改变带宽W ,将信噪比SN从2000提升至10000,则C 大约增加了(lg 20.3010)≈()A .18%B.21% C.23% D.25%【答案】B 【解析】【分析】由已知公式,将信噪比SN看作整体,分别取2000,10000求出相应的C 值,再利用对数运算性质与换底公式变形即可得解.【详解】由题意,将信噪比SN从2000提升至10000,则最大信息传递速率C 从()12log 12000C W =+增加至()22log 110000C W =+,所以2212212210001log log 10001log 20012001log 2001log 2001C C W W C W --==3100011000010lglg lg10.3012001200020.2121%lg 2001lg 2000lg 2lg100.3013-=≈==≈=++.故选:B.8.已知函数()f x 为R 上的奇函数,当0x ≥时,2()2f x x x =-,若函数()g x 满足(),0()(),0f x x g x f x x ≥⎧=⎨-<⎩,且(())0g f x a -=有8个不同的解,则实数a 的取值范围为()A.1a <-B.10a -<<C.01a <<D.1a >【答案】B 【解析】【分析】先利用函数的奇偶性与题设条件得到()f x 与()g x 的解析式,设()t f x =,作出函数()g t 的图象,数形结合,分类讨论函数1a <-、10a -<<与0a >三种情况,得到对应情况下(())0g f x a -=的解的个数,从而得解.【详解】因为函数()f x 为R 上的奇函数,当0x ≥时 ,令0x <,则0x ->,则()22f x x x -=+,又()()22f x f x x x=--=--所以()222,02,0x x x f x x x x ⎧-≥=⎨--<⎩,则()222,02,0x x x g x x x x ⎧-≥=⎨+<⎩,设()t f x =,作出函数()g t 的图象,对于A ,当1a <-时,函数()g t a =没有实数根,不满足题意;对于B ,当10a -<<时,函数()g t a =有四个根1234,,,t t t t ,其中1(2,1)t ∈--,2(1,0)t ∈-,3(0,1)t ∈,4(1,2)t ∈;作出()f x 与1y t =、2y t =、3y t =与4=y t 的图象,如图,显然几个函数恰有8个交点,则(())0g f x a -=有8个不同的解,故B 正确;对于CD ,当0a >时,函数()g t a =有两个根12,t t ,其中1(,2)t ∈-∞-,2(2,)t ∈+∞,与选项B 同理可知()f x 与1y t =、2y t =各有一个交点,则(())0g f x a -=只有2个不同的解,不满足题意,故CD 错误.故选:B.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知a ,b ,c 为实数,且0a b >>,则下列不等式正确的是()A.11a b< B.11a cb c<--C.ac bc > D.22a b c c >【答案】AD 【解析】【分析】根据不等式的性质,作差逐一判断即可.【详解】因为0a b >>,选项A :110b aa b ab --=<,所以11a b<,故A 说法正确;选项B :()()11b aa cbc a c b c --=----,当a b c >>或c a b >>时,()()0b aa cbc -<--,即11a c b c<--;当a c b >>时,()()0b a a c b c ->--,即11a c b c>--,故B 说法错误;选项C :当0c =时,ac bc =,故C 说法错误;选项D :因为210c >,所以22a b c c >,故D 说法正确;故选:AD10.已知函数)()lg 1f x x =-+,则下列说法正确的是()A.()f x 的值域为RB.(1)f x +关于原点对称C.()f x 在(1,)+∞上单调递增D.()f x 在[1,1]x m m ∈-+上的最大值、最小值分别为M 、N ,则0M N +=【答案】ABD 【解析】【分析】利用作差法,结合对数函数的性质判断A ,构造函数())lg k x x =,研究()k x 的性质判断B ,利用()k x 的单调性与奇偶性判断CD ,从而得解.【详解】对于A ,()2222110x x x -+--=>,所以()222210x x x -+>-≥1x >-,10x -+>恒成立,所以()f x 的定义域为R ,且当x 趋于无穷大时,1y x =+接近于0,当x 趋于无穷小时,1y x =+=趋于无穷大,所以()f x 的值域为R ,故A 正确;对于B ,因为))(1)lg (1)1lgf x x x +=-++=,令())lgk x x =,则()(1)f x k x +=,易知()k x 的定义域为R ,又()()))lglglg10k x k x x x -+=+==,所以()k x 为奇函数,关于原点对称,即(1)f x +关于原点对称,故B 正确;对于C ,因为())1gk x x =-=在()0,∞+上递减,而将()k x 的图象向右平移一个单位可得()f x 的图象,所以()f x 在(1,)+∞上单调递减,故C 错误;对于D ,因为()k x 在()0,∞+上递减,且())1gk x x =为奇函数,则()00k =,())k x x =-∴在(),-∞+∞上为减函数,而将()k x 的图象向右平移一个单位可得()f x 的图象,()f x ∴在(),-∞+∞上为减函数,即()f x 在[1,1]m m -+上单调递减,则()()()()110M N f m f m k m k m +=-++=-+=,故D 正确.故选:ABD.11.已知函数()f x 满足:对于,x y ∈R ,都有()()()(1)(1)f x y f x f y f x f y -=+++,且(0)(2)f f ¹,则以下选项正确的是()A.(0)0f = B.(1)0f =C.(1)(1)0f x f x ++-= D.(4)()f x f x +=【答案】BCD 【解析】【分析】利用赋值法,结合条件分析得()()1,0f f 的值,从而判断AB ,利用赋值法,结合AB 中的结论、抽象函数的奇偶性和周期性的判定方法判断CD ,从而得解.【详解】对于B :令0x y ==,则()()()22001,f f f ⎡⎤⎡⎤=+⎣⎦⎣⎦令1x y ==,则()()()22012,f f f ⎡⎤⎡⎤=+⎣⎦⎣⎦所以()()2202,f f ⎡⎤⎡⎤=⎣⎦⎣⎦因为()()02f f ≠,所以()()02f f =-,令1,0x y ==,则()()()()()110210f f f f f =+=,故B 正确;对于A :由选项B 可得()()200f f ⎡⎤=⎣⎦,所以()00f =或()01f =,若()00f =,则()()()220120f f f ⎡⎤⎡⎤=+=⎣⎦⎣⎦,所以()20f =,这与()()02f f ≠矛盾,舍去;若()01f =,则()()()220120f f f ⎡⎤⎡⎤=+=⎣⎦⎣⎦,解得()21f =±,因为()()02f f ≠,所以()21f =-,()01f =,故A 错误;对于C :令0x =,则()()()()()011f y f f y f f y -=++,因为 ,()01f =,所以()()f y f y -=,所以()f x 为偶函数,令1x =,则()()()()()()11211f y f f y f f y f y -=++=-+,即()()11f x f x -=-+,所以(1)(1)0f x f x ++-=,故C 正确;对于D :由选项C 知()()11f x f x -=-+,所以()()2f x f x -=-+,又()f x 为偶函数,所以()()()2f x f x f x =-=-+,即 t ,所以 t 䁝 t ,故D 正确.故选:BCD.【点睛】方法点睛:抽象函数求值问题,一般是通过赋值法,即在已知等式中让自变量取特殊值求得一些特殊的函数值,解题时注意所要求函数值的变量值与已知的量之间的关系,通过赋值还可能得出函数的奇偶性、周期性,这样对规律性求值起到决定性的作用.三、填空题:本题共3小题,每小题5分,共15分.12.函数3()log (31)f x x =+的定义域为______.【答案】13x x ⎧⎫-⎨⎬⎩⎭【解析】【分析】根据对数式的意义即可求解.【详解】要使函数有意义,则13103x x +>⇒>-,所以函数的定义域为13x x ⎧⎫-⎨⎬⎩⎭.故答案为:13x x ⎧⎫-⎨⎬⎩⎭.13.定义()f x x =⎡⎤⎢⎥(其中⎡⎤⎢⎥x 表示不小于x 的最小整数)为“向上取整函数”.例如 1.11-=-⎡⎤⎢⎥,2.13=⎡⎤⎢⎥,44=⎡⎤⎢⎥.以下描述正确的是______.(请填写序号)①若()2024f x =,则(2023,2024]x ∈,②若27120x x -+≤⎡⎤⎡⎤⎢⎥⎢⎥,则(2,4]x ∈,③()f x x =⎡⎤⎢⎥是R 上的奇函数,④()f x 在R 上单调递增.【答案】①②【解析】【分析】利用对“向上取整函数”定义的理解,结合定义域与二次不等式的求解可判断①②,举反例,结合函数奇偶性与单调性的定义可判断③④,从而得解.【详解】因为⎡⎤⎢⎥x 表示不小于x 的最小整数,则有x x ≥⎡⎤⎢⎥且1x x -<⎡⎤⎢⎥,即1x x x -<⎡⎤⎡⎤⎢⎥⎢≤⎥,对于①,()2024f x x ==⎡⎤⎢⎥,则20232024x <≤,即(2023,2024]x ∈,故①正确;对于②,令t x =⎡⎤⎢⎥,则不等式可化为27120t t -+≤,解得34t ≤≤,又t x =⎡⎤⎢⎥为整数,则3t =或4t =,当3t =时,即3x =⎡⎤⎢⎥,则23x <≤;当4t =时,即4x =⎡⎤⎢⎥,则34x <≤,所以24x <≤,则(2,4]x ∈,故②正确;对于③,因为()f x x =⎡⎤⎢⎥,则(0.5)1f =,(0.5)0(0.5)f f -=≠-,则()f x x =⎡⎤⎢⎥不是R 上的奇函数,故③错误;对于④,因为()f x x =⎡⎤⎢⎥,则(0.5)1f =,(0.6)1f =,即(0.5)(0.6)f f =,所以()f x 在R 上不单调递增,故④错误.故答案为:①②.14.已知a ,b 满足2221a ab b +-=,则232a ab -的最小值为______【答案】2【解析】【分析】变形给定等式,换元2a b m +=,用m 表示,a b ,再代入,利用基本不等式求出最小值.【详解】由2221a ab b +-=,得(2)()1a b a b +-=,令2a b m +=,则1a b m-=,解得233m a m =+,8322()33m a b a a b m-=+-=+,因此22228116132(32)()()(10)(1022333399m m a ab a a b m m m m -=-=++=++≥+=,当且仅当2216m m=,即24m =时取等号,所以232a ab -的最小值为2.故答案为:2【点睛】关键点点睛:将2221a ab b +-=变形为(2)()1a b a b +-=,令2a b m +=,再表示出,a b 是求出最小值的关键.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.求值(110232ln 2024+-(2)()()24525log 5log 0.2log 2log 0.5++【答案】(1)152(2)14【解析】【分析】(1)根据根式与指数式的互化将根式化为同底的指数式,再结合对数运算性质和指数幂性质即可计算得解.(2)根据对数性质、运算法则和换底公式即可计算求解.【小问1详解】原式()()111125253424211115221222222⨯+⨯=⨯+-=-=-=.【小问2详解】原式225511log 5log 0.2log 2log 0.522⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭225525log 5log log 2log log log ⎛=++= ⎝11lg5lg 2122lg 2lg5lg 2lg54=⨯=⨯=.16.已知集合{}121A x m x m =+≤≤-,11|288x B x -⎧⎫⎨⎬⎩⎭=≤≤.(1)求B ;(2)若A B ⊆,求实数m 的取值范围.【答案】(1){}|24B x x =-≤≤(2)5,2⎛⎤-∞ ⎥⎝⎦【解析】【分析】(1)利用指数函数的单调性解不等式,从而化简集合B ;(2)利用集合间的包含关系,分类讨论A =∅与A ≠∅两种情况,得到关于m 的不等式(组),解之即可得解.【小问1详解】由11288x -≤≤,得313222x --≤≤,所以313x -≤-≤,解得24x -≤≤,所以{}|24B x x =-≤≤.【小问2详解】因为A B ⊆,{}121A x m x m =+≤≤-,当A =∅时,121m m +>-,得2m <,满足条件;当A ≠∅时,2m ≥且21214m m -≤+⎧⎨-≤⎩,解得522m ≤≤;综上所述,m 的取值范围是5,2⎛⎤-∞ ⎥⎝⎦.17.某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍惜水果树的单株产量W (单位:千克)与使用肥料x (单位:千克)满足如下关系:210(3),02()100100,251x x W x x x ⎧+≤≤⎪=⎨-<≤⎪+⎩,肥料成本投入为11x 元,其他成本投入(如培育管理、施肥等人工费)25x 元.已知这种水果的市场售价为20元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元).(1)求()f x 的函数关系式;(2)当使用肥料为多少千克时,该水果树单株利润最大,最大利润是多少?【答案】(1)220036600,02()2000200036,251x x x f x x x x ⎧-+≤≤⎪=⎨--<≤⎪+⎩;(2)当使用肥料为5千克时,该水果树单株利润最大,最大利润是44603元.【解析】【分析】(1)根据单株产量W 与施用肥料x 满足的关系,结合利润的算法,即可求得答案.(2)结合二次函数的最值以及对勾函数求最值,分段计算水果树的单株利润,比较大小,即可求得答案.【小问1详解】依题意,2200(3)36,02()20()251120()3610020(10036,251x x x f x W x x x W x x x x x ⎧+-≤≤⎪=--=-=⎨--<≤⎪+⎩220036600,022*********,251x x x x x x ⎧-+≤≤⎪=⎨--<≤⎪+⎩.【小问2详解】当02x ≤≤时,2()20036600f x x x =-+,则当2x =时,()f x 取得最大值(2)1328f =;当25x <≤时,500()203636(1)20364[9(1)]112000f x x x x x =--+=-++++令1(3,6]x t +=∈,5005009(1)91x t x t ++=++,函数5009t t y +=在(3,6]上单调递减,当6t =时,min 4123y =,此时5x =,()f x 取得最大值4460(5)3f =,而446013283<,因此当5x =时,max 4460()3f x =,所以当使用肥料为5千克时,该水果树单株利润最大,最大利润是44603元.18.已知函数()42x xa f x -=为奇函数,(1)求a 的值;(2)判断()f x 的单调性,并用单调性定义加以证明;(3)求关于x 的不等式()22(4)0f x x f x ++-<的解集.【答案】(1)1a =(2)()f x 在R 上单调递增,证明见解析(3){}41x x -<<【解析】【分析】(1)利用奇函数的性质()00f =求得a ,再进行检验即可得解;(2)利用函数单调性的定义,结合作差法与指数函数的性质即可得解;(3)利用()f x 的奇偶性与单调性,将问题转化为224x x x +<-,从而得解.【小问1详解】因为()42x x a f x -=为奇函数,且定义域为R ,所以()00f =,则00402a -=,解得1a =,此时()411222x x x x f x -==-,则()()112222x x x x f x f x --⎛⎫-=-=--=- ⎪⎝⎭,即()f x 为奇函数,所以1a =.【小问2详解】()f x 在R 上单调递增,证明如下:任取12,R x x ∈,且12x x <,则12220x x -<,12220x x ⋅>则()()1222211112111122222222x x x x x x x x f x f x ⎛⎫-=---=-+- ⎪⎝⎭()12121212122212222102222x x x x x x x x x x -⎛⎫=-+=-+< ⎪⋅⋅⎝⎭,所以()()12f x f x <,故()f x 在R 上单调递增.【小问3详解】因为()22(4)0f x x f x ++-<,所以()()22(4)4f x x f x f x +<--=-,则224x x x +<-,即2340x x +-<,解得41x -<<,所以()22(4)0f x x f x ++-<的解集为{}41x x -<<.19.已知函数3()f x x a a x=--+,(R)a ∈,(1)若1a =,求关于x 的方程()1f x =的解;(2)若关于x 的方程2()f x a =有三个不同的正实数根1x ,2x ,3x 且123x x x <<,(i )求a 的取值范围;(ii )证明:1333x x x >.【答案】(1)11322x =+(2)(i)732⎛ ⎝;(ii )证明见解析【解析】【分析】(1)根据题意得由31x x-=,分类讨论1x ≥与1x <两种情况去掉绝对值即可得解;(2)(i )分段讨论()f x 的解析式,结合对勾函数的性质分析得()f x 的单调性,进而得到关于a 的不等式,解之即可得解;(ii )利用(i )中结论,分析得123x x =与3x 关于a 的表达式,进而得解.【小问1详解】当1a =时,3()11f x x x =--+,则由()1f x =,得31x x -=,当1x ≥时,则31x x -=,即230x x --=,解得11322x =+或11322x =-(舍去);当1x <时,则31x x -=,即230x x -+=,无实数解,综上,11322x =+.【小问2详解】(i )因为3()f x x a a x=--+,当x a ≤时,33()2f x x a a a x x x ⎛⎫=-+-+=-+ ⎪⎝⎭,当x a >时,33()f x x a a x x x=--+=-,由对勾函数的性质可知,32y a x x ⎛⎫=-+⎪⎝⎭在(上单调递增,在)+∞上单调递减,易知3y x x =-在()0,∞+上单调递增,当)0a a ≤≠时,则32y a x x ⎛⎫=-+ ⎪⎝⎭在()0,a 上单调递增,3y x x =-在(),a +∞上单调递增,又当x a =时,332a x x x x ⎛⎫-+=- ⎪⎝⎭,所以()f x 在()0,∞+上单调递增,故方程2()f x a =不可能存在3个不同正实根,所以a ≥32y a x x ⎛⎫=-+ ⎪⎝⎭在(上单调递增,在)a 上单调递减,3y x x=-在(),a +∞上单调递增,故2322a a a a a <<-⎛⎫-+ ⎪⎝⎭,解得732a <<即a 的取值范围为2⎛ ⎝;(ii )12x x 、是方程322a x x a ⎛⎫-+= ⎪⎝⎭,即22230x a x a ⎛⎫--+= ⎪⎝⎭的两个根,故123x x =,3x 是方程32x x a -=的较大根,即2230x x a--=的较大根,则31x a =+且在区间732⎛+ ⎝上单调递减,所以1233333x x x x ⎛=>=.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.。
辽宁省辽阳市2024-2025学年高一上学期期中考试数学试卷
辽宁省辽阳市2024-2025学年高一上学期期中考试数学试卷一、单选题1.命题“()3,1x ∃∈--,45x -≥”的否定为()A .()3,1x ∃∈--,45x -≤B .()3,1x ∃∈--,45x -<C .()3,1x ∀∈--,45x -≤D .()3,1x ∀∈--,45x -<2.已知集合{}1,2A =,{}1,0,1B =-,{}0,2,4C =,则()A B C = ()A .{}0B .{}0,1,2C .{}0,2D .{}0,1,2,43.函数()f x )A .11,3∞⎡⎫-+⎪⎢⎣⎭B .()11,00,3∞⎡⎫-⋃+⎪⎢⎣⎭C .11,3∞⎛⎫-+ ⎪⎝⎭D .()11,00,3∞⎛⎫-⋃+ ⎪⎝⎭4.函数()3237f x x x =+-的一个零点所在的区间是()A .()0,1B .()1,2C .()2,3D .()3,45.若53a -<<-,14b <<,则ab的取值范围为()A .35,4⎛⎫-- ⎪⎝⎭B .41,35⎛⎫-- ⎪⎝⎭C .11,3∞⎛⎫-+ ⎪⎝⎭D .()11,00,3∞⎛⎫-⋃+ ⎪⎝⎭6.已知函数()223f x x x a +=-+,且()53f =,则a =()A .3B .3-C .17D .17-7.已知函数()()213,2,2,22a x x f x a x x x ⎧-+≤⎪=⎨--+>⎪⎩是减函数,则a 的取值范围为()A .()1,7B .(]1,7C .()1,8D .(]1,88.我们将集合S 的子集为元素的集合称为S 的一个子集族.例如集合{}1A =有3个子集族:{}{}{}{}{},1,,1∅∅.若集合B 中有3个元素,则B 的不同子集族有()A .128个B .127个C .256个D .255个二、多选题9.在四边形ABCD 中,“四边形ABCD 是梯形”的一个充分不必要条件可能是()A .AB 平行于CD ,且AB 等于CD B .AB 平行于CD ,且AB 不等于CDC .AB 平行于CD ,且AD 不平行于BCD .AB 平行于CD 或AD 平行于BC10.已知集合A 与B 的关系如图所示,则A 与B 可能是()A .{}7,3,5,6A =-,{}3,7,8,9B =B .{}|10224A x x =-<-+<-,{}|14B x x =<<C .223|,0x x A y y x x ⎧⎫-+==>⎨⎬⎩⎭,1|,11B y y x x x ⎧⎫==+>⎨⎬-⎩⎭D .(){},|A x y y x ==,(){}2,|B x y y x ==11.已知函数为定义在[]6,2a a -+上的偶函数,当[]6,0x a ∈-时,()f x x =+,则下列结论正确的是()A .2a =B .3522f ⎛⎫=⎪⎝⎭C .在[]0,2a +上单调递减D .的值域为52,2⎡⎤⎢⎥⎣⎦三、填空题12.已知下列表格表示的是函数()y f x =,则()()1f f -=.x-2-12y 321013.若关于x 的不等式230ax ax ++>恒成立,则a 的取值范围为.14.已知奇函数()f x 的图像是一条连续不断的曲线,()f x 在(],0-∞上单调递减,则不等式()820f x f x ⎛⎫+- ⎪⎝⎭≥的解集为.四、解答题15.已知非空集合{}2{313},60A xa x a B x x x =-<<+=--≤∣∣.(1)若1a =,求()A B ⋃R ð;(2)若“x B ∈”是“x A ∈”的必要不充分条件,求a 的取值集合.16.已知0x >,0y >,且12x y+=.(1)求xy的最大值;(2)求4y x+的最小值.17.辽阳大果榛子外形美观、果大皮薄,深受消费者欢迎.某辽阳大果榛子网店为回馈新老顾客,提供两种购买大果榛子的优惠方案:第一种方案,每斤的售价为24元,顾客买x (0x >)斤,每斤的售价降低x 元;第二种方案,顾客买x (0x >)斤,每斤的售价为2114x ⎛⎫+ ⎪⎝⎭元.已知每位顾客限购9斤大果榛子.设一名顾客按照第一种方案购买大果榛子的付款额为元,按照第二种方案购买大果榛子的付款额为()g x 元.(1)分别求函数,()g x 的解析式;(2)已知顾客甲、乙在这家网店均选择了更经济实惠的方案购买大果榛子,甲、乙的付款总额为135元,且甲购买了5斤大果榛子,试问乙购买了多少斤大果榛子?18.已知函数()|2|2f x x =--+,()()24g x x x a a =-+∈R 的定义域均为[]0,4.(1)请在所给的图中画出()f x 的图像;(2)若不等式()()f x g x ≥的解集为[]0,4,求a 的取值范围;(3)讨论函数()()()h x f x g x =-的零点个数.19.已知函数()f x 的定义域为D ,若对任意[],x a b ∈(a b <,[],a b D ⊆),都有()[](),0f x na nb n ∈>,则称[,]a b 为()f x 的一个“n 倍区间”.(1)判断[1,4]是否是函数1y x =-的一个“12倍区间”,并说明理由;(2)若[0,2]是函数()22f x x x m =-+的“2倍区间”,求m 的取值范围;(3)已知函数()g x 满足对任意12,R x x ∈,且12x x ≠,都有()()121203g x g x x x -<<-,且()00g =,证明:[,]p q (0p q <<)是()g x 的一个“3倍区间”.。
安徽省2024-2025学年高一上学期11月期中教学质量检测数学试题(含答案)
安徽省2024-2025学年高一上学期11月期中教学质量检测数学试题考试时间:120分钟满分150分一、单选题:本题共8小题,每小题5分,共40分.1.下列集合中表示同一集合的是()A. B.C. D.2.若,则下列不等式不能成立的是()A. B.C. D.3.不等式的解集为A.或B.或C.或D.4.函数的图象可能是()A. B. C. D.5.已知,则()A.27B.18C.15D.256.函数的单调递减区间是()A. B. C. D.7.已知是偶函数,且其定义域为,则()A. B.-1 C.1 D.78.已知函数,若存在,且两两不相等,则的取值范围为A. B. C.[0,1] D.{(3,2)},{(2,3)}M N=={4,5},{5,4}M N=={(,)1},{1}M x y x y N y x y=+==+=∣∣{1,2},{(1,2)}M N==a b<<||||a b>2a ab>11a b>11a b a>-23540x x-+->{3x x≤-∣2}x≥{3x x≤-∣1}x≥{31x x-≤≤∣2}x≥∅1(0,1)xy a a aa=->≠13a a-+=33a a-+=()f x=(,3]-∞-[1,1]-(,1]-∞-[1,)-+∞2()35f x ax bx a b=+-+[61,]a a-a b+=1725,0()22,0x xf xx x x->⎧=⎨+-≤⎩()()()123f x f x f x==123x x x、、123x x x++()(1,1)-(1,1]-(0,1]二、多选题:本题共3小题,共18分.9.(多选)下列说法正确的有( )A.命题,则B.“”是“”成立的充分条件C.命题,则D.“”是“”的必要条件10.若正实数a ,b 满足,则下列说法正确的是( )A.ab 有最大值C.有最小值4 D.11.对于函数的定义域中任意的,当时,如下结论正确的是( )A. B.C.D.三、填空题:本题共3小题,每小题5分,共15分.12.命题“对任意,都有”的否定是_______________.13.已知,求函数的最小值是_______________.14.已知是上的增函数,则实数的取值范围是_______________.四、解答题:本题共5小题,共77分.15.(本小题13分)已知集合,集合.(1)求;(2)设集合,且,求实数的取值范围.16.(本小题15分)已知二次函数.(1)若的解集为,求a ,b 的值;(2)若f (x )在区间上单调递增,求的取值范围.:,(0,1),2p x y x y ∀∈+<0000:,(0,1),2p x y x y ⌝∃∈+≥1,1a b >>1ab >2:,0p x R x ∀∈>2:,0p x R x ⌝∃∈<5a <3a <1a b +=14+11a b+22a b +()f x ()1212,x x x x ≠()2xf x =()()()1212f x x f x f x +=⋅()()()1212f x x f x f x ⋅=+()()12120f x f x x x ->-()()121222f x f x x x f ++⎛⎫<⎪⎝⎭x R ∈20x ≥54x >14245y x x =-+-2,1()4,12x a x f x a x x ⎧->⎪=⎨⎛⎫-≤ ⎪⎪⎝⎭⎩R a {22}A xx =-∣……{1}B x x =>∣()R B A ⋂ð{6}M xa x a =<<+∣A M M ⋃=a 2()3()f x x ax a R =--∈()0f x <{3}xx b -<<∣[2,)-+∞a17.(本小题15分)如图,某人计划用篱笆围成一个一边靠墙(墙的长度没有限制)的矩形菜园.设菜园的长为x m ,宽为y m.(1)若菜园面积为18m 2,则当x ,y 为何值时,可使所用篱笆总长最小?并求出最小值.(2)若使用的篱笆总长度为16m ,则当x ,y 为何值时,可使菜园面积最大?并求出最大值.18.(本小题17分)已知函数在上是偶函数,当时,,(1)求函数在上的解析式;(2)求单调递增区间和单调递减区间;(3)求在的值域.19.(本小题17分)已知函数对任意实数x ,y 恒有,且当时,,又.(1)判断的奇偶性;(2)求证:是上的减函数并求函数在区间上的最大值;(3)若对任意,不等式恒成立,求的取值范围.()f x R 0x (2)()23f x x x =+-()f x R ()f x ()f x [4,4]-()f x ()()()f x y f x f y +=+0x >()0f x <(1)2f =-()f x ()f x R ()f x [3,3]-x R ∈()23()4f axf x <+a高一期中考试数学参考答案1.B2.D3.D4.D5.B6.B7.A8.D 7.A 8.D9.ABD 10.AC 11.ACD12.存在,使得13.514.[4,8)14.解:(1)由已知,又,所以;(2)因为,所以,又,所以,解得.所以的取值集合为.16.解:(1)的解集为,和是方程的两根,由根与系数关系得:;.(2)的对称轴为且在区间上单调递增,;.17.解:(1)由已知可得,而篱笆总长为;又因为,当且仅当时,即时等号成立所以菜园的长为6m ,宽为3m 时,可使所用篱笆总长最小,最小值为12;0x R ∈200x ≤{1}R B x x =≤∣ð{22}A x x =-∣……(){21}R B A xx ⋂=-∣......ðA M M ⋃=A M ⊆{22},{6}A x x M x a x a =-=<<+∣∣ (62)2a a +>⎧⎨<-⎩42a -<<-a {42}a a -<<-∣()0f x < {3}x x b -<<∣3∴-b 230x ax --=∴3,33b a b -+=-⨯=-2,1a b ∴=-=()f x 2ax =()f x [2,)-+∞22a∴≤-4a ∴≤-18xy =2L x y =+212x y +≥=2x y =6,3x y ==x y(2)由已知得,而菜园面积为,则,当且仅当即时取等号,菜园的长为8m ,宽为4m 时,可使菜园面积最大,最大值为32.18.解:(1)当时,,函数是偶函数,当时,,.(2)由(1)可画出函数在上的图像,如图所示,则的单调递增区间为和,单调递减区间为和.(3)由函数的定义域为,由(2)中所作函数图象可知,当或时,取得最小值,当或时,取得最大值,故函数的值域.19.(1)解:取,则,,取,则,216x y +=S xy =2112232222x y S xy x y +⎛⎫==⋅⋅≤⋅= ⎪⎝⎭2x y =8,4x y ==∴x y 0x (2)()23f x x x =+- ()y f x =0x >20,()()23x f x f x x x -<∴=-=--22230()230x x x f x x x x ⎧+-∴=⎨-->⎩…()y f x =R ()f x (1,0)-(1,)+∞(,1)-∞-(0,1)()y f x =[4,4]-1x =1x =-(1)(1)4f f =-=-4x =4x =-(4)(4)5f f =-=()f x [4,5]-0x y ==(00)2(0)f f +=(0)0f ∴=y x =-()()()f x x f x f x -=+-对任意恒成立,为奇函数.(2)证明:任取且,则,,又为奇函数,.故为上的减函数;为上的减函数,在区间上的最大值为,,故在上的最大值为6.(3)解:为奇函数,且,整理原式得,即可得,而在上是减函数,所以即恒成立,①当时不成立,②当时,有且,即,解得.故的取值范围为.()()f x f x ∴-=-x R ∈()f x ∴12,(,)x x ∈-∞+∞12x x <()()()2121210,0x x f x f x f x x ->+-=-<()()21f x f x ∴<--()f x ()()12f x f x ∴>()f x R ()f x R ()f x ∴[3,3]-(3)f -(3)3(1)236,(3)(3)6f f f f ==-⨯=-∴-=-=()f x [3,3]-()f x (2)(2)2(1)4f f f -=-=-=()22()()(2)f ax f x f x f +-<+-()2(2)()(2)f axf x f x f +-<+-()22(2)f ax x f x -<-()f x R 222ax x x ->-2320ax x -+>0a =0a ≠0a >0< 0980a a >⎧⎨-<⎩98a >a 9,8⎛⎫+∞ ⎪⎝⎭。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学上学期期中考试第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}{}{}d c b C c b a B b a A ,,,,,,,===,则集合A (∩)B ∪C 等于( ) A.{}c b a ,, B.{}d b a ,, C.{}d c b ,, D.{}d c b a ,,, (2)不等式0322>-+x x 的解集为 ( ) A.{}31<<-x x B.{}13-<>x x x 或 C.{}13<<-x x D.{}31-<>x x x 或(3)不等式311<+<x 的解集为 ( )A.)2,0(B.)0,2(-∪)4,2(C.)0,4(-D.)2,4(--∪)2,0( (4)若命题p 的否命题是q ,命题q 的逆命题是r ,则r 是p 的逆命题的 ( ) A.原命题 B. 逆命题 C. 否命题 D. 逆否命题 (5)已知命题p 、q ,则“命题p 或q 为真”是“命题p 且q 为真”的 ( ) A.充分不必要条件 B. 必要不充分条件 C.充要条件 D. 既不充分也不必要条件(6)函数)0()(2≤=x x x f 的反函数是 ( ) A.)0()(1≥=-x x x f B.)0()(1≥-=-x x x fC.)0()(1≤--=-x x x fD.)0()(21≤-=-x x x f(7)函数x x y +-=1的定义域为 ( )A.{}1≤x x B.{}0≥x x C.{}01≤≥x x x 或D.{}10≤≤x x(8)设函数⎩⎨⎧>-+≤-=,1,2,1,1)(22x x x x x x f 则))2(1(f f 的值为 ( )A.1615B.1627-C.98D.18(9)“21<-x ”是“3<x ”的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 (10)函数)(x f y =的反函数)(1x fy -=的图像与y 轴交于点)2,0(P (如图所示),则方程0)(=x f 在[1,4]上的根是=x ( )A.4B.3C.2D.1(11)设,,R b a ∈,集合{},,,0,,1⎭⎬⎫⎩⎨⎧=+b a b a b a 则=-a b( )A.1B.1-C.2D.2- (12)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文d c b a ,,,对应密文,4,32,2,2d d c c b b a +++例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为 ( )A.4,6,1,7B.7,6,1,4C.6,4,1,7D.1,6,4,7第Ⅱ卷(非选择题 共90分)二.填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. (13)xx 232>-的解集是 .(14)已知函数⎩⎨⎧>-≤+=,0),3(,0,52)(x x f x x x f 则=)5(f . (15)函数)40(1≤≤+=x x y 的反函数是 .(16)已知函数5124)32(2++=+x x x f ,则=)(x f . 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)设集合{},1212,2⎭⎬⎫⎩⎨⎧<+-=<-=x x x B a x x A 若B A ⊆,求实数a 的取值范围.(18)(本小题满分12分)已知函数384)12(2++=+x x x f . (Ⅰ)求)(x f 的解析式; (Ⅱ)求)(x f 的值域; (Ⅲ)解不等式3)(>x f .(19)(本小题满分12分)已知函数⎩⎨⎧<-≥=.0,,0,2)(2x x x x x f (Ⅰ)求)(x f 的反函数; (Ⅱ)作函数)(x f 的图象.(20)(本小题满分12分)解关于x 的不等式.01)1(2<++-x a ax(21)(本小题满分12分) 解不等式.4212>-++x x(22)(本小题满分12分)设:P 函数a x a y +-=)1(在),(+∞-∞上单调递减,:Q 函数a x ax y +-=2的定义域是R ,如果P 或Q 为真,P 且Q 为假,求实数a 的取值范围.高一数学评分参考选择题:共12小题,每小题5分,共60分.(1)D (2)A (3)D (4)C (5)B (6)B (7)D (8)A (9)A (10)C (11)C (12)C 二、填空题:共4小题,每小题5分,共20分.(13))1,(-∞∪),3(+∞; (14)3;(15))31(122≤≤+-=x x x y ; (16)42-x . 三、解答题:(17) (本小题满分10分) 解:22222+<<-⇒<-<-⇒<-a x a a x a x ,∴{}22+<<-=a x a x A ……3分320231212<<-⇒<+-⇒<+-x x x x x ,∴{}32<<-=x x B ……6分又,B A ⊆∴,10,1,0,32,22≤≤⇒⎩⎨⎧≤≥⇒⎩⎨⎧≤+-≥-a a a a a∴a 的取值范围是{}10≤≤a a . ……10分(18)(本小题满分12分) 解:(Ⅰ)令,12+=x t 则,21-=t x 有,23)21(8)21(4)(22t t t t t f +=+-+-=∴.2)(2x x x f += ……4分 (Ⅱ),11)1(2)(22-≥-+=+=x x x x f ∴ )(x f 的值域为{}.1-≥y y ……8分(Ⅲ)3)(>x f 即322>+x x ,∴0322>-+x x ,∴ 3-<x 或.1>x ……12分 (19)(本小题满分12分)解:(Ⅰ)当0≥x 时,由x y 2=得y x 21=,则,21)(1x x f =-当0<x 时,由2x y -=得y x --=,则,)(1x x f --=-综上,⎪⎩⎪⎨⎧-≥=-,0,1)(1x x x f ……8分 (Ⅱ)……12分(20)(本小题满分12分)解:①当0=a 时,原不等式为,01<+-x0=a {}.1>x x②当0>a 时,原不等式为,0)1)(1(<--x ax若,11>a 即10<<a 时,原不等式的解集为.11⎭⎬⎫⎩⎨⎧<<a x x ……4分若,11=a 即1=a 时,原不等式的解集为.φ ……6分若,11<a 即1>a 时,原不等式的解集为.11⎭⎬⎫⎩⎨⎧<<x a x ……8分 ③当0<a 时,原不等式为,0)1)(1(<--x ax原不等式的解集为.11⎭⎬⎫⎩⎨⎧><x a x x 或 ……10分 综上,当0=a 时,原不等式的解集为{}1>x x ;当10<<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<a x x 11;当1=a 时,原不等式的解集为φ;当1>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<11x a x ;当0<a 时,原不等式的解集为.11⎭⎬⎫⎩⎨⎧><x a x x 或 ……12分 (21)(本小题满分12分)解:原不等式等价于①⎪⎩⎪⎨⎧>--+--<,4)2()12(,21x x x 或②⎪⎩⎪⎨⎧>--+<≤-,4)2()12(,221x x x 或③⎩⎨⎧>-++≥,4)2()12(,2x x x ……6分 由①得,1-<x 由②得,21<<x 由③得,2≥x综上,原不等式的解集为{}.11>-<x x x 或 ……12分(22)(本小题满分12分)解:∵ 函数a x a y +-=)1(在),(+∞-∞上单调递减, ∴ ,01<-a 即.1<a∴ .1:<a P ……2分∵ 函数a x ax y +-=2的定义域是R , ∴ 02≥+-a x ax 对R x ∈恒成立. 当0=a 时,不符合要求.当0≠a 时,⎩⎨⎧≥⇒≤-=∆>.21,041,02a a a∴.21:≥a Q ……6分 ∵ P 或Q 为真,P 且Q 为假,∴ P 、Q 必一真一假. ……7分 若P 真Q 假,则a 的取值范围是{}1<a a ∩⎭⎬⎫⎩⎨⎧<=⎭⎬⎫⎩⎨⎧<2121a a a a . ……9分若P 假Q 真,则a 的取值范围是{}1≥a a ∩{}121≥=⎭⎬⎫⎩⎨⎧≥a a a a . ……11分综上,a 的取值范围是⎭⎬⎫⎩⎨⎧≥<121a a a 或. ……12分。