高中数学新教材必修第二册专题8.3 简单几何体的表面积与体积(原卷版)
高中数学人教A版(2019)必修 第二册第八章 立体几何初步8.3简单几何体的表面积与体积

必修第二册 8.3 简单几何体的表面积与体积一、单选题1.如图,位于贵州黔南的“中国天眼”是具有我国自主知识产权、世界最大单口径、最灵敏的球面射电望远镜,其反射面的形状为球冠,球冠是球面被平面所截后剩下的曲面,截得的圆为球冠的底,与截面垂直的球体直径被截得的部分为球冠的高,设球冠所在球的半径为R ,球冠底的半径为r ,球冠的高为h ,球冠底面圆的周长为C .已知球冠的表面积公式为2S Rh π=,若65000,500S C ππ==,则球冠所在球的表面积为( )A .1620000πB .1690000πC .1720000πD .1790000π 2.已知一个正四棱锥的底面边长为4,以该正四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则该正四棱锥的侧面积为( )A .)41B 1C .)41D .)813.已知ABC O 的球面上,若球O 的体积为32π3,则O 到平面ABC 的距离为( )AB .32C .1D 4.已知A ,B 是球O 的球面上两点,90AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .128πD .144π5.如图,在棱长为a 的正方体1111ABCD A B C D -中,P 在线段1BD 上,且12BP PD =,M 为线段11B C 上的动点,则三棱锥M PBC -的体积为( )A .319aB .332aC .313aD .与点M 的位置有关6.已知正四棱锥P ABCD -的所有顶点都在球O 的球面上,且正四棱锥P ABCD -的底面面积为6,侧面积为,则球O 的表面积为( )A .323πBC .16πD .32π 7.已知圆锥的表面积为3π,它的侧面展开图是一个半圆,则此圆锥的体积为( )AB C D 8.黄金分割是指将整体一分为二,较大部分与整体的比值等于较小部分与较大部分的,约为0.618.这个比例被公认为是最能引起美感的比例,因此被称为黄金比在几何世界中有很多黄金图形,在三角形中,如果相邻两边之比等于黄金分割比,且它们的夹角的余弦值为黄金分割比值,那么这个三角形一定是直角三角形,这个三角形称为黄金分割直角三角形.在正四棱锥中,以黄金分割直角三角形的长直角边作为正四棱锥的高,以短直角边的边长作为底面正方形的边心距(正多边形的边心距是正多边形的外接圆圆心到正多边形某一边的距离),斜边作为正四棱锥的斜高,所得到的正四棱锥称为黄金分割正四棱锥.在黄金分割正四棱锥中,以四棱锥的高为边长的正方形面积与该四棱锥的侧面积之比为( )A B C .1 D .149.阿基米德(Archimedes ,公元前287年—公元前212年)是古希腊伟大的数学家、物理学家和天文学家.后人按照他生前的要求,在他的墓碑上刻着一个圆柱容器里放了一个球(如图所示),该球与圆柱的两个底面及侧面均相切,圆柱的底面直径与高都等于球的直径.若该球的体积为36π,则圆柱的体积为 ( )A .36πB .45πC .54πD .63π 10.平行四边形ABCD 中,AB BD ⊥,且2224AB BD +=,沿BD 将四边形折起成平面ABD ⊥平面BDC ,则三棱锥A BCD -外接球的表面积为( )A .2πB .2πC .4πD .16π 11.已知一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比是( )A .122ππ+B .144ππ+C .12ππ+ D .142ππ+ 12.已知正四棱锥的底面边长和侧棱长均为2,则该正四棱锥的体积为( )A B .C D .二、填空题13.已知圆锥的侧面积(单位:2cm ) 为2π,且它的侧面积展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______.14.一个正四棱锥的顶点都在同一球面上,若该棱锥的高为2,底面边长为2,则该球的表面积为______.15.已知圆柱的轴截面(经过圆柱的轴的截面)是一个边长为2的正方形,则此圆柱的体积为________.16.若球的大圆的面积为9π,则该球的体积为________17.若五棱台11111ABCDE A B C D E -的表面积是30,侧面积是25,则两底面面积的和为______.三、解答题18.圆台的母线长为2a ,母线与轴的夹角为30,一个底面的半径是另一个底面的半径的2倍,求两底面的半径及两底面面积之和.19.将棱长为2的正方体1111ABCD A B C D -截去三棱锥1D ACD -后得到如图所示几何体,O 为11A C 的中点.(1)求证://OB 平面1ACD ;(2)求几何体111ACB A D 的体积.20.如图①,有一个圆柱形状的玻璃水杯,底面圆的直径为20cm ,高为30cm ,杯内有20cm 深的溶液.如图①,现将水杯倾斜,且倾斜时点B 始终在桌面上,设直径AB 所在直线与桌面所成的角为α.(1)求图①中圆柱的母线与液面所在平面所成的角(用α表示);(2)要使倾斜后容器内的溶液不会溢出,求α的最大值.21.“圆锥的两条母线所作的一切截面中,以轴截面的面积最大”是否成立?答案第1页,共1页 参考答案:1.B2.D3.C4.D5.A6.C7.C8.D9.C10.C11.A12.A13.114.9π15.2π16.36π17.518.圆台上底面半径为a ,下底面半径为2a ,两底面面积之和为25a π. 19.(1)见解析;(2)4.20.(1)2πα-;(2)45°﹒21.答案见解析。
高中数学必修二 8 3 2 圆柱、圆锥、圆台、球的表面积和体积 练习(含答案)

8.3.2 圆柱、圆锥、圆台、球的表面积和体积一、选择题1.若圆锥的高等于底面直径,则它的底面积与侧面积之比为A.1∶2B.1C.1D2【答案】C【解析】设圆锥底面半径为r,则高h=2r,∴其母线长l=r.∴S侧=πrl=πr2,S底=πr故选C.2.(2017新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.πB.3π4C.π2D.π4【答案】B 【解析】绘制圆柱的轴截面如图所示,由题意可得:11,2 AC AB==,结合勾股定理,底面半径2r==,由圆柱的体积公式,可得圆柱的体积是223ππ1π24V r h⎛⎫==⨯⨯=⎪⎪⎝⎭,故选B.3.圆柱的底面半径为1,母线长为2,则它的侧面积为()A.2πB.3πC.πD.4π【答案】D【解析】圆柱的底面半径为r=1,母线长为l=2,则它的侧面积为S侧=2πrl=2π×1×2=4π.故选:D.4.圆台的上、下底面半径和高的比为1:4:4,母线长为10,则圆台的侧面积为().A.81πB.100πC.14πD.169π【答案】B【解析】设圆台上底半径为r,则其下底半径为4r,高为4r,结合母线长10,可求出r=2.然后由圆台侧面积公式得,.5.(多选题)一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径2R相等,下列结论正确的是()A.圆柱的侧面积为22RπB.圆锥的侧面积为22RπC.圆柱的侧面积与球面面积相等D.圆柱、圆锥、球的体积之比为3:1:2【答案】CD【解析】依题意得球的半径为R,则圆柱的侧面积为2224R R Rππ⨯=,∴A错误;圆锥的侧面积为2R Rπ=,∴B错误;球面面积为24Rπ,∵圆柱的侧面积为24Rπ,∴C正确;2322V R R Rππ=⋅=圆柱,2312233V R R Rππ⋅==圆锥,343V R=π球33324:2::3:1:233:V V V R R Rπππ∴==圆柱圆锥球,∴D正确.故选:CD.6.(多选题)如图所示,ABC 的三边长分别是3AC =,4BC =,5AB =,过点C 作CD AB ⊥,垂足为D .下列说法正确的是( )A .以BC 所在直线为轴,将此三角形旋转一周,所得旋转体的侧面积为15πB .以AC 所在直线为轴,将此三角形旋转一周,所得旋转体的体积为36πC .以AC 所在直线为轴,将此三角形旋转一周,所得旋转体的侧面积为25πD .以AC 所在直线为轴,将此三角形旋转一周,所得旋转体的体积为16π【答案】AD【解析】以BC 所在直线为轴旋转时,所得旋转体为底面半径为3,母线长为5,高为4的圆锥 ∴侧面积为3515ππ⨯⨯=,体积为2134123ππ⨯⨯⨯=,∴A 正确,B 错误;以AC 所在直线为轴旋转时,所得旋转体为底面半径为4,母线长为5,高为3的圆锥侧面积为4520ππ⨯⨯=,体积为2143163ππ⨯⨯⨯=,∴C 错误,D 正确.故选:AD .二、填空题7. 已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为____. 【答案】92π 【解析】设正方体边长为a ,则226183a a =⇒= ,外接球直径为34427923,πππ3382R V R ====⨯=.8.如图,若球O 的半径为5,一个内接圆台的两底面半径分别为3和4(球心O 在圆台的两底面之间),则圆台的体积为______.【答案】259π3【解析】解:作经过球心的截面(如图),由题意得13O A =,24O B =,5OA OB ==,则14OO =,23OO =,127O O =,所以()22π259347π33V ⨯⨯==.9.已知圆柱的上、下底面的中心分别为12,O O ,过直线12O O 的平面截该圆柱所得的截面是面积为4的正方形,则该圆柱的表面积为_______.【答案】6π【解析】由题意,圆柱的截面是面积为4的正方形,可得其边长为2,可得圆柱的底面半径为1r =,母线2l =,所以该圆柱的表面积为221222212216S S S rl r πππππ=+=+=⨯⨯+⨯=。
人教A版高中数学(配套新教材)必修第二册-第八章 -8-3-1棱锥、棱柱、棱台的表面积与体积

高中数学 必修第二册 RJ·A
易错辨析
1.棱柱、棱锥、棱台的侧面展开图的面积就是它们的表面积.( × ) 2.棱锥的体积等于底面面积与高之积.( × ) 3.棱台的体积可转化为两个锥体的体积之差.( √ ) 4.几何体的平面展开方法可能不同,但其表面积唯一确定.( √ )
高中数学 必修第二册 RJ·A
高中数学 必修第二册 RJ·A
二 棱柱、棱锥、棱台的体积
例2 (1)已知高为3的三棱柱ABC-A1B1C1的底面是边长为1的正三角形,
如图所示,则三棱锥B1-ABC的体积为
1
1
3
3
A.4
B.2
C. 6
D. 4
D解析 设三棱锥B1-ABC的高为h,
则
V三棱锥B1-ABC =13S△ABCh=31×
43×3=
+3S△DBC+ S△A1BD = 23a2+3×12×a2+3a2= 32+9a2.
几何体 A1B1C1D1-DBC 的体积 V=V正方体ABCD-A1B1C1D1 -V三棱锥A1-ABD=a3-13×12×a×a×a=56a3.
高中数学 必修第二册 RJ·A
随堂小测
1.若长方体的长、宽、高分别为3 cm,4 cm,5 cm,则长方体的体积为
解析 V 棱台=13×(2+4+ 2×4)×3 =13×3×(6+2 2) =6+2 2.
高中数学 必修第二册 RJ·A
5.如图所示,正方体ABCD-A1B1C1D1的棱长为1,E为线段B1C上的一点, 则三棱锥A-DED1的体积为__16___.
V V 解析 = 三棱锥A-DED1 三棱锥E-DD1A
高中数学 必修第二册 RJ·A
新知学习
知识点一 棱锥、棱柱、棱台的表面积
高中数学人教A必修第二册精英同步卷:83简单几何体的表面积与体积 含答案

精英同步卷:8.3简单几何体的表面积与体积1、某几何体的三视图如图所示,则该几何体的表面积为()A.32413+ B.32213+C.22221413++ D.22221213++2、如图,网格纸上的小正方形的边长为1,粗线(实线、虚线)画出的是某几何体的三视图,其中的曲线都是半径为1的圆周的四分之一,则该几何体的表面积为( )A.20B.π204+ C.3π204+ D.5π204+3、若圆锥的侧面展开图的圆心角为90︒,半径为r,则该圆锥的全面积为()A.2π16rB.23π16rC.2π4rD.25π16r4、如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A. 2843122++B. 3643122++C. 3642123++D. 44122+5、下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A. 20πB. 24πC. 28πD. 32π6、若某几何体的三视图(单位: cm )如图所示,其中左视图是一个边长为2的正三角形,则这个几何体的体积是( )A. 32cmB.33cmC. 333cmD. 33cm7、已知正三棱锥A BCD -的所有顶点都在球O 的球面上,3BC =.若球心O 在三棱锥的高AQ 的三等分点处,则球O 的半径为( )A .364B .2C .3D .48、已知正方体的体积是64,则其外接球的表面积是( ) A. 323π B. 192πC. 48πD.无法确定9、已知SC 是球 O 的直径, ,?A B 是球 O 球面上的两点,且1,3CA CB AB ==,若三棱锥S ABC -的体积为1,则球 O 的表面积为( ) A. 4π B. 13π C. 16π D. 52π10、某几何体的三视图如图2所示,则该几何体的表面积为( )A.16B.206π+C.142π+D.16π+11、如果一个几何体的三视图如图所示(单位长度: cm), 则此几何体的表面积是 。
8.3简单几何体的表面积与体积(学生版)-2021-2022学年人教A版(2019)高一数学必修第二

简单几何体的表面积与体积一、棱柱、棱锥、棱台的侧面积和表面积多面体的表面积就是围成多面体各个面的面积的和.棱柱、棱锥、棱台的表面积就是围成它们各个面的面积的和.求解正棱台的表面积时注意棱台的四个基本量:底面边长、高、斜高、侧棱,并注意两个直角梯形的应用(1)高、侧棱、上、下底面多边形的中心与顶点连线所成的直角梯形.(2)高、斜高、上、下底面边心距所成的直角梯形.二、棱柱、棱锥、棱台的体积棱柱:V棱柱=ShS为棱柱的底面积,h为棱柱的高棱锥:V棱锥=1 3ShS为棱锥的底面积,h为棱锥的高棱台:V棱台=13(S′+S′S+S)hS′,S分别为棱台的上、下底面面积,h为棱台的高求解正棱台的体积时,注意棱台的五个基本量(上、下底面边长、高、斜高、侧棱).常用两种解题思路:一是把基本量转化到直角梯形中解决问题;二是把正棱台还原成正棱锥.利用正棱锥的有关知识来解决问题.三、简单组合体的表面积与体积求组合体的表面积和体积,首先应弄清它的组成,其表面有哪些底面和侧面,各个面应该怎出各简单几何体的体积,然后再相加或相减.1.表面积公式:底面积:S底=2πr22.旋转体侧面积:S侧=2πrl圆柱:表面积:S=2πr(r+l);圆锥:底面积:S底=πr2;侧面积:S侧=πrl;表面积:S=πr(r+l)圆台:上底面面积:S上底=πr′2;下底面面积:S下底=πr2;侧面积:S侧=π(r′l+rl);表面积:S=π(r′2+r2+r′l+rl)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展开为平面图形计算,而表面积是侧面积与底面圆的面积之和.四、圆柱、圆锥、圆台的体积圆柱:V圆柱=Sh=πr2h圆柱底面圆的半径为r,面积为S,高为h圆锥:V圆锥=13Sh=13πr2h圆锥底面圆的半径为r,面积为S,高为h圆台:V圆台=13(S+SS′+S′)h=13π(r2+rr′+r′2)h圆台上底面圆的半径为r′,面积为S′,下底面圆的半径为r,面积为S,高为h 五、球的表面积与体积1.球的表面积公式S=4πR2(R为球的半径).2.球的体积公式V=43πR3.计算球的表面积与体积,关键是确定球心与半径.考点一 多面体表面积【例1】(2020·湖南怀化市)已知正四棱柱(即底面是正方形的直棱柱)的底面边长为3cm ,侧面的对角线长是35cm ,则这个正四棱柱的表面积为( )A .290cmB .2365cmC .272cmD .254cm【练1】(2020·全国高一课时练习)长方体的高为2,底面积等于12,过不相邻两侧棱的截面(对角面)的面积为10,则此长方体的侧面积为( )A .12B .24C .28D .32考点二 多面体台体积【例2】(2020·江苏南京市)底面边长为2,高为1的正三棱柱的体积是( )A .3B .1C .32D .13【练2】(2021·扶风县法门高中)正方体的全面积为18cm 2,则它的体积是_________ 3cm考点三 旋转体的表面积【例3】(2020·山东德州市·高一期末)若圆锥的轴截面是顶角为120的等腰三角形,且圆锥的母线长为2,则该圆锥的侧面积为( )A .3πB .2πC .23πD .43π【练3】(2021·浙江丽水市)经过圆锥的轴的截面是面积为2的等腰直角三角形,则圆锥的A.42πB.4πC.22πD.2π考点四旋转体的体积【例4】(2021·宁夏银川市·贺兰县景博中学)已知圆锥的母线长为5,底面周长为6π,则它的体积为( )A.10πB.12πC.15πD.36π【练4】(2020·山东菏泽市·高一期末)若圆锥的底面半径为3cm,侧面积为2π,则该15cm圆锥的体积为( )A.4π3cm D.36π3cmcm C.12π3cm B.9π3考点五球【例5】(2020·浙江高一期末)若一个球的直径为2,则此球的表面积为( )A.2πB.16πC.8πD.4π【练5】(2020·江苏无锡市第六高级中学高一期中)正三棱柱有一个半径为3cm的内切球,则此棱柱的体积是( ).A.393cm B.3183cm54cm C.327cm D.3考点六组合体的体积表面积【例6】(2020·全国高一课时练习)如图,一个无盖的器皿是由棱长为3的正方体木料从顶部挖掉一个直径为2的半球而成(半球的底面圆在正方体的上底面,球心为上底面的中心),则该器皿的表面积S为( )A .54B .542π+C .54π+D .543π+【练6】(2020·新疆巴音郭楞蒙古自治州·高一期末)如图,直三棱柱,高为6,底边三角形的边长分别为3、4、5,以上下底面的内切圆为底面,挖去一个圆柱,求剩余部分几何体的体积.课后练习1.(2021高一下·越秀期末)卢浮宫玻璃金字塔是著名美籍华裔建筑设计师贝聿铭的重要作品之一,主玻璃金字塔是一个底边长为35m,高为21m的正四棱锥,则该主玻璃金字塔所占空间的大小是 m3.2.(2021高一下·唐山期末)已知圆锥底面半径为1,母线长为3,该圆锥内接正方体的体积为.3.(2021·安阳模拟)如图,点C在以AB为直径的圆O上,|AC|=|BC|=5√2,若以直线AB为轴旋转一周,左半圆旋转所形成的几何体的体积为V1,△ABC旋转所形成的几何体的体积为V2,则V1+V2= .4.(2021·浙江模拟)已知圆柱的体积为15π2(单位:cm3),且它的侧面展开图是正方形,则这个圆柱的底面半径(单位:cm)是.5.(2021高三上·商丘开学考)已知某圆锥被一过该圆锥顶点的平面所截得到的几何体的正视图与侧视图如图所示,若该圆锥的顶点与底面圆周都在球O的球面上,则球O的表面积为.6.(2021高一下·河北期末)已知一圆锥的侧面展开图是半径为2√3的半圆,则该圆锥的体积是.7.(2021高二上·广州期中)已知四棱锥P−ABCD的顶点都在球O的球面上,底面ABCD,则球O 是边长为2的正方形,且PA⊥平面ABCD.若四棱锥P−ABCD的体积为163的表面积为 .8.(2020高一上·兰州期末)如果三个球的表面积之比是1:2:3,那么它们的体积之比是________.9.(2021高一下·河北期中)长方体ABCD−A1B1C1D1中,AB=1,AD=2,AA1=3,则三棱锥D1−ABC的体积为 .10.(2020高二上·嘉兴期末)一个正方体的顶点都在球面上,若该正方体的棱长为2,则球的体积是________.11(2021高一下·雅安期末)如图,在四棱锥P−ABCD中,平面PAD⊥平面ABCD,PA⊥AD,AD⊥AB,AB//CD,AD=DC=AP=2,AB=1,点E为棱PC 的中点.(1)证明:BE//平面PAD;(2)求三棱锥P−BDE的体积.12.(2021高一下·威宁县期末)如图,已知在长方体ABCD−A1B1C1D1中,E为AB上一点,且DC=2AA1=2AD=4AE=4√3.(1)求证:平面B1DE⊥平面AA1C1C;(2)求三棱锥C1−A1DE的体积.精讲答案【答案】A 【解析】由题意侧棱长为22(35)36-=.所以表面积为:224362390()S cm =⨯⨯+⨯=.故选:A.【练1】【答案】C【解析】设长方体底面矩形的长与宽分别为,a b ,则12ab =. 又由题意知22210a b +⨯=,解得4,3a b ==或3,4a b ==. 故长方体的侧面积为()243228⨯+⨯=.故选:C.【例2】【答案】A【解析】底面边长为2,高为1的正三棱柱的体积是23(2)134⨯⨯=故选:A 【练2】 【答案】33【解析】设该正方体的棱长为a cm ,由题意可得,2618a =,解得3a =, 所以该正方体的体积为333V a ==3cm . 故答案为:33【例3】【答案】C【解析】如图圆锥的轴截面是顶角为120,即60APO ∠=,2AP =,90POA ∠=, 所以3AO =,所以圆锥的侧面积为23AO PA ππ⨯⨯=.【练3】【答案】C【解析】设圆锥的底面半径为r ,母线长为l ,则2l r =, 由题可知()21222r ⨯=, ∴2,2r l ==, 侧面积为22rl ππ=,故选:C.【例4】【答案】B【解析】设圆锥的底面半径为r ,高为h ,因为底面周长为6π,所以26r ππ=,解得3r =,又因为母线长为5,所以h =4,所以圆锥的体积是21123V r h ππ==故选:B 【练4】【答案】C【解析】设圆锥母线长为l ,则侧面积为123152S l r l πππ=⋅==,故5l =. 故圆锥的高224h l r =-=,圆锥体积为21123V r h ππ==3cm .故选:C. 【例5】【答案】D【解析】因为球的直径为2,即球的半径为1,所以球的表面积为2414ππ⨯=,故选:D.【练5】【答案】B 【解析】∵正三棱柱有一个半径为3cm 的内切球,则正三棱柱的高为23cm , 底面正三角形的内切圆的半径为3cm ,设底面正三角形的边长为a cm,则31323a ⨯=,解得6a =cm , ∴正三棱柱的底面面积为13669322⨯⨯⨯=cm 2, 故此正三棱柱的体积V =932354⨯=cm 3.故选:B .【例6】【答案】C【解析】器皿的表面积是棱长为3的正方体的表面积减去半径为1的圆的面积,再加上半径为1的半球的表面积,即器皿的表面积()()221633141542542S πππππ=⨯⨯-⨯+⨯⨯=-+=+. 故选:C .【练6】【答案】366π-【解析】因为222345+=,所以底面是直角三角形, 所以上、下底面内切圆半径34512r +-==, 所以剩余部分几何体的体积21346163662V ππ=⨯⨯⨯⨯=-⨯-, 所以剩余部分几何体的体积为366π-.练习答案1.【答案】8.575【考点】棱柱、棱锥、棱台的体积【解析】【解答】V=13Sℎ=13×352×21=8575(cm3)=8.575(m3).故答案为:8.575.【分析】利用正四棱锥的几何性质以及锥体的体积公式求解即可.2.【答案】16√227【考点】棱锥的结构特征,棱柱、棱锥、棱台的体积【解析】【解答】解:作出该几何体的轴截面,如图所示,因为圆锥的底面半径为1,母线长为3,所以圆锥的高为ℎ=2√2,即OE=1,SE=3,SO=2√2,设正方体的边长为a,由轴截面的性质得ℎ−aℎ=√22aOE,即2√2−a2√2=√2a2,解得a=2√23,所以圆锥内接正方体的体积为V=a3=16√227故答案为:16√227【分析】作出圆锥过正方体AC1的对角面AA1C1 C的轴截面,利用相似三角形求出圆锥的内接正方体的棱长,即可计算正方体的体积.3.【答案】250π【考点】组合几何体的面积、体积问题,旋转体(圆柱、圆锥、圆台),球的体积和表面积【解析】左半圆旋转一周为球体,因为|AC|=|BC|=5√2,AB为直径,所以∠ACB=90°,所以AB=√AC2+BC2=10,即半径r=5,所以V1=4πr33=500π3,△ABC以直线AB为轴旋转所形成的几何体是两个接在一起的圆锥,高ℎ=OB=5,R=OC=5,所以V2=2×13πR2ℎ=2π×52×53=250π3,所以V1+V2=500π3+250π3=250π.故答案为:250π.【分析】左半圆旋转一周为球体,△ABC以直线AB为轴旋转所形成的几何体是两个接在一起的圆锥,由球体体积公式和圆锥体积公式计算可得结果。
2020年高中数学新教材同步必修第二册 第8章 8.3.2 圆柱、圆锥、圆台、球的表面积和体积

课堂小结
KE TANG XIAO JIE
1.知识清单: (1)圆柱、圆锥、圆台的表面积. (2)圆柱、圆锥、圆台的体积. (3)球的表面积和体积. 2.方法归纳:公式法. 3.常见误区:平面图形与立体图形切换不清楚.
本课结束
更多精彩内容请登录:
∵母线长为10,∴102=(4r)2+(4r-r)2,解得r=2. ∴下底面半径R=8,高h=8, ∴V 圆台=13π(r2+rR+R2)h=224π.
三、球的表面积和体积
例3 (1)已知球的表面积为64π,求它的体积; 解 设球的半径为R,则4πR2=64π,解得R=4, 所以球的体积 V=43πR3=43π·43=2356π.
V 圆锥=13Sh=_13_π_r_2h__ V 圆台=13(S+ SS′+ S′)h =_13_π_(_r2_+__r_r_′__+__r′__2_)_h_
说明 圆柱底面圆的半径为r,面积为S, 高为h 圆锥底面圆的半径为r,面积为S, 高为h
圆台上底面圆的半径为r′,面积 为S′,下底面圆的半径为r,面积 为S,高为h
第八章 8.3 简单几何体的表面积与体积
学习目标
XUE XI MU BIAO
1.了解圆柱、圆锥、圆台、球的表面积和体积的计算公式. 2.理解并掌握侧面展开图与几何体的表面积之间的关系,并能利用计算公式
求几何体的表面积与体积.
内容索引
NEI RONG SUO YIN
知识梳理 题型探究 随堂演练
1 知识梳理
√32π D. 3
解析 设球的半径为R, 则由题意可知4πR2=16π,故R=2. 所以球的半径为 2,体积 V=43πR3=332π.
3 随堂演练
PART THREE
高中数学必修二 8 简单几何体的表面积与体积(精讲)(含答案)

8.3 简单几何体的表面积与体积(精讲)考点一 旋转体的体积【例1】(2021·山东莱西·高一期末)在ABC 中,2AB =,32BC =,120ABC ∠=︒,若将ABC 绕BC 边所在的直线旋转一周,则所形成的面围成的旋转体的体积是______. 【答案】32π 【解析】依题意可知,旋转体是一个大圆锥去掉一个小圆锥,所以sin 602OA AB =︒==,1cos60212OB AB =︒=⨯=,所以旋转体的体积:()21332V OC OB ππ=⋅⋅-=故答案为:32π. 【一隅三反】1.(2021·湖南省邵东市第三中学高一期中)圆台上、下底面面积分别是π、4π积是( )A B .C D 【答案】D【解析】由题意1(4)3V ππ=+=.故选:D .2.(2021·山东任城·高一期中)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周六尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为6尺,米堆的高为5尺,问堆放的米有多少斛?”已知1斛米的体积约为1.6立方尺,圆周率约为3,估算出堆放的米约有_______斛.【答案】12.5【解析】设圆柱的底面半径为r 尺,则14⨯2πr =6,∴r ≈4,∴圆锥的体积V =21134543⨯⨯⨯⨯=20立方尺,∴堆放的米约有201.6=12.5斛. 故答案为:12.5.3.(2021·上海市七宝中学)已知圆锥的侧面展开图是半径为2的半圆,则圆锥的体积为________.【解析】由题意圆锥的母线长为2l =,设圆锥底面半径为r ,则22r ππ=,1r =,所以高为h体积为2211133V r h ππ==⨯=..考点二 旋转体的表面积【例2】(2021·吉林·延边二中高一期中)如图,圆锥的底面直径和高均是4,过PO 的中点O '作平行于底面的截面,以该截面为底面挖去一个圆柱,(1)求剩余几何体的体积 (2)求剩余几何体的表面积【答案】(1)103π;(2)8π+. 【解析】(1)由题意知,因为O '为PO 的中点,所以挖去圆柱的半径为1,高为2,剩下几何体的体积为圆锥的体积减去挖去小圆柱的体积, 所以22110241233V πππ=⋅⨯⨯-⨯⨯=.(2)因为圆锥的底面直径和高均是4,所以半径为2,母线l =所以圆锥的表面积为2122(4S πππ=⨯+⨯⨯+, 挖去的圆柱的侧面积为:22124S ππ=⨯⨯=,所以剩余几何体的表面积为12(4+4+8S S S πππ==+=+. 【一隅三反】1.(2021·广东·仲元中学高一期中)已知一个母线长为1的圆锥的侧面展开图的圆心角等于240︒,则该圆锥的侧面积为( )A B .881πCD .23π【答案】D【解析】将圆心角240︒化为弧度为:43π,设圆锥底面圆的半径为r 由圆心角、弧长和半径的公式得:4213r ππ=⨯,即23r = 由扇形面积公式得:22133S ππ=⨯⨯=所以圆锥的侧面积为23π.故选:D.2.(2021·全国·高一课时练习)已知圆台的上、下底面半径分别为10和20,它的侧面展开图的扇环的圆心角为180°,则这个圆台的侧面积为( ) A .600π B .300π C .900π D .450π【答案】A【解析】圆台的上底面圆半径10r '=,下底面圆半径20r =,设圆台的母线长为l ,扇环所在的小圆的半径为x ,依题意有:220()210l x x ππππ⨯=+⎧⎨⨯=⎩,解得2020x l =⎧⎨=⎩,所以圆台的侧面积20()()1020600+S r r l πππ'=⨯=+=. 故选:A3(2021·全国·高一课时练习)圆台的上、下底面半径和高的比为1:4:4,若母线长为10,则圆台的表面积为________. 【答案】168π【解析】圆台的轴截面如图所示,设上底面半径为r ,下底面半径为R ,高为h 则4h R r ==,则它的母线长为510l r =, 所以2r,8R =.故()(82)10100S R r l πππ=+=+⨯=侧,22100464168S S r R ππππππ=++=++=表侧.故答案为:168π考点三 多面体的体积【例3-1】(2021·全国·高一课时练习)如图所示,正方体ABCD-A 1B 1C 1D 1的棱长为1,则三棱锥D-ACD 1的体积是( )A .16B .13C .1 2D .1【答案】A【解析】三棱锥D-ACD 1的体积等于三棱锥D 1-ACD 的体积,三棱锥D 1-ACD 的底面ACD 是直角边长为1的等腰直角三角形,高D 1D=1,∴三棱锥D-ACD 1的体积为V=1132⨯×1×1×1=16.故选:A【例3-2】(2021·全国·高一课时练习)若正四棱台的斜高与上、下底面边长之比为5∶2∶8,体积为14,则棱台的高度为( ) A .8 B .4C .2D .【答案】C【解析】如图,设棱台的上、下底面边长分别为2x ,8x ,斜高h '为5x ,则棱台的高h x ,由棱台的体积公式1()3V S S h '=得:2224161)31(6444++x x x x ⋅=,解得12x =,棱台的高为h =4x =2. 故选:C 【一隅三反】1.(2021·全国·高一课时练习)设四棱锥的底面是对角线长分别为2和4的菱形,四棱锥的高为3,则该四棱锥的体积为( ) A .12 B .24 C .4 D .30【答案】C【解析】所求的体积为11324432⨯⨯⨯⨯=,故选:C.2.(2021·全国·高一课时练习)棱台的上、下底面面积分别是2,4,高为3,则棱台的体积等于( )A .6B .3+C .6+D .6【答案】C【解析】依题意,棱台的上底面面积2S '=,下底面面积4S =,高为3h =,故由公式可知,棱台的体积是()()11243633V S S h '==⨯⨯=+ 故选:C.3.(2021·全国·高一课时练习)若一个四棱锥的底面的面积为3,体积为9,则其高为( ) A .13B .1C .3D .9【答案】D【解析】设四棱锥的高为h ,则由锥体的体积公式得:13×3h =9,解得h =9,所以所求高为9. 故选:D4.(2021·广东·仲元中学高一期中)如图所示,在长方体ABCD A B C D ''''-中,用截面截下一个棱锥C A DD '''-则棱锥C A DD '''-的体积与剩余部分的体积之比为( )A .1:5B .1:4C .1:3D .1:2【答案】A【解析】由图知:13C A DD A DD V C D S'''''-''=⋅⋅,ABCD A B C D A D DA V C D S ''''''-''=⋅,而2A D DA A DD S S''''=,∴剩余部分的体积为53ABCD A B C D C A DD A DD V V C D S'''''''''--''-=⋅,∴棱锥C A DD '''-的体积与剩余部分的体积之比为1:5.故选:A考点四 多面体的表面积【例4】(2021·全国·高一课时练习)正六棱柱的底面边长为2,最长的一条对角线长为积为()A .4)B .2)C .1)D .8)【答案】B【解析】正六棱柱的底面边长为2,最长的一条对角线长为12BB =,它的表面积为)16=2622sin 6222412223S S S π=+⨯⨯⨯⨯⨯+⨯⨯==表面积底面积矩形.故选:B. 【一隅三反】1.(2021·全国·高一课时练习)若六棱柱的底面是边长为3的正六边形,侧面为矩形,侧棱长为4,则其侧面积等于( ) A .12 B .48 C .64 D .72【答案】D【解析】六棱柱的底面是边长为3的正六边形, 故底面周长6318C =⨯=, 又侧面是矩形,侧棱长为4, 故棱柱的高4h =,∴棱柱的侧面积72S Ch ==,故选:D2.(2021·全国·高一课时练习)如图,在正方体ABCD -A 1B 1C 1D 1中,三棱锥D 1AB 1C 的表面积与正方体的表面积的比为( )A .1∶1B .1C .1D .1∶2【答案】C【解析】设正方体的边长为a ,则表面积216S a =,因为三棱锥11D AB C -的各面均是正三角形,其边长为正方体侧面对角线.,三棱锥D 1AB 1C 的表面积)222142S =⨯⨯=,所以2221::6S S a ==故选:C3(2021·全国·高一课时练习)长方体同一顶点上的三条棱长分别为2,2,3,则长方体的体积与表面积分别为( ) A .12,32 B .12,24 C .22,12 D .12,11【答案】A【解析】长方体的体积为22312⨯⨯=,表面积为()222+23+2332⨯⨯⨯=, 故选:A.4.(2021·全国·高一课时练习)(多选)正三棱锥底面边长为3,侧棱长为则下列叙述正确的是( )A .正三棱锥高为3 BC D 【答案】ABD【解析】设E 为等边三角形ADC 的中心,F 为CD 的中点,连接,,PF EF PE , 则PE 为正三棱锥的高,PF 为斜高,又PF ==32EF ==,故3PE ==, 故AB 正确.而正三棱锥的体积为1393⨯=,侧面积为1332⨯⨯=故C 错误,D 正确. 故选:ABD.5(2021·全国·高一课时练习)(多选)在正方体1111ABCD A B C D -中,三棱锥11D AB C -的表面积与正方体的表面积的比不可能是( )A .1:1B .C .D .1:2【答案】ABD【解析】设正方体1111ABCD A B C D -的棱长为a ,则正方体1111ABCD A B C D -的表面积为226S a =.三棱锥11D AB C -的正四面体,其中一个面的面积为212S ==,则三棱锥11D AB C -的表面积为2214S ==所以三棱锥11D AB C -的表面积与正方体的表面积的比为22126S S a ==::故选:ABD.考点五 有关球的计算【例5-1】(2021·全国·高一课时练习)长方体的三个相邻面的面积分别是2,3,6,这个长方体的顶点都在同一个球面上,则这个球的表面积为( ) A .72π B .56π C .14π D .16π【答案】C【解析】设长方体的三条棱长分别为a ,b ,c ,由题意得236ab ac bc =⎧⎪=⎨⎪=⎩,得123a b c =⎧⎪=⎨⎪=⎩∴2414S R ππ球==. 故选:C【例5-2】(2021·广东高州·高一期末)已知正四面体ABCD的表面积为A 、B 、C ,D 四点都在球O 的球面上,则球O 的体积为( ) A. BCD .3π【答案】C【解析】正四面体各面都是全等的等边三角形,设正四面体的棱长为a ,所以该正四面体的表面积为2142S a =⨯⨯=,所以a =1, 所以正方体的外接球即为该正四面体的外接球,O 的体积为343π⨯=⎝⎭. 故选:C. 【一隅三反】1.(2021·全国·高一课时练习)表面积为16π的球的内接轴截面为正方形的圆柱的体积为( )A .B .C .16πD .8π【答案】A【解析】由题意可知,4πR 2=16π,所以R =2,即球的半径R =2.设圆柱的底面圆半径为r 2R =,即2816r =,所以r ,∴V 圆柱=πr 2·2r =2π·π.故选:A.2.(2021·全国·高一课时练习)若一个正方体内接于表面积为4π的球,则正方体的表面积等于( )A .B .8C .D .【答案】B【解析】设正方体棱长为x ,球半径为R ,则24π4πS R ==球,解得1R =,22R ==,解得x =所以该正方体的表面积为22668S x ==⨯=正.故选:B.3.(2021·全国·高一课时练习)(多选)我国古代数学名著《九章算术》中将正四棱锥称为方锥.已知半球内有一个方锥,方锥的底面内接于半球的底面,方锥的顶点在半球的球面上,若方锥的体积为18,则半球的说法正确的是( ) A .半径是3 B .体积为18π C .表面积为27π D .表面积为18π【答案】ABC【解析】如图,PAC △是正四棱锥的对角面,设球半径为r ,AC 是半圆的直径,,棱锥体积为2312)1833V r r =⨯⨯==,3r =,半球体积为332231833V r πππ==⨯=,表面积为2223327S πππ=⨯+⨯=, 故选:ABC .4.(2021·全国·高一课时练习)一个球内有相距9cm 的两个平行截面,它们的面积分别为249cm π和2400cm π2,求球的体积和表面积.【答案】球的表面积为22500cm π,球的体积为362500cm 3π. 【解析】(1)当截面在球心的同侧时,如图①所示为球的轴截面,由截面性质知12AO //BO ,1O ,2O 为两截面圆的圆心,且11OO AO ⊥,22OO BO ⊥,①设球的半径为R ,因为2249O B ππ=,所以27cm O B =,同理得120cm O A =.设1cm OO x =,则2(9)cm OO x =+, 在1Rt O OA 中,22220R x =+,① 在2Rt OO B 中,2227(9)R x =++,② 联立①②可得15x =,25R =.所以2242500cm S R ππ==球,33462500cm 33V R ππ==球.(2)当截面在球心的两侧时,如图②所示为球的轴截面,由球的截面性质知,12O A//O B ,1O ,2O 分别为两截面圆的圆心,且11OO O A ⊥,22OO O B ⊥.②设球的半径为R ,因为2249O B ππ⋅=,所以27cm O B =.因为21400O A ππ⋅=,所以120cm O A =.设1cm O O x =,则2(9)cm OO x =-. 在1Rt OO A △中,22400R x =+,在2Rt OO B 中,22(9)49R x =-+, 所以22400(9)49x x +=-+, 解得15x =-(不合题意,舍去) 综上所述,球的表面积为22500cm π. 球的体积为362500cm 3π. 考点六 综合运用【例6】(2021·全国·高一课时练习)一块边长为12cm 的正三角形薄铁片,按如图所示设计方案,裁剪下三个全等的四边形(每个四边形中有且只有一组对角为直角),然后用余下的部分加工制作成一个“无盖”的正三棱柱(底面是正三角形的直棱柱)形容器.(1)请将加工制作出来的这个“无盖”的正三棱柱形容器的容积V 表示为关于x 的函数,并标明其定义域; (2)若加工人员为了充分利用边角料,考虑在加工过程中,使用裁剪下的三个四边形材料恰好拼接成这个正三棱柱形容器的“顶盖”.请指出此时x 的值(不用说明理由),并求出这个封闭的正三棱柱形容器的侧面积S .【答案】(1)323(012)82x V x x =-+<<;(2)6cm x =,2S =侧.【解析】(1)结合平面图形数据及三棱柱直观图,求得三棱柱的高6cm 2x h ⎫=-⎪⎝⎭,其底面积22cm S =,则三棱柱容器的容积232236624282x x x x V Sh x x ⎫⎛⎫==-=-=-+⎪ ⎪⎝⎭⎝⎭, 即所求函数关系式为323(012)82x V x x =-+<<;(2)此时6cm x =,而相应棱柱的高h ,故侧面积为236S =⨯=. 【一隅三反】1.(2021·安徽镜湖·高一期中)如图所示,在边长为5的正方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M ,N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥的底面,围成一个圆锥,求该圆锥的表面积与体积.【答案】表面积10π. 【解析】设圆的半径为r ,扇形的半径为R ,由题意,得(522R r Rr ππ⎧+=⎪⎨=⎪⎩,解得r R ⎧=⎪⎨=⎪⎩所以围成的圆锥的母线长为l =r =h ∴圆锥的表面积210S rl r πππ=+=;∴圆锥的体积为213V r h π==.2.(2021·全国·高一课时练习)有一塔形几何体由3个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,求该塔形的表面积(含最底层正方体的底面面积).【答案】36【解析】易知由下向上三个正方体的棱长依次为2,1.考虑该几何体在水平面的投影,可知其水平投影面积等于下底面最大正方体的底面面积.∴S 表=2S 下+S 侧=2×22+4×[22+2+12]=36, ∴该几何体的表面积为36.3.(2021·全国·高一课时练习)养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m ,高为4 m.养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大4 m (高不变);二是高度增加4 m (底面直径不变). (1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的表面积; (3)哪个方案更经济些?【答案】(1)2563π(m 3),96π(m 3);(m 2),60π(m 2);(3)方案二比方案一更加经济. 【解析】(1)若按方案一,仓库的底面直径变成16 m ,则仓库的体积为V 1=13S ·h=13×π×2162⎛⎫⎪⎝⎭×4=2563π(m 3).若按方案二,仓库的高变成8 m ,则仓库的体积为V 2=13S ·h=13×π×2122⎛⎫⎪⎝⎭×8=96π(m 3).(2)若按方案一,仓库的底面直径变成16 m ,半径为8 m.圆锥的母线长为l 1m ),则仓库的表面积为S 1=π×8×(m 2). 若按方案二,仓库的高变成8 m.圆锥的母线长为l 210(m ), 则仓库的表面积为S 2=π×6×10=60π(m 2).(3)由(1)、(2)知,V 1<V 2,S 2<S 1,故方案二体积更大,表面积更小,所需耗材更少,即方案二比方案一更加经济.。
人教A版(2019)必修第二册《简单几何体的表面积与体积》同步练习

人教A版(2019)必修第二册《8.3 简单几何体的表面积与体积》同步练习一、单选题(本大题共15小题,共75分)1.(5分)三棱锥P−ABC的所有顶点都在球O的球面上.棱锥P−ABC的各棱长为:PA=2,PB=3,PC=4,AB=√13,BC=5,AC=2√5,则球O的表面积为()A. 28πB. 29πC. 30πD. 31π2.(5分)点A,B,C,D在同一个球的球面上,AB=BC=1,∠ABC=120°,若四面体ABCD体积的最大值为√34,则这个球的表面积为()A. 500π81B. 4π C. 25π9D. 100π93.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中《商功》有如下问题:“今有委粟平地,下周一十二丈,高一丈,问积及为粟几何?“,意思是“有粟若干,堆积在平地上,它底圆周长为12丈,高为1丈,问它的体积和粟各为多少?”如图主人意欲卖掉该堆粟已知圆周率约为3,一斛粟的体积约为2700立方寸(单位换算:1立方丈=106立方寸),一斛粟米卖270钱,一两银子1000钱,则主人卖后可得银子()A. 200两B. 240两C. 360两D. 400两4.(5分)四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,ΔBCD是边长为3的等边三角形.若AB=2,则球O的表面积为()A. 8πB. 12πC. 16πD. 32π5.(5分)若一个圆锥的侧面展开图是面积为4π的半圆,则该圆锥的体积为()A. 2√3π3B. 2√6π3C. 2√6πD. 4√3π6.(5分)一个三棱锥P−ABC的三条侧棱PA,PB,PC两两互相垂直,且长度分别为1,√5,2,则这个三棱锥的外接球的表面积为()A. 10πB. 15πC. 25πD. 40π7.(5分)设三棱柱ABC−A1B1C1的侧棱垂直于底面,AB=AC=2,∠BAC=120°,AA1=3√3,且三棱柱的所有顶点都在同一球面上,则该球的表面积是()A. 46πB. 35πC. 43πD. 39π8.(5分)RtΔABC中,AB=3,BC=4,AC=5,将三角形绕直角边AB旋转一周所成的几何体的侧面积为A. 10πB. 20πC. 30πD. 40π9.(5分)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的体积为()A.2563π B. 64π C. 643π D. 323π10.(5分)已知SC 是球O 的直径,A ,B 是球O 球面上的两点,且CA =CB =1,AB =√3.若三棱锥S −ABC 的体积为1,则球O 的表面积为( )A. 52πB. 16πC. 13πD. 4π11.(5分)已知体积公式V =kD 3中的常数k 称为“立圆率”.对于等边圆柱(轴截面是正方形的圆柱)、正方体也可利用公式V =kD 3求体积(在等边圆柱中,D 表示底面圆的直径;在正方体中,D 表示棱长).假设运用此体积公式求得等边圆柱(底面圆的直径为a)、正方体(棱长为a)、球(直径为a)的“立圆率”分别为k 1、k 2、k 3,那么k 1;k 2;k 3=()A. π4:1:π6 B. π4:2:π6 C. 3:2π:2D. 16:1π:1412.(5分)长方体ABCD −A 1B 1C 1D 1中,AB =2,BC =1,AA 1=2,M 为侧面CC 1D 1D 内(含边界)的动点,且满足tan ∠MAD +tan ∠MBC =2√3,则四棱锥M −ABCD 体积的最小值为( )A.2√23B.2√33C.2√39D.4√3913.(5分)有很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图所示是一个棱数为24的半正多面体,且所有顶点都在同一个正方体的表面上,它也可以看成是由一个正方体截去八个一样的四面体所得的.若被截正方体的棱长为0.5m ,则该半正多面体的表面积为( )A. 6m 2B. 3√3m 2C. (3+√3)m 2D.3+√34m 214.(5分)正四棱柱ABCD −A 1B 1C 1D 1中,AB =3,BB 1=4,长为1的线段PQ 在棱AA 1上移动,长为3的线段MN 在棱CC 1上移动,点R 在棱BB 1上移动,则四棱锥R −PQMN 的体积是( )A. 6B. 10C. 12D. 不确定15.(5分)古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形是阿基米德最引以为自豪的发现.现有一底面半径与高的比值为1:2的圆柱,则该圆柱的体积与其内切球的体积之比为()A. 43B. 32C. 2D. 83二、填空题(本大题共5小题,共25分)16.(5分)若正四棱锥的底面边长为2√2,体积为8,则它侧面积为______.17.(5分)已知三棱锥P−ABC内接于表面积为36π的球中,平面PAB⊥平面ABC,PA=PB=√3,PB⊥BC,∠APB=120°,则三棱锥P−ABC体积为 ______.18.(5分)如图所示,已知三棱柱ABC−A1B1C1的所有棱长均为1,且AA1⊥底面ABC,则三棱锥B1−AB C1的体积为________.19.(5分)已知ΔABC内接于球O的一个截面圆中,AB=6,AC=8,cos∠CBA=35,且球面上的点到面ABC的距离的最大值为7+2√6,则球O的表面积为______.20.(5分)已知三棱锥P−ABC的外接球的球心O在AB上,且PO⊥平面ABC,AB=2√3,AC=2,则三棱锥P−ABC的体积为______.三、多选题(本大题共5小题,共20分)21.(4分)如图,在棱长为3的正方体ABCD −A 1B 1C 1D 1中,点P 是平面A 1BC 1内一个动点,且满足PD +PB 1=2+√13,则下列结论正确的是()A. B 1D ⊥PBB. 点P 的轨迹是一个半径为√2的圆C. 直线B 1P 与平面A 1BC 1所成角为π3D. 三棱锥P −BB 1C 1体积的最大值为32+√6222.(4分)设一空心球是在一个大球(称为外球)的内部挖去一个有相同球心的小球(称为内球),已知内球面上的点与外球面上的点的最短距离为1,若某正方体的所有顶点均在外球面上、所有面均与内球相切,则A. 该正方体的棱长为2B. 该正方体的体对角线长为3+√3C. 空心球的内球半径为√3−1D. 空心球的外球表面积为(12+6√3)π23.(4分)三棱锥A −BCD 各顶点均在表面积为20π的球体表面上,AB =CB =2,∠ABC =120°,∠BCD =90°,则()A. 若CD ⊥AB ,则CD =2B. 若CD =2,则CD ⊥ABC. 线段AD 长度的最小值为√10D. 三棱锥A −BCD 体积的最大值为√324.(4分)已知正四面体ABCD 的棱长为2√2,其外接球的球心为O.点E 满足AE →=λAB →(0<λ<1),CF →=μCD →(0<μ<1),过点E 作平面α平行于AC 和BD ,平面α分别与该正四面体的棱BC ,CD ,AD 相交于点M ,G ,H ,则()A. 四边形EMGH 的周长为定值B. 当入=14时,平面α截球O 所得截面的周长为√472π C. 四棱锥A −EMGH 的体积的最大值为6481D. 当λ=μ=12时,将正四面体ABCD 绕EF 旋转90°后与原四面体的公共部分体积为4325.(4分)如图,在透明塑料制成的长方体ABCD −A 1B 1C 1D 1容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,其中正确的说法是()A. 有水的部分始终呈棱柱状B. 水面四边形EFGH的面积不改变C. 棱A1D1始终与水面EFGH平行D. 当E∈AA1时,AE+BF是定值四、解答题(本大题共6小题,共30分)26.(5分)如图,在四棱锥S−ABCD中,正ΔSBD所在平面与矩形ABCD所在平面垂直.(1)证明:S在底面ABCD的射影为线段BD的中点;(2)已知AB=4,AD=2,E为线段BD上一点,且CE⊥BD,求三棱锥E−SAD的体积.27.(5分)(1)一个正方体的顶点都在球面上,它的棱长是2cm,求球的表面积;(2)已知各面均为等边三角形的四面体S−ABC的棱长为1,求它的体积.28.(5分)三棱锥S−ABC中,侧面SBC⊥底面ABC,BC是等腰直角三角形ABC的斜边,且BC=2,SA=SB=√2.(1)求证:SA⊥BC;(2)已知平面α//平面SBC,平面α∩平面ABC=l,A∈α,D∈l,且C、D到平面SAB的距离相等,试确定直线l及点D的位置(说明作法及理由),并求三棱锥S−ABD的体积.29.(5分)如图,在底面半径为2,母线长为4的圆锥中内接一个高为√3的圆柱,求圆柱的表面积和圆锥的体积.30.(5分)正三棱锥的高为1,底面边长为2√6,内有一个球与它的四个面都相切,求:(1)棱锥的表面积;(2)内切球的半径.31.(5分)已知直三棱柱ABC−A1B1C1的底面是等腰直角三角形,AB=AC=4,且侧棱AA1=6.(Ⅰ)在给定的坐标系中,用斜二测画法画出该三棱柱的直观图(不要求写出画法,但要标上字母,并注意:先用铅笔作出草图,再用黑色字迹的签字笔或钢笔描黑,以保证扫描效果)(Ⅰ)求该三棱柱ABC−A1B1C1的外接球的表面积.答案和解析1.【答案】B;【解析】解:三棱锥P−ABC的所有顶点都在球O的球面上.棱锥P−ABC的各棱长为:PA=2,PB=3,PC=4,AB=√13,BC=5,AC=2√5,可知:PA⊥PB,PB⊥PC,PC⊥PA,所以三棱锥P−ABC是长方体的一个角,长方体的外接球与三棱锥的外接球相同,所以r=12√22+32+42=√292∴球O的表面积S=4πr2=4π×294=29π.故选:B.判断三棱锥的形状,可知三棱锥可知为长方体,利用长方体的外接球与三棱锥的外接球相同,求解外接球的半径,由此能求出球O的表面积.此题主要考查球的表面积的求法,考查推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想,是中档题.2.【答案】D;【解析】解:根据题意知,A、B、C三点均在球心O的表面上,且|AB|=|AC|=1,∠ABC=120°,∴BC=√3,∴ΔABC外接圆半径2r=2,即r=1,∴SΔABC=12×1×1×sin120°=√34,小圆的圆心为Q,若四面体ABCD的体积的最大值,由于底面积SΔABC不变,高最大时体积最大,所以,DQ与面ABC垂直时体积最大,最大值为13SΔABC×DQ=√34,∴DQ=3,设球的半径为R,则在直角ΔAQO中,OA2=AQ2+OQ2,即R2=12+(3−R)2,∴R=53,∴球的表面积为4π.259=100π9,故选:D.根据几何体的特征,小圆的圆心为Q,若四面体ABCD的体积的最大值,由于底面积SΔABC不变,高最大时体积最大,可得DQ与面ABC垂直时体积最大,从而求出球的半径,即可求出球的表面积.该题考查的知识点是球内接多面体,球的表面积,其中分析出何时四面体ABCD的体积的最大值,是解答的关键.3.【答案】D;【解析】解:∵有粟若干,堆积在平地上,它底圆周长为12丈,高为1丈,∴底面半径r=122π=2(丈),∴体积V=13×πr2×ℎ=13×3×22×1=4(立方丈)=4×106(立方寸),∴主人卖后可得银子:4×1062700×2701000=400(两).故选:D.先求出底面半径r=122π=2(丈),再求出体积V=13×πr2×ℎ=4(立方丈)=4×106(立方寸),由此能求出主人卖后可得银子数量.此题主要考查圆锥体积的求法及应用,考查圆锥的体积公式、结构特征等基础知识,考查运算求解能力,是中档题.4.【答案】C;【解析】解:取CD的中点E,连结AE,BE,∵在四面体ABCD中,AB⊥平面BCD,ΔBCD是边长为3的等边三角形.∴RtΔABC≌RtΔABD,ΔACD是等腰三角形,ΔBCD的中心为G,作OG//AB交AB的中垂线HO于O,O为外接球的中心,BE=3√32,BG=√3,R=√BG2+(12AB)2=√3+1=2.四面体ABCD外接球的表面积为:4πR2=16π.故选:C.取CD的中点E,连结AE,BE,作出外接球的球心,求出半径,即可求出表面积.该题考查球的内接体知识,考查空间想象能力,确定球的切线与半径是解答该题的关键.5.【答案】B;【解析】解:设圆锥的母线和底面圆的半径分别为l,r,根据侧面展开图是一个面积为4π的半圆,可得:12πl2=4π,2πr=12⋅2πl,解得:l=2√2,r=√2,进而可得圆锥的高ℎ=√l2−r2=√6,所以体积为:13πr2ℎ=13π×2×√6=2√6π3.故选:B.根据圆锥侧面展开图的面积以及弧长与圆锥底面以及母线长之间的关系,可求母线和底面圆半径的大小,进而根据勾股定理求高,根据体积公式即可求解.此题主要考查了圆锥体积的计算,属于基础题.6.【答案】A;【解析】解:此三棱锥的外接球即棱长分别为1,√5,2的长方体的外接球,而长方体的体对角线即为球的直径,球的直径2R=√1+5+4=√10,∴R=√102,故外接球的表面积S=4πR2=4π×104=10π,故选:A.先将三棱锥的外接球问题转化为长方体的外接球问题,再利用长方体的对角线计算公式,求得其外接球的直径,进而利用球的表面积计算公式计算即可.这道题主要考查了球与锥的接切问题,利用三条侧棱两两垂直的三棱锥的外接球即为对应长方体的外接球,可提高效率,减少运算量.7.【答案】C;【解析】解:由题意知底面△ABC外接圆的圆心为点O,设外接圆的半径为r,三棱柱ABC−A1B1C1的外接球的半径为R,AB=AC=2,∠BAC=120°,由余弦定理得BC=√AB2+AC2−2AB×ACcos∠BAC=2√3,由正弦定理得BCsin∠BAC =2√3√32=4=2r,所以r=2,过O′做垂直于底面的直线交中截面与O点,则O为外接球的球心,由题意得:R2=r2+(AA12)2=4+274=434,所以外接球的表面积S=4πR2=43π,故选:C.直棱柱的外接球的球心是过底面外接圆的圆心做垂直于底面的直线与中截面的交点,底面外接圆的半径、球的半径和直棱柱的高的一半构成直角三角形,由题意求出外接球的半径,可得答案.此题主要考查了三棱柱的外接球表面积,属于基础题.8.【答案】B;【解析】该几何体为圆锥,则侧面积即为一个扇形的面积.根据扇形面积公式可以解答.解:该几何体为圆锥,则侧面积即为一个扇形的面积.扇形面积公式:S=12lr其中l为扇形的弧长,即圆锥底面周长2π×4=8π,r为扇形母线长,即AC,所以r=5,所以S=12×8π×5=20π.故选B.9.【答案】A;【解析】解:设圆O1半径为r,球的半径为R,依题意得,πr2=4π,∴r=2,∵△ABC为等边三角形,由正弦定理可得AB=2rsin60°=2√3,∴OO1=AB=2√3,根据球的截面性质OO1⊥平面ABC,∴OO1⊥O1A,R=OA=√OO12+O1A2=√OO12+r2=4,∴球O的体积V=4π3R3=256π3,故选:A.由已知可得等边△ABC的外接圆半径,进而求出其边长,得出OO1的值,根据球的截面性质,求出球的半径,即可得出结论.此题主要考查了球的截面圆的性质以及球的体积的计算,属于基础题.10.【答案】A;【解析】此题主要考查棱锥的体积,考查球内接多面体,解答该题的关键是确定点S到面ABC的距离.根据题意作出图形,欲求球O的表面积,只须求球的半径r,利用截面圆的性质即可求出OO1,进而求出底面ABC上的高SD,从而建立关于r的方程,即可求出r,从而解决问题.解:根据题意作出图形,设球心为O ,球的半径r ,过ABC 三点的小圆的圆心为O 1,则OO 1⊥平面ABC , 延长CO 1交球于点D ,则SD ⊥平面ABC ,在三角形ABC 中,CA =CB =1,AB =√3,易知CO 1=1, ∴OO 1=√r 2−1,∴高SD =2O O 1=2√r 2−1, ∵三棱锥S −ABC 的体积为1, S ΔABC =√34, ∴V 三棱锥S −ABC =13×√34×2√r 2−1=1,∴r =√13,则球O 的表面积为52π. 故选:A.11.【答案】A;【解析】解:∵V 1=πR 2a =π(a2)2a =π4a 3,∴k 1=π4,∵V 2=a 3,∴k 2=1, ∵V 3=43πR 3=43π(a2)3=π6a 3,∴k 3=π6,∴k 1:k 2:k 3=π4:1:π6,故选:A.分别计算三个几何体的“立圆率”即可求得结果.此题主要考查立体几何中几何体体积的计算,属于基础题.12.【答案】D;【解析】解:取CD 的中点O ,以点O 为坐标原点,DA →、DC →、D →D 1的方向分别为x 、y 、z 轴的正方向建立如下图所示的空间直角坐标系,设点M(0,y,z),其中−1⩽y ⩽1,0⩽z ⩽1,则D(0,−1,0)、C(0,1,0),因为AD ⊥平面CC 1D 1D ,DM ⊂平面CC 1D 1D ,则AD ⊥DM , 所以tan ∠MAD =|DM ||AD |=|DM |,同理可得tan ∠MBC =|CM ||BC |=|CM |,所以tan ∠MAD +tan ∠MBC =|DM |+|CM |=2√3>|CD |=2, 所以点M 的轨迹是以点C 、D 为焦点,且长轴长为2√3的椭圆的一部分, 则a =√3,c =1,b =√a 2−c 2=√2, 所以点M 的轨迹方程为y 23+z 22=1(x =0,−1⩽y ⩽1,0⩽z ⩽1),点M 到平面ABCD 的距离为z ,当点M 为曲线y 23+z 22=1(x =0,−1⩽y ⩽1,0⩽z ⩽1)与棱CC 1或棱DD 1的交点时,点M 到平面ABCD 的距离取最小值, 将y =±1代入方程y 23+z 22=1(x =0,−1⩽y ⩽1,0⩽z ⩽1),得z =2√33,因此,四棱锥M −ABCD 体积的最小值为13×2×2√33=4√39. 故选:D.取CD 的中点O ,以点O 为坐标原点,DA →、DC →、D →D 1的方向分别为x 、y 、z 轴的正方向建立空间直角坐标系,分析可知点M 的轨迹是以点C 、D 为焦点的椭圆,求出椭圆的方程,可知当点M 为椭圆与棱CC 1或DD 1的交点时,点M 到平面ABCD 的距离取最小值,由此可求得四棱锥M −ABCD 体积的最小值.此题主要考查锥体体积的计算,立体几何中的最值与范围问题等知识,属于中等题.13.【答案】D;【解析】解:由图形可得,该半正多面体共有6个全等的正方形和8个全等的正三角形, 且正方形和正三角形的边长都是0.5×12×√2=√24m , 所以该半正多面体的表面积为S =6×(√24)2+8×12×(√24)2×sin 60°=3+√34m 2.故选:D.先求出半正多面体的棱长,再求解其表面积即可.此题主要考查了空间几何体的结构特征的理解与应用,空间几何体表面积的计算问题,考查了逻辑推理能力与空间想象能力,属于基础题.14.【答案】A;【解析】该题考查棱锥的体积计算,考查计算能力,属于基础题.先求出底面PQMN的面积,再求R到底面PQMN的距离,然后求四棱锥R−PQMN的体积.解:由题意可知底面PQMN的面积是1+32×3√2=6√2,R到PQMN的距离为3√22,四棱锥R−PQMN的体积是:13×6√2×3√22=6.故选:A.15.【答案】B;【解析】此题主要考查球和圆柱的体积的计算,属于基础题.设球的半径为R,则圆柱的底面半径为R,高为2R,由此利用公式即可求出结果.解:设球的半径为R,则圆柱的底面半径为R,高为2R,∴V圆柱=πR2×2R=2πR3,V球=43πR3 .∴V圆柱V球=2πR343πR3=32,故选B.16.【答案】4√22;【解析】本题目主要考查正四棱锥的侧面积,属于一般题.【解析】解:正四棱锥的底面边长为2√2,体积为8,所以高为3,斜高为√11,则侧面积为S= 4×12×2√2×√11=4√22,故答案为4√22.17.【答案】3√22;【解析】解:如图,取AB 的中点D ,连接PD ,取AC 的中点F ,连接DF , ∵PA =PB ,∴AB ⊥PD ,又平面PAB ⊥平面ABC ,平面PAB ∩平面ABC =AB , ∴PD ⊥平面ABC ,则PD ⊥BC ,又PB ⊥BC ,PD ∩PB =P ,∴BC ⊥平面PAB ,得BC ⊥AB , ∴F 为ΔABC 的外心,又ΔPAB 的外心E 在PD 的延长线上, 球心O 满足OF ⊥平面ABC ,OE ⊥平面PAB , ∵PA =PB =√3,∠APB =120°,可得PD =√32,AB =32,在ΔPAB 中,由正弦定理ABsin ∠APB =32√32=√3,则PE =√3,∵三棱锥P −ABC 内接于表面积为36π的球,∴OP =3, 求得EO =DF =√6,则BC =2√6, ∴三棱锥P −ABC 体积为V =13×12×3×√32×2√6=3√22, 故答案为:3√22. 由题意画出图形,证明BC ⊥平面PAB ,由已知球的表面积求得球的半径,然后求解三角形求得PD 与BC ,再由棱锥体积公式求三棱锥P −ABC 体积.此题主要考查球内接多面体体积的求法,考查空间想象能力与思维能力,考查运算求解能力,是中档题.18.【答案】√312; 【解析】此题主要考查棱锥的体积,属于基础题.根据图形特点三棱锥A −B 1BC 1的高为√32,底面积为12,求棱锥的体积.解:三棱锥B 1−AB C 1的体积等于三棱锥A −B 1BC 1的体积,三棱锥A −B 1BC 1的高为√32,底面积为12, 故其体积为13×12×√32=√312.故答案为:√312.19.【答案】196π;【解析】解:设截面ABC 的外接圆的圆心为O 1,连接O 1B ,OB ,做直线OO 1交球于P ,O 在线段PO 1上时,球面上的点到面ABC 的距离的最大,即PO 1=7+2√6, 设ΔABC 的外接圆的半径为r ,球的半径为R ,则r =O 1B ,R =OB ,在ΔABC 中AB =6,AC =8,cos ∠CBA =35,所以sin ∠CBA =√1−cos 2∠CBA =45, 由正弦定理可得2r =ACsin ∠CBA =845=10,所以r =5,在ΔOO 1B 中,R 2=r 2+OO 12=52+(7+2√6−R)2,解得R =7,所以求O 的表面积S =4πR 2=196π. 故答案为:196π.由∠CBA 的余弦值求出其正弦值,在三角形中由正弦定理求出三角形ABC 的外接圆的半径,当P ,O ,O 1三点共线时,球面上的点P 到面ABC 的距离的最大,在三角形中由勾股定理可得外接球的半径R ,进而求出球的表面积.该题考查正弦定理及余弦定理的应用和球的表面积公式,属于中档题.20.【答案】2√63;【解析】此题主要考查了线面垂直的性质、三棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.如图所示,由于三棱锥P −ABC 的外接球的球心O 在AB 上,且PO ⊥平面ABC ,可得PO 是三棱锥P −ABC 的高,AC ⊥BC .求出BC ,利用三棱锥的体积计算公式可得结论.解:如图所示,∵三棱锥P−ABC的外接球的球心O在AB上,且PO⊥平面ABC,∴PO是三棱锥P−ABC的高,∴∠ACB=90°,∴AC⊥BC.∵AB=2√3,AC=2,∴BC=2√2,PO=√3,∴V P−ABC=13×12×2×2√2×√3=2√63,故答案为:2√63.21.【答案】ACD;【解析】解:如图,建立空间直接坐标系,连结\(B_{1}D\),交平面\(A_{1}BC_{1}\)于点\(O\),所以\(D(0,0,0)\),\(B_{1}(3,3,3)\),\(A_{1}(3,0,3)\),\(B(3,3,0)\),\(C_{1}(0,3,3)\),\(\overrightarrow {DB_{1}}=(3,3,3),\overrightarrow {A_{1}B}=(0,3,-3),\overrightarrow {BC_{1}}=(-3,0,3)\),所以\(\overrightarrow {DB_{1}}_{}_{}⋅\overrightarrow {A_{1}B}=0,\overrightarrow {DB_{1}}_{}⋅\overrightarrow {BC_{1}}=0\),\(∴DB_{1}⊥A_{1}B\),\(DB_{1}⊥BC_{1}\),又\(A_{1}B∩BC_{1}=B\),\(∴DB_{1}⊥\)平面\(A_{1}BC_{1}\),\(∵P\in\)平面\(A_{1}BC_{1}\),\(∴PB⊥DB_{1}\),故\(A\)正确;设\(DB_{1}\)与平面\(A_{1}BC_{1}\)的交点为\(O\),并设\(O(x,y,z)\),由于\(O\)在\(DB_{1}\)上,设\(\overrightarrow {DO}=λ\overrightarrow {DB_{1}}\),得\(x=y=z=3λ,\overrightarrow {A_{1}O}=(x-3,y,z-3)\),由空间向量基本定理可知:\(\overrightarrow {A_{1}O}=m\overrightarrow{A_{1}B}+n\overrightarrow {A_{1}C_{1}}=(-3n,3m+3n,-3m)\),得方程:\(\begin{cases}3λ=-3n+3\\ 3λ=3m+3n\\ 3λ=-3m+3\end{cases}\),解得:\(m=n=\dfrac{1}{3},λ=\dfrac{2}{3}\),故\(O(2,2,2)∴DB_{1}=\sqrt{3^{2}+3^{2}+3^{2}}=3\sqrt{3}\),\(∴DO=\dfrac{2}{3}DB_{1}=2\sqrt{3}\),\(OB_{1}=\sqrt{3}\),将平面\(A_{1}BC_{1}\)的直观图分离出来如下:依题意,\(DP+PB_{1}=2+\sqrt{13}\),\(OB_{1}=\sqrt{3},OD=2\sqrt{3},DB_{1}⊥OP\),\(∴\begin{cases}{OB_{1}^{2}+OP^{2}=PB_{1}^{2}}\\{OD^{2}+OP^{2}=PD^{2}}\end{cases}\),解得\(OP=1\),\(PB_{1}=2\),\(PD=\sqrt{13}\),故\(P\)点的轨迹是以\(O\)为圆心,半径为\(1\)的圆,故\(B\)错误;\(B_{1}P\)与平面\(A_{1}BC_{1}\)的夹角就是\(∠B_{1}PO,\sin∠B_{1}PO=\dfrac{OB_{1}}{PB_{1}}=\dfrac{\sqrt{3}}{2}\),所以\(∠B_{1}PO=\dfrac{π}{3}\),故\(C\)正确;三棱锥\(P-BB_{1}C_{1}\)底面为三角形\(BB_{1}C\),其面积为\(\dfrac{1}{2}×3×3=\dfrac{9}{2}\),是定值,故当\(P\)到底面三角形\(BB_{1}C\)的距离\(h\)最大时,三棱锥的体积取得最大值,因为\(P\)在以\(O\)为圆心,半径为\(1\)的圆上,而球心\(O\)到平面\(BB_{1}C\)距离为\(\dfrac{\sqrt{6}}{3}\),故\(P\)到\(P\)到底面三角形\(BB_{1}C\)的距离\(h\)的最大值为\(1+\dfrac{\sqrt{6}}{3}\),所以三棱锥\(P-BB_{1}C_{1}\)体积的最大值为\(\dfrac{1}{3}×\dfrac{9}{2}×(1+\dfrac{\sqrt{6}}{3})=\dfrac{3}{2}+\dfrac{\sqrt{6}}{2}\),故\(D\)正确;故选:\(ACD.\)建立空间直角坐标系,结合向量法和综合法对各个选项进行逐一计算验证.此题主要考查了立体几何的综合,属于难题.22.【答案】BD; 【解析】此题主要考查了球的表面积,考查学生的计算和推理能力,属于中档题.设出内外球半径分别为r ,R ,从而结合题意即可知R 和r 的关系,进而求得R 和r ,从而求解.解:设内外球半径分别为r ,R ,则正方体的棱长为2r ,体对角线长为2R , ∴R =√3r ,又由题知R −r =1, ∴r =√3+12,R =√3+32,正方体棱长为√3+1,体对角线长为3+√3,外球表面积为π(3+√3)2=(12+6√3)π,故B 、D 正确. 故选BD .23.【答案】ACD;【解析】解:因为S =4πR 2=20π,所以R 2=5;对于A ,若CD ⊥AB ,则平面BCD ⊥平面ABC ,过BD 的中点F 作与平面BCD 垂直的直线l ,设球心为O ,则l//平面ABC ,作FH ⊥BC ,垂足为H , 则FH 即为球心O 到平面ABC 的距离d ,对于△ABC , 设其外接圆半径为r ,则AB sin120∘=2√32=2r,r =2,所以d =HF =√R 2−r 2=1,因此CD =2HF =2,故A 正确;对于B ,因为始终满足CB ⊥CD ,所以点D 的轨迹是与BC 垂直的球内某截面圆,如图所示:因为BC =2为定值,作AH ⊥D 点所在截面圆O ′,取BC 得中点M ,连接OM ,OO ′,OM=√R2−(BC2)2=2,因为OO′和BC同时满足垂直于D点所在截面圆,所以OM即为D点所在截面圆的半径,所以D点在以2为半径的圆上,C为定点,所以满足CD=2时的点D有两个点,作A点在截面圆的投影,垂足设为H,所以当H,O′,D共线时满足CD⊥AB,所以必定有另外一个符合CD=2的D点不满足,因此B选项错误;对于C,因为平面ABC(ABCH)与圆O′垂直,所以OO′与平面ABC平行,作OO1⊥AH,又因为OO1⊥BC,所以OO1⊥平面ABC,因此O1为△ABC外接圆的圆心,而△ABC外接圆半径r为2,又因为O1H=MC=1,所以AH=r+1=3,若求AD的最小值,在直角三角形ADH中,只需确定出DH的最小值即可,如图所示,点D在D′位置时,DH最小,AD也最小,即AD=√AH2+DH2=√9+DH2,由A的分析可知球心O到平面ABC的距离为1,即OO1=1,则O′H=1,而DH的最小值为D′H=O′D′−O′H=2−1=1,所以AD的最小值为√10,故C正确;对于D,△ABC的面积为定值,且D点在与△ABC垂直的截面圆上,只需当D点到平面ABC距离最大时,三棱锥A−BCD体积也最大,又因为O′H⊥平面ABC,因此当D点位于HO′与截面圆的交点处时(如图示位置)即H,O′,D共线时,高即DH最大,最大值OH′+DO′=1+2=3,故此时三棱锥A−BCD体积的最大值为13×12×2×2×sin120°×3=√3,故D正确,故选:ACD.对于A,计算出△ABC的外接圆半径,明确球心到平面ABC的距离,可求得CD=2;对于B,要明确D的轨迹是与BC垂直的球内某截面圆,由此判断满足CD=2时的点D有两个点,其中有一个不满足;对于C,借助于图示,确定点D在D′位置时,线段AD长度才可取到最小值,由此计算即可;对于D,由于△ABC的面积为定值,且D点在与△ABC垂直的截面圆上,只需当D点到平面ABC距离最大时,三棱锥A−BCD体积也最大,由此可以求先求得三棱锥的高的最大值,可求得结果.此题主要考查锥体体积导数计算,立体几何中的最值问题,空间中的垂直关系等知识,属于中等题.24.【答案】ACD;【解析】解:如图1,由AC//平面EMGH ,AC ⊂平面ABC ,平面ABC⋂平面EMGH =EM ,得AC//EM ,同理AC//HG ,所以EM//HG ,同理EH//MG ,所以EMGH 是平行四边形, AE AB =λ,则EH AD =λ,EM AC =1−λ,正四面体ABCD 的棱长为2√2,则EH =2√2λ,EM =2√2(1−λ),所以EMGH 的周长为2(EH +EM)=4√2,为定值,A 正确;如图2,把正四面体ABCD 放置在一个正方体中,正四面体的棱是正方体的面对角线, 如图,正方体的外接球就是正四面体ABCD 的外接球,由正四面体棱长为2√2得正方体的棱长为2,正方体的对角线是外接球的直径,所以外接球半径为R =2√32=√3,由于平面EMGH 与AC ,BD 平行,因此易得平面ENGH 与正方体的上下底面平行, λ=14时,AE AB =14,平面EMGH 到正方体上底面的距离为正方体棱长的14,而外接球球心O 到正方体上底面的距离为正方体棱长的12,所以O 到平面EMGH 的距离为d =(12−14)×2=12, 平面α截球O 所得截面圆半径为r =√R 2−d 2=√3−14=√112, 截面圆周长为2πr =2π×√112=√11π,B 错;如图3,取BD 中点N ,连接AN ,CN ,则AN ⊥BD ,CN ⊥BD ,又AN⋂CN =N ,AN ,CN ⊂平面ACN ,所以BD ⊥平面ACN ,而AC ⊂平面ACN ,所以BD ⊥AC ,所以EM ⊥MG ,所以S EMGH =2√2λ⋅2√2(1−λ)=8(λ−λ2),由图2知A 点到平面EMGH 的距离为2λ,所以V A−EMGH =13×8(λ−λ2)×2λ=163(λ2−λ3),设f(x)=x 2−x 3(0<x <1),则f ′(x)=2x −3x 2=−3x(x −23),0<x <23时,f ′(x)>0,f(x)递增,23<x <1时,f ′(x)<0,f(x)递减, x =23时,f(x)取得最大值f(23)=427,所以V A−EMGH 的最大值为163×427=6481,C 正确;如图4,还是如图2一样把正四面体ABCD 放置在一个正方体中,λ=μ=12时,E ,F 是正方体前后两个面的中心(对角线交点),由正方体性质,正四面体ABCD 绕EF 旋转90°后得下四面体A ′B ′C ′D ′,A ′,B ′,C ′,D ′是正方体的另外四个顶点,这两个正四面体的公共部分正好是一个正八面体,正八面体的六个顶点是正方体六个面的中心, S EMFH =√2×√2=2,正八面体的体积为V=2×13×2×1=43,D正确.故选:ACD.利用线面平行得平行四边形EMGH,由平行线性质得边长,从而可得四边形周长,判断A,把正四面体放置在一个正方体中,正四面体的棱是正方体的面对角线,由正方体的性质可求得平面α截球O所得截面圆的半径,从而得周长,判断B,证明EMGH是矩形后,由正方体的性质易得A到平面EMGH的距离,求出棱锥体积后,利用导数求得最大值判断C,在正方体中旋转正四面体,易得放置后的四面体的位置,并确定两个正四面体的公共部分,从而得体积判断D.此题主要考查正四面体的截面,考查空间几何的体积等问题,解题关键是把正四面体放置在正方体中,利用正方体的性质确定与正四面体有关的图形的性质,求解结论.对学生的空间想象能力、逻辑思维能力,运算求解能力要求较高,本题属于难题.25.【答案】ACD;【解析】解:在A中,水的部分始终呈棱柱状,从棱柱的特征平面AA1B1B平行平面CC1D1D即可判断A正确,故A正确;在B中,水面四边形EFGH的面积不改变,EF是可以变化的EH不变的,所以面积是改变的,故B不正确的;在C中,棱A1D1始终与水面EFGH平行,由直线与平面平行的判断定理,可知A1D1//EH,故C正确;在D中,当E∈AA1时,AE+BF是定值.水的体积是定值,高不变,所以底面面积不变,故D正确.故选:ACD.在A中,水的部分始终呈棱柱状;从棱柱的特征平面判断即可;在B中,水面四边形EFGH的面积不改变;可以通过EF的变化EH不变判断正误;在C中,棱A1D1始终与水面EFGH平行;利用直线与平面平行的判断定理,推出结论;在D中,当E∈AA1时,AE+BF是定值.通过水的体积判断即可.此题主要考查棱柱的结构特征,直线与平面平行的判断,棱柱的体积等基础知识,考查逻辑推理能力、运算求解能力,是中档题.26.【答案】证明:(1)取DB 的中点为O ,连接SO ,∵SB=SD ,∴SO ⊥BD∵平面SBD ⊥面ABCD .平面SBD∩面ABCD=BD .∴SO ⊥面ABCD ,∴S 在底面ABCD 的射影为线段BD 的中点.(2)∵AB=4,AD=2,CE ⊥BD ,∴BO BC =BC DB ⇒BO=2√5 ∴S △ADE =45S △ADB =45×12×2×4=165,SO=SD×sin60°=√15 三棱锥E-SAD 的体积V=V S-ADE =13.S △ADE .SO =16√1515.;【解析】(1)取DB 的中点为O ,连接SO ,只需证明SO ⊥面ABCD ,即可得S 在底面ABCD 的射影为线段BD 的中点.(2)利用三棱锥E −SAD 的体积V =V S−ADE =13.S ΔADE .SO =16√1515.即可.该题考查面面垂直的性质,考查三棱锥体积计算,考查运算求解能力,是中档题.27.【答案】解:(1)正方体的棱长为:2cm ,正方体的体对角线的长为:2√3cm ,就是球的直径,∴球的表面积为:S 2=4π(√3)2=12πc m 2.(2)解:如图,四面体S −ABC 的各棱长为1,则其四个面均为边长为1的等边三角形, 过S 作底面垂线,垂足为O ,则O 为底面三角形的中心,连接BO 并延长,交AC 于D. 显然BD =√32, 则BO =23×√32×1=√33, ∴SO =√1−(√33)2=√63,。
高中数学新教材必修第二册第八章 立体几何初步 8.3 简单几何体的表面积与体积(南开题库含详解)

第八章 立体几何初步 8.3 简单几何体的表面积与体积一、选择题(共40小题;共200分)1. 一个四面体的所有棱长都为 √2 ,四个顶点在同一球面上,则此球的表面积为 ( ) A. 3πB. 4πC. 3√3πD. 6π2. 有一个几何体的三视图及其尺寸如图(单位:cm ),该几何体的表面积和体积为 ( )A. 24π,12πB. 15π,12πC. 24π,36πD. 以上都不正确3. 已知下列三个命题:①若一个球的半径缩小到原来的 12,则其体积缩小到原来的 18; ②若两组数据的平均数相等,则它们的标准差也相等; ③直线 x +y +1=0 与圆 x 2+y 2=12 相切.其中真命题的序号是 ( ) A. ①②③B. ①②C. ①③D. ②③4. 如图,是一个几何体的三视图,其主视图、左视图是直角边长为 2 的等腰直角三角形,俯视图为边长为 2 的正方形,则此几何体的表面积为 ( )A. 8+4√2B. 8+4√3C. 6+6√2D. 8+2√2+2√35. 一个四棱锥的三视图如图所示,其侧视图是等边三角形.则该四棱锥的体积等于 ( )A. 8√3B. 16√3C. 24√3D. 48√36. 如图,在长方体ABCD−A1B1C1D1中,AB=6,AD=4,AA1=3,分别过BC,A1D1的两个平行截面将长方体分成三部分,其体积分别记为V1=V AEA1−DFD1,V2=V EBE1A1−FCF1D1,V3=V B1E1B−C1F1C.若V1:V2:V3=1:4:1,则截面A1EFD1的面积为( )A. 4√10B. 8√3C. 4√13D. 167. 一个几何体的三视图如图所示,则该几何体的体积(单位:cm3)为( )A. π+√33B. 2π+√33C. 2π+√3D. π+√38. 一个几何体的三视图如图所示,则该几何体的体积是( )A. 64B. 72C. 80D. 1129. 在△ABC中,AB=2,BC=1.5,∠ABC=120∘,若使该三角形绕直线BC旋转一周,则所形成的几何体的体积是( )A. 32π B. 52π C. 72π D. 92π10. 某空间几何体的三视图如图所示,则该几何体的表面积为( )A. 180B. 240C. 276D. 30011. 已知某四棱锥的三视图,如图所示.则此四棱锥的体积为( )A. 6B. 5C. 4D. 312. 正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是( )A. π3a B. π2a C. 2πa D. 3πa13. 一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为( )A. √3+√6B. √3+√5C. √2+√6D. √2+√514. 某几何体的三视图如图所示,则该几何体的体积为( )A. 8−2πB. 8−πC. 8−π2D. 8−π415. 直三棱柱ABC−A1B1C1的直观图及三视图如下图所示,D为AC的中点,则下列命题是假命题的是( )A. AB1∥平面BDC1B. A1C⊥平面BDC1C. 直三棱柱的体积V=4D. 直三棱柱的外接球的表面积为4π16. 如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A. 9πB. 10πC. 11πD. 12π17. 一个圆柱的侧面积展开图是一个正方形,这个圆柱的全面积与侧面积的比是( )A. 1+2π2πB. 1+4π4πC. 1+2ππD. 1+4π2π18. 一个几何体的三视图如图所示,则该几何体的体积是( )A. 23π+4 B. 2π+4 C. π+4 D. π+219. 在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A. 2π3B. 4π3C. 5π3D. 2π20. 如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为( )A. √23B. √33C. 43D. 3221. 小明在“欧洲七日游”的游玩中对某著名建筑物的景观记忆犹新,现绘制该建筑物的三视图如图所示,若网格纸上小正方形的边长为1,则小明绘制的建筑物的体积为( )A. 16+8πB. 64+8πC. 64+8π3D. 16+8π322. 正三棱锥的底面边长为a,高为√66a,则此棱锥的侧面积为( )A. 34a2 B. 32a2 C. 3√34a2 D. 3√32a223. 已知正方形ABCD的边长为6,空间有一点M(不在平面ABCD内)满足∣MA∣+∣MB∣=10,则三棱锥A−BCM的体积的最大值是( )A. 48B. 36C. 30D. 2424. 一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A. 18B. 17C. 16D. 1525. 棱长为a的正方体中,连接相邻面的中心,以这些线段为棱的八面体的体积为( )A. a33B. a34C. a36D. a31226. 已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A. 2√23π B. 4√2π3C. 2√2πD. 4√2π27. 已知A,B是球O的球面上两点,∠AOB=90∘,C为该球面上的动点,若三棱锥O−ABC体积的最大值为36,则球O的表面积为( )A. 36πB. 64πC. 144πD. 256π28. 某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是( )A. 2B. 92C. 32D. 329. 如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( )A. 500π3cm3 B. 866π3cm3 C. 1372π3cm3 D. 2048π3cm330. 一个棱锥三个侧面两两互相垂直,它们的面积分别为12cm2,8cm2,6cm2,那么这个三棱锥的体积为( )A. 8√2πB. 8√23C. 24√2D. 8√231. E,F分别是边长为1的正方形ABCD边BC,CD的中点,沿线AF,AE,EF折起来,则所围成的三棱锥的体积为( )A. 13B. 16C. 112D. 12432. 如图,三棱柱ABC−A1B1C1中,D是棱AA1的中点,平面BDC1分此棱柱为上下两部分,则这上下两部分体积的比为( )A. 2:3B. 1:1C. 3:2D. 3:433. 正方体的全面积为a2,它的顶点都在同一个球面上,这个球的半径是( )A. √36a B. √24a C. √22a D. √32a34. 如图,△ABC为正三角形,AA1∥BB1∥CC1,CC1⊥底面△ABC,若BB1=2AA1=2,AB=CC1=3AA1,则多面体ABC−A1B1C1在平面A1ABB1上的投影的面积为( )A. 274B. 92C. 9D. 27235. 如图,已知直三棱柱ABC−A1B1C1,点P,Q分别在侧棱AA1和CC1上,AP=C1Q,则平面BPQ把三棱柱分成两部分的体积比为( )A. 2:1B. 3:1C. 3:2D. 4:336. 圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( )A. 1B. 2C. 4D. 837. 如图所示,正方体ABCD−AʹBʹCʹDʹ的棱长为1,E,F分别是棱AAʹ,CCʹ的中点,过直线E F的平面分别与棱BBʹ,DDʹ交于M,N,设BM=x,x∈[0,1],给出以下四个命题:①平面MENF⊥平面BDDʹBʹ;②当且仅当x=12时,四边形MENF的面积最小;③四边形MENF周长L=f(x),x∈[0,1]是单调函数;④四棱锥Cʹ−MENF的体积V=ℎ(x)为常函数.以上命题中假命题的序号为( )A. ①④B. ②C. ③D. ③④38. 如图,正方体ABCD−A1B1C1D1的棱长为1,线段AC1上有两个动点E,F,且EF=√33.给出下列四个结论:①CE⊥BD;②三棱锥E−BCF的体积为定值;③△BEF在底面ABCD内的正投影是面积为定值的三角形;④在平面ABCD内存在无数条与平面DEA1平行的直线.其中,正确结论的个数是( )A. 1B. 2C. 3D. 439. 已知正方体ABCD−A1B1C1D1棱长为1,点P在线段BD1上,当∠APC最大时,三棱锥P−ABC的体积为( )A. 124B. 118C. 19D. 11240. 一个圆锥被过顶点的平面截去了较小的一部分,余下的几何体的三视图如图,则该几何体的表面积为( )A. √5+3√3π2+3π2+1 B. 2√5+3√3π+3π2+1C. √5+3√3π2+3π2D. √5+3√3π2+π2+1二、填空题(共40小题;共200分)41. 已知某球体的体积与其表面积的数值相等,则此球体的半径为.42. 若一个球的体积为4√3π,则它的表面积为.43. 一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为.44. 一个正方体的各顶点均在同一球的球面上,若该球的体积为4√3π,则该正方体的表面积为.45. 某几何体的三视图如图所示,则该几何体的体积是.46. 已知某几何体的三视图如图所示,则该几何体的体积为.47. 一个几何体的三视图如图所示,则该几何体的体积为.48. 已知一个正方体的所有顶点在一个球面上,若球的体积为9π,则正方体的棱长为.249. 如图是一个几何体的三视图.若它的体积是3√3,则a=.50. 某空间几何体的三视图如图所示,则该几何体的体积为.51. 用半径为6的半圆形铁皮卷成一个圆锥的侧面,则此圆锥的体积是.52. 用一张长为12米,宽为8米的矩形铁皮围成圆柱的侧面,则这个圆柱的体积为.53. 有一个几何体的三视图及其尺寸(单位cm)如下图所示,则该几何体的表面积为:.54. 一个几何体的三视图如图所示(单位:m),则这个几何体的体积为m3.55. 底面是正方形,容积为256的无盖水箱,它的高为时最省材料.56. 某几何体的三视图如图所示,则该几何体的体积为.57. 一个几何体的三视图如图所示(单位:cm),则该几何体的体积为cm3.58. 已知一个四棱锥的三视图如图所示,则此四棱锥的体积为.59. 已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.60. 某几何体的三视图如图所示,则该几何体的体积为.61. 一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.62. 几何体的三视图如图所示,其侧视图是一个等边三角形,则这个几何体的体积是.63. 一空间几何体的三视图如图所示,则该几何体的体积为.64. 用半径为6的半圆形铁皮卷成一个圆锥的侧面,则此圆锥的体积为.65. 已知一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.66. 如图是一个几何体的三视图,则这个几何体的体积为.,则正视图与侧视图中x的值67. 一空间几何体的三视图如右图所示,该几何体的体积为12π+8√53为.68. 如图是—个几何体的三视图,则该几何体的表面积为.69. 一个几何体的三视图如图,正视图和侧视图都是由一个半圆和一个边长为2的正方形组成,俯视图是一个圆,则这个几何体的表面积为.70. 如图所示,一款冰淇淋甜筒的三视图中俯视图是以3为半径的圆,则该甜筒的表面积为.71. ―个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.72. 正方体ABCD−A1B1C1D1的棱长为2√3,则四面体A−B1CD1的外接球的体积为.73. 已知正方体ABCD−A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M−EFGH的体积为.74. 如图,已知正方体ABCD−A1B1C1D1的棱长为1,则四棱锥A1−BB1D1D的体积为.75. 已知某三棱锥的三视图如图所示,则它的外接球体积为.76. 如图是一个几何体的三视图,已知侧视图是一个等边三角形,根据图中尺寸(单位:cm)可知该几何体的表面积为.77. 图中的三个直角三角形是一个体积为20cm3的几何体的三视图,该几何体的外接球表面积为cm278. 一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.79. 一个圆锥体被过其顶点的平面截去一部分,余下的几何体的三视图如图所示(单位:cm),则余下的几何体的体积为cm3.80. 棱长为1的正四面体内有一点P,由点P向各面引垂线,垂线段长度分别为d1,d2,d3,d4,则d1+d2+d3+d4的值为.三、解答题(共20小题;共260分)81. 如图,长方体ABCD−A1B1C1D1中AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法与理由);(2)求平面α把该长方体分成的两部分体积的比值.82. 三棱锥S−ABC的三条侧棱两两垂直,SA=5,SB=4,SC=3,D为AB中点,E为AC中点,求四棱锥S−BCED的体积.83. 在单位正方体AC1中,点E,F分别是棱BC,CD的中点.(1)求证:D1E⊥平面AB1F;(2)求三棱锥E−AB1F的体积;(3)设直线B1E,B1D1与平面AB1F所成的角分别为α,β,求cos(α+β)的值.84. 如图,三棱锥S−ABC内接于一个圆锥(有公共顶点和底面,侧棱与圆锥母线重合).已知AB=5cm,BC=3cm,AC=4cm,SA=SB=SC=10cm,(1)求圆锥的侧面积及侧面展开图的中心角;(2)求A经过圆锥的侧面到B点的最短距离.85. 如图,四棱锥P−ABCD中,底面ABCD为平行四边形,PA⊥平面ABCD,BC=AP=5,AB=3,AC=4,M,N分别在线段AD,CP上,且AMMD =PNNC=4.(1)求证:MN∥平面PAB;(2)求三棱锥P−AMN的体积.86. 如图所示的多面体是由一个直平行六面体被平面AEFG所截后得到的,其中∠BAE=∠GAD=45∘,AB=2AD=2,∠BAD=60∘.(1)求证:BD⊥平面ADG;(2)求此多面体的全面积.87. 养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12(m),高4(m),养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4(m)(高不变);二是高度增加4(m)(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?88. 如图,ABCD是边长为2的正方形,直线l与平面ABCD平行,E和F是l上的两个不同点,且EA=ED,FB=FC,Eʹ和Fʹ是平面ABCD内的两点,EʹE和FʹF都与平面ABCD垂直.(1)证明:直线EʹFʹ垂直且平分线段AD.(2)若∠EAD=∠EAB=60∘,EF=2,求多面体ABCDEF的体积.89. 如图,三棱锥A−BCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD;(2)若AB=BD=CD=1,M为AD中点,求三棱锥A−MBC的体积.90. 如图,四棱锥 P −ABCD 中,底面是以 O 为中心的菱形,PO ⊥ 底面 ABCD ,AB =2,∠BAD =π3,M 为 BC 上一点,且 BM =12.(1)证明:BC ⊥ 平面 POM ; (2)若 MP ⊥AP ,求四棱锥 P −ABMO 的体积.91. 如图,平行四边形 ABCD 中,∠DAB =60∘,AB =2,AD =4,将 △CBD 沿 BD 折起到 △EBD的位置,使平面 EBD ⊥ 平面 ABD .(1)求证:AB ⊥DE ; (2)求三棱锥 E −ABD 的侧面积.92. 养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为 12 m ,高 4 m .养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大 4 m (高不变);二是高度增加 4 m (底面直径不变). (1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的侧面积; (3)哪个方案更经济些?93. 如图所示,三棱柱 ABC −A 1B 1C 1 中,AA 1⊥平面ABC ,D ,E 分别为 A 1B 1,AA 1 的中点,点 F在棱 AB 上,且 AF =14AB .(1)求证:EF ∥平面BC 1D ;(2)在棱 AC 上是否存在一个点 G ,使得平面 EFG 将三棱柱分割成的两部分体积之比为 1:15,若存在,指出点 G 的位置;若不存在,请说明理由.94. 如图,四棱锥P−ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求四面体N−BCM的体积.95. 如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(1)证明:平面AEC⊥平面BED;,求该三棱锥的侧面积.(2)若∠ABC=120∘,AE⊥EC,三棱锥E−ACD的体积为√6396. 如图,在斜三棱柱ABC−A1B1C1中,∠A1AB=∠A1AC,AB=AC,A1A=A1B=a,侧面B1BCC1与底面ABC所成的二面角为120∘,E、F分别是棱B1C1、A1A的中点.(1)求A1A与底面ABC所成的角;(2)证明A1E∥平面B1FC;(3)求经过A1、A、B、C四点的球的体积.97. 如图1,∠ACB=45∘,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90∘(如图2所示).(1)当BD的长为多少时,三棱锥A−BCD的体积最大;(2)当三棱锥A−BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.98. 如图,四棱锥P−ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D−AE−C为60∘,AP=1,AD=√3,求三棱锥E−ACD的体积.99. 如图,在四棱锥P−ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.(1)证明:BD⊥PC;(2)若AD=4,BC=2,直线PD与平面PAC所成的角为30∘,求四棱锥P−ABCD的体积.100. 如图,已知正方体ABCD−A1B1C1D1的棱长为3,M,N分别是棱AA1,AB上的点,且AM= AN=1.(1)证明:M,N,C,D1四点共面;(2)平面MNCD1将此正方体分为两部分,求这两部分的体积之比.答案第一部分1. A2. A3. C4. A 【解析】由三视图知,该几何体是底面为正方形的四棱锥,其直观图如下图.所以其表面积为2×2+2×(12×2×2)+2×(12×2×2√2)=8+4√2.5. A【解析】由三视图可以看出,该几何体为四棱锥,所以V=13×12(2+4)×4×2√3=8√3.6. C7. A8. C 【解析】该几何体是由一个正方体和一个四棱锥组合而成,V=4×4×4+13×4×4×3=80.9. A 【解析】如图:△ABC中,绕直线BC旋转一周,则所形成的几何体是以ACD为轴截面的圆锥中挖去了一个以ABD为轴截面的小圆锥后剩余的部分.因为AB=2,BC=1.5,∠ABC=120∘,所以AE=ABsin60∘=√3,BE=ABcos60∘=1,设V1是以ACD为轴截面的圆锥的体积,V2是以ABD为轴截面的圆锥的体积.V1=13π⋅AE2⋅CE=52π,V2=13π⋅AE2⋅BE=π,所以V=V1−V2=32π.10. B【解析】由三视图可知,该几何体是由一个四棱锥和一个正方体组成,所以表面积=4×12×6×5+ 5×62=240.11. C 【解析】V=13×12×(2+4)×2×2=412. B 【解析】设球的半径为R,则正方体的对角线长为2R,依题意知43R2=16a,即R2=18a,所以S球=4πR2=4π⋅18a=π2a.13. C 【解析】由三视图可得:该几何体是四棱锥(如图所示),所以BA=BC=√2,BP=1,PA=PC=√3,PD=√5,可得PA⊥AD;S△PBC=S△PBA=1 2×√2×1=√22,S△PDC=S△PDA=12×√2×√3=√62,所以该几何体的侧面积S=2S△PBC+2S△PDC=√2+√6.14. B 【解析】该几何体为一个棱长为2的正方体在两端各削去一个14圆柱,V=2×2×2−2×14×(π×12×2)=8−π.15. D16. D17. A18. C19. C 【解析】提示:分析知,围成的几何体为如图所示一个圆柱挖去一个圆锥.20. A【解析】提示:如图,作AM⊥EF于点M,BN⊥EF于点N,则可将原多面体分成一个直三棱柱和两个三棱锥,然后去求其体积.21. C 【解析】由三视图可知,该建筑物由一个圆锥、一个圆柱以及一个正方体拼接而成,故所求几何体的体积V=13×π×12×2+π×12×2+4×4×4=64+8π3.22. A 【解析】利用高、底面正三角形的边心距和斜高组成的直角三角形可得斜高为√(√66a)2+(13×√32a)2=12a,于是侧面积S=3×12×a×12a=34a2.23. D24. D25. C【解析】提示:算出一个正四棱锥的体积再乘2即可.26. B27. C 【解析】在三棱锥O−ABC中,底面OAB的面积确定,所以要使O−ABC的体积最大,则C到平面OAB的距离最大,即为球的半径.设球半径为R,则三棱锥O−ABC的体积V max=13×12×R2×R=36,解得R=6,此时球的表面积S=4πR2=144π.28. D29. A30. D31. D 【解析】设AF,AE,EF折起交于点P,因为AP⊥PF,AP⊥PE,所以AP⊥面PEF,所以V P−AEF=V A−PEF=13×1×12×12×12=124.32. B【解析】不妨设此三棱柱为正三棱柱,AB=1,AA1=2,则正三棱柱的体积V=√34×2=√32,V下面部分=13×√32×32=√34,所以V上面部分=√34,所以上下两部分的体积的比为1:133. B 【解析】由正方体外接球的直径2R等于正方体的体对角线的长,得2R=√3⋅√a26,所以R=√24a.34. A35. A【解析】设B到AC的距离为m,AC=x,棱柱的高为ℎ,可得V四棱锥B−ACQP =16xℎm,V三棱柱ABC−A1B1C1=12xℎm,V四棱锥B−ACQPV三棱柱ABC−A1B1C1=13,所以平面BPQ把三棱柱分成两部分的体积比为1:2.36. B 【解析】提示:此组合体是过圆柱对称轴的平面截圆柱所得的半个圆柱和一个半球组成的组合体.37. C 【解析】因为EF⊥BD,EF⊥面BDDʹBʹ,EF⊂面EMFN,所以平面MENF⊥平面BDDʹBʹ成立;又因为四边形EMFN为菱形,∣MN∣2=(1−2x)2+2,所以S MENF=12∣EF∣×∣MN∣=1 2×√2×√4x2−4x+3,当x=12时,面积最小,所以②成立;四边形MENF的周长L=f(x)=4√4x 2−4x +3,在 (0,12) 上是单调递减函数,在 (12,1) 上是单调递增函数,所以命题③不正确;V Cʹ−MENF =2V Cʹ−MNF =2V M−CʹNF =16,所以 V =ℎ(x ) 为常函数.38. D 【解析】因为在正方体 ABCD −A 1B 1C 1D 1 中,BD ⊥平面AA 1CC 1,CE ⊂平面AA 1CC 1,所以 BD ⊥CE ,①正确;EF =√33,而 C 到 EF 的距离即为 C 到 AC 1 的距离,所以 △EFC 面积为定值,又 B点到 平面EFC 的距离为定值,所以三棱锥 E −BCF 的体积为定值,②正确;因为 EF 为定值,且在体对角线 AC 1 上,所以 EF 在底面上的投影为定值,而点 B 到 AC 的距离为定值,所以 △BEF 在底面 ABCD 内的正投影是面积为定值的三角形,③正确;因为平面 ABCD 与平面 DEA 1 不重合,显然在平面 ABCD 内存在无数条与平面 DEA 1 平行的直线,④正确.39. B 【解析】设 AP =CP =a ,在 △PAC 中,利用余弦定理有 cos∠APC =a 2+a 2−22a 2=1−1a 2,又因为当 AP ⊥BD 1 时,AP 最小,当 P 与点 D 1 重合时最大,所以 a ∈[√63,√2],所以当 AP ⊥BD 1 时,∠APC 最大,在 △BDD 1 中,BP =√33,则 P 到面 ABC 的距离为 √33√3=13.所以 V P−ABC =12×1×1×13×13=118.40. A【解析】圆锥母线为 l =√(√5)2+1=√6,高为 ℎ=√(√5)2−1=2,圆锥底面半径为 r =√l 2−ℎ2=√2,截去的底面弧的圆心角为直角,截去的弧长是底面圆周的 14,圆锥侧面剩余 34,即为 S 1=34⋅π⋅rl =34π⋅√2×√6=3√32π,截面三角形的面积为 S 2=12×2×√5=√5,底面剩余部分为S 3=34πr 2+12×√2×√2=1+3π2,所以被截后该几何体的表面积为 S =3π2+3√3π2+√5+1.第二部分 41. 3 42. 12π【解析】提示:球的半径为 √3. 43. 14π 44. 24【解析】球的半径为 √3 ,则正方体的体对角线长为 2√3 ,从而正方体的棱长为 2 ,表面积为 6×22=24 . 45. 16π−16 46. 12π【解析】提示:由三视图可知,该几何体是由左右两个相同的圆柱(底面圆半径为2,高为1)与中间一个圆柱(底面圆半径为1,高为4)组合而成.47. 12+π【解析】该几何体是一个长方体和一个圆柱的组合体.由三视图可知长方体的长、宽、高分别为4、3、1,圆柱的底面半径为1,高为1,故该组合体的体积为V=4×3×1+π×1×1=12+π.48. √349. √3【解析】三视图对应的空间几何体是以2为底、高为a的三角形作为底面,以3为高的卧放的一个三棱柱.50. 2π+2√3351. 9√3π52. 288πcm3或192πcm3.53. 24πcm2【解析】由三视图可知:该几何体是一个圆锥,其母线长是5cm,底面直径是6cm.所以该三棱锥的表面积S=π×32+12×6π×5=24πcm2.54. 6+π【解析】如图:该几何体为一个棱柱与一个圆锥的组合体.所以V=3×2×1+13π×12×3=6+π.55. 456. 108+3π【解析】由三视图可知,该几何体由两个长方体和一个圆柱组成.所以V=2×6×6×32+π×12×3=108+3π.57. 48【解析】由三视图可知,该几何体为四棱锥,所以V=13×62×4=48.58. 5359. 9π260. 13【解析】由三视图可知,几何体的直观图如图所示,平面AED⊥平面BCDE,四棱锥A−BCDE的高为1,四边形BCDE是边长为1的正方形,则V=13×1×1×1=13.61. 20π3【解析】三视图可得该几何体是组合体,上面是底面圆的半径为2m、高为2m的圆锥,下面是底面圆的半径为1m、高为4m的圆柱,所以该几何体的体积是13×4π×2+4π=20π3(m3).62. 8√3+4√3π3【解析】由三视图可知,该几何体是由半个圆锥和一个四棱锥组成,所以体积为12×13×π×22×2√3+13×3×4×2√3=8√3+4√33π.63. 16+8π【解析】由三视图可知,该几何体是由一个长方体和半个圆柱形成,所以体积为V=2×2×4+ 12π×22×4=16+8π.64. 9√3π【解析】如下图所示:PO=√62−32=3√3,所以体积为13⋅3√3⋅π⋅32=9√3π.65. 20π3【解析】该几何体的体积为π⋅4+13π⋅22⋅2=20π3m3.66. 3【解析】由三视图可知,该几何体为上面一个三棱柱,下方一个四棱柱.故V上=12×1×1×2=1,V下=2×1×1=2,所以V=1+2=3.67. 3【解析】由三视图可以看出,该几何体是由一个四棱锥和一个圆柱组成.体积为13×(2√2)2×√5+π×22x=12π+8√53,所以x=3.68. 9π【解析】由三视图可知,该几何体的侧面积为2π×1×3=6π,下底面面积为π×12=π,顶部为半个球的表面积12×4π×12=2π,所以该几何体的表面积为9π.69. 7π【解析】由三视图可知该几何体是由一个圆柱和半个球组成,所以表面积为π×12+2π×1×2+12×4π×12=7π.70. 33π【解析】上半部分为半个球,表面积为12×4πr2=18π.下半部分为圆锥,侧面积为12×2πr×母线=15π.所以表面积为33π.71. 18+9π【解析】由三视图可知,该几何体为两个相切的球上方加了一个长方体组成的组合体,所以其体积为V=3×6×1+2×43π×(32)3=18+9π(m3).72. 36π.73. 11274. 1375. 43π【解析】由俯视图可知,直角三角形的斜边中线等于斜边的一半,根据射影定理,球心为斜边中点,半径为1,所以球的体积为43πr3=43π.76. (18+2√3)cm2.77. 77π【解析】提示:依题意得20=13×12×5×6×ℎ,解出ℎ=4.可算出外接球半径为√772,所以外接球表面积为77π.78. 83π【解析】由三视图知该几何体由两个相同的圆锥和一个圆柱组成.其中,圆锥的底面半径和圆柱的底面半径均为1m,圆锥的高均为1m,圆柱的高为2m.因此该几何体的体积为V=2×13π×12×1+π×12×2=83πm3.79. 16π9+2√33【解析】由三视图可知,该几何体由23个圆锥和一个三棱锥组成,所以体积为23×13π×22×2+13×12×2√3×1×2=16π9+2√33.80. √63【解析】提示:设这个棱长为1的正四面体的四个顶点分别为A、B、C、D,可求得其高为ℎ=√63,设每个面面积为S,则V A−BCD =V P−ABC +V P−ACD +V P−ABD +V P−BCD ,所以13ℎS =13d 1S +13d 2S +13d 3S +13d 4S, 得 d 1+d 2+d 3+d 4=ℎ=√63. 第三部分81. (1) 交线围成的正方形 EHGF 如图.(2) 作 EM ⊥AB ,垂足为 M ,则 AM =A 1E =4,EB 1=12,EM =AA 1=8. 因为四边形 EHGF 为正方形,所以 EH =EF =BC =10. 于是 MH =√EH 2−EM 2=6,AH =10,HB =6.故 S 四边形A 1EHA =12×(4+10)×8=56,S 四边形EB 1BH =12×(12+6)×8=72. 因为长方体被平面 α 分为两个高为 10 的直棱柱,所以其体积的比值为 97(79 也正确). 82. ∵ D ,E 分别是 AB ,AC 中点, ∴ S △ADE =14S △ABC ,∴ V 三棱锥S−ADE =14V 三棱锥S−ABC ,∴ V 四棱锥S−BCED =V 三棱锥S−ABC −V 三棱锥S−ADE =34V 三棱锥S−ABC .∵ 三棱锥 S −ABC 的三条侧棱两两垂直,∴ V 三棱锥S−ABC =16⋅SA ⋅SB ⋅SC =16×5×4×3=10,∴ V 四棱锥S−BCED =34V 三棱锥S−ABC =34×10=152.83. (1) 因为点 E ,F 分别是棱 BC ,CD 的中点,所以AF ⊥DE又AF ⊥DD 1DE ∩DD 1=D}⇒AF ⊥面EDD 1⇒AF ⊥D 1E 又C 1D ∥B 1A C 1D ⊥面BCD 1}⇒D 1E ⊥B 1AB 1A ∩AF =A }}⇒D 1E ⊥面AB 1F.(2) V E−AB 1F =V B 1−AEF =13⋅1⋅38=18.(3) 由⑴可知:D 1E ⊥ 平面 AB 1F ,直线 B 1E ,B 1D 1 与平面 AB 1F 所成的角分别为 α,β,即 α+β=∠EB 1D 1,所以cos(α+β)=cos∠EB1D1=54+2−(14+1+1)2×√52×√2=√1010.84. (1)因为AB=5cm,BC=3cm,AC=4cm,所以∠ACB=90∘⇒AB为底面圆的直径⇒S侧=12⋅10⋅π⋅5=25π.圆锥的侧面展开图是一个扇形,设此扇形的中心角为θ,弧长为l,则l=10θ,所以2π×52=10θ,所以θ=π2.(2)沿着圆锥的侧棱SA展开,在展开图△ABS中,∠ASB=45∘,SA=SB=10,⇒AB2= SA2+SB2−2SA⋅SB⋅cos∠ASB⇒AB=10√2−√2.85. (1)在AC上取一点Q,使得AQQC=4,连接MQ,QN,则AMMD =AQQC=PNNC,所以QN∥AP,MQ∥CD,又CD∥AB,所以MQ∥AB.又因为AB⊂平面PAB,PA⊂平面PAB,MQ⊂平面MNQ,NQ⊂平面MNQ,所以平面PAB∥平面MNQ,又因为MN⊂平面MNQ,MN⊄平面PAB,所以MN∥平面PAB.(2)因为AB=3,BC=5,AC=4,所以AB⊥AC.过C作CH⊥AD,垂足为H,则CH=3×45=125,因为PA⊥平面ABCD,CH⊂平面ABCD,所以PA⊥CH,又CH⊥AD,PA∩AD=A,PA⊂平面PAD,AD⊂平面PAD,所以CH⊥平面PAD,因为PC=√PA2+AC2=√41,PNNC=4,所以N到平面PAD的距离ℎ=45CH=4825,所以V P−AMN=V N−PAM=13S△PAM⋅ℎ=13×12×5×4×4825=325.86. (1)在△BAD中,因为AB=2AD=2,∠BAD=60∘,所以由余弦定理可得BD=√3.AB2=AD2+BD2,所以AD⊥BD.又在直平行六面体中,GD⊥平面ABCD,BD⊂平面ABCD,所以GD⊥BD.又AD∩GD=D,所以BD⊥平面ADG.(2)由已知可得AG∥EF,AE∥GF,四边形AEFG是平行四边形.GD=AD=1,所以EF=AG=√2.EB=AB=2,所以GF=AE=2√2.过G作GM∥DC交CF于H,得FH=2,所以FC=3.过G作GM∥DB交BE于M,得GM=DB=√3,ME=1,所以GE=2.cos∠GAE=2×2√2×√2=34,所以sin∠GAE=√74.S AEFG=2×12×√2×2√2×√74=√7.该几何体的全面积S=√7+2×12×1×√3+12×1×1+12×2×2+12×(1+3)×2+12×(2+3)×1=√7+√3+9.87. (1)如果按方案一,仓库的底面直径变成16m,则仓库的体积V1=13Sℎ=13×π×(162)2×4=2563π(m3),如果按方案二,仓库的高变成8m,则仓库的体积V2=13Sℎ=13×π×(122)2×8=2883π(m3).(2)如果按方案一,仓库的底面直径变成16m,半径为8m.棱锥的母线长为l=√82+42=4√5,则仓库的表面积S1=π×8×4√5=32√5π(m2),如果按方案二,仓库的高变成8m.棱锥的母线长为l=√82+62=10,则仓库的表面积S2=π×6×10=60π(m2).(3)∵V2>V1,S2<S1,∴方案二比方案一更加经济.88. (1)因为EA=ED且EEʹ⊥平面ABCD,所以EʹD=EʹA,所以点Eʹ在线段AD的垂直平分线上,同理点Fʹ在线段BC的垂直平分线上.又ABCD是正方形,所以线段BC的垂直平分线也就是线段AD的垂直平分线即点EʹFʹ都居线段AD的垂直平分线上,所以直线E′F′垂直平分线段AD.(2)连接EB,EC,设AD中点为M,由题意知,AB=2,∠EAD=∠EAB=60∘,EF=2,所以ME=√3,BE=FC=2,则多面体ABCDEF可分割成正四棱锥E−ABCD和正四面体E−BCF两部分,在Rt△MEEʹ中,由于MEʹ=1,ME=√3,所以EEʹ=√2,所以V E−ABCD=13S正方形ABCD⋅EEʹ=13×4×√2=4√23.V E−BCF=V C−BEF=V C−BEA=V E−ABC=13S△ABC⋅EEʹ=13×12×4×√2=23√2,所以多面体ABCDEF的体积为V E−BCF+V E−ABCD=2√2.89. (1)在三棱锥A−BCD中,∵AB⊥平面BCD,又∵CD⊂平面BCD,∴AB⊥CD.又∵BD⊥CD,且BD∩AB=B,∴CD⊥平面ABD.(2)法一:由AB⊥平面BCD,得AB⊥BD,∵AB=BD=1,∴S△ABD=12.∵M是AD中点,∴S△ABM=12S△ABD=14.由(1)知,CD⊥平面ABD,∴三棱锥C−ABM的高ℎ=CD=1,因此三棱锥A−MBC的体积为V A−MBC=V C−ABM=13S△ABM⋅ℎ=112.法二:由AB⊥平面BCD知,平面ABD⊥平面BCD,又平面ABD∩平面BCD=BD,如图,过点M作MN⊥BD交BD于点N,则MN⊥平面BCD,且MN=12AB=12,又CD⊥BD,BD=CD=1,所以S△BCD=1 2 ,∴三棱锥A−MBC的体积V A−MBC=V A−BCD −V M−BCD =13AB ⋅S △BCD −13MN ⋅S △BCD=112.90. (1) 如图,因 ABCD 为菱形,O 为菱形中心,连接 OB ,则 AO ⊥OB ,因为 ∠BAD =π3,故OB =AB ⋅sin∠OAB =2sinπ6=1. 又因为 BM =12,且 ∠OBM =π3,在 △OBM 中OM 2=OB 2+BM 2−2OB ⋅BM ⋅cos∠OBM=12+(12)2−2×1×12×cos π3=34,所以OB 2=OM 2+BM 2,故 OM ⊥BM .又 PO ⊥ 底面 ABCD ,所以 PO ⊥BC ,从而 BC 与平面 POM 内两条相交直线 OM ,PO 都垂直, 所以 BC ⊥ 平面 POM .(2)由(1)可知,OA =AB ⋅cos∠OAB =2⋅cosπ6=√3, 设 PO =a ,由 PO ⊥ 底面 ABCD 知,△POA 为直角三角形,故PA 2=PO 2+OA 2=a 2+3,由 △POM 也是直角三角形,故PM 2=PO 2+OM 2=a 2+34,连接 AM ,在 △ABM 中,AM 2=AB 2+BM 2−2AB ⋅BM ⋅cos∠ABM=22+(12)2−2⋅2⋅12⋅cos 2π3=214,由已知MP⊥AP,故△APM为直角三角形,则PA2+PM2=AM2,即a2+3+a2+34=214,得a=√32,a=−√32(舍去),即PO=√32,此时S ABMO=S△AOB+S△OMB=12⋅AO⋅OB+12⋅BM⋅OM=12⋅√3⋅1+12⋅12⋅√32=5√3 8,所以四棱锥P−ABMO的体积V P−ABMO=13⋅S ABMO⋅PO=13⋅5√38⋅√32=5 16.91. (1)在△ABD中,因为AB=2,AD=4,∠DAB=60∘,所以BD=√AB2+AD2−2AB⋅ADcos∠DAB=2√3.所以AB2+BD2=AD2,所以AB⊥BD.又因为平面EBD⊥平面ABD.平面EBD∩平面ABD=BD,AB⊂平面ABD,所以AB⊥平面EBD.结合DE⊂平面EBD,可得AB⊥DE.(2)由(1)知AB⊥BD,因为CD∥AB,所以CD⊥BD,从而DE⊥BD.在Rt△DBE中,因为DB=2√3,DE=DC=AB=2,所以S△DBE=12DB⋅DE=2√3.又AB⊥平面EBD,BE⊂平面EBD,所以AB⊥BE.因为BE=BC=AD=4,所以S△ABE=12AB⋅BE=4.又DE⊥BD,平面EBD⊥平面ABD,故得到ED⊥平面ABD.而AD⊂平面ABD,所以ED⊥AD,因此S△ADE=12AD⋅DE=4.综上,三棱锥E−ABD的侧面积S=8+2√3.92. (1)如果按方案一,仓库的底面直径变成16m,则仓库的体积V1=13S⋅ℎ=13×π×(162)2×4=2563π(m3)如果按方案二,仓库的高变成8m,则仓库的体积V2=13S⋅ℎ=13×π×(122)2×8=2883π(m3)(2)如果按方案一,仓库的底面直径变成16m,半径为8m.圆锥的母线长为l1=√82+42=4√5(m),则仓库的侧面积S1=π×8×4√5=32√5π(m2);如果按方案二,仓库的高变成8m,圆锥的母线长为l2=√82+62=10(m),则仓库的侧面积S2=π×6×10=60π(m2).(3)因为V2>V1,S2<S1.所以方案二比方案一更加经济.93. (1)取AB的中点M,连接A1M.因为AF=14AB,所以F为AM的中点.。
高中数学8-3简单几何体的表体积第1课时柱体锥体台体的表面积与体积课后提能训练新人教A版必修第二册

第八章 8.3 第1课时A 级——基础过关练1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π【答案】C【解析】底面圆半径为1,高为1,侧面积S =2πrh =2π×1×1=2π.故选C. 2.(2021年银川月考)已知正六棱柱的高为6,底面边长为4,则它的表面积为( ) A .48(3+3) B .48(3+23) C .24(6+2) D .144【答案】A【解析】由题意,知侧面积为6×6×4=144,两底面积之和为2×34×42×6=483,所以表面积S =48(3+3).3.如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于( ) A .π B .2π C .4π D .8π【答案】B【解析】设圆柱的底面半径为r ,则圆柱的母线长为2r ,由题意得S 圆柱侧=2πr ×2r =4πr 2=4π,所以r =1,所以V 圆柱=πr 2×2r =2πr 3=2π.故选B.4.(2021年郑州模拟)如图,ABC -A ′B ′C ′是体积为1的三棱柱,则四棱锥C -AA ′B ′B 的体积是( )A .13B .12 C .23 D .34【答案】C【解析】∵V 三棱锥C -A ′B ′C ′=13V 三棱柱ABC -A ′B ′C ′=13,∴V 四棱锥C -AA ′B ′B =1-13=23.5.将一个正方体截去四个角后,得到一个四面体,这个四面体的体积是原正方体体积的( )A .23B .12 C .13 D .14【答案】C【解析】将正方体ABCD -A ′B ′C ′D ′截去四个角后得到一个四面体B -DA ′C ′.设正方体的棱长为a ,则V 三棱锥B -B ′A ′C ′=V 三棱锥A ′-ABD =V 三棱锥C ′-BCD =V 三棱锥D -A ′C ′D ′=13×12×a ×a ×a=a 36,∴四面体B -DA ′C ′的体积V =V 正方体ABCD -A ′B ′C ′D ′-4V 三棱锥B -B ′A ′C ′=a 3-2a 33=a33,∴这个四面体的体积是原正方体体积的13.故选C.6.表面积为3π的圆锥,它的侧面展开图是一个半圆面,则该圆锥的底面直径为________.【答案】2【解析】设圆锥的母线为l ,圆锥底面半径为r ,由题意可知,πrl +πr 2=3π,且πl =2πr ,解得r =1,即直径为2.7.已知棱长为1,各面均为等边三角形的四面体,则它的表面积是________,体积是________.【答案】 3212【解析】S 表=4×34×12=3,V 体=13×34×12×12-⎝ ⎛⎭⎪⎫332=212.8.圆台的上、下底面半径和高的比为1∶4∶4,若母线长为10,则圆台的表面积为________.【答案】168π【解析】先画轴截面,再利用上、下底面半径和高的比求解.圆台的轴截面如图所示,设上底面半径为r ,下底面半径为R ,则它的母线长为l =h 2+(R -r )2=(4r )2+(3r )2=5r =10,所以r =2,R =8.故S 侧=π(R +r )l =π(8+2)×10=100π,S 表=S 侧+πr 2+πR 2=100π+4π+64π=168π.9.若圆锥的表面积是15π,侧面展开图的圆心角是60°,求圆锥的体积. 解:设圆锥的底面半径为r ,母线为l , 则2πr =13πl ,得l =6r .又S 锥=πr 2+πr ·6r =7πr 2=15π,得r =157, 圆锥的高h =35×157, V =13πr 2h =13π×157×35×157=2537π. 10.在长方体ABCD -A 1B 1C 1D 1中,截下一个棱锥C -A 1DD 1,求棱锥C -A 1DD 1的体积与剩余部分的体积之比.解:已知长方体可以看成直四棱柱,设它的底面ADD 1A 1的面积为S ,高为h ,则它的体积为V =Sh .而棱锥C -A 1DD 1的底面积为12S ,高为h ,故三棱锥C -A 1DD 1的体积VC -A 1DD 1=13·⎝ ⎛⎭⎪⎫12S h =16Sh ,余下部分体积为Sh -16Sh =56Sh .所以棱锥C -A 1DD 1的体积与剩余部分的体积之比1∶5.B 级——能力提升练11.(2020年株洲期末)《九章算术》卷5《商功》记载一个问题“今有圆堡壔(d ǎo),周四丈八尺,高一丈-尺,文积几何?”意思是:今有圆柱形土筑小城堡,底面周长为4丈8尺,高1丈1尺,问它的体积是多少立方尺?这个问题的答案是(π≈3,1丈=10尺)( )A .2 112B .2 111C .4 224D .4 222【答案】A【解析】由已知,圆柱底面圆的周长为48尺,圆柱的高为11尺,∴底面半径r =482π=8(尺),∴它的体积V =11πr 2=2 112(立方尺).故选A.12.(2021年哈尔滨月考)鲁班锁起源于中国古代建筑的榫卯结构.鲁班锁类玩具比较多,形状和内部的构造各不相同,一般都是易拆难装.图1是一个鲁班锁玩具,图2是该鲁班锁玩具的直观图,每条棱的长均为2,则该鲁班锁玩具的表面积为( )A .8(6+62+3)B .6(8+82+3)C .8(6+63+2)D .6(8+83+2)【答案】A【解析】由题图,可知该鲁班锁玩具可以看成是由一个棱长为2(1+2)的正方体截去了8个正三棱锥而得到的,且被截去的正三棱锥的底面边长为2,侧棱长为2,则该鲁班锁玩具的表面积为6×4×(1+2)2-4×12×2×2+8×12×2×3=8(6+62+3).故选A.13.(2021年武汉模拟)已知某几何体是由两个全等的长方体和一个三棱柱组合而成,如图所示,其中长方体的长、宽、高分别为4,3,3,三棱柱底面是直角边分别为4,3的直角三角形,侧棱长为3,则此几何体的体积是________,表面积是________.【答案】90 138【解析】该几何体的体积V =4×6×3+12×4×3×3=90,表面积S =2(4×6+4×3+6×3)-3×3+12×4×3×2+32+42×3+3×4=138.14.用一张正方形的纸把一个棱长为1的正方体礼品盒完全包住,不将纸撕开,则所需纸的最小面积是________.【答案】8【解析】如图1为棱长为1的正方体礼品盒,先把正方体的表面按图所示方式展开成平面图形,再把平面图形尽可能拼成面积较小的正方形,如图2所示,由图知正方形的边长为22,其面积为8.图1 图215.降水量是指水平平面上单位面积降水的深度,现用上口直径为38 cm 、底面直径为24 cm 、深度为35 cm 的圆台形水桶(轴截面如图所示)来测量降水量.如果在一次降雨过程中,此桶盛得的雨水正好是桶深的17,求本次降雨的降水量是多少毫米(精确到1 mm).解:因为这次降雨的雨水正好是桶深的17,所以水深为17×35=5(cm).如图,设水面半径为r cm ,在△ABC 中,AC A ′C ′=CB C ′B ,所以7r -12=7,r =13.所以V 水=13×(π×122+π×122×π×132+π×132)×5=2 3453π(cm 3).水桶的上口面积是S =π×192=361π(cm 2), 所以V 水S =2 3453π361π×10≈22(mm).故此次降雨的降水量约是22 mm.16.已知一个圆锥的底面半径为R ,高为H ,在其内部有一个高为x 的内接圆柱. (1)求圆柱的侧面积;(2)x 为何值时,圆柱的侧面积最大?解:(1)作圆锥的轴截面,如图所示.设圆柱底面半径为r ,因为r R =H -x H ,所以r =R -RHx .所以S 圆柱侧=2πrx =2πRx -2πRHx 2(0<x <H ).(2)因为-2πR H <0,所以当x =2πR 4πR H=H 2时,S圆柱侧最大.故当x =H2时,即圆柱的高为圆锥高的一半时,圆柱的侧面积最大.C 级——探索创新练17.一个封闭的正三棱柱容器,高为3,内装水若干(如图1,底面处于水平状态).将容器放倒(如图2,一个侧面处于水平状态),这时水面所在的平面与各棱交点E ,F ,F 1,E 1分别为所在棱的中点,则图1中水面的高度为( )A . 3B .2C .332D .94【答案】D【解析】设正三棱柱的底面积为S ,则VABC -A 1B 1C 1=3S . ∵E ,F ,F 1,E 1分别为所在棱的中点.∴S AEF S =14,即S AEF =14S .∴S BCEF =34S .∴VBCFE -B 1C 1F 1E 1=3×34S =94S .则图1中水面的高度为94.故选D.。
新人教版高中数学必修第二册 第8章 8.3 简单几何体的表面积和体积 第1课时 柱、锥、台的表面积和体积

8.3简单几何体的表面积与体积第1课时柱、锥、台的表面积和体积考点学习目标核心素养柱、锥、台的表面积了解柱体、锥体、台体的侧面展开图,掌握柱体、柱、锥、台的体积直观想象、数学运算锥体、台体的表面积的求法能利用柱体、锥体、台体的体积公式求体积,理解柱体、锥体、台体的体积之间的关系直观想象、数学运算问题导学预习教材P114-P117的内容,思考以下问题:1.棱柱、棱锥、棱台的表面积如何计算?2.圆柱、圆锥、圆台的侧面展开图分别是什么?3.圆柱、圆锥、圆台的侧面积公式是什么?4.柱体、锥体、台体的体积公式分别是什么?5.圆柱、圆锥、圆台的侧面积公式、体积公式之间分别有怎样的关系?1.棱柱、棱锥、棱台的表面积多面体的表面积就是围成多面体各个面的面积的和.棱柱、棱锥、棱台的表面积就是围成它们的各个面的面积的和.2.棱柱、棱锥、棱台的体积(1)V棱柱=Sh;(2)V棱锥=13Sh;V棱台=13h(S′+SS′+S),其中S′,S分别是棱台的上、下底面面积,h为棱台的高.3.圆柱、圆锥、圆台的表面积和体积名称图形公式圆柱底面积:S底=πr2侧面积:S侧=2πrl表面积:S=2πrl+2πr2体积:V=πr2l圆锥底面积:S 底=πr 2 侧面积:S 侧=πrl表面积:S =πrl +πr 2 体积:V =13πr 2h圆台上底面面积:S 上底=πr ′2 下底面面积:S 下底=πr 2 侧面积:S 侧=πl (r +r ′)表面积:S =π(r ′2+r 2+r ′l +rl ) 体积:V =13πh (r ′2+r ′r +r 2)1.柱体、锥体、台体的体积(1)柱体:柱体的底面面积为S ,高为h ,则V =Sh . (2)锥体:锥体的底面面积为S ,高为h ,则V =13Sh .(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13()S ′+SS ′+S h .2.圆柱、圆锥、圆台的侧面积公式之间的关系 S 圆柱侧=2πrl ――→r ′=rS 圆台侧=π(r ′+r )l ――→r ′=0S 圆锥侧=πrl . 3.柱体、锥体、台体的体积公式之间的关系 V 柱体=Sh ――→S ′=S V 台体=13(S ′+S ′S +S )h ――→S ′=0V 锥体=13Sh .判断(正确的打“√”,错误的打“×”)(1)几何体的表面积就是其侧面面积与底面面积的和.( ) (2)几何体的侧面积是指各个侧面的面积之和.( ) (3)等底面面积且等高的两个同类几何体的体积相同.( ) (4)在三棱锥P -ABC 中,V P ABC =V A PBC =V B P AC =V C P AB .( ) 答案:(1)√ (2)√ (3)√ (4)√ 棱长都是 1 的三棱锥的表面积为( )A.3 B .23 C .33 D .43解析:选A.S表=4S正△=4×34= 3.若长方体的长、宽、高分别为3 cm,4 cm,5 cm,则长方体的体积为() A.27 cm3B.60 cm3C.64 cm3D.125 cm3解析:选B.长方体即为四棱柱,其体积为底面积×高,即为3×4×5=60(cm3).圆台的上、下底面半径分别为3 和4,母线长为6,则其表面积等于() A.72 B.42πC.67πD.72π解析:选C.S表=π(32+42+3×6+4×6)=67π.柱、锥、台的表面积(1)若圆锥的正视图是正三角形,则它的侧面积是底面积的()A.2倍B.3 倍C.2 倍D.5 倍(2)已知正方体的8 个顶点中,有4 个为侧面是等边三角形的三棱锥的顶点,则这个三棱锥与正方体的表面积之比为()A.1∶ 2 B.1∶ 3C.2∶ 2 D.3∶ 6(3)已知某圆台的一个底面周长是另一个底面周长的3 倍,母线长为3 ,圆台的侧面积为84π,则该圆台较小底面的半径为()A.7B.6C.5 D.3【解析】(1)设圆锥的底面半径为r,母线长为l,则由题意可知,l=2r,于是S侧=πr·2r=2πr2,S底=πr2,可知选C.(2)棱锥B′ACD′为适合条件的棱锥,四个面为全等的等边三角形,设正方体的棱长为1,则B′C=2,S△B′AC=32.三棱锥的表面积S锥=4×32=23,又正方体的表面积S正=6.因此S锥∶S正=23∶6=1∶ 3.(3)设圆台较小底面的半径为 r ,则另一底面的半径为 3r .由 S 侧=3π(r +3r )=84π,解得 r =7.【答案】 (1)C (2)B (3)A空间几何体表面积的求法技巧(1)多面体的表面积是各个面的面积之和. (2)组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展开为平面图形计算,而表面积是侧面积与底面圆的面积之和.已知正四棱台(正四棱锥被平行于底面的平面所截,截面与底面间的部分)上底面边长为4,侧棱和下底面边长都是8,求它的侧面面积.解:法一:设正四棱台为ABCDA 1B 1C 1D 1,如图①.设B 1F 为斜高.在Rt △B 1FB 中,BF =12×(8-4)=2,B 1B =8,所以B 1F =82-22=215,所以S 正棱台侧=4×12×(4+8)×215=4815.①法二:设正四棱台为ABCDA 1B 1C 1D 1,延长正四棱台的侧棱交于点P ,作面PBC 上的斜高PE ,交B 1C 1于E 1,如图②.设PB 1=x ,则x x +8=48,解得x =8.所以PB 1=B 1B =8, 所以E 1为PE 的中点,又PE 1=PB 21-B 1E 21=82-22=215, ②所以PE =2PE 1=415.所以S 正棱台侧=S 大正棱锥侧-S 小正棱锥侧 =4×12×8×PE -4×12×4×PE 1=4×12×8×415-4×12×4×215=4815.柱、锥、台的体积如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为a ,过顶点B ,D ,A 1截下一个三棱锥.(1)求剩余部分的体积;(2)求三棱锥A -A 1BD 的体积及高. 【解】 (1)V 三棱锥A 1ABD =13S △ABD ·A 1A=13×12·AB ·AD ·A 1A =16a 3. 故剩余部分的体积V =V 正方体-V 三棱锥A 1ABD =a 3-16a 3=56a 3.(2)V 三棱锥A -A 1BD =V 三棱锥A 1ABD =16a 3.设三棱锥A -A 1BD 的高为h , 则V 三棱锥A -A 1BD =13·S △A 1BD ·h=13×12×32(2a )2h =36a 2h , 故36a 2h =16a 3,解得h =33a .求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等积法:例如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,棱台补成棱锥等. (4)分割法:将几何体分割成易求解的几部分,分别求体积.[提醒] 求几何体的体积时,要注意利用好几何体的轴截面(尤其为圆柱、圆锥时),准确求出几何体的高和底面积.1.圆锥的轴截面是等腰直角三角形,侧面积是 162π,则圆锥的体积是( ) A.64π3B.128π3C .64πD .1282π解析:选 A .作圆锥的轴截面,如图所示.由题设,在 △P AB 中,∠APB =90°,P A =PB .设圆锥的高为 h ,底面半径为 r , 则 h =r ,PB =2r . 由 S 侧=π·r ·PB =162π,得2πr 2=162π.所以 r =4.则 h =4. 故圆锥的体积 V 圆锥=13πr 2h =643π.2.圆柱的侧面展开图是长 12 cm ,宽 8 cm 的矩形,则这个圆柱的体积为( ) A.288πcm 3 B.192π cm 3 C.288π cm 3或192πcm 3 D .192π cm 3解析:选 C .当圆柱的高为 8 cm 时, V =π×⎝ ⎛⎭⎪⎫122π2×8=288π(cm 3),当圆柱的高为 12cm 时,V =π×⎝ ⎛⎭⎪⎫82π2×12=192π(cm 3).3.(2019·高考全国卷Ⅲ)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体ABCD -A 1B 1C 1D 1挖去四棱锥O -EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,AB =BC =6 cm ,AA 1=4 cm.3D 打印所用原料密度为0.9 g/cm 3.不考虑打印损耗,制作该模型所需原料的质量为________g.解析:由题易得长方体ABCD -A 1B 1C 1D 1的体积为6×6×4=144(cm 3),四边形EFGH 为平行四边形,如图所示,连接GE ,HF ,易知四边形EFGH 的面积为矩形BCC 1B 1面积的一半,即12×6×4=12(cm 2),所以V 四棱锥O -EFGH =13×3×12=12(cm 3),所以该模型的体积为144-12=132(cm 3),所以制作该模型所需原料的质量为132×0.9=118.8(g).答案:118.8组合体的表面积和体积如图在底面半径为 2,母线长为 4 的圆锥中内接一个高为3的圆柱,求圆柱的表面积.【解】 设圆锥的底面半径为 R ,圆柱的底面半径为 r ,表面积为 S . 则 R =OC =2,AC =4, AO =42-22=2 3.如图所示,易知△AEB ∽△AOC ,所以AE AO =EB OC ,即323=r 2,所以 r =1,S 底=2πr 2=2π,S 侧=2πr ·h =23π. 所以 S =S 底+S 侧=2π+23π =(2+23)π.1.[变问法]本例中的条件不变,求圆柱的体积与圆锥的体积之比.解:由例题解析可知:圆柱的底面半径为 r =1,高 h =3,所以圆柱的体积 V 1=πr 2h =π×12×3=3π.圆锥的体积 V 2=13π×22×23=833π.所以圆柱与圆锥的体积比为 3∶8.2.[变问法]本例中的条件不变,求图中圆台的表面积与体积.解:由例题解析可知:圆台的上底面半径 r =1,下底面半径 R =2,高 h =3,母线 l =2,所以圆台的表面积 S =π(r 2+R 2+r ·l +Rl )=π(12+22+1×2+2×2)=11π.圆台的体积 V =13π(r 2+rR +R 2)h =13π(12+2+22)×3=733π.3.[变条件、变问法]本例中的“高为3”改为“高为 h ”,试求圆柱侧面积的最大值. 解:设圆锥的底面半径为 R ,圆柱的底面半径为 r , 则 R =OC =2,AC =4, AO =42-22=2 3.如图所示易知△AEB ∽△AOC , 所以AE AO =EBOC ,即23-h 23=r 2, 所以 h =23-3r ,S圆柱侧=2πrh=2πr(23-3r)=-23πr2+43πr,所以当r=1,h=3时,圆柱的侧面积最大,其最大值为23π.求组合体的表面积与体积的步骤(1)分析结构特征:弄清组合体的组成形式,找准有关简单几何体的关键量.(2)设计计算方法:根据组成形式,设计计算方法,特别要注意“拼接面”面积的处理,利用“切割”“补形”的方法求体积.(3)计算求值:根据设计的计算方法求值.1.如图,在多面体ABCDEF中,已知面ABCD是边长为4 的正方形,EF∥AB,EF =2,EF上任意一点到平面ABCD的距离均为3,求该多面体的体积.解:如图,连接EB,EC.四棱锥E-ABCD的体积V四棱锥E-ABCD=13×42×3=16.因为AB=2EF,EF∥AB,所以S△EAB=2S△BEF.所以V三棱锥F-EBC=V三棱锥C-EFB=12V三棱锥C-ABE=12V三棱锥E-ABC =12×12V四棱锥E-ABCD=4.所以多面体的体积V=V四棱锥E-ABCD+V三棱锥F-EBC=16+4=20.2.如图,一个底面半径为2 的圆柱被一平面所截,截得的几何体的最短和最长母线长分别为2 和3,求该几何体的体积.解:用一个完全相同的几何体把题中几何体补成一个圆柱,如图,则圆柱的体积为π×22×5=20π,故所求几何体的体积为10π.1.已知某长方体同一顶点上的三条棱长分别为1,2,3,则该长方体的表面积为( ) A .22 B .20 C .10D .11解析:选A.所求长方体的表面积S =2×(1×2)+2×(1×3)+2×(2×3)=22. 2.正三棱锥的高为3,侧棱长为23,则这个正三棱锥的体积为( ) A.274 B.94 C.2734D.934解析:选D.由题意可得底面正三角形的边长为3,所以V =13×34×32×3=934.故选D.3.已知圆台的上、下底面的面积之比为9∶25,那么它的中截面截得的上、下两台体的侧面积之比是________.解析:圆台的上、下底面半径之比为3∶5,设上、下底面半径为3x ,5x ,则中截面半径为4x ,设上台体的母线长为l ,则下台体的母线长也为l ,上台体侧面积S 1=π(3x +4x )l =7πxl ,下台体侧面积S 2=π(4x +5x )l =9πxl ,所以S 1∶S 2=7∶9.答案:7∶9 4.如图,三棱台ABC A 1B 1C 1中,AB ∶A 1B 1=1∶2,求三棱锥A 1ABC ,三棱锥BA 1B 1C ,三棱锥CA 1B 1C 1的体积之比.解:设棱台的高为h ,S △ABC =S ,则S △A 1B 1C 1=4S . 所以VA 1ABC =13S △ABC ·h =13Sh ,VCA 1B 1C 1=13S △A 1B 1C 1·h =43Sh .又V 台=13h (S +4S +2S )=73Sh ,所以VBA 1B 1C =V 台-VA 1ABC -VCA 1B 1C 1=73Sh -Sh 3-4Sh 3=23Sh , 所以体积比为1∶2∶4.[A 基础达标]1.若某圆锥的高等于其底面直径,则它的底面积与侧面积之比为( ) A .1∶2 B .1∶ 3 C .1∶ 5D.3∶2解析:选C.设圆锥底面半径为r ,则高h =2r ,所以其母线长l =5r .所以S 侧=πrl =5πr 2,S 底=πr 2,S 底∶S 侧=1∶ 5.2.如图,ABC A ′B ′C ′是体积为1的棱柱,则四棱锥C -AA ′B ′B 的体积是( )A.13B.12 C.23D.34解析:选C.因为V C A ′B ′C ′ =13V ABC A ′B ′C ′=13, 所以V C AA ′B ′B =1-13=23.3.(2018·高考全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π 解析:选B.设所截正方形的边长为 a ,则 a 2=8,即 a =2 2.所以圆柱的母线长为 22,底面圆半径 r =2,所以圆柱的表面积为 22π×22+π(2)2×2=8π+4π=12π.4.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 是面A 1B 1C 1D 1内任意一点,则四棱锥P -ABCD 的体积为( )A.16 B.13 C.12D.23解析:选B.因为正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 是面A 1B 1C 1D 1内任意一点,所以点P 到平面ABCD 的距离d =AA 1=1, S 正方形ABCD =1×1=1, 所以四棱锥P -ABCD 的体积为:V P ABCD =13×AA 1×S 正方形ABCD =13×1×1=13.故选B.5.(2019·临川检测)一个封闭的正三棱柱容器,高为 3,内装水若干(如图甲,底面处于水平状态),将容器放倒(如图乙,一个侧面处于水平状态),这时水面与各棱交点 E ,F ,F 1,E 1 分别为所在棱的中点,则图甲中水面的高度为( )A.32B.74 C .2D.94解析:选 D .因为 E ,F ,F 1,E 1 分别为所在棱的中点,所以棱柱 EFCB -E 1F 1C 1B 1 的体积 V =S梯形EFCB ×3=34S △ABC ×3=94S △ABC .设甲中水面的高度为 h ,则 S △ABC ×h =94S △ABC ,解得h =94,故选 D.6.已知圆柱 OO ′的母线 l =4 cm ,表面积为 42π cm 2,则圆柱 OO ′的底面半径 r =______cm.解析:圆柱 OO ′的侧面积为 2πrl =8πr (cm 2),两底面面积为 2×πr 2=2πr 2(cm 2), 所以 2πr 2+8πr =42π, 解得 r =3 或 r =-7(舍去), 所以圆柱的底面半径为 3 cm. 答案:37.表面积为 3π的圆锥,它的侧面展开图是一个半圆面,则该圆锥的底面直径为________.解析:设圆锥的母线为 l ,圆锥底面半径为 r ,由题意可知,πrl +πr 2=3π,且 πl =2πr .解得 r =1,即直径为 2.答案:28.圆柱内有一个内接长方体 ABCD -A 1B 1C 1D 1,长方体的体对角线长是 10 2 cm ,圆柱的侧面展开图为矩形,此矩形的面积是 100π cm 2,则圆柱的底面半径为______cm ,高为______cm.解析:设圆柱底面半径为 r cm ,高为 h cm ,如图所示,则圆柱轴截面长方形的对角线长等于它的内接长方体的体对角线长,则:⎩⎪⎨⎪⎧(2r )2+h 2= (102)2,2πrh =100π,所以⎩⎪⎨⎪⎧r =5,h =10.即圆柱的底面半径为 5 cm ,高为 10 cm. 答案:5 109.如图,已知正三棱锥 S -ABC 的侧面积是底面积的 2 倍,正三棱锥的高 SO =3,求此正三棱锥的表面积.解:如图,设正三棱锥的底面边长为 a ,斜高为 h ′,过点 O 作 OE ⊥AB ,与 AB 交于点 E ,连接 SE ,则 SE ⊥AB ,SE =h ′.因为 S 侧=2S 底, 所以 3×12·a ·h ′=34a 2×2.所以 a =3h ′. 因为 SO ⊥OE , 所以 SO 2+OE 2=SE 2. 所以32+⎝⎛⎭⎫36×3h ′2=h ′2. 所以 h ′=23,所以 a =3h ′=6. 所以 S 底=34a 2=34×62=93, S 侧=2S 底=18 3.所以 S 表=S 侧+S 底=183+93=27 3.10.若 E ,F 是三棱柱 ABC -A 1B 1C 1 侧棱 BB 1和 CC 1 上的点,且 B 1E =CF ,三棱柱的体积为 m ,求四棱锥 A -BEFC 的体积.解:如图所示, 连接 AB 1,AC 1. 因为 B 1E =CF ,所以 梯形 BEFC 的面积等于梯形 B 1EFC 1 的面积. 又四棱锥 A -BEFC 的高与四棱锥 A -B 1EFC 1 的高相等, 所以 V A BEFC =VA B 1EFC 1 =12VA BB 1C 1C . 又 VA A 1B 1C 1=13S △A 1B 1C 1·h ,VABC A 1B 1C 1=S △A 1B 1C 1·h =m ,所以 VA A 1B 1C 1=m3,所以 VA BB 1C 1C =VABC A 1B 1C 1-VA A 1B 1C 1=23m .所以 V A BEFC =12×23m =m3,即四棱锥A-BEFC的体积是m3.[B能力提升]11.(2018·高考浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2 B.4C.6 D.8解析:选C.由三视图可知,该几何体是一个底面为直角梯形的直四棱柱,所以该几何体的体积V=12×(1+2)×2×2=6.故选C.12.(2019·高考全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1,则该半正多面体共有________个面,其棱长为________.解析:依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体的表面由18个正方形,8个正三角形组成,因此题中的半正多面体共有26个面.注意到该半正多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x,则22x+x+22x=1,解得x=2-1,故题中的半正多面体的棱长为2-1.答案:26 2-113.用一张正方形的纸把一个棱长为 1 的正方体礼品盒完全包住,不将纸撕开,则所需纸的最小面积是________.解析:如图①为棱长为 1 的正方体礼品盒,先把正方体的表面按图所示方式展开成平面图形,再把平面图形尽可能拼成面积较小的正方形,如图②所示,由图知正方形的边长为 22,其面积为 8.答案:814.如图所示,已知三棱柱ABC -A ′B ′C ′,侧面B ′BCC ′的面积是S ,点A ′到侧面B ′BCC ′的距离是a ,求证:三棱柱ABC -A ′B ′C ′的体积V =12Sa .证明:法一:如图所示,连接A ′B ,A ′C ,这样就把三棱柱分割成了两个棱锥.显然三棱锥A ′ABC 的体积是13V ,而四棱锥A ′BCC ′B ′的体积为13Sa ,故有13V +13Sa =V ,所以三棱柱ABC -A ′B ′C ′的体积V =12Sa .法二:如图所示,将三棱柱ABC -A ′B ′C ′补成一个四棱柱ACBD -A ′C ′B ′D ′,其中AC ∥BD ,AD ∥BC ,即ACBD 为一个平行四边形,显然三棱柱ABD A ′B ′D ′的体积与原三棱柱ABC -A ′B ′C ′的体积相等.因为四棱柱ACBD -A ′C ′B ′D ′以BCC ′B ′为底面,高为点A ′到面BCC ′B ′的距离,所以补形后的四棱柱的体积为Sa ,于是三棱柱ABC -A ′B ′C ′的体积V =12Sa .[C 拓展探究]15.某养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪用).已建的仓库的底面直径为12 m ,高为4 m .养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的表面积; (3)哪种方案更经济些?解:(1)设两种方案所建的仓库的体积分别为V 1,V 2.方案一:仓库的底面直径变成16 m ,则其体积V 1=13×π×⎝⎛⎭⎫1622×4=2563π(m 3);方案二:仓库的高变成8 m ,则其体积V 2=13×π×⎝⎛⎭⎫1222×8=96π(m 3).(2)设两种方案所建的仓库的表面积分别为S 1,S 2. 方案一:仓库的底面直径变成16 m ,半径为8 m , 此时圆锥的母线长为l 1=82+42=45(m),则仓库的表面积S 1=π×8×(8+45) =(64+325)π(m 2);方案二:仓库的高变成8 m ,此时圆锥的母线长为l 2=82+62=10(m),则仓库的表面积S 2=π×6×(6+10) =96π(m 2).(3)因为V 2>V 1,S 2<S 1, 所以方案二比方案一更加经济.。
高中数学必修二 8 简单几何体的表面积与体积(精练)(含答案)

8.3 简单几何体的表面积与体积(精练)【题组一 旋转体的体积】1.(2021·吉林·延边二中高一期中)阿基米德(Archimedes ,公元前287年—公元前212年)是古希腊伟大的数学家、物理学家和天文学家.后人按照他生前的要求,在他的墓碑上刻着一个圆柱容器里放了一个球(如图所示),该球与圆柱的两个底面及侧面均相切,圆柱的底面直径与高都等于球的直径.若该球的体积为36π,则圆柱的体积为 ( )A .36πB .45πC .54πD .63π【答案】C 【解析】因为该球的体积为36π,设球的半径为R ,则34363R ππ=,解得3R =。
所以圆柱的体积为:23654V ππ=⨯⨯=,故选:C.2.(2021·河北·保定市第二十八中学高一月考)唐朝的狩猎景象浮雕银杯如图1所示,其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度)如图2所示,设酒杯上部分(圆柱)的体积为1V ,下部分(半球)的体积为2V ,若122V V =,则半球的半径与圆柱的高之比为( )A .4:3B .3:4C .1:2D .5:3【答案】B 【解析】设圆柱的高为h ,半径为r ,则圆柱的体积为21=V r h π.而半球的体积为332412==323V r r ππ⨯. 因为122V V =,所以324=3r r h ππ,所以3=4r h . 故选:B3(2021·全国·高一课时练习)如图所示,半径为R 的半圆内(其中∠BAC =30°)的阴影部分以直径AB 所在直线为轴,旋转一周得到一个几何体,则该几何体的表面积为_____,体积为_____.2R 356R π 【解析】如图所示,过C 作CO 1⊥AB 于O 1,在半圆中可得∠BCA =90°,又∠BAC =30°,AB =2R ,∴AC ,BC =R ,CO 1,∴1AO S 圆锥侧=π=32πR 2,1BO S 圆锥侧=π×R R 2,∴S 几何体表=S 球+11AO BO S S +=圆锥侧圆锥侧R 2,πR 2. 又V 球=43πR 3,∴V 几何体=V 球-(11AO BO V V +圆锥圆锥)=43πR 3-13×AB ×π×C 2143O =πR 3-22536R π⎫⨯=⎪⎪⎝⎭πR 3.2R ;356R π4.(2021·全国·高一课时练习)若圆锥的侧面展开图为一个半径为2的半圆,则圆锥的体积是__________.【解析】设圆锥的底面半径为r ,则22ππ=r ,所以1r =,圆锥的高h = 所以圆锥的体积213V r h π=5.(2021·全国·高一课时练习)若一个圆锥的底面直径和高都与一个球的直径相等,那么这个圆锥的体积与球的体积之比为________. 【答案】12【解析】解析:设球体的半径为R 2312=2=33R V R R ππ⋅圆锥,343V R π球=,33213==423R V R V ππ圆锥球. 故答案为:12【题组二 旋转体的表面积】 1.(2021·全国·高一课时练习)如图,在四边形ABCD 中,∠DAB=90°,∠ADC=135°,AB=5,CD=AD=2,则四边形ABCD 绕AD 所在直线旋转一周所成几何体的表面积为( )A .(60+πB .(60+)π C .(56+πD .(56+)π【答案】A 【解析】四边形ABCD 绕AD 所在直线旋转一周所成的几何体为一个圆台挖去一个圆锥,如图所示:因为25r AB ==,所以圆台下底面面积125S π=,又因为CD =,135ACD ∠=,所以12ED r ==,25l ==,所以圆台的侧面积()()212225535S r r l πππ=+=+⨯=.圆锥的侧面积3111122222S r l ππ=⨯⨯=⨯⨯⨯.所以几何体的表面积为(123253560S S S S πππ=++=++=+.故选:A2.(2021·山东邹城·高一期中)如图是底面半径为3的圆锥,将其放倒在一平面上,使圆锥在此平面内绕圆锥顶点S 滚动,当这个圆锥在平面内转回原位置时,圆锥本身恰好滚动了3周,则( )A .圆锥的母线长为18B .圆锥的表面积为27πC .圆锥的侧面展开图扇形圆心角为60°D .圆锥的体积为【答案】D【解析】设圆锥的母线长为l ,以S 为圆心,SA 为半径的圆的面积为2S l π=,又圆锥的侧面积3S rl l ππ==圆锥侧,因为圆锥在平面内转到原位置时,圆锥本身滚动了3周,所以233l l ππ=⨯,解得9l =,所以圆锥的母线长为9,故选项A 错误;圆锥的表面积239336S S S πππ=+=⨯⨯+⨯=圆锥侧底,故选项B 错误;因为圆锥的底面周长为236ππ⨯=,设圆锥的侧面展开图扇形圆心角为α,则69πα=⋅,解得23πα=, 所以圆锥的侧面展开图扇形圆心角为120°,故选项C 错误;圆锥的高h =所以圆锥的体积为2133V π=⨯⨯⨯=,故选项D 正确. 故选:D .3.(2021·重庆·垫江第五中学校高一月考)如图,圆锥的母线长为4,点M 为母线AB 的中点,从点M 处拉一条绳子,绕圆锥的侧面转一周达到B 点,这条绳子的长度最短值为则此圆锥的表面积为__________【答案】5π【解析】将圆锥侧面沿母线AB 剪开,其侧面展开图为扇形,如图,从点M 处拉一条绳子,绕圆锥的侧面转一周达到B 点,最短距离即为线段BM 长,则有BM = 而M 是线段AB '中点,又母线长为4,于是得22220AM AB BM +==,即2BAB π'∠=,设圆锥底面圆半径为r ,从而有:242r ππ=⋅,解得1r =,所以圆锥的表面积为25S r r AB πππ=+⋅=.故答案为:5π4(2021·全国·高一课时练习)已知一块正方形薄铁片的边长为8cm ,以它的一个顶点为圆心,一边长为半径画弧,沿弧剪下一个扇形(如图),若用这块扇形铁片围成一个无底的圆锥,则这个无底的圆锥的表面积为多少平方厘米?【答案】()216cm π 【解析】由已知,可得这个无底的圆锥的母线长为8cm ,设圆锥的底面半径为cm r ,则282r ππ=⨯,所以2cm r =,所以圆锥的表面积即侧面积()22816cm S rl πππ==⨯=侧. 【题组三 多面体的体积】1.(2021·上海外国语大学闵行外国语中学高二期中)在三棱锥P ABC -中,已知5PA BC PB AC PC AB ======,则该三棱锥的体积为___________.【答案】8【解析】如图,设长方体的三条棱长为,,a b c ,由题得22220a b +==;2213a c +=;222525b c +==, 解之得2224,16,9a b c ===.所以2,4,3a b c ===. 所以该三棱锥的体积为112344243=832⨯⨯-⨯⨯⨯⨯⨯.故答案为:82(2021·全国·高一课时练习)已知一个空间几何体的所有棱长均为1 cm ,其表面展开图如图所示,则该空间几何体的体积V =________cm 3.【答案】【解析】依题意,原几何体是由一个正方体上面接一个正四棱锥组成,其中正方体的棱长为1cm ,正方体的体积为1cm 3,正四棱锥的底面边长和侧棱长均为1cm ,体积为2113⨯=3),所以该空间几何体的体积为(1V =cm 3.故答案为:3.(2021·全国·高一课时练习)球O 的球心为点O ,球O 3的圆锥,三棱锥V ABC -内接于球O ,已知,OA OB AC BC ⊥⊥,则三棱锥V ABC -的体积的最大值为_______.【解析】=O 的半径为r=,解得1r =, ,1OA OB OA OB ⊥==,AB ∴=AC BC ⊥,∴C 在以AB 为直径的圆上,∴平面OAB ⊥平面ABC ,∴O 到平面ABC 2,故V 到平面ABC 1+,又C 到AB∴三棱锥V ABC -的体积的最大值为,111)32⨯4.(2021·全国·高一课时练习)如图所示,△ABC 和△A ′B ′C ′的对应顶点的连线AA ′,BB ′,CC ′交于同一点O ,且12AO BO CO A O B O C O =''==',则O ABC O A B C V V --'''=___________. 【答案】18【解析】如题干图,12AO BO CO A O B O C O =''==', 可证AB //A ′B ′,AC //A ′C ′,BC //B ′C ′.所以平面//ABC 平面A B C '''三棱锥O ABC -和三棱锥O A B C '''-高之比也为12,由等角定理得∠CAB =∠C ′A ′B ′,∠ACB =∠A ′C ′B ′,所以△ABC ∽△A ′B ′C ′, 由12AO BO CO A O B O C O =''==', 可得211()24ABC A B C S S '''==, 所以O ABC O A B C V V --'''==111428⨯=. 故答案为:185.(2021·山东·日照神州天立高级中学有限责任公司高一月考)如图是边长为1的正方体,H 、G 、F 分别是棱AB 、AD 、1AA 的中点,现在沿三角形GFH 所在平面锯掉正方体的一个角,问锯掉的这块的体积是原正方体的______.【答案】148【解析】1111113222248A FGH V -=⨯⨯⨯⨯=,所以148A FGH V V -=正方体, 故答案为:148. 6.(2021·黑龙江·哈师大附中高一期中)如图,在四面体ABCD 中作截面PQR ,其中14AR AD =,13AP AC =,12AQ AB =,则:A PQR D BCPQ V V --=______.【答案】1:20【解析】作RG ⊥平面ABC ,作DH ⊥平面ABC ,则GH 共线,由14AR AD =,则14RG DH =, 由12AQ AB =,13AP AC =,则16APQ ABC S S =, 所以15APQBCPQ S S =, 所以11113:154203APQ R APQA PQR D BCPQ D BCPQ BCPQ S RG V V V V S DH ----⋅===⨯=⋅,故答案为:1:20【题组四 多面体的表面积】1.(2021·上海市控江中学高二期中)若正四棱台的上底边长为2,下底边长为8,高为4,则它的侧面积为___________.【答案】100【解析】因正四棱台的上底边长为2,下底边长为8,高为4,则该正四棱台上底、下底面边心距分别为1,4,而正四棱台的高、斜高、两底面对应边心距构成直角梯形,于是得斜高5h '=, 因此,侧面积28451002S +=⨯⨯=, 所以所求的侧面积为100.故答案为:1002(2021·上海外国语大学闵行外国语中学高二期中)已知正三棱锥O ABC -的底面边长为4,高为2,则此三棱锥的侧面积为___________.【答案】【解析】由题意作出图形如图:因为三棱锥P ABC -是正三棱锥,顶点在底面上的射影D 是底面的中心,在三角PDF 中, 2PD =,DF =,PF ∴==则这个棱锥的侧面积为1342⨯⨯=故答案为:3.(2021·全国·高一课时练习)已知四棱台的上、下底面分别是边长为4和8的正方形,侧面是腰长为8的等腰梯形,则该四棱台的表面积为________.【答案】80+【解析】如图,在四棱台1111ABCD A B C D -中,过点1B 作1B F BC ⊥,垂足为点F ,在1Rt B FB 中1(84)22BF =⨯-=,18B B =,故1B F =所以111(84)2BB C C S =⨯+⨯=梯形故四棱台的侧面积4S =⨯=侧,所以448880S =⨯+⨯=+表故答案为:80+4.(2021·全国·高一课时练习)已知正四棱台两底面边长分别为4cm,8cm ,侧棱长为8cm ,则它的侧面积为_______2cm .【答案】【解析】作出正四棱台的一个侧面如图,设,E F 分别为,AD BC 的中点,过D 作DG BC ⊥于点G .由题知4cm,8cm,8cm AD BC CD ===,得2cm,4cm DE FC ==,解得2cm GC =,在Rt DGC △中,DG =,即斜高为,所以所求侧面积为)21(1632)cm 2⨯+⨯=.答案:5.(2021·全国·高一课时练习)若五棱台11111ABCDE A B C D E -的表面积是30,侧面积是25,则两底面面积的和为______.【答案】5【解析】S S S =+表侧两底,则30255S S S =-=-=两底表侧.故答案为:5.6(2021·全国·高一课时练习)如图,已知正三棱锥S ABC -的侧面积是底面积的2倍,正三棱锥的高3SO =,则此正三棱锥的表面积为___________.【答案】【解析】如图,设正三棱锥的底面边长为a ,斜高为h ',侧面积、底面积分别为12,S S ,过点O 作OE AB ⊥,与AB 交于点E ,连接SE ,则,SE AB SE h '⊥=.由21 2S S =,即21322a h '⋅⋅=⨯,可得a '.由SO OE ⊥,则222SO OE SE +=,即2223h ⎫''+=⎪⎪⎝⎭.h '∴=6a =.222 6S ∴=== 1 S =∴表面积 1 2 S S S =+==故答案为:【题组五 有关球的计算】1.(2021·新疆·新和县实验中学高一期末)若三个球的表面积之比是1:2:3,则它们的体积之比是( )A .1:B .1:C .2:4:9D .【答案】A【解析】设三个球的半径分别为1R ,2R ,3R ,因为三个球的表面积之比为1:2:3,所以2221234π:4π:4π1:2:3R R R =,所以123::R R R =所以它们的体积之比为3333331231234π4π4π::::1:333R R R R R R == 故选:A.2.(2021·山东邹城·高一期中)已知长方体1111ABCD A B C D -的长、宽、高分别为2、1、1,且其顶点都在球面上,则该球的体积是( )AB .6πC .36πD .【答案】A【解析】长方体1111ABCD A B C D -=长方体1111ABCD A B C D -343π⨯=⎝⎭. 故选:A .3.(2021·全国·高一课时练习)两个半径为1的实心铁球,熔化成一个大球,这个大球的半径是________.【解析】设大球的半径为R ,则有3334421,233R R ππ=⨯⨯=,所以R =4.(2021·全国·高一课时练习)一个底面直径是32cm 的圆柱形水桶装入一些水,将一个球放入桶内完全淹没,水面上升了9cm 且无溢出,则这个球的表面积是________.【答案】2576cm π【解析】由题意,上升的水的体积即为球的体积,若球的半径为R ,即23324923R ππ⎛⎫⨯= ⎪⎝⎭,解得12R =, 故这个球的表面积224412576S R πππ=⨯=⨯=.故答案为:2576cm π5.(2021·全国·高一课时练习)如图,半球内有一内接正四棱锥S ABCD -,该四棱锥的体积为3,则该半球的表面积为________.【答案】6π【解析】如图,连接AC ,BD 交点为O ,设球的半径为r ,由题意知:SO AO OC OD OB r =====.则AB =,四棱锥的体积为21)3V r =⨯⨯=r = ∴该半球的表面积为22214362S r r r ππππ=⨯+==.故答案为:6π6.(2021·全国·高一课时练习)在四棱锥S ABCD -中,底面ABCD 是边长为为【答案】48π【解析】因为四棱锥S ABCD -中,底面ABCD 是边长为 所以该四棱锥是正四棱锥,取正方形ABCD 的中心1O ,连接1SO ,AC ,则点1O 为AC 的中点,如图,则球心O 在1SO 上,因为正方形ABCD 边长为6AC ==,所以13AO =,因为SA =,所以1SO ==设四棱锥S ABCD -外接球的半径为r ,则11OO SO SO r =-,在1Rt AOO 中,22211AO AO OO =+,即)2223r r =+,解得:r =所以该四棱锥外接球的表面积为(224π4π48πr =⨯=.【题组六 综合运用】1(2021·全国·高一课时练习)如图,已知一个圆锥的底面半径与高均为2,且在这个圆锥中有一个高为x 的圆柱.(1)求出此圆锥的侧面积;(2)用x 表示此圆柱的侧面积表达式;(3)当此圆柱的侧面积最大时,求此圆柱的体积.【答案】(1);(2)224(02)S x x x ππ=-+<<圆柱侧;(3)π.【解析】(1)圆锥的底面半径R 与高H 均为2,则圆锥的母线长为L =2S RL ππ==⨯⨯=圆锥侧.(2)设圆柱的半径为r , 则222r x -=,解得2r x =-,且02x <<; 所以圆柱的侧面积为222(2)24(02)S rx x x x x x ππππ==-=-+<<圆柱侧.(3)22242(1)1S x x x πππ⎡⎤=-+=--+⎣⎦圆柱侧,02x <<;当1x =时,S 圆柱侧取得最大值为2π,此时1r =,圆柱的体积为2211V r x πππ==⋅⋅=圆柱.2.(2021·贵州·高一月考)在长方体1111ABCD A B C D -中,AB =6,BC =8,16AA =.(1)求三棱锥1D ABC -的体积;(2)在三棱柱111ABC A B C -内放一个体积为V 的球,求V 的最大值.【答案】(1)48;(2)323π. 【解析】(1)由长方体的几何特征知,1D 到平面ABC 的距离为116DD AA ==, 又1242ABC S AB BC =⋅=,所以11112464833D ABC ABC V S DD -=⋅=⨯⨯=; (2)设球的半径为R ,若该球与三棱柱111ABC A B C -的三个侧面均相切,则R 为ABC 的内切圆的半径,则()1242R AB AC BC ++=, 又=6+10+8=24AB AC BC ++,此时2R =;若该球与三棱柱111ABC A B C -的上下底面均相切,此时126R AA ==,3R =;所以在三棱柱111ABC A B C -内放一个体积为V 的球,该球半径最大为2,3max 4=2=3323V ππ⨯.3.(2021·浙江路桥·高一月考)如图所示,在平面五边形ABCDE 中,2AB AE CD ===,1BC =,DE =90ABC ∠=︒,90AED ∠=︒,分别沿AC ,AD 将ABC 与ADE 折起使得B ,E 重合于点P .试求:(1)三棱锥A PCD -的体积;(2)三棱锥A PCD -的外接球的表面积.【答案】(2)8π.【解析】(1)PD =1PC =,2CD =,则222 PC PD CD PC PD +=⇒⊥,又AP PD ⊥,AP PC ⊥,PC PD D ⋂=,AP ⊥平面PCD .所以111111233232A PCD PCD V S AP PC PD PA -=⋅=⨯⋅⋅⋅=⨯⨯=△ (2)将三棱锥补成长方体知三棱锥A PCD -的外接球的直径即为长方体的体对角线长,即2R R ==,所以球的表面积为24π8πR =. 4.(2021·河北定州·高一期中)定州市某广场设置了一些多面体形或球形的石凳供市民休息.如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是3160000cm 3(1)求正方体石块的棱长;(2)为争创全国文明城市,现将表面脏污,棱角轻微磨损的多面形石凳(图(1))打磨成一个球形的石凳,并用一种环保底漆全面粉刷.已知这种底漆一瓶的净含量为235克,可粉刷21.5m 左右,求此球形石凳最大时,一瓶环保底漆大约可以粉刷几个球形石凳?(精确到1)(π按3.14算)【答案】(1)40cm ;(2)3个.【解析】(1)设正方体石块的棱长为a , 则每个截去的四面体的体积为3113222248a a a a ⨯⨯⨯⨯=. 由题意可得331600008483a a ⨯+=, 解得40a =.故正方体石块的棱长为40cm ;(2)当球形石凳的面与正方体的各个面都相切时球形石凳的表面积最大.此时正方体的棱长正好是球的直径,∴球形石凳的表面积224041600cm 2S ππ⎛⎫=⨯= ⎪⎝⎭. 41.51031600π⨯≈, 所以一瓶环保底漆大约可以粉刷3个球形石凳.5.(2021·湖北孝感·高一期中)如下图1,一个正三棱柱形容器中盛有水,底面三角形ABC 的边长为2cm ,侧棱14cm AA =,若侧面11AA B B 水平放置时(如下图2),水面恰好过AC ,BC ,11A C ,11B C 的中点.(1)求容器中水的体积;(2)当容器底面ABC 水平放置时(如图1),求容器内水面的高度.【答案】(1))3cm ;(2)3cm .【解析】(1)在图2中,水所占部分为四棱柱.四棱柱底面积为)222112sin 601sin 6022S cm =⨯⨯︒-⨯⨯︒=,又高为4cm所以水的体积为)34V cm ==,(2)设图1中水高度为cm h ,则212sin 602V h =⨯⨯︒⨯=3h =. 所以当容器底面ABC 水平放置时,容器内水面的高度为3cm .6.(2021·福建宁德·高一期中)如图所示是在圆锥内部挖去一正四棱柱所形成的几何体,该正四棱柱上底面的四顶点在圆锥侧面上,下底面落在圆锥底面内,已知圆锥侧面积为15π,底面半径为3r =.(Ⅰ)若正四棱柱的底面边长为a =(Ⅱ)求该几何体内正四棱柱侧面积的最大值.【答案】(Ⅰ)16123π-;(Ⅱ)【解析】设圆锥母线长为l ,高为h ,正四棱柱的高为1h(Ⅰ)由S rl π=圆锥侧,有315l ππ=,故5l =,由222h r l +=,故4h =,所以圆锥体积为2211341233V r h πππ==⨯⨯=圆锥由a =2, 由图可得11h r h r -=,所以11318433r h h r --==⨯=, 故正四棱柱的体积为21816233V a h ==⨯=正四棱柱 所以该几何体的体积为16123V V π-=-圆锥正四棱柱 (Ⅱ)由图可得12r h h r =,即13243h =,即1312h +=由13h +≥,当且仅当136h ==时左式等号成立,有112h a ⇒≤12h =,a =故正四棱柱侧面积14S h a =≤侧12h =,a =所以该几何体内正四棱柱侧面积的最大值为7.(2021·福建福州·高一期中)如图所示的圆锥,顶点为O ,底面半径是5cm ,用一与底面平行的平面截得一圆台,圆台的上底半径为2.5cm ,这个平面与母线OA 交于点B ,线段AB 的长为10cm .(提示:本题的数据有长度单位)(1)求圆台的体积和圆台的侧面积;(2)把一根绳从线段AB 的中点M 开始到点A ,沿着侧面卷绕.使它成为最短时候,求这根绳的长度;【答案】cm 3,75πcm 2;(2)25cm. 【解析】(1)作出圆锥的轴截面和沿OA 剪开的侧面展开图,如下图由下底面半径是5cm ,上底半径为2.5cm ,AB 的长为10 cm ,可得:10OB =cm ,因此圆台的体积为:223115 2.5(33cm )V ππ=⨯⨯⨯=, 侧面积为:2520 2.510)75cm (S πππ=⨯⨯-⨯⨯=.(2)由圆锥的底面周长可得侧面展开图的弧长为10π, 所以,侧面展开图的圆心角为2π,在直角三角形MOA '中15OM =,可得25(cm)MA '=,所以最短时候,绳长为25cm。
高中数学必修二 8 3 简单几何体的表面积与体积(精练)(含答案)

8.3 简单几何体的表面积与体积(精练)【题组一 多面体表面积】1.(2020·全国高一课时练习)长方体的高为2,底面积等于12,过不相邻两侧棱的截面(对角面)的面积为10,则此长方体的侧面积为( )A .12B .24C .28D .32 【答案】C【解析】设长方体底面矩形的长与宽分别为,a b ,则12ab =.210=,解得4,3a b ==或3,4a b ==.故长方体的侧面积为()243228⨯+⨯=.故选:C.2.(2021·江苏南通市)一个正四棱锥的底面边长为2A .8B .12C .16D .20 【答案】B, 所以该四棱锥的全面积为212+422=122⋅⋅⋅. 故选B3.(2020·全国高一课时练习)若正三棱台上、下底面边长分别是a 和2a ,棱台的高为6a ,则此正三棱台的侧面积为( )A .2aB .212aC .292aD .232a 【答案】C 【解析】如图,1,O O 分别为上、下底面的中心,1,D D 分别是AC ,11A C 的中点,过1D 作1D E OD ⊥于点E .在直角梯形11ODD O 中,12323OD a a =⨯⨯=,111326O D a a =⨯⨯=,116DE OD O D a ∴=-=.在1Rt DED 中,16D E a =,则1D D =a ==. 2193(2)22S a a a a ∴=⨯+=侧.故选:C4.(2020·河北沧州市一中高一月考)正四棱锥底面正方形的边长为4,高与斜高的夹角为30,则该四棱锥的侧面积( )A .32B .48C .64D .323【答案】A【解析】如图:正四棱锥的高PO ,斜高PE ,底面边心距OE 组成直角△POE .∵OE =2cm ,∠OPE =30°,∴斜高h ′=PE =4sin 30o OE =,∴S 正棱锥侧=114443222ch =⨯⨯⨯=' 故选:A5.(2020·全国高一课时练习)已知正四棱锥的底面边长是2,则该正四棱锥的表面积为( )A B .12 C .8 D .【答案】B【解析】如图所示,在正四棱锥S ABCD -中,取BC 中点E ,连接SE ,则SBE △为直角三角形,所以2SE ==, 所以表面积1422422122SBC ABCD S S S =+⨯=⨯+⨯⨯⨯=正方形△.故选:B.6.(2021·内蒙古包头市·高三期末(文))已知一个正四棱锥的底面边长为4,以该正四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则该正四棱锥的侧面积为( )A .)41B 1C .)41D .)81 【答案】D【解析】正四棱锥如图,设四棱锥的高OE h =,由底面边长为4,可知2OF =,斜高EF故2142h =⨯2=2h +故侧面积为(214448812h ⨯⨯==+=+, 故选:D. 7.(2020·山西吕梁市)已知,AB CD 是某一棱长为2的正方体展开图中的两条线段,则原正方体中几何体ABCD 的表面积为( )A .2+B .2+C .2+D .2+【答案】A 【解析】由所给正方体的展开图得到直观图,如图:则此三棱锥的表面积为:△△△△+++=BCD ABC ADC ABD S S S S1111222222222⨯⨯+⨯⨯⨯⨯⨯=+故选:A8.(2020·黑龙江哈师大青冈实验中学)长方体一个顶点上的三条棱长分别为3,4,a ,表面积为108,则a 等于( )A .2B .3C .5D .6 【答案】D【解析】长方体一个顶点上的三条棱长分别为3,4,a ,则长方体的表面积为342+2423108a a ⨯⨯⨯+⨯=,解得a =6,故选:D9.(2020·湖北省汉川市第一高级中学高一期末)一个正四棱柱的各个顶点都在一个半径为2cm 的球面上,如果正四棱柱的底面边长为2cm ,那么该棱柱的表面积为( )A .2(2+B .2(4+C .2(8+D .2(16+ 【答案】C【解析】∵一个正四棱柱的各个顶点都在一个半径为2cm 的球面上,正四棱柱的底面边长为2cm , ∴球的直径为正四棱柱的体对角线∴正四棱柱的体对角线为4,正四棱柱的底面对角线长为= ∴该棱柱的表面积为2×22+4×2×+(2cm ),故选:C【题组二 多面体台体积】1.(2021·扶风县法门高中)正方体的全面积为18cm 2,则它的体积是_________ 3cm【答案】【解析】设该正方体的棱长为a cm ,由题意可得,2618a =,解得a =所以该正方体的体积为3V a ==3cm .故答案为:2.(2021·湖南长沙市)如图,在长方体1AC 中,棱锥1A ABCD -的体积与长方体的体积之比为( )A .2∶3B .1∶3C .1∶4D .3∶4【答案】B 【解析】设长方体过同一顶点的棱长分别为,,a b c则长方体的体积为1V abc =,四棱锥1A ABCD -的体轵为213V abc =, 所以棱锥1A ABCD -的体积与长方体1AC 的体积的比值为13. 故选:B.3.(2020·浙江高一期末)由华裔建筑师贝聿铭设计的巴黎卢浮宫金字塔的形状可视为一个正四棱锥(底面是正方形,侧棱长都相等的四棱锥),四个侧面由673块玻璃拼组而成,塔高21 米,底宽34米,则该金字塔的体积为( )A .38092mB .34046mC .324276mD .312138m【答案】A 【解析】如图正四棱锥P ABCD -中,34AB BC ==,21PO =,所以正四棱锥P ABCD -的体积为311343421809233ABCD S PO m ⨯⨯=⨯⨯⨯=, 故选:A4.(2020·辽宁沈阳市·沈阳二中高一期末)《九章算术》问题十:今有方亭,下方五丈,上方四丈.高五丈.问积几何(今译:已知正四棱台体建筑物(方亭)如图,下底边长5a =丈,上底边长4b =丈.高5h =丈.问它的体积是多少立方丈?( )A .75B .3053C .3203D .4003 【答案】B【解析】(()2211+=33V S S h a b h '=+⋅ ()2211305545615333=⨯=⨯⨯=. 故选:B 5.(2021·浙江高一期末)出华裔建筑师贝聿铭设计的巴黎卢浮宫金字塔的形状可视为一个正四棱锥(底面是正方形,侧楼长都相等的四棱锥),四个侧面由673块玻璃拼组而成,塔高21米,底宽34米,则该金字塔的体积为( )A .38092mB .34046mC .32427mD .312138m【答案】A【解析】如图正四棱锥P ABCD -中,PO ⊥底面ABCD ,21PO =,34AB =,底面正方形的面积为234341156S m =⨯=,则正四棱锥P ABCD -的体积为311115621809233S PO m ⨯⨯=⨯⨯=, 故选:A6.(2020·济南市·山东师范大学附中高一月考)如图,在棱长为2的正方体1111ABCD A B C D -中,截去三棱锥1A ABD -,求(1)截去的三棱锥1A ABD -的表面积;(2)剩余的几何体1111A B C D DBC -的体积.【答案】(1)6+;(2)203【解析】(1)由正方体的特点可知三棱锥1A ABD -中,1A BD 是边长为1A AD 、1A AB 、ABD △都是直角边为2的等腰直角三角形,所以截去的三棱锥1A ABD -的表面积(111231322642A BD A AD A AB ABD S S S S S =+++=⨯+⨯⨯⨯=+(2)正方体的体积为328=,三棱锥1A ABD -的体积为111142223323ABD SAA ⨯⨯=⨯⨯⨯⨯=, 所以剩余的几何体1111A B C D DBC -的体积为420833-=. 【题组三 旋转体的表面积】1.(2021·浙江丽水市)经过圆锥的轴的截面是面积为2的等腰直角三角形,则圆锥的侧面积是( )A .B .4πC .D .2π 【答案】C【解析】设圆锥的底面半径为r ,母线长为l ,则l =,由题可知)2122⨯=,∴2r l ==,侧面积为rl π=,故选:C.2.(2020·全国高一课时练习)某圆台的上、下底半径和高的比为1:4:4,母线长为10,则该圆台的表面积为( )A .81πB .100πC .168πD .169π 【答案】C【解析】该圆台的轴截面如图所示.设圆台的上底面半径为r ,则下底面半径4r r '=,高4h r =则它的母线长510l r ====∴2r,8r '=. ∴()(82)10100S r r l πππ'=+=+⨯=侧,22100464168S S r r ππππππ'=++=++=表侧.故选:C3.(2020·全国高一课时练习)用一个平行于圆锥底面的平面截这个圆锥,截得圆台上下底面半径的比是1:4,且该圆台的母线长为9,则截去的圆锥的母线长为( )A .94B .3C .12D .36【答案】B【解析】根据题意,设圆台的上、下底面的半径分别为r 、R ,设圆锥的母线长为L ,截得小圆锥的母线长为l ,∵圆台的上、下底面互相平行 ∴14l r L R ==,可得L=4l ∵圆台的母线长9,可得L ﹣l =9 ∴3L 4=9,解得L=12, ∴截去的圆锥的母线长为12-9=3故选B4.(2020·全国高一课时练习)圆台的一个底面圆周长是另一个底面圆周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面圆的半径为( )A .3B .5C .6D .7 【答案】D【解析】设圆台较小底面圆的半径为r ,由已知有另一底面圆的半径为3r ,而圆台的侧面积公式为(3)4384,7r r l r r πππ+=⨯⨯==,选D.5.(2020·江苏淮安市·淮阴中学高一期末)圆柱底面半径为1,母线长为2,则圆柱侧面积为( )A .4πB .3πC .5πD .2π 【答案】A【解析】圆柱底面半径为1,母线长为2,圆柱侧面积为224S rl =π=π⨯1⨯2=π ,故选:A6.(2021·广西河池市·高一期末)已知圆柱的底面半径为1,若圆柱的侧面展开图的面积为8π,则圆柱的高为________.【答案】4【解析】设圆柱的高为h ,有28h ππ=,得4h =.故答案为:4.7.(2021·河南焦作市·高一期末)已知圆锥的底面半径为2,高为4,在圆锥内部有一个圆柱,则圆柱的侧面积的最大值为______.【答案】4π【解析】如图是圆锥与圆柱的轴截面,设内接圆柱的高为a ,圆柱的底面半径为r ()02r <<,则由224r a-=,可得42a r =-,所以圆柱的侧面积()22242484(1)4S r r r r r πππππ=⋅-=-+=--+,所以1r =时,该圆柱的侧面职取最大值4π. 故答案为:4π.8.(2020·北京高一期末)将底面直径为8,高为最大值为______.【答案】【解析】欲使圆柱侧面积最大,需使圆柱内接于圆锥; 设圆柱的高为h ,底面半径为r ,4r =,解得2h r =;所以()2224S rh r r r ππ⎛⎫===- ⎪ ⎪⎝⎭圆柱侧;当2r时,S 圆柱侧取得最大值为故答案为:. 【点睛】本题考查了求圆柱侧面积的最值,考查空间想象能力,将问题转化为函数求最值,属于中档题.9.(2021·陕西西安市·西安中学高一期末)若圆锥的侧面展开图是圆心角为90︒的扇形,则该圆锥的侧面积与底面积之比为___________. 【答案】4:1【解析】设圆锥的底面半径为r ,母线长为l , 由题意得:22l r ππ=,即4l r ,所以其侧面积是214S rl r ππ==,底面积是22S r π=,所以该圆锥的侧面积与底面积之比为4:1 故答案为:4:1【题组四 旋转体的体积】1.(2020·山东菏泽市·高一期末)若圆锥的底面半径为3cm ,侧面积为215cm π,则该圆锥的体积为( ) A .4π3cm B .9π3cmC .12π3cmD .36π3cm【答案】C【解析】设圆锥母线长为l ,则侧面积为123152S l r l πππ=⋅==,故5l =.故圆锥的高4h =,圆锥体积为21123V r h ππ==3cm .故选:C.2.(2021·黑龙江双鸭山市·双鸭山一中)现用一半径为10cm ,面积为280cm π的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________3cm . 【答案】128π【解析】设铁皮扇形的半径和弧长分别为R 、l ,圆锥形容器的高和底面半径分别为h 、r , 则由题意得R=10,由1802Rl π=,得16l π=, 由2lr π=得8r =.由222R r h =+可得6h =.∴()231164612833V r h cm πππ==⋅⋅=∴该容器的容积为3128cm π.故答案为128π.3.(2020·湖南长沙市·高一期末)圆锥的母线与底面所成的角为60︒,侧面积为8π,则其体积为________.【答案】3【解析】如图所示,圆锥的母线与其底面所成角的大小为60︒,60SAO ∴∠=︒,由题意设圆锥的底面半径为r ,则母线长为2l r =,高为h =圆锥的侧面积为8π,2228S rl r r r ππππ∴==⋅⋅==侧面积,解得2r ,h =∴圆锥的体积为2211233V r h ππ=⋅⋅=⨯⨯=圆锥.故答案为:3.4.(2020·江苏南京市·高一期末)把一个棱长为2的正方体木块,切出一个最大体积的圆柱,则该圆柱的体积为( ) A .23πB .πC .2πD .4π【答案】C【解析】正方体棱长为2,所以正方体底面正方形的内切圆半径为1,面积为21ππ⨯=,以此内切圆为底、高为2的圆柱是可切出的最大圆柱.且该圆柱的体积为22ππ⨯=. 故选:C5.(2020·山东日照市·高一期末)《五曹算经》是我国南北朝时期数学家甄驾为各级政府的行政人员编撰的一部实用算术书,其第四卷第九题如下:“今有平地聚粟,下周三丈,高四尺,问粟几何”?其意思为场院内有圆锥形稻谷堆,底面周长3丈,高4尺,那么这堆稻谷有多少斛?已知1丈等于10尺,1斛稻谷的体积约为1.62立方尺,圆周率约为3,估算堆放的稻谷约有多少斛(保留两位小数)( ) A .61.73 B .61.71C .61.70D .61.69【答案】A【解析】设圆锥的底面半径为r ,高为h ,体积为V , 则230r π=,所以=5r , 故221135410033V r h π==⨯⨯⨯=(立方尺), 因此10061.731.62V =≈(斛). 故选:A.6.(2020·江苏无锡市·高一期末)某养路处有一圆锥形仓库用于储藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12米,高4米,为存放更多的食盐,养路处拟重建仓库,将其高度增加4米,底面直径不变,则新建仓库比原仓库能多储藏食盐的体积为( ) A .24π米3 B .48π米3C .96π米3D .192π米3【答案】B【解析】原仓库圆锥的底面半径为6米,高为4米,则容积为21614483V ππ=⨯⨯⨯=立方米; 仓库的高增加4米,底面直径不变,则仓库的容积为22618963V ππ=⨯⨯⨯=立方米. 所以新建仓库比原仓库能多储藏食盐的体积为2148V V π-=立方米. 故选:B. 【题组五 球】1.(2021·天津滨海新区)在正方体1111ABCD A B C D -中,三棱锥11A B CD -的表面积为外接球的体积为( )A . BC .D .【答案】B【解析】设正方体的棱长为a ,则111111B D AC AB AD B C D C ======,由于三棱锥11A B CD -的表面积为所以)121442AB CS S==⨯=a ==,所以正方体的外接球的体积为34632π⎛⎫= ⎪ ⎪⎝⎭故选:B .2.(2020·广东高二期末)在长方体1111ABCD A B C D -中,22AB BC ==,若此长方体的八个顶点都在体积为92π的球面上,则此长方体的表面积为( ) A .16 B .18C .20D .22【答案】A【解析】根据长方体的结构特征可得,长方体外接球直径等于长方体体对角线的长, 因为长方体外接球的体积为92π,设外接球半径为R , 则33924R ππ=,解得32R =,因此2R =22AB BC ==,所以3=12BB =,因此长方体的表面积为:1122248416S AB BC AB BB BC BB =⨯⨯+⨯⨯+⨯⨯=++=. 故选:A.3.(2020的内切球,则此棱柱的体积是( ).A .3B .354cmC .327cmD .3【答案】B的内切球,则正三棱柱的高为,,设底面正三角形的边长为a cm,13⨯=6a =cm ,∴正三棱柱的底面面积为16622⨯⨯⨯=2,故此正三棱柱的体积V =54=cm 3. 故选:B .4.(2021·全国高一)如图所示,球内切于正方体.如果该正方体的棱长为a ,那么球的体积为( )A .343a π B .3aC 3aD .316a π【答案】D【解析】因为球内切于正方体,所以球的半径等于正方体棱长的12, 所以球的半径为2a ,所以球的体积为334326a a ππ⎛⎫= ⎪⎝⎭,故选:D.5.(2021·湖南邵阳市·高一期末)一个球的体积为36π,则这个球的表面积为( ) A .12π B .36πC .108πD .4π【答案】B【解析】设球的半径为R ,球的体积为3436=3R ππ,解得3R =,则球的表面积244936R πππ=⨯=, 故选:B6.(2020·浙江高一期末)已知正方体外接球的体积是323π,那么该正方体的内切球的表面积为_____________. 【答案】163π【解析】设正方体棱长为a ,则3432323ππ⎛⎫⨯= ⎪ ⎪⎝⎭,解得a =∴内切球半径为23a r ==,表面积为21643S ππ=⨯=⎝⎭. 故答案为:163π.【题组六 组合体的体积表面积】1.(2020·全国高一课时练习)如图是某机械零件的几何结构,该几何体是由两个相同的直四棱柱组合而成的,且前后、左右、上下均对称,每个四棱柱的底面都是边长为2的正方形,高为4,且两个四棱柱的侧棱互相垂直.则这个几何体有________个面,其体积为________.【答案】20 323-【解析】由图形观察可知,几何体的面共有2(242)20⨯⨯+=个, 该几何体的直观图如图所示,该几何体的体积为两个四棱柱的体积和减去两个四棱柱交叉部分的体积. 两个四棱柱的体积和为222432V =⨯⨯⨯=. 交叉部分的体积为四棱锥S ABCD -的体积的2倍.在等腰ABS 中,SB SB =边上的高为2,则SA =由该几何体前后,左右上下均对称,知四边形ABCD 的菱形. 设AC 的中点为H ,连接,BH SH 易证SH 即为四棱锥S ABCD -的高,在Rt ABH 中, 2.BH ==又AC SB ==所以 1222ABCDS=⨯⨯=因为BH SH =,所以112233ABCDS ABCD V S -=⨯=⨯=四棱柱所以求体积为3223233-⨯=-故答案为:20;323-2.(2020·新疆巴音郭楞蒙古自治州·高一期末)如图,直三棱柱,高为6,底边三角形的边长分别为3、4、5,以上下底面的内切圆为底面,挖去一个圆柱,求剩余部分几何体的体积.【答案】366π-【解析】因为222345+=,所以底面是直角三角形, 所以上、下底面内切圆半径34512r +-==, 所以剩余部分几何体的体积21346163662V ππ=⨯⨯⨯⨯=-⨯-, 所以剩余部分几何体的体积为366π-.3.(2021·江西九江市)在底面半径为2,高为面积之比为1:4,求圆柱的表面积.【答案】1)π【解析】由圆柱的底面积与圆锥的底面积之比为1:4,知:底面半径比为1:2,即圆柱底面半径1r =,若设圆柱的高为h 12=,即h = ∴由圆柱的表面积等于侧面积加上两底面的面积,即:2221)S rh r πππ=+=.。
专题8.3 简单几何体的表面积与体积(解析版)

专题8.3 简单几何的表面积与体积运用一 体积【例1】(1)(2019·北京高二学业考试)如图,在直三棱柱111ABC A B C -中,AB AC ⊥,如果3AB =,1AC =,12AA =,那么直三棱柱111ABC A B C -的体积为( )A.2B.3C.4D.6(2)(2019·云南省玉溪第一中学高二月考)一个四棱锥的三视图如图所示,则该四棱锥的体积为( )B.D.(3)某几何体的三视图如图所示,该几何体的体积是( )A.1123B.1363C.48D.56【答案】(1)B (2)A (3)C 【解析】(1)因为AB AC ⊥,所以322ABCAB AC S ⋅==; 所以11113232ABC A B C ABC V SAA -=⨯=⨯=,故选:B.(2)由三视图知,该几何体是一个直四棱锥,底面是一个直角梯形,底面积为()122+=,高为2,因此,这个四棱锥的体积为1232⨯=,故选:A.(3)根据三视图知,该几何体是平放的四棱柱,如图所示,且该四棱柱的底面为等腰梯形, 棱柱的高为4,它的体积为()12444482V Sh ==⨯+⨯⨯=.故选:C .【举一反三】1.(2019·北京高一期末)已知圆柱的侧面展开图是一个边长为2π的正方形,则这个圆柱的体积是( ) A .22π B .2πC .22π D .23π【答案】A【解析】底面圆周长22l r ππ==,1r = ,2S r ππ==所以222V Sh πππ==⨯= 故选:A2.(2019·河北高三月考(理))圆锥的母线长是4,侧面积是4π,则该圆锥的高为( )A B .4C .3D .2【答案】A【解析】设母线为l ,底面半径为r ,高为h ,则4rl ππ=,1r =,所以h =.答案选A3.设正六棱锥的底面边长为1 )A. C. D.2【答案】B【解析】由底面边长为12h ==.又因为底面积16222S =⨯⨯=112332V Sh ==⨯⨯=.故选B.4.已知圆台上、下底面的面积分别为π,4π,侧面积为6π,则这个圆台的体积为( ).A .14πB .143πC .3D .【答案】C【解析】依题意知圆台上底面半径为1r = ,下底面半径为2R =如图所示圆台展开为一个圆环的一部分即ABCD ,其小扇形弧长2AD π=,大扇形弧长4BC π=, 由2BC AD=知道OA AB l == ,则圆台的侧面积11622S BC OB AD OA π=-=2l ⇒= 所以高h =圆台的体积221()3V h r rR R π=++= 故选C 5.(2019·四川绵阳中学高一月考)圆台上底半径为2,下底半径为6,母线长为5,则圆台的体积为( ) A.40π B.52πC.50πD.2123π 【答案】B【解析】作出圆台的轴截面如图所示:上底面半径2MD =,下底面半径6NC =,过D 做DE 垂直NC , 则624EC =-=由5CD =故3DE =即圆台的高为3,所以圆台的体积为2213(26523V πππ=⋅⋅⋅+⋅+=.故选:B . 运用二 表面积【例2】(1)(2019·山西高二月考(文))已知圆柱的轴截面为正方形,且圆柱的体积为54π,则该圆柱的侧面积为() A.27πB.36πC.54πD.81π(2)(2019·福建高三月考(文))《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图所示,则它的表面积为( )A .2B .4+C .4+D .6+(3)(2019·安徽高二期末(文))如图,长度为1的正方形网格纸中的实线图形是一个多面体的三视图,则该多面体表面积为( )A .16+B .16+C .12+D .12+【答案】(1)B(2)D(3)D【解析】(1)设圆柱的底面半径为r .因为圆柱的轴截面为正方形,所以该圆柱的高为2r .因为该圆柱的体积为54π,23π2π54πr h r ==,解得3r =,所以该圆柱的侧面积为2π236r r ⨯=π.(2),斜边是2,且侧棱与底面垂直,侧棱长是2,∴几何体的表面积12222262S =⨯+⨯⨯=+故选:D . (3)由三视图还原原几何体如图,该几何体为四棱锥,底面是矩形,AD =4,AB =2,四棱锥的高为2.则其表面积为S 111424222412222=⨯+⨯⨯+⨯⨯⨯⨯⨯=+.故选:D . 【举一反三】1.(2019·湖南高一期末)已知一个圆柱的高是底面圆半径的2倍,则该圆柱的侧面积与表面积的比值为( ) A.14B.12C.23D.45【答案】C【解析】设圆柱底面圆的半径为r ,则高2h r =,该圆柱的侧面积为224r h r ππ⋅=,表面积为222426r r r πππ+=,故该圆柱的侧面积与表面积的比值为224263r r ππ=. 2.(2019·湖南高三期末(文))一个几何体的三视图如图所示,则该几何体的表面积为( )A .B .C .D .5【答案】A【解析】1234511122222S S S S S S =++++=++++=+ 故答案选A3.若圆锥的轴截面是正三角形,则它的侧面积是底面积的( )A 倍B .3倍C .2倍D .5倍【答案】C【解析】由题意可知,如下图所示,设OC r =,则2AC r =所以圆锥的底面积为21S r π=,圆锥的侧面积为()2212222S r r r ππ=⋅= 即圆锥的侧面积是底面积的22212=2S r S rππ=倍故答案选C 运用三 球【例3】(1)由球O 的球面上一点P 作球的两两互相垂直的三条弦PA ,PB ,PC .已知3cm PA =,PB =,PC =,求球O 的表面积和体积.(2)(2019·四川石室中学高三月考(文))已知球O 的内接圆锥体积为23π,其底面半径为1,则球O 的表面积为__________.(3)正方体的外接球与内切球的半径之比为( ) ABC .2:1D .3:1【答案】(1)()236cmπ,()336cm π(2)254π(3)B 【解析】(1)以点P 为一个顶点,PA ,PB ,PC 为三条相邻棱,构造长方体PADB CEFG -.由于点P ,A ,B ,C 都在球O 的球面上,显然长方体PADB CEFG -内接于球O ,其对角线PF 长就是球O 的直径,所以()26cm R ==,3cm R =.()22436cm S R ππ∴==球,()33436cm 3V R ππ==球.(2)由圆锥体积为23π,其底面半径为1,设圆锥高为h 则221133h ππ=⨯⨯,可求得2h = 设球半径为R ,可得方程:()2221R R --=,解得:54R =25254=164S ππ∴=⨯本题正确结果:254π(3)设正方体的边长为1,画出图像如下图所示,设O 为正方体体对角线的交点,1O 为上底ABCD 的中心,所以正方体外接球的半径为122AC OA ===,正方体内切球的半径为111122OO CC ==,故正方体的外接球与内切球的半径之比为1:22=,故选B.【举一反三】1.已知一个高为16的圆锥内接于一个体积为972π的球,在圆锥内又有一个内切球.求: (1)圆锥的侧面积. (2)圆锥内切球的体积.【答案】(1)侧面积96S π=;(2)2563V π=【解析】(1)作出轴截面, 如下图所示:则等腰三角形CAB 内接于圆O ,而圆1O 内切于CAB ∆,设圆O 的半径为R ,由题意,得349723R ππ=,3729R ∴=, 918R CE =∴=; 已知162CD ED =∴=,连接AE ,CE 是直径,CA AE ∴⊥,21816288CA CD CE =⋅=⨯=,CA ∴=,AB CD ⊥, ,216232AD CD DE ∴=⋅=⨯=,AD ∴=,所以圆锥的侧面积96S AD CA πππ=⨯⨯=⨯=; (2)设圆锥的内切球1O 的半径为r ,也即CAB ∆的内切圆的半径为r ,ABC ∆的周长为c ==,111622ABC S AB CD ∆∴=⨯⨯=⨯=,又三角形的面积12ABC S c r ∆=⨯⨯,所以12r ⨯= 4r ∴=;∴圆锥的内切球1O 的体积3425633V r ππ==.2.(2019·广东实验中学高三月考(理))三棱锥P ABC -的底面ABC 是等腰三角形,120C ∠=,侧面PAB 是等边三角形且与底面ABC 垂直,2AC =,则该三棱锥的外接球表面积为__________.【答案】20π【解析】由题意,由余弦定理2221AB =2+2-222-2⎛⎫⨯⨯⨯∴ ⎪⎝⎭,ABC 的外接圆半径21,R R =∴=等边三角形PAB 的高为3,设球的半径为,r 球心到底面的距离为x ,则22222r 2x 13x =+=+-(),所以x 1=,所以该三棱锥的外接球的表面积为24r 20ππ=. 故答案为:20π.3.已知棱长为a 的正方体,甲球是正方体的内切球,乙球是正方体的外接球,丙球与正方体的各棱都相切,则甲、乙、丙三球的表面积之比为( ).A .91:3:4B .1:3:2C .D .31:2【答案】B【解析】由已知得甲球是正方体的内切球,示意图如下图1,从中截面可以看出甲球的直径等于正方体的棱长,设甲球的半径为1R ,则12R a =,所以12a R =,所以甲球的表面积为22211442a S R a πππ⎛⎫=== ⎪⎝⎭; 乙球是正方体的外接球,示意图如下图2, 从中截面可以看出乙球的直径等于正方体的体对角线长,设乙球的半径为2R ,则22R ==,所以2R =,所以乙球的表面积为222224432S R aπππ⎛⎫===⎪⎪⎝⎭;丙球与正方体的各条棱相切,示意图如下图3, 从中截面可以看出丙球的直径等于正方体的面对角线长,设丙球的半径为3R,则32R==,所以32R=,所以丙球的表面积为222334422S R aπππ⎛⎫===⎪⎪⎝⎭;所以()()()222123:::3:21:3:2S S S a a aπππ==,故选:B.1.(2019·四川棠湖中学高二月考)一个棱长为2的正方体被一个平面截去部分后,余下部分的三视图如图所示,则截去部分与剩余部分体积的比为()A .1:3B .1:4C .1:5D .1:6【答案】A【解析】由题意可知:几何体被平面ABCD 平面分为上下两部分,设正方体的棱长为2,上部棱柱的体积为:121222⨯⨯⨯=; 下部为:22226⨯⨯-=,截去部分与剩余部分体积的比为:13.故选:A . 2.(2019·全国高三月考(理))某几何体的三视图如图所示,则该几何体的体积是()A.23B.43C.83D.163【答案】C【解析】根据三视图可得对应的几何体为四棱锥P ABCD - , 它是正方体中去掉一个三棱锥和三棱柱,又2ABCD S ==矩形,P 到底面ABCD ,故1833V =⨯=, 故选C.3.(2019·天水市第一中学高三月考(理))已知一个简单几何体的三视图如图所示,则该几何体的体积为A.36π+B.66π+C.312π+D.12【答案】A【解析】由三视图知,该几何体有四分之一圆锥与三棱锥构成,故体积为211113433436,4332V ππ=⨯⨯⨯⨯+⨯⨯⨯⨯=+,故选A.4.(2019·安徽省泗县第一中学高二期末(文))某几何体的三视图如图所示,则该几何体的体积等于()A .12B .15C .18D .21【答案】B【解析】根据三视图可得出该几何体为底面为直角梯形的直棱柱,底面积1(23)252S =⨯+⨯=,故该几何体的体积5315V =⨯=,故选:B .5(2019·广东高一期末)已知圆柱的轴截面为正方形,且该圆柱的侧面积为36π,则该圆柱的体积为 A.27π B.36πC.54πD.81π【答案】C【解析】设圆柱的底面半径r .因为圆柱的轴截面为正方形,所以该圆柱的高为2r 因为该圆柱的侧面积为36π,所以2236r r ππ⨯=,解得3r =, 故该圆柱的体积为2232354r h πππ=⨯⨯⨯=.故答案选C6.(2019·江西上高二中高二月考(理))圆锥的母线长为4,侧面展开图为一个半圆,则该圆锥表面积为( ) A .10π B .12πC .16πD .18π【答案】B【解析】一个圆锥的母线长为4,它的侧面展开图为半圆, 半圆的弧长为12442l ππ=⨯⨯=,即圆锥的底面周长为4π, 设圆锥的底面半径是r ,则得到24r ππ=,解得2r =,这个圆锥的底面半径是2,∴圆锥的表面积为242212S πππ=⋅⋅+⋅=.故选:B .7.(2019·江苏高一期末)已知圆锥的底面半径为1,母线与底面所成的角为3π,则此圆锥的侧面积为( )A. B.2πD.π【答案】B【解析】由于圆锥的底面半径1r =,母线与底面所成的角为3π, 所以母线长121cos32r l π=== ,故圆锥的侧面积=2S rl ππ=;故答案选B 8.(2019·河北高一月考)如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径相等,这时圆柱、圆锥、球的表面积之比为( )A.6:1):4+ B.64 C.5:1):4+D.5:4【答案】A【解析】设球的半径为R ,圆柱的表面积2221S 246R R R πππ=+=。
高中数学必修二:简单几何体的表面积与体积

1.柱体的体积 V柱体 =S 底 h
锥体的体积 V锥体 = S底h
3
1
台体的体积 V台体 ( S ' S ' S S )h
3
2.圆柱、直棱柱的侧面积 S圆柱 =2πrl S直棱柱 =ch
1
S正棱锥 = ch '
圆锥、正棱锥的侧面积 S圆锥 =πrl
2 1
圆台、正棱台的侧面积 S圆台 =π(r r ')l S正棱台 = (c c ')h '
5.若扇形所在圆的半径是r、其弧长为l,则该扇形的面积
1
S= 2lr 。
探 索 新 知
观
察
旋
转
体
的
侧
面
展
开
图
空间
问题
平行四边形、长方形、
梯形、三角形、扇形、圆
平面
问题
长方形
扇形
扇环
探 索 新 知
推
导
旋
转
体
的
侧
面
积
空间
问题
平面
问题
S圆柱侧 =2πrl
平行四边形、长方形、
梯形、三角形、扇形、圆
S圆锥侧 =πrl
3
深 入 探 究
球的体积转化为球的表面积
探
究
球
的
体
积
和
表
面
积
如果网格分割越细则小锥体就近似小棱锥
1
1
1
V S1h1 S2 h2 S3h3
3
3
3
O
1
Sn hn
3
hi 的值就趋向于球的半径R
1
V球 R(S1 +S2 +S3 +
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题8.3 简单几何的表面积与体积运用一 体积 【例1】(1)(2019·北京高二学业考试)如图,在直三棱柱111ABC A B C -中,AB AC ⊥,如果3AB =,1AC =,12AA =,那么直三棱柱111ABC A B C -的体积为( )A.2B.3C.4D.6(2)(2019·云南省玉溪第一中学高二月考)一个四棱锥的三视图如图所示,则该四棱锥的体积为()B.D.(3)某几何体的三视图如图所示,该几何体的体积是( )A.1123 B.1363 C.48D.56【举一反三】1.(2019·北京高一期末)已知圆柱的侧面展开图是一个边长为2π的正方形,则这个圆柱的体积是( )A .22πB .2πC .22π D .23π2.(2019·河北高三月考(理))圆锥的母线长是4,侧面积是4π,则该圆锥的高为( )A B .4 C .3 D .23.设正六棱锥的底面边长为1 )A. C. D.24.已知圆台上、下底面的面积分别为π,4π,侧面积为6π,则这个圆台的体积为( ).A .14πB .143πCD .5.(2019·四川绵阳中学高一月考)圆台上底半径为2,下底半径为6,母线长为5,则圆台的体积为( )A.40πB.52πC.50πD.2123π 运用二 表面积【例2】(1)(2019·山西高二月考(文))已知圆柱的轴截面为正方形,且圆柱的体积为54π,则该圆柱的侧面积为()A.27πB.36πC.54πD.81π (2)(2019·福建高三月考(文))《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图所示,则它的表面积为( )A .2B .4+C .4+D .6+(3)(2019·安徽高二期末(文))如图,长度为1的正方形网格纸中的实线图形是一个多面体的三视图,则该多面体表面积为( )A.16+B.16+C.12+D.12+【举一反三】1.(2019·湖南高一期末)已知一个圆柱的高是底面圆半径的2倍,则该圆柱的侧面积与表面积的比值为()A.14B.12C.23D.452.(2019·湖南高三期末(文))一个几何体的三视图如图所示,则该几何体的表面积为()A.B.C.D.53.若圆锥的轴截面是正三角形,则它的侧面积是底面积的()A倍B.3倍C.2倍D.5倍运用三球【例3】(1)由球O的球面上一点P作球的两两互相垂直的三条弦PA,PB,PC.已知3cmPA=,PB=,PC=,求球O的表面积和体积.(2)(2019·四川石室中学高三月考(文))已知球O 的内接圆锥体积为23π,其底面半径为1,则球O 的表面积为__________.(3)正方体的外接球与内切球的半径之比为( )ABC .2:1D .3:1【举一反三】 1.已知一个高为16的圆锥内接于一个体积为972π的球,在圆锥内又有一个内切球.求:(1)圆锥的侧面积.(2)圆锥内切球的体积.2.(2019·广东实验中学高三月考(理))三棱锥P ABC -的底面ABC 是等腰三角形,120C ∠=,侧面PAB 是等边三角形且与底面ABC 垂直,2AC =,则该三棱锥的外接球表面积为__________.3.已知棱长为a 的正方体,甲球是正方体的内切球,乙球是正方体的外接球,丙球与正方体的各棱都相切,则甲、乙、丙三球的表面积之比为( ).A .91:3:4 B .1:3:2 C.D.31:21.(2019·四川棠湖中学高二月考)一个棱长为2的正方体被一个平面截去部分后,余下部分的三视图如图所示,则截去部分与剩余部分体积的比为( )A .1:3B .1:4C .1:5D .1:62.(2019·全国高三月考(理))某几何体的三视图如图所示,则该几何体的体积是()A.23B.43C.83D.1633.(2019·天水市第一中学高三月考(理))已知一个简单几何体的三视图如图所示,则该几何体的体积为A.36π+B.66π+C.312π+D.124.(2019·安徽省泗县第一中学高二期末(文))某几何体的三视图如图所示,则该几何体的体积等于( )A .12B .15C .18D .215(2019·广东高一期末)已知圆柱的轴截面为正方形,且该圆柱的侧面积为36π,则该圆柱的体积为( )A.27πB.36πC.54πD.81π6.(2019·江西上高二中高二月考(理))圆锥的母线长为4,侧面展开图为一个半圆,则该圆锥表面积为( )A .10πB .12πC .16πD .18π7.(2019·江苏高一期末)已知圆锥的底面半径为1,母线与底面所成的角为3π,则此圆锥的侧面积为( )A. B.2π D.π 8.(2019·河北高一月考)如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径相等,这时圆柱、圆锥、球的表面积之比为( )A .6:1):4+B .64C .5:1):4+D .5:49.(2018·辽宁高一期末)用一个平行于圆锥底面的平面截这个圆锥,截得圆台上下底面半径的比是1:4,且该圆台的母线长为9,则截去的圆锥的母线长为( ) A.94 B.3 C.12 D.3610.(2019·新疆乌鲁木齐市第70中高一期末(理))圆台的一个底面圆周长是另一个底面圆周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面圆的半径为( )A.3B.5C.6D.711.(2019·安徽高一期末)一个圆锥的侧面积为6π,底面积为4π,则该圆锥的体积为________.12.(2018·河北邢台一中高一月考(文))圆台的上下底面半径分别为1、2,母线与底面的夹角为60°,则圆台的侧面积...为________. 13.(2018·广州市培正中学高一单元测试)一个圆台的两底面的面积分别为π,16π,侧面积为25π,则这个圆台的高为_____14.(2017·浙江高二期中)若圆台的高是3,一个底面半径是另一个底面半径的2倍,母线与下底面所成的角是45,则这个圆台的侧面积是___________.15.(2017·安徽高二月考(文))一个圆台上、下底面的半径分别为3cm 和8cm ,若两底面圆心的连线长为12cm ,则这个圆台的表面积为__________2cm .16.(2019·四川双流中学高三月考(文))某简单组合体的三视图如图所示,则该组合体的体积为 .17(2019·安徽高一期末)一个几何体的三视图如图,则该几何体的体积为 .18.一个圆柱的底面直径与高都等于一个球的直径,则圆柱的全面积与球的表面积之比为.19.(2019·福建高一期末)一个圆柱的轴截面是正方形,其侧面积与一个球的表面积相等,那么这个圆柱的体积与这个球的体积之比为 .20.(2019·云南民族中学高三月考)已知直三棱柱111ABC A B C -的底面为直角三角形,且两直角边长分别为1和,则该三棱柱的外接球的体积为 .21.(2019·湖北襄阳四中高三月考(理))如图,在四棱锥P ABCD -中,顶点P 在底面的投影O 恰为正方形ABCD 的中心且AB =设点M ,N 分别为线段PD ,PO 上的动点,已知当AN MN +取得最小值时,动点M 恰为PD 的中点,则该四棱锥的外接球的表面积为____________.22(2019·陕西高一期末)在三棱锥S ABC -中,三个侧面两两互相垂直,侧面,,SAB SAC SBC ∆∆∆的面积分别为1,1,2,则此三棱锥的外接球的表面积为 .23.如图,正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,点P 在球面上.若163P ABCD V ,则球O 的体积是 .24.(2019·湖南衡阳市八中高三月考(文))在四面体SABC 中若三条侧棱SA ,SB ,SC 两两互相垂直,且SA =1,SB ,SC ABCD 的外接球的表面积为 .25.(2019·湖北省大冶市第六中学高二月考)如图是一个几何体的三视图,根据图中数据,可得几何体的表面积是 .26.(2019·上海市进才中学高三月考)若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为____________。
27.(2019·贵州高二期末)周长为20cm 的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值为_______3cm .28.一个几何体的三视图如图所示,则该几何体的表面积为________.29.(2019·宁夏银川一中)底面半径为1cm 的圆柱形容器里放有四个半径为12cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切. 现往容器里注水,使水面恰好浸没所有铁球,则需要注水________________.30.(2019·江苏高一期末)已知P ,A ,B ,C 是球O 的球面上的四点,PA ,PB ,PC 两两垂直,PA PB PC ==,且三棱锥P ABC -的体积为43,则球O 的表面积为______.。