线性代数 5-2 第5章2讲-特征值与特征向量(2)

合集下载

线性代数第5章 特征值及特征向量

线性代数第5章 特征值及特征向量

k1 p1 ( k1 0 常数)是对应于1 2 的全部特征向量.
18
回答问题
(1) 向量 0 满足 A ,
0 是 A 的特征向量吗?
(2) 实矩阵的特征值(特征向量)一定是实的吗? (3) 矩阵 A 可逆的充要条件是所有特征值______.
E A 0 或

23
二、填空题
1.已知三阶方阵A的三个特征值为1,-2,3.则
|A|=(
-6
),
A-1的特征值为( AT的特征值为(
1,-1/2, 1/3
1,-2,3.
), ), ).
A2+2A+E的特征值为(
4, 1, 16 0
2.设Ak=0,k是正整数,则A的特征值为( 3.若A2=A,则A的特征值为(
).

齐次线性方程组为 ( A 2E ) X O 2 3 2 时,
4 1 1 4 1 1 A 2E 0 0 0 0 0 0 4 1 1 0 0 0 0 1 得基础解系 P2 1 , P3 0 . 1 4
( ) a0 a1 a22 am m

( A) a0 E a1 A a2 A2 am Am
的特征值。如果 A 可逆,则
( ) a k k a11 a0 a1 am m

( A) a k A k a1 A1 a0 E a1 A am Am
第一节 方阵的特征值与特征向量
一、特征值与特征向量的定义 二、特征值与特征向量的性质 三、特征值与特征向量的求法
1
一、特征值与特征向量的定义 定义1 设 A 是 n 阶方阵,

《线性代数》矩阵的特征值与特征向量

《线性代数》矩阵的特征值与特征向量

《线性代数》矩阵的特征值与特征向量矩阵的特征值与特征向量是线性代数中非常重要的概念。

在许多实际问题的分析和求解中,特征值和特征向量扮演着重要的角色。

本文将从定义、性质和应用三个方面来详细介绍矩阵的特征值与特征向量。

一、定义给定一个n阶方阵A,若存在非零向量x和标量λ,使得满足以下等式:Ax=λx则称λ为矩阵A的特征值,x为矩阵A对应于特征值λ的特征向量。

特征向量是描述线性变换的方向,在变换过程中保持方向不变,特征值是对应于特征向量的缩放因子。

二、性质1.特征值与特征向量的存在性和唯一性对于n阶方阵A,它一定存在n个特征值,但不一定有n个线性无关的特征向量。

每个特征值对应的特征向量也不一定唯一2.特征值的性质(1)特征值的和等于方阵的迹,即λ1 + λ2 + ... + λn =tr(A)。

(2)特征值的积等于方阵的行列式,即λ1 * λ2 * ... * λn = det(A)。

3.特征向量的性质(1)对于同一个特征值λ,存在无穷多个线性无关的特征向量。

(2)特征向量的线性组合仍然是一个特征向量。

三、应用矩阵的特征值与特征向量在多个学科和领域中都有广泛的应用。

1.物理学在量子力学中,特征值与特征向量的概念被用来描述量子态和量子测量。

2.工程学在结构力学中,特征值与特征向量可以用来分析弹性体的振动频率和振动模态。

3.数据分析特征值与特征向量可以用于主成分分析(PCA),以降低数据的维度并提取最重要的特征。

4.图像处理特征值与特征向量可以用于图像压缩和图像恢复等领域。

5.机器学习在机器学习算法中,特征值与特征向量可以用于降维、分类和聚类等任务。

总结:矩阵的特征值与特征向量是线性代数中的重要概念,具有很多实际应用。

通过特征值与特征向量,我们可以分析矩阵的性质、求解特征方程、降低数据维度等。

理解和掌握矩阵的特征值与特征向量对于深入理解线性代数以及在实际问题中的应用都具有重要意义。

线性代数(同济大学第五版)矩阵的特征值与特征向量讲义、例题

线性代数(同济大学第五版)矩阵的特征值与特征向量讲义、例题

第五章 矩阵的特征值与特征向量§1矩阵的特征值与特征向量一、矩阵的特征值与特征向量定义1:设A 是n 阶方阵,如果有数λ和n 维非零列向量x 使得x Ax λ=,则称数λ为A 的特征值,非零向量x 称为A 的对于特征值λ的特征向量.由x Ax λ=得0)(=-x E A λ,此方程有非零解的充分必要条件是系数行列式0=-E A λ,此式称为A 的特征方程,其左端是关于λ的n 次多项式,记作)(λf ,称为方阵A 特征多项式.设n 阶方阵)(ij a A =的特征值为n λλλ,,,21 ,由特征方程的根与系数之间的关系,易知:nn n a a a i +++=+++ 221121)(λλλA ii n =λλλ 21)(例1 设3阶矩阵A 的特征值为2,3,λ.若行列式482-=A ,求λ. 解:482-=A 64823-=∴-=∴A Aλ⨯⨯=32A 又 1-=∴λ例2 设3阶矩阵A 的特征值互不相同,若行列式0=A , 求矩阵A 的秩.解:因为0=A 所以A 的特征值中有一个为0,其余的均不为零.所以A 与)0,,(21λλdiag 相似.所以A 的秩为2.定理1对应于方阵A 的特征值λ的特征向量t ξξξ,,,21 ,t ξξξ,,,21 的任意非零线性组合仍是A 对应于特征值λ的特征向量.证明 设存在一组不全为零的数t k k k ,,,21 且存在一个非零的线性组合为t t k k k ξξξ+++ 2211,因为t ξξξ,,,21 为对应于方阵A 的特征值λ的特征向量。

则有),,2,1(1t i k Ak i i i ==ξλξ所以)()(22112211t t t t k k k k k k A ξξξλξξξ+++=+++ 所以t t k k k ξξξ+++ 2211是A 对应于特征值λ的特征向量. 求n 阶方阵A 的特征值与特征向量的方法:第一步:写出矩阵A 的特征多项式,即写出行列式E A λ-.第二步:解出特征方程0=-E A λ的根n λλλ,,,21 就是矩阵A 的特征值.第三步:解齐次线性方程组0)(=-x E A i λ,它的非零解都是特征值i λ的特征向量.例3 求矩阵⎪⎪⎪⎭⎫ ⎝⎛--=201034011A 的特征值和特征向量.解 A 的特征多项式为2)1)(2(201034011λλλλλλ--=-----=-E A 所以,A 的特征值为1,2321===λλλ. 当21=λ时,解方程组0)2(=-x E A .由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-000010001~2010340112E A ,得基础解系⎪⎪⎪⎭⎫ ⎝⎛=1001p ,所以特征值21=λ的全部特征向量为11p k ,其中1k 为任意非零数.当132==λλ时,解方程组0)(=-x E A .由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-000210101~101024012E A ,得基础解系⎪⎪⎪⎭⎫ ⎝⎛--=1212p ,所以特征值132==λλ的全部特征向量为22p k ,其中2k 为任意非零数. 二、特征值与特征向量的性质与定理性质1 n 阶方阵A 可逆的充分必要条件是矩阵A 的所有特征值均非零. 此性质读者可利用A n =λλλ 21可证明.定理 2 若21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p ,则21,p p 线性无关.证明 假设设有一组数21,x x 使得02211=+p x p x (1)成立. 以2λ乘等式(1)两端,得0222121=+p x p x λλ (2) 以矩阵A 左乘式(1)两端,得0222111=+p x p x λλ (3) (3)式减(2)式得0)(1211=-p x λλ 因为21,λλ不相等,01≠p ,所以01=x .因此(1)式变成022=p x . 因为02≠p ,所以只有02=x . 这就证明了21,p p 线性无关.性质2 设)(A f 是方阵A 的特征多项式,若λ是A 的特征值.对应于λ的特征向量为ξ,则)(λf 是)(A f 的特征值,而ξ是)(A f 的对应于)(λf 的特征向量,而且若O A f =)(,则A 的特征值λ满足0)(=λf ,但要注意,反过来0)(=λf 的根未必都是A 的特征值.例4 若λ是可逆方阵A 的特征值,ξ是A 的对应于特征值λ的特征向量,证明:1-λ是1-A 的特征值,ξ是1-A 对应于特征值1-λ的特征向量,证明 λ 是可逆方阵A 的特征值,ξ是A 的对应于特征值λ的特征向量λξξ=∴A ξξλ11--=∴Aξξλ11--=∴A A A ξξλ*1A A =∴-1-∴λ是1-A 的特征值,ξ是1-A 对应于特征值1-λ的特征向量, 1-λA 是*A 的特征值,ξ是*A 对应于特征值1-λA 的特征向量.例5 设3阶矩阵A 的特征值1,2,2,求E A --14.解:A 的特征值为1,2,2,,所以1-A 的特征值为1,12,12, 所以E A--14的特征值为4113⨯-=,41211⨯-=,41211⨯-=所以311341=⨯⨯=--E A .例6 若21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p ,证明21p p +一定不是A 的特征向量.证明 假设21p p +是矩阵A 的特征向量,对应的特征值为.λ根据特征值定义可知:)()(2121p p p p A +=+λ …………………(1) 21,λλ 又是n 阶方阵A 的特征值,对应的特征向量分别为21,p p .,111p Ap λ=∴ 222p Ap λ= (2)将(2)带入(1)式整理得:0)()(2211=-+-p p λλλλ因为21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p 线性无关.所以21λλλ==.与21,λλ是n 阶方阵A 的两互不相等的特征值矛盾. 所以假设不成立.例7 若A 为正交矩阵,则1±=A ,证明,当1-=A 时,A 必有特征值1-;当1=A 时,且A 为奇数阶时,则A 必有特征值1.证明 当1-=A 时.TT T A E A A E A AA A E A +=+=+=+)(A E A E T +-=+-=,所以 .0=+A E `所以1-是A 的一个特征值反证法:因为正交阵特征值的行列式的值为1,且复特征值成对出现,所以若1不是A 的特征值,那么A 的特征值只有-1,以及成对出现的复特征值。

线性代数学习指导第五章矩阵的特征值与特征向量

线性代数学习指导第五章矩阵的特征值与特征向量

第五章 矩阵的特征值与特征向量一.内容提要1 . 特征值和特征向量定义1 设()ijn nA a ⨯=是数域P 上的n 阶矩阵,若对于数域P 中的数λ,存在数域P 上的非零n 维列向量X ,使得X AX λ=则称λ为矩阵A 的特征值,称X 为矩阵A 属于(或对应于)特征值λ的特征向量 注意:1)()ijn nA a ⨯=是方阵;2)特征向量 X 是非零列向量;3)方阵 ()ijn nA a ⨯= 与特征值λ 对应的特征向量不唯一4)一个特征向量只能属于一个特征值.2.特征值和特征向量的计算计算矩阵A 的特征值与特征向量的步骤为: (1) 计算n 阶矩阵A 的特征多项式|λE -A |;(2) 求出特征方程|λE -A |=0的全部根,它们就是矩阵A 的全部特征值; (3) 设λ1 ,λ2 ,… ,λs 是A 的全部互异特征值。

对于每一个λi ,解齐次线性方程组()i E A X λ-=0,求出它的一个基础解系,该基础解系的向量就是A 属于特征值λi 的线性无关的特征向量,方程组的全体非零解向量就是A 属于特征值λi 的全体特征向量.3. 特征值和特征向量的性质性质1 (1)若X 是矩阵A 属于特征值λ的特征向量,则kX (0k ≠)也是A 属于λ的特征向量;(2)若12,,,s X X X 是矩阵A 属于特征值λ的特征向量,则它们的非零线性组合1122s s k X k X k X +++也是A 属于λ的特征向量;(3)若A 是可逆矩阵,λ是A 的一个特征值,则λ1是A —1的一个特征值,λ||A 是A *的一个特征值;(4)设λ是n 阶矩阵A 的一个特征值,f (x )= a m x m + a m-1x m -1 + … + a 1x + a 0为一个多项式,则()f λ是f (A )的一个特征值。

性质2(1) nn n a a a +⋅⋅⋅++=+⋅⋅⋅++221121λλλ(2) || 21A n =⋅⋅⋅λλλ性质3 n 阶矩阵A 和它的转置矩阵T A 有相同的特征值 性质4 n 阶矩阵A 不同的特征值所对应的特征向量线性无关4. 相似矩阵定义2 设A 、B 为n 阶矩阵,若存在可逆矩阵P ,使得B=P ―1AP则称A 与B 相似。

线性代数矩阵的特征值与特征向量

线性代数矩阵的特征值与特征向量

线性代数矩阵的特征值与特征向量矩阵的特征值和特征向量是线性代数中非常重要的概念,具有广泛的应用。

在此,我们将详细介绍特征值和特征向量的定义、性质和计算方法。

希望能对读者理解这两个概念有所帮助。

1.特征值和特征向量的定义在线性代数中,对于一个n阶矩阵A,如果存在一个非零向量x,使得Ax=λx,其中λ是一个标量,则称λ是矩阵A的特征值,x是对应于特征值λ的特征向量。

2.特征值和特征向量的性质(1)对于任意矩阵A和非零向量x,如果Ax=λx,则(x,λ)是(A-λI)的一个特征对,其中I是单位矩阵。

(2)对于任意非零常数k,kλ和kx也是特征值λ和特征向量x的特征对。

(3)如果矩阵A的特征向量x1和x2对应于不同的特征值λ1和λ2,则x1和x2线性无关。

(4)若矩阵A的特征值都不相同,则它一定能够对角化。

3.特征值和特征向量的计算(以2阶矩阵为例)对于一个2阶矩阵A,我们可以通过以下步骤来计算其特征值和特征向量:(1)解特征方程det(A-λI)=0,其中I是单位矩阵。

(2)将特征值代入(A-λI)x=0,求解x的向量,即为对应于特征值的特征向量。

4.实对称矩阵的特征值和特征向量对于实对称矩阵,其特征值一定是实数且存在线性无关的特征向量。

具体计算方法为:(1)求解特征方程det(A-λI)=0,得到特征值λ1, λ2, ..., λn。

(2)将特征值代入(A-λI)x=0,解出x的向量,即为对应于特征值的特征向量。

5.正交矩阵的特征值和特征向量对于正交矩阵,其特征值的模一定是1,且特征向量是两两正交的。

具体计算方法同样为求解特征方程和特征向量方程。

6.特征值和特征向量的应用特征值和特征向量有广泛的应用,例如:(1)主成分分析(PCA):利用特征值和特征向量可以找到数据的主要特征方向,用于数据降维和分析。

(2)图像处理:利用特征值和特征向量可以进行图像压缩、增强和分析。

(3)物理学中的量子力学:波函数的特征值和特征向量对应着物理量的测量结果和对应的本征态。

线性代数知识点总结(第5章)

线性代数知识点总结(第5章)

线性代数知识点总结(第5章)(一)矩阵的特征值与特征向量1、特征值、特征向量的定义:设A为n阶矩阵,如果存在数λ及非零列向量α,使得Aα=λα,称α是矩阵A属于特征值λ的特征向量。

2、特征多项式、特征方程的定义:|λE-A|称为矩阵A的特征多项式(λ的n次多项式)。

|λE-A |=0称为矩阵A的特征方程(λ的n次方程)。

注:特征方程可以写为|A-λE|=03、重要结论:(1)若α为齐次方程Ax=0的非零解,则Aα=0·α,即α为矩阵A特征值λ=0的特征向量(2)A的各行元素和为k,则(1,1,…,1)T为特征值为k的特征向量。

(3)上(下)三角或主对角的矩阵的特征值为主对角线各元素。

△4、总结:特征值与特征向量的求法(1)A为抽象的:由定义或性质凑(2)A为数字的:由特征方程法求解5、特征方程法:(1)解特征方程|λE-A|=0,得矩阵A的n个特征值λ1,λ2,…,λn注:n次方程必须有n个根(可有多重根,写作λ1=λ2=…=λs=实数,不能省略)(2)解齐次方程(λi E-A)=0,得属于特征值λi的线性无关的特征向量,即其基础解系(共n-r(λi E-A)个解)6、性质:(1)不同特征值的特征向量线性无关(2)k重特征值最多k个线性无关的特征向量1≤n-r(λi E-A)≤k i(3)设A的特征值为λ1,λ2,…,λn,则|A|=Πλi,Σλi=Σa ii(4)当r(A)=1,即A=αβT,其中α,β均为n维非零列向量,则A的特征值为λ1=Σa ii=αTβ=βTα,λ2=…=λn=0(5)设α是矩阵A属于特征值λ的特征向量,则(二)相似矩阵7、相似矩阵的定义:设A、B均为n阶矩阵,如果存在可逆矩阵P使得B=P-1AP,称A与B相似,记作A~B8、相似矩阵的性质(1)若A与B相似,则f(A)与f(B)相似(2)若A与B相似,B与C相似,则A与C相似(3)相似矩阵有相同的行列式、秩、特征多项式、特征方程、特征值、迹(即主对角线元素之和)【推广】(4)若A与B相似,则AB与BA相似,A T与B T相似,A-1与B-1相似,A*与B*也相似(三)矩阵的相似对角化9、相似对角化定义:如果A与对角矩阵相似,即存在可逆矩阵P,使得P-1AP=Λ=,称A可相似对角化。

线性代数中的特征值与特征向量

线性代数中的特征值与特征向量

线性代数中的特征值与特征向量特征值和特征向量是线性代数中的重要概念,广泛应用于物理、经济、计算机科学等领域。

本文将介绍特征值和特征向量的定义、性质以及其在矩阵对角化和特征分解中的应用。

一、特征值与特征向量的定义在线性代数中,给定一个 n×n 的矩阵 A,我们称零向量v≠0 是矩阵A 的特征向量,如果存在一个实数λ,使得Av=λv。

特征值λ 是使得上述等式成立的实数。

特征向量与特征值是成对出现的,每个特征向量都有一个对应的特征值。

二、特征值与特征向量的性质1. 特征值与特征向量的数目相等对于一个 n×n 的矩阵 A,它最多能有 n 个线性无关的特征向量。

而特征值也最多有n 个。

一个特征值可以对应多个线性无关的特征向量。

2. 特征向量的积性质如果 v 是 A 的特征向量,那么对于任意实数 c,cv 也是 A 的特征向量,且特征值保持不变。

3. 特征向量的加性质如果 v1 和 v2 是 A 的特征向量,对应相同的特征值λ,那么 v1+v2也是 A 的特征向量,对应特征值λ。

三、特征值与特征向量的计算要计算一个矩阵的特征值和特征向量,我们需要求解方程Av=λv。

1. 寻找特征值对于一个 n×n 的矩阵 A,我们需要求解行列式 |A-λI|=0 的根,其中I 是 n 阶单位矩阵。

这样可以得到 A 的特征值。

2. 寻找特征向量对于每个特征值λ,我们需要求解方程组 (A-λI)v=0,其中 v 是特征向量。

解这个齐次方程组可以得到 A 的特征向量。

四、特征值与特征向量的应用1. 矩阵对角化如果一个 n×n 的矩阵 A 有 n 个线性无关的特征向量,那么可以找到对角矩阵 D 和可逆矩阵 P,使得 P^{-1}AP=D。

对角矩阵 D 中的对角元素就是特征值,P 中的列向量就是对应的特征向量。

2. 特征分解对于一个对称矩阵 A(A=A^T),可以进行特征分解,表示为A=QΛQ^T,其中 Q 是由 A 的特征向量组成的正交矩阵,Λ 是对角矩阵,其对角元素是 A 的特征值。

线性代数中的特征值和特征向量

线性代数中的特征值和特征向量

线性代数中的特征值和特征向量线性代数是一门研究向量空间和线性变换的数学分支。

在其核心概念之一中,常常涉及到特征值和特征向量。

特征值和特征向量是在变换下保持方向的向量,这样的向量在研究中经常被用到,因为它们描述了变换对向量空间的作用。

在特征值及其对应的特征向量方面,我们可以从以下几个方面来展开:一、特征值和特征向量的定义特征值是指线性变换作用于某一向量时,其结果与这个向量的数量关系,这个数量关系可以用一个数值来表示,这个数值就称为这个向量在该变换下的特征值。

特征向量是一条非零向量,变换作用在这个向量上时,仅改变向量的长度,而不改变它的方向。

也就是说,这个向量在该变换下的方向不变,只是相应地拉伸或缩短了。

二、特征值和特征向量的计算方法在计算特征值和特征向量时,可以采用以下方法:1.求解对角矩阵对于n阶矩阵A,如果存在一个列向量X,使得AX=kX,其中k为一个数,则称k是矩阵A的一个特征值,而X称为A的对应于特征值k的特征向量。

而一个矩阵的特征值和特征向量可以通过求解其对角化矩阵得到。

2.求解特征多项式特征多项式是矩阵的特征值所满足的多项式方程,我们可以通过求解这个方程来求解矩阵的特征值和特征向量。

对于一个n阶方阵,其特征多项式是由其任意一行(列)对角线上各元素和行(列)号交织奇偶性给出。

三、特征值和特征向量在实际应用中的作用特征值和特征向量在实际应用中有着广泛的应用。

比如说,在图像处理中,我们可以采用特征向量的方法来实现图像的压缩和去噪;在机器学习中,我们可以采用特征值和特征向量的方法来实现数据的降维和特征选择。

另外,在计算机图形学、信号处理、量子力学和金融等领域中,特征值和特征向量也被广泛运用,它们帮助我们将复杂的问题转化成简单的数学运算,提高了问题的解决效率和精度。

总之,特征值和特征向量是线性代数中的重要概念,在实际应用当中发挥着不可替代的作用。

了解它们的定义、计算方法和应用,对于我们掌握基本的数学分析能力和工程应用能力是必不可少的。

线性代数特征值与特征向量

线性代数特征值与特征向量

线性代数特征值与特征向量特征值与特征向量是线性代数中的重要概念,广泛应用于各个领域。

在本文中,我们将详细介绍特征值与特征向量的定义、性质以及应用。

一、特征值与特征向量的定义在线性代数中,给定一个n阶方阵A,如果存在一个非零向量v使得满足以下等式:Av = λv其中,v称为A的特征向量,λ称为A的特征值。

特征值与特征向量始终成对出现,不同特征向量对应的特征值可以相同,也可以不同。

二、特征值与特征向量的性质1. 特征向量的性质(1)特征向量可以进行线性组合。

即若v1和v2是矩阵A相应于特征值λ的特征向量,那么c1v1 + c2v2也是矩阵A相应于λ的特征向量(其中c1和c2为常数)。

(2)特征向量的数量最多为n。

对于一个n阶方阵A,它最多有n个线性无关的特征向量。

2. 特征值的性质(1)特征值具有可加性。

对于矩阵A和B,相应的特征值分别是λ1和μ1,那么A+B的特征值为λ1+μ1。

(2)特征值具有可乘性。

对于矩阵A和B,相应的特征值分别是λ1和μ1,那么A·B的特征值为λ1·μ1。

三、特征值与特征向量的求解方法特征值与特征向量的求解是通过解方程Av = λv来实现的。

常见的求解方法有以下两种:1. 特征方程法将Av = λv转化为(A-λI)v = 0,求解矩阵(A-λI)的零空间,即可得到特征向量v,然后代入Av = λv中求解λ。

2. 列主元法通过高斯消元法将矩阵A转化为上三角矩阵U,求解Ux = 0的基础解系,其中x即为特征向量,对应的主对角线元素即为特征值。

四、特征值与特征向量的应用特征值与特征向量在许多领域都有广泛的应用,以下是其中几个典型的应用案例:1. 矩阵对角化通过找到一个可逆矩阵P,使得P^-1AP = D,其中D是一个对角矩阵,对角线上的元素即为A的特征值。

矩阵对角化可以简化矩阵的运算,提高计算效率。

2. 矩阵压缩在图像处理和数据压缩中,特征值与特征向量可以用来进行矩阵的压缩。

线性代数-特征值与特征向量2

线性代数-特征值与特征向量2
T
1
推论 设 A为 n阶实对称, 是 A的特征方程的 k重 根, 则矩阵A E 的秩 R( A E ) n k , 从而 对应特征值 恰有 k个线性无关的特征向量.
说明 第一个定理表明,实对称阵的特征向量可取实向量. 这是因为, 当特征值 为实数时,齐次方程 ( A E ) x 0 的系数矩阵是实矩阵,必有实的基础解系. 第二个定理表明,实对称阵的特征向量可取为两 两正交的向量. 这是因为,对A 的每一个不同的特征值 i,对应 于 i 的特征向量可取为两两正交向量, 这样所得 到的线性无关的特征向量就是两两正交的.
说明
A 解答此题的关键是将 x取值条件“ 可对角化” R 转化为“二重特征值 1 应满足 ( A E ) 3 2 1 ”, 从而求得.
矩阵 A能否对角化,取决于它的线性无关特征 向量的个数,而与 A 的秩,A 的行列式都无关.
4 3 例2 设 A 1 2 , 试问 A 能否对角化? 若能,找出一个相似变换矩阵P 将 A 化为对角阵.
定理:若 n 阶矩阵 A 和 B 相似,则 A 和 B 的特征多项式相同,
从而 A 和 B 的特征值也相同.
证明:根据题意,存在可逆矩阵 P ,使得 P −1AP = B . 于是 | B −E | = | P −1AP − P −1(E) P | = | P −1(A−E ) P | = | P −1| |A−E | |P | = |A−E | .
说明
定理的逆命题不成立的. 如果矩阵A 和B 的特征值 相同,它们可能相似,也可能不相似.
说明
定理3的逆命题不成立的. 若矩阵 A和 B的特征值 相同,它们可能相似,也可能不相似.
推论表明,若P 1 AP ( 为对角阵) ,则 的对 角元必定是 A 的全部特征值. 于是在不计较的对 角元次序的意义下, 由 A 惟一确定.

特征值与特征向量课件课件

特征值与特征向量课件课件

就是属于特征值 0 的一个特征向量. 于是可得求
线性变换 A 的特征值与特征向量的步骤如下:
Step 1 :在线性空间 V 中取一组基1 , 2 , …,
n ,写出 A 在这组基下的矩阵 A ;
Step 2 :计算 A 的特征多项式,并求出特征
方程在数域 P 中的所有根. 设矩阵 A 有 s 个不同 的特征值 1 , 2 , …, s ,它们也就是线性变换 A 的全部特征值.
第3页,幻灯片共40页
二、几何意义
在几何向量空间 R2 和 R3 中,线性变换 A 的
特征值与特征向量的几何意义是:
特征向量 ( 起
点在坐标原点) 与其像 A 同向(或反向),同向时,
特征值 0 > 0,反向时, 0 < 0,且 0 的绝对值等 于 | A | 与 | | 之比值; 如果特征值 0 = 0,则特
a22 a22
an1 an2 ann
称为 A 的特征多项式, 这是数域 P 上的一个 n
次多项式.
第12页,幻灯片共40页
上面的分析说明,如果 0 是线性变换 A 的特
征值,那么 0 一定是矩阵 A 的特征多项式的一个
根; 反过来,如果 0 是矩阵 A 的特征多项式在数
域 P 中的一个根,即 |0E - A | = 0,那么齐次线性
关于特征值与特征向 量课件
第1页,幻灯片共40页
一、定义
我们知道,在有限维线性空间中,取了一组基 之后,线性变换就可以用矩阵来表示. 为了利用矩 阵来研究线性变换,对于每个给定的线性变换,我 们希望能找到一组基使得它的矩阵具有最简单的形
式. 从现在开始,我们主要来讨论,在适当的选择
基之后,一个线性变换的矩阵可以化成什么样的简 单形式. 为了这个目的,先介绍特征值和特征向量

线性代数课件5-2相似矩阵与二次型

线性代数课件5-2相似矩阵与二次型
23
解得x2 2 x1 ,
所以,对应的特征向量可取为p2
1 2 .
2
3对应的全部特征向量为k2
p2
k2
1
2
,
(k2
0).
9
2 1 1
例2
求矩阵A
0
2 0 的特征值和特征向量。
4 1 3
解 特征多项式为 f ( ) A E
2 1 1
2 1
0
2
0
(2 )
4
3
4 1 3
20
于是,得到关于 x1, x2 , , xm 的m个方程 从而,满足下面的方程组:
x1 p1 x2 p2 xm pm 0
1 x1 p1 2 x2 p2 m xm pm 0
1m1
x1
p1
m1 2
x2
p2
m1 m
xm
pm
0
下求该齐次方程组的解
1 1
1
2
1 x1 p1 0
2xx21
x3 x3
,
令x3 1,
基础解系为p1
1 2
1
.
故对应于1 1的全体特征向量为 1
k1 p1
(k1 0).
当2 3 2时, 齐次方程为
1
2
1 2
2 2
1
A
2
2
1 2 2
1 2 2
r3
r1 (1) r2 , r2
2r1
1 0 0
1 x1 0
则有
(1) 1 2 n a11 a22 ann; (2) 12 n A .
5.对应特征向量 i的特征值即是 齐次方程( A i E)x 0的解pi .

第五章特征值和特征向量PPT课件

第五章特征值和特征向量PPT课件
根据上式可知,任一非零向量除以它的长度后 就成了单位向量. 这一过程称为将向量单位化.
设是非零向量, 则 是一个单位向量.
这是因为
1
1
1
(3) xy2xy,xy x ,x 2 x ,y y ,y x ,x 2 x y y ,y
x22x yy2
xy2
所以 x yxy
(以上性质显然成立)
定义2 设x=(x1, x2, …, xn)T
令 x[x,x]x1 2x2 2 xn 2
称为n 维向量 x 的长度(或范数).
显然||x||0, 当||x|| =1时, 称x为单位向量, 零向量的长度为0.
在R2中, =(a1, a2)
a12 a22
在R3中, =(a1, a2 , a3)
注:此处可能是复数, A的元素和x的分量
也可能是复数.
将(1)改写成 (AE )x =0 (2)
( 或改写为 (E A)x=0 ) 此为n 元齐次线性方程组
它有非零解的充要条件是 | A E| =0

a11
a21
a12
a22
a1n a2n 0
an1
an2
ann
定义 A为n阶方阵, 含有未知量的矩阵AE
1 n
2
n
n
n
其中
ij
1 0
i j i j
当i=j时, i ia i2 1a i2 2 ...a i2 n 1
当ij时, i j a i1 a j1 ... a in a jn 0
列的情况可以通过 A'A=E 加以证明
这样,性质4. 和5.得证.
定理4 A为正交矩阵的充要条件是 A的行(列)向量组为正交规范向量组. 证: 由性质4,5可以直接推出

线性代数教案-第五章 特征值和特征向量

线性代数教案-第五章 特征值和特征向量

第五章特征值和特征向量特征值和特征向量理论,不仅用于解决上述求线性变换的对角阵表示这个问题,在诸如几何中的变换,振动问题中的稳定性,微分方程的边值问题等许多方面都有广泛应用.由于一个矩阵在一定意义下就是一个线性变换,本章着重讨论矩阵的特征值和特征向量.一、 教学目标与基本要求1 线性变换的特征值和特征向量定义5.1.1设V 是一个线性空间,T :V →V 是一个线性变换.若对于数λ,存在一个非零向量x ,使得x x λ=)(T (5.1.1)则称λ为T 的一个特征值,而称x 为T 的属于特征值λ的特征向量.定义5.1.2设][ik a A =是一个n 阶方阵,λ是一个变量,矩阵A E -λ的行列式nnn n n n a a a a a a a a a A E ---------=-λλλλ212222111211)det( 被称为A 的特征多项式,记为)(λf .这是一个变量λ的n 次多项式.而称以λ为未知量的方程=-)det(A E λ0)(=λf 为A 的特征方程.讨论一个方阵A (被视着某个线性变换的矩阵)的特征值和特征向量的求法.这可以归纳为以下步骤:1.求出方阵A 的特征方程0)det(=-A E λ的全部根,它们就是A 的特征值.2.将求得的特征值逐个代入齐次线性方程组θx =-T)(A E λ,求其通解,就得到了属于每个特征值的全部特征向量.2 特征值和特征向量的性质性质1 若λ是方阵A 的特征值,则2λ是2A 的特征值;若A 可逆,则1-λ是1-A 的特征值. 性质2 设1λ,2λ是方阵A 的相异的特征值,1ξ,2ξ是分别属于1λ及2λ的A 的特征向量,则1ξ,2ξ是独立的.性质3 设V 是n 维线性空间,T :V →V 是一个线性变换,它有n 个彼此相异的特征值n λλ,, 1,n ξξ,, 1是分别属于它们的特征向量.则}{1n ξξ,, 是V 的一组基,且T 在此基下的矩阵表示就是对角阵)diag(1n A λλ,, =.性质4 若A 是实对称方阵,1λ,2λ是其相异特征值,1ξ,2ξ是分别属于它们的特征向量,则1ξ与2ξ正交.性质5 设n λλλ,,, 21是n 阶方阵][ik a A =的全部特征值,则(1)A a a a A E f n n nn n det )1()(||)(12211-+++++-=-=- λλλλ,(2)∑==n i i A 1tr λ,(3)n A λλλ 21det =3 相 似 矩 阵定义5.3.1设A ,B 都是n 阶方阵,若有可逆方阵C ,使B AC C =-1, (5.3.5)则称B 是A 的相似矩阵,或说B 与A 相似.对A 进行运算AC C 1-,被称为对A 进行相似变换.可逆方阵C 被称为将A 变成B 的相似变换矩阵.相似关系是同阶方阵之间的一种关系,具有:(1)自反性: A 与A 相似.因为取单位阵E ,有A AE E =-1.(2)对称性:若B 与A 相似,则A 与B 相似.因为(5.3.5)式两端左乘C ,右乘1-C ,有A CBC =-1.(3)传递性:若B 与A 相似,D 与B 相似,则D 与A 相似.因为据假设,有可逆方阵1C 及2C ,使B AC C =-111,D BC C =-212,故有121211112)()(---==C C C AC C C D A )(21C C ,故D 与A 相似.定理5.3.1若n 阶方阵A 与B 相似,则A 与B 的特征多项式相同,从而A 与B 的特征值亦相同.而且B A det det =.推论 若n 阶方阵A 与对角阵)diag(1n λλ,, =Λ相似,则n λλ,, 1即为A 的n 个特征值. 若一个n 阶方阵A 与一个对角阵)diag(1n λλ,, =Λ相似,就称A 可以对角化. 定理5.3.2实对称阵的特征值为实数.定理5.3.3设A 为n 阶实数对称阵,λ是A 的特征方程的r 重根,则方阵A E -λ的秩是r n -,从而属于λ的特征向量中,恰有r 个独立的特征向量.定义5.3.2由n 个两两正交的n 元单位列向量所构成的n 阶方阵,被称为正交阵.二、教学内容及学时分配:第一节线性变换的特征值和特征向量 2学时第二节特征值和特征向量的性质 2学时第三节相 似 矩 阵 2学时三、教学内容的重点及难点:1、重点:特征根及特征向量的求法2、难点:什么时候可以将矩阵对角化四、教学内容的深化和拓宽:大部分矩阵不能对角化,那么什么时候可以对角化,对角化在实际中的例子.五、思考题与习题1 (3)(4)(5) 3警 4 6 8 9 10 11 13 14六、教学方式(手段)本章主要采用讲授新课的方式。

线性代数同济大学第五版课件5-2张

线性代数同济大学第五版课件5-2张

~
1 p1 , 1
所以对应于 1 2的全部特征向量为
k1 p1 (k1 0)
上页 下页
当2 4时, 解方程组 A 4 E ) x 0.由 (
3 4 A 4E 1 1 1 3 4 1 1 1
1 A E 4 1
1 3 0
0 0 2 ( 2 ) (1 ) ,
2
所以A的特征值为 1 2, 2 3 1.
当1 2时, 解方程组 A 2 E ) x 0.由 (
上页 下页
1 0 3 1 0 1 2 A 2E 4 32 0 4 1 0 1 0 2 2 1 0 0
~
1 0 0 0 1 0 , 0 0 0
得基础解系
0 p1 0 1
所以对应于 1 2的全部特征向量 .
k1
p (k
1
1
0)
上页
下页
当 2 3 1时, 解方程( A E ) x 0.由
1 0 2 1 0 11 A E 4 31 0 4 2 0 1 0 2 1 1 0 1
一、特征值与特征向量的概念
定 义6
方 非 设 A 是 n 阶 矩 阵, 如 果 数 和 n 维 非 零 阵 零
Ax Ax x x
列 向 量x 使 关 系 式
成 立, 那末, 这样的数 称为方阵 的特征值 (eigenvalue) A
非零向量x 称为 A 的对应于特征值 的 特征向量(eigenvector)
2 2

故 是矩阵A 的特征值, 且 x 是 A 对应于 的特

(完整版)线性代数第五章特征值与特征向量(自考经管类原创)

(完整版)线性代数第五章特征值与特征向量(自考经管类原创)

Ak
( PP 1 )k
Pk P1
0 P
k
5
P1
上例中,对二阶方阵AP,存在可逆矩阵P, 使得P1AP .
对角阵的对角元是A的特征值,可逆阵P 即为相应对角元位置的特征值的线性无关的特 征向量组成.
接下来,主要研究方阵化对角阵的问题.
定义 设 A, B 都是 n 阶矩阵,若存在可逆矩阵P,使得 P1AP B
特征值, A 为 A 的一个特征值.
问题( :1)已知是A的特征值,求f (A)特征值
(2)已知f (A)=O,求A的特征值
例6 设3阶矩阵A的一个特征值是-3,则-A2必有 一个特征值 ___
例7
设A=
1 0
2 3
,求B=A2
-2A+3E 的所有特征值 2
例8 设三阶矩阵A的特征值分别为1,2,3, 则 A 2E __
4 1 3
( 1) 22 ,
令 ( 1) 22 0
得A的特征值为1 1,2 3 2.
当1 1时,解方程E A x 0.由
1 1 1 1 0 1
E
A
0
3
0
0
1
0
,
4 1 4 0 0 0
得基础解系
1 p1 0, 1
故对应于1 1的全体特征向量为
k p1
E A
a21
L
a22 L
LL
an1
an2 L
a1n
a2n
L
ann
称E A 为A的特征方阵 .
记 f E A ,它是 的 n 次多项式,
称其 为方阵 A的 特征多项式 .
称以 为未知数的一元n 次方程 E A 0
为A的特征方程 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

故应填 4
3
有关特征值的性质
性质5.2 矩阵A与AT 有相同的特征值.
证 AT E ( A E)T A E 性质5.3 设A 是n 阶可逆矩阵, 为其特征值,则(1) 0; (2) 1 是A1 的特征值.
证 (1) 假设 0,则由定义知A 0 0.
而矩阵A可逆,故上式两端同时左乘A1 得 A10 0.
设矩阵A aij nn ,称a11 a22 ann为矩阵A 的迹.
ann.
7 4 1
例1
已知三阶矩阵A
4
7 1 有特征值1 2 3,3 =12,则x ______ .
4 4 x
解 1 2 3 a11 a22 a33, 即3 3 12 7 7 x,
解得x 4.
(5) A可逆,则 A 为A 的特征值;
8
有关特征向量的性质
定理5.1 n阶矩阵A 的相异特征值1,2, ,m所对应的特征向量1,2 , ,m 线性无关;
推论 n 阶矩阵A 的相异特征值为1,2, ,m ,i1,i2 , ,iri 是特征值i 所对应
m
的线性无关的特征向量,则 ri个特征向量11,12 , ,1r1 ,21,22 , ,2r2 i 1 ,m1,m2 , ,mrm 线性无关.
9
有关特征向量的性质
注1 k重特征值最多有k个线性无关的特征向量.
注2 属于同一个特征值的特征向量的非零线性组合仍为特征向量. A1 1,A2 2 A(k11 k22 ) k1 A1 k2 A2 A(k11 k22 ) k11 k22 A(k11 k22 ) (k11 k22 )
线性代数(慕课版)
第五章 矩阵的特征值与特征向量
第二讲 特征值与特征向量(2)
主讲教师 |
本讲内容
特征值与特征向量的性质
有关特征值的性质
性质5.1 定义5.2
设矩阵A aij nn 的特征值为1, 2 , , n,则
(1) 12 n A ; (2) 1 2 n a11 a22
f ()为f ( A)的特征值;
6
有关特征值的性质
例4 设为n 阶方阵A 的特征值,证明 2 为A2 的特征值.

A A2 A ( A ) A ( ) ( A ) 2
拓展 设 为n 阶方阵A 的特征值,则 m 为Am 的特征值.
7
有关特征值的性质
总结
抽象矩阵求特征值的公式 设为A 的特征值,则 (1) k为kA 的特征值; A (kA) (k) (2) m 为Am 的特征值; (3) f () 为f ( A) 的特征值; (4) A 可逆,则 1 为A1 的特征值;
和y
应满足的条件为 ____ .
1 0 0
0 1
解 E A x 1 y 2 ( 1) ( 1) ( 1)2 ( 1) 0
1 0
得特征值 1 1(二重),2 1.
欲使1 1有二个线性无关的特征向量 矩阵r(E A) 1
1 0 1 1 0 1 1 0 1
E A x
这与特征向量 0矛盾,故 0.
(2) 由条件知有非零向量 满足A ,两边左乘以A1 得 A1
因 0,于是有 A1 1 ①
所以 1 为A1的特征值.
4
有关特征值的性质
性质5.4 若是A 的特征值,则f ()是f ( A) 的特征值.
代数多项式 f (x) am xm am1xm1 a1x a,0 矩阵多项式 f ( A) am Am am1Am1 a1A a0E. 例2 已知三阶矩阵A 的特征值 1,1,2,求 A3 5A2 .
解 设f (x) x3 5x2,则f ( A) A3 5A2, 由性质5.4知f ( A) 的全部特征值为 f (1) 6,f (1) 4,f (2) 12, 故 A3 5A2 (6) (4) (12) 288.
5
有关特征值的性质
例3 已知三阶矩阵A 的特征值为1, 1, 2,则矩阵B 2A E(E 为三阶单位阵) 的特征值为 ______ .
把Ax1 1x1、Ax2 2 x2带入上式得1x1 2 x2 x1 x2 (1 )x1 (2 )x2 0
由1 2知x1、x2线性无关 1 2 这与1 2矛盾
故x1 x2不是A 的特征向量.
11
有关特征值的性质
0 0 1
例6
设A
x
1
y
有三个线性无关的特征向量,则x
解 若为矩阵A 的特征值, 即A (2A) (2),
又E 1 (2A E) (2 1) 所以2 1是B 2A E 的特征值
于是A 的特征值为1, 1, 2,则B 的特征值为3, 1和5.
n 阶单位矩阵E 的特征值为1 2 n 1
任意n 维非零列向量均为n 阶单位矩阵E的特征向量
0
y
x
0
y
0
0
x
y
1 0 1 0 0 0 0 0 0
故应填 x y 0
于是得 x y 0.
12
有关特征值的性质
例7
设A为二阶矩阵,1,2为线性无关的二维列向量,A1
0,A2
21

2
则A 的非零特征值为 .

解法一
A(21 2 ) 2 A1 A2
0
A2
21

2
故应填 1
则1,2 =0,1.所以A的非零特征值为1.
13
有关特征值的性质
设A为二阶矩阵,1,2为线性无关的二维列向量,A1
0,A2
21


2
则A 的非零特征值为 .
注3 属于不同特征值的特征向量的线性组合不是特征向量.
10
有关特征值的性质
例5 设1, 2为n 阶方阵A 的特征值,且1 2 , 而x1, x2 分别为对应的特征
向量. 试证明:x1 x2不是A 的特征向量.
证 反证法
设x1 x2是A 的属于特征值 的特征向量,即A(x1 x2 ) (x1 x2 ) Ax1 Ax2 x1 x2
知 21 2 是A的关于特征值1的特征向量,1是A 的非零特征值.
解法二
由A(1,
2
)
(
A1,A
2
)
(0,21
2
)
(1,
2
)
0 0
2 1 .
即P
(1,2 ),由1,2线性无关知P
可逆,从而P 1 AP
0
0
2
1
B
所以A与B有相同的特征多项式和特征值,而 E B = 2 =( 1). 0 1
相关文档
最新文档