第三题.三次样条插值
三次样条插值的方法和思路
![三次样条插值的方法和思路](https://img.taocdn.com/s3/m/94b716fb970590c69ec3d5bbfd0a79563c1ed4b0.png)
三次样条插值的方法和思路摘要:1.三次样条插值的基本概念2.三次样条插值的数学原理3.三次样条插值的实现步骤4.三次样条插值的优缺点5.三次样条插值在实际应用中的案例正文:在日常的科学研究和工程应用中,我们经常会遇到需要对一组数据进行插值的问题。
插值方法有很多,其中三次样条插值是一种常见且有效的方法。
本文将从基本概念、数学原理、实现步骤、优缺点以及实际应用案例等方面,全面介绍三次样条插值的方法和思路。
一、三次样条插值的基本概念三次样条插值(Cubic Spline Interpolation)是一种基于分段多项式的插值方法。
它通过在各个节点上构建一条三次多项式曲线,使得这条曲线在节点之间满足插值条件,从而达到拟合数据的目的。
二、三次样条插值的数学原理三次样条插值的数学原理可以分为两个部分:一是分段三次多项式的构建,二是插值条件的满足。
1.分段三次多项式的构建假设有一组数据点序列为(x0,y0),(x1,y1),(x2,y2),(x3,y3),我们可以将这些数据点连接起来,构建一条分段三次多项式曲线。
分段三次多项式在每个子区间上都是一个三次多项式,它们之间通过节点值进行连接。
2.插值条件的满足为了使分段三次多项式在节点之间满足插值条件,我们需要在每个子区间上满足以下四个条件:(1)端点条件:三次多项式在区间的端点上分别等于节点值;(2)二阶导数条件:三次多项式在区间内的二阶导数等于节点间的斜率;(3)三阶导数条件:三次多项式在区间内的三阶导数等于节点间的曲率;(4)内部点条件:三次多项式在区间内部满足插值函数的连续性。
通过求解这四个条件,我们可以得到分段三次多项式的系数,从而实现插值。
三、三次样条插值的实现步骤1.确定插值节点:根据数据点的位置,选取合适的节点;2.构建分段三次多项式:根据节点值和插值条件,求解分段三次多项式的系数;3.计算插值结果:将待插值点的横坐标代入分段三次多项式,得到插值结果。
三次样条插值ppt
![三次样条插值ppt](https://img.taocdn.com/s3/m/1f98d09959f5f61fb7360b4c2e3f5727a5e92481.png)
把以上各式由后向前代入,可得
Nn (x) f (x0) f [x0, x1](x x0) f [x0, x1, xn](x x0) (x xn1)
Rn (x) f (x) Nn (x) f [x, x0, x1, xn ](x x0) (x xn)
yi
n1 ( x) ( x xi )n' 1 ( xi )
(2)插值误差估计
定理2 设 f (n) (x) 在[a,b] 上连续,f (n1) (x)在 (a,b) 内存在, 节点 a x0 x1 xn b,Pn (x) 是拉格朗日插值多项 式,则对任意 x [a,b] , 插值余项
x4 f ( x4 ) f [x3, x4 ] f [x2 , x3 , x4 ] f [x1, x2, x3, x4 ] f [x0, x1, x2, x3, x4 ]
(2) Newton插值公式
由差约定义 x [a,b]
f (x) f (x0 ) f [x, x0 ](x x0 )
f [x, x0 ] f [x0, x1] f [x, x0, x1](x x1)
xn1] f [x1, x2 , x0 xn
xn ] n 阶差商
差商表
xk
f
(xk )
一阶 差商
二阶差商
三阶差商 四阶差商
x0 f (x0 )
x1 f (x1) f [x0, x1]
x2 f (x2 ) f [x1, x2 ] f [x0 , x1, x2 ]
x3 f (x3 ) f [x2, x3] f [x1, x2 , x3 ] f [x0, x1, x2, x3]
计算方法大作业1 克服Runge现象
![计算方法大作业1 克服Runge现象](https://img.taocdn.com/s3/m/45eb03f2551810a6f52486f8.png)
x3
x2
x
1
S1 ( x)
-0.34685
0.2086
0.073964
0.038462
S2 (x)
S (xi 0 ) S x(i 0 )
S
'
(xi
0) S
xi' (
0 )i
S
'
'
x(i
0)S
xi' ' (
0)
1 ,n2, . . . , 1
(1)
这里共有了 3n-3 个条件,再加上条件(2)中的 n+1 个插值条件,共有 4n-2 个条件,
因此还需要 2 个方程才能确定 S (x) .通常可在区间[a, b]的端点 a x0,b xn 上各加一个边
dn1
1
2
Mn
dn
(6)
2 1
2
2
2
1 M1 d1
M2
d2
n 1
2
n
1
M
n
1
dn1
n
n 2 M n dn
由式(1)内点拼接条件,可得
i M i1 2M i i M i1 d j i 1, 2,..., n 1
(3) (4)
其中
i
hi 1 hi1
, hi
i
hi hi 1
数值计算方法( 三次样条插值)
![数值计算方法( 三次样条插值)](https://img.taocdn.com/s3/m/1fdb4c0bde80d4d8d15a4f90.png)
u xj hj
分段三次Hermite插值算法
则 v A1 y j 1 A2 y j B1 f j1 B2 f j
算法: 1.输入x j , f j , f j (j 0,1,...,n); 2.计算插值 (1)输入插值点u; (2)对于j 1,2,...,n做 如果u x j 则计算A1 , A2 , B1 , B2 ; v A1 f j 1 A2 f j B1 f j1 B2 f j; 3.输出u , v。
三次样条插值
于是由Taylor展示有 s( x) s( xi ) s( xi )(x xi ) s( xi ) s( xi ) 2 ( x xi ) ( x xi )3 2! 3! M M Mi yi s( xi )(x x j ) i ( x xi ) 2 i 1 ( x xi )3 2! 3!( xi 1 xi )
2M 0 M 1 6 f [ x0 , x0 , x1 ]
三次样条插值
同理(2)式中令i n得 M n 1 2M n 6 f [ xn 1 , xn , xn ] 即有 2M 0 M 1 6 f [ x0 , x0 , x1 ] ) i M i 1 2M i i M i 1 6 f [ xi 1 , xi , xi 1 ] (i 1,2,...,n 1 M 2M 6 f [ x , x , x ] n n 1 n n n 1
三次样条插值
对于待定系数a j , b j , c j .d j j 1,2,...n,即4n个未知系数,
而插值条件为 n 2个,还缺两个,因此须 4 给出两个 条件称为边界条件,有 以下三类: 第一类 已知两端点的一阶导数 s( x0 ) f ( x0 ) m0 s( xn ) f ( xn ) mn
三次样条插值函数求解例题
![三次样条插值函数求解例题](https://img.taocdn.com/s3/m/c9ce748188eb172ded630b1c59eef8c75ebf957a.png)
三次样条插值函数求解例题三次样条插值函数是一种常用的插值方法,用于在给定的一组数据点上构建一个连续的曲线。
下面我将通过一个例题来解释三次样条插值函数的求解过程。
假设我们有一组数据点{(x0, y0), (x1, y1), ..., (xn, yn)},其中x0 < x1 < ... < xn。
我们的目标是构建一个连续的曲线,使得曲线经过这些数据点。
首先,我们需要确定每个数据点之间的插值多项式。
在三次样条插值中,每个插值多项式的形式为:Si(x) = ai + bi(x xi) + ci(x xi)^2 + di(x xi)^3。
其中,ai、bi、ci、di是待求的系数,Si(x)是第i段插值多项式。
接下来,我们需要确定每个插值多项式的系数。
为了满足插值条件,我们需要确定每个数据点处的函数值和导数值。
具体而言,我们需要满足以下条件:1. 函数值条件,Si(xi) = yi,即插值多项式通过每个数据点。
2. 导数值条件,Si'(xi) = Si-1'(xi),即相邻插值多项式在数据点处的导数值相等。
通过这些条件,我们可以得到一系列的线性方程组,其中未知数为插值多项式的系数。
解这个线性方程组即可得到每个插值多项式的系数。
最后,我们可以将每个插值多项式的系数代入到对应的插值多项式中,得到最终的三次样条插值函数。
需要注意的是,在边界处,我们需要额外的条件来确定插值多项式的系数。
常见的边界条件有自然边界条件和固定边界条件。
自然边界条件要求插值函数的二阶导数在边界处为零,而固定边界条件要求插值函数在边界处通过给定的导数值。
综上所述,三次样条插值函数的求解过程包括确定插值多项式的系数和边界条件的确定。
通过解线性方程组,我们可以得到每个插值多项式的系数,从而构建出连续的三次样条插值函数。
希望以上回答能够满足你的要求。
如果你有任何其他问题,请随时提出。
详细讲解三次样条插值法及其实现方法
![详细讲解三次样条插值法及其实现方法](https://img.taocdn.com/s3/m/4c4adede33d4b14e852468cb.png)
样条函数的定义 定义4.1 设区间[a,b]上给定一个节点划分
a=x0<x1<……<xn-1<xn=b 如果存在正整数k使得[a,b]上的分段函数s(x)满足 如下两条: (1)在[a,b]上有直到k-1阶连续导数。 (2)在每个小区间[xi,xi+1]上是次数不大于k的多项式。 则称分段函数s(x)是以(2.6)为节点集的k次样条函数。
x xi i i 1 hi
) mi1hi
( ) xi1x
1 hi
x [xi , xi1], hi xi1 xi , i 0,1,, n 1
(x) (2x 1)( x 1)2,1(x) x(x 1)2 13
对Si (x)求二阶导数 ,并整理后得
Si( x)
6( xi
xi 1 hi3
2x)
因为分段三次Hermite插值多项式已经至少是一阶连续 可导了,为了让它成为三次样条函数只需确定节点处 的一阶导数使这些节点处的二阶导数连续即可!
S(xi 0) S(xi 0), i 1,, n 1
S(x)
y ( xxi i 0 hi
)
y ( ) m h ( xi1x i1 0 hi
( yn
yn 1 )
2 hn1
(mn1
2mn )
立即可得下式:
21
其中:
nm1 nmn1 2mn gn
n
h0
h0 hn1
, n
hn1 h0 hn1
1 n
gn
3 n
y1 y0 h0
n
yn
yn1 hn1
联合基本方程得一个广义三对角或周期三对角方程组:
2 1
1
1
2
三次样条插值作业题
![三次样条插值作业题](https://img.taocdn.com/s3/m/6ba8666f7c1cfad6195fa7df.png)
例1 设)(x f 为定义在[0,3]上的函数,有下列函数值表:且2.0)('0=x f ,1)('3-=x f ,试求区间[0,3]上满足上述条件的三次样条插值函数)(x s本算法求解出的三次样条插值函数将写成三弯矩方程的形式:)()6()()6()(6)(6)(211123131j j jj j j jj j j j jj j jj x x h h M y x x h h M y x x h M x x h M x s --+--+-+-=+++++其中,方程中的系数jj h M 6,jj h M 61+,jj j j h h M y )6(2-,jjj j h h M y )6(211++-将由Matlab代码中的变量Coefs_1、Coefs_2、Coefs_3以及Coefs_4的值求出。
以下为Matlab 代码:%============================= % 本段代码解决作业题的例1 %============================= clear all clc% 自变量x 与因变量y ,两个边界条件的取值 IndVar = [0, 1, 2, 3]; DepVar = [0, 0.5, 2, 1.5];LeftBoun = 0.2;RightBoun = -1;% 区间长度向量,其各元素为自变量各段的长度h = zeros(1, length(IndVar) - 1);for i = 1 : length(IndVar) - 1h(i) = IndVar(i + 1) - IndVar(i);end% 为向量μ赋值mu = zeros(1, length(h));for i = 1 : length(mu) - 1mu(i) = h(i) / (h(i) + h(i + 1));endmu(i + 1) = 1;% 为向量λ赋值lambda = zeros(1, length(h));lambda(1) = 1;for i = 2 : length(lambda)lambda(i) = h(i) / (h(i - 1) + h(i)); end% 为向量d赋值d = zeros(1, length(h) + 1);d(1) = 6 * ( (DepVar(2) - DepVar(1) ) / ( IndVar(2) - IndVar(1) ) - LeftBoun) / h(1); for i = 2 : length(h)a = ( DepVar(i) - DepVar(i - 1) ) / ( IndVar(i) - IndVar(i - 1) );b = ( DepVar(i + 1) - DepVar(i) ) / ( IndVar(i + 1) - IndVar(i) );c = (b - a) / ( IndVar(i + 1) - IndVar(i - 1) );d(i) = 6 * c;endd(i + 1) = 6 *( RightBoun - ( DepVar(i + 1) - DepVar(i) ) / ( IndVar(i + 1) - IndVar(i) ) ) / h(i);% 为矩阵A赋值% 将主对角线上的元素全部置为2A = zeros( length(d), length(d) );for i = 1 : length(d)A(i, i) = 2;end% 将向量λ的各元素赋给主对角线右侧第一条对角线for i = 1 : length(d) - 1A(i, i + 1) = lambda(i);end% 将向量d的各元素赋给主对角线左侧第一条对角线for i = 1 : length(d) - 1A(i + 1, i) = mu(i);end% 求解向量MM =A \ d';% 求解每一段曲线的函数表达式for i = 1 : length(h)Coefs_1 = M(i) / (6 * h(i));Part_1 = conv( Coefs_1, ...conv( [-1, IndVar(i + 1)], ...conv( [-1, IndVar(i + 1)], [-1, IndVar(i + 1)] ) ) ); S_1 = polyval (Part_1, [IndVar(i) : 0.01 : IndVar(i + 1)]);Coefs_2 = M(i + 1)/(6 * h(i));Part_2 = conv( Coefs_2, ...conv( [1, -IndVar(i)], ...conv( [1, -IndVar(i)], [1, -IndVar(i)] ) ) );S_2 = polyval (Part_2, [IndVar(i) : 0.01 : IndVar(i + 1)]);Coefs_3 = (DepVar(i) - M(i) * h(i)^2 / 6) / h(i);Part_3 = conv(Coefs_3, [-1, IndVar(i + 1)]);S_3 = polyval (Part_3, [IndVar(i) : 0.01 : IndVar(i + 1)]);Coefs_4 = (DepVar(i + 1) - M(i + 1) * h(i)^2 / 6) / h(i);Part_4 = conv(Coefs_4, [1, -IndVar(i)]);S_4 = polyval (Part_4, [IndVar(i) : 0.01 : IndVar(i + 1)]);S = S_1 + S_2 + S_3 + S_4;plot ([IndVar(i) : 0.01 : IndVar(i + 1)], S, 'LineWidth', 1.25)% 在样条插值曲线的相应位置标注该段曲线的函数表达式text(i - 1, polyval(Part_1, 3), ...['\itS', num2str(i), '(x)=', num2str(Coefs_1), '(', num2str( IndVar(i + 1) ), '-x)^{3}+', ...num2str(Coefs_2), '(x-', num2str( IndVar(i) ), ')^{3}+', num2str(Coefs_3), ...'(', num2str( IndVar(i + 1) ), '-x)+', num2str(Coefs_4), '(x-',num2str( IndVar(i) ), ')'], ...'FontName', 'Times New Roman', 'FontSize', 14)hold onend% 过x=1和x=2两个横轴点作垂线 %line([1, 1], [2.5, -0.5], 'LineStyle', '--');line([2, 2], [2.5, -0.5], 'LineStyle', '--');% 为x轴和y轴添加标注xlabel( '\itx', 'FontName', 'Times New Roman', ...'FontSize', 14, 'FontWeight', 'bold');ylabel( '\its(x)', 'FontName', 'Times New Roman', ...'Rotation', 0, 'FontSize', 14, 'FontWeight', 'bold');最终,三次样条插值函数s(x)表达式为:[][][]⎪⎩⎪⎨⎧∈-+-+-+--∈-+-+---∈+-++--=.3,2,)2(44.1)3(62.2)2(06.0)3(62.0,2,1,)1(62.2)2(08.0)1(62.0)2(42.0,1,0,08.0)1(06.042.0)1(06.0)(333333x x x x x x x x x x x x x x x x s曲线的图像如图所示:例2 已知函数值表:试求在区间[1,5]上满足上述函数表所给出的插值条件的三次自然样条插值函数)(x s本算法求解出的三次样条插值函数将写成三弯矩方程的形式:)()6()()6()(6)(6)(211123131j j jj j j jj j j j jj j jj x x h h M y x x h h M y x x h M x x h M x s --+--+-+-=+++++其中,方程中的系数jj h M 6,jj h M 61+,jj j j h h M y )6(2-,jjj j h h M y )6(211++-将由Matlab代码中的变量Coefs_1、Coefs_2、Coefs_3以及Coefs_4的值求出。
第5章-3-三次样条插值PPT课件
![第5章-3-三次样条插值PPT课件](https://img.taocdn.com/s3/m/8d40eab49b6648d7c0c74665.png)
(x
a)
m
m次截断多项式
a
.
7
定理5.5 任意s(x)∈Sm(x1,x2,…,xn)均可唯一地表示为
n
s(x)pm(x) cj(xxj)m , x (4-31) j1
其中pm(x)∈Pm,cj(j=1,2,…,n)为实数。
定理5.6 为使s(x)∈Sm(x1,x2,…,xn),必须且只须存在pm(x)∈Pm
8
例1 验证分片多项式是三次样条函数。
1 2x
x 3
S ( x) 2825x9x2x3 3x1
2619x3x2x3 1x0
2619x3x2
0 x
解 利用上面的定理(光滑因子)验证.
(x 3)3,
2(x 1)3,
x3,
所以由定理5.5可知该函数为三次样条函数.
例,设
x3x2
0x1
S(x) a3xb2 xc x11x2
信息;
样? ?条?插插值值::(样条函数—满足一定光滑性的分段多项式)。 局部性好, 满足一定光滑性, 收敛性保证, 只需要函数值
信息。
.
2
样条函数是一个重要的逼近工具,在插值、数值微分、曲 线拟合等方面有着广泛的应用。
定义5.3 对区间(-∞,+∞)的一个分割:
: x 1 x 2 x n ,
n
p n (x )p n 1 (x ) c n (x x n )m p0(x) cj(xxj)m j1
为了便于表示分段信息, 引进截断多项式:
(x a)m
(x a)m , x a,
0, x a,
(5-30)
易见
(x
a)
m
∈Cm-1(-∞,+∞)
数学数值分析三次样条插值PPT课件
![数学数值分析三次样条插值PPT课件](https://img.taocdn.com/s3/m/ffc41f5ac77da26925c5b0ed.png)
2.8.1 三次样条函数
定义 给定区间[a,b]的一个划分 a=x0<x1<…<xn=b, yi=f (xi) (i=0,1,…,n),如果函数S(x)满足: (1) S(xi )=yi (i=0,1,…,n); (2) 在每个小区间[xi, xi+1] (i=0,1,...,n-1)上是次数不超
S上且( xS与)(x相)的(邻x表节达x点j式的1 )为2两[hh个jj3转2角( x有关x j,)]故y j称为三h转j=x角j+方1-x程j 。
(
x
x
j
)2[hj 2( hj3
x
x j1 )] y j1
(x
x j1 )2 ( x h2j
xj)
mj
(x
x j )2( x h2j
x j1 )
m j1
则方程组化为:
2 1 2 2 2
m1 g1 1 f0
m2
g2
n2 2 n2 mn2 gn2
n1 2 mn1 gn1 n1 fn
第10页/共40页
2、已知 S( x0 ) f0, S( xn ) fn
2m0
m1
3
f
[x0 ,
x1 ]
h0 2
f0
第18页/共40页
S(
x)
M
j
(
x j1 6hj
x)3
M
j1
(x
x 6hj
j
)3
(
y
j
M jh2j 6
)
x
j1 hj
x
(
y
j1
M
j1h2j 6
)
x
x hj
样条函数及三次样条插值PPT课件
![样条函数及三次样条插值PPT课件](https://img.taocdn.com/s3/m/10609790a0c7aa00b52acfc789eb172ded63992e.png)
(x)
lim
x xk
Sk 1( x)
lim
x
x
k
Sk (x)
lim
x
x
k
Sk1( x)
k 1,2,,n 1
------(4)
lim
x
x
k
Sk( x)
lim
x
x
k
Sk1( x)
共4n 2个条件
5
Sk (x)是[xk , xk 1 ]上的三次样条插值多项式,应有4个待定的系数 即要确定S(x)必须确定4n个待定的系数 少两个条件 并且我们不能只对插值函数在中间节点的状态进行限制 也要对插值多项式在两端点的状态加以要求 也就是所谓的边界条件:
例. 使用不同的插值方法于函数
y
1
1 x2
x [5,5]
最后,介绍一个有用的结论
定理 . 设f (x) C 2[a,b], S(x)是以xk (k 0,1,, n)
为节点, 满足任意边界条件的三次样条插值函数,
设hi
xi 1
xi
,
h
max
0in1
hi
,
min
0in1
hi
,
则当 h
c 时
S(x)和S(x)在[a,b]上一致收敛到f (x)和f (x)
------(6)
13
由(11)式,可知
S0( x0
)
6( x0
x1 h03
2 x0
) ( y1
y0 )
6 x0
2 x0 h02
4 x1
m0
6 x0
4 x0 h02
2 x1
m1
6 h02
(
三次样条插值的求解
![三次样条插值的求解](https://img.taocdn.com/s3/m/29445749cf84b9d528ea7a5a.png)
三次样条插值的求解摘要:分段低次插值虽然解决了高次插值的振荡现象和数值不稳定现象,使得插值多项式具有一致收敛性,保证了插值函数整体的连续性,但在函数插值节点处不能很好地保证光滑性要求,这在某些要求光滑性的工程应用中是不能接受的。
如飞机的机翼一般要求使用流线形设计,以减少空气阻力,还有船体放样等的型值线,往往要求有二阶光滑度(即有二阶连续导数)。
因此,在分段插值的基础上,引进了一种新的插值方法,在保证原方法的收敛性和稳定性的同时,又使得函数具有较高的光滑性的样条插值。
关键字:三转角方程 三弯矩阵方程0. 引言1,三次样条函数定义1:若函数2()[,]S x a b C ∈,且在每个小区间上1,j j x x +⎡⎤⎦⎣上是三次多项式,其中01n a x x x b ⋯=<<<= 是给定节点,则称()s x 是节点01,,,n x x x ⋯上的三次样条函数。
若节点j x 上 给定函数值()j j y f x =(0,1,)j n ⋯= ,且()j j s x y = (0,1,)j n ⋯= (1.1)成立,则称 ()s x 为三次样条差值函数。
从定义知,要求出()s x ,在每个应小区间1[,]j j x x + 上确定4个待定系数,共有 n 个小区间,故应确定4n 个参数,根据()s x 在[,]a b 上二阶导数连续,在节点()1,2,3,,1j x j n ⋯=-处应满足连续性条件(0)(0),j j s x s x -=+ ''(0)(0),j j s x s x -=+''''(0)(0)j j s x s x -=+ (1.2) 共有 3n-3个条件,再加上()s x 满足插值条件(1.1),共有4n-2个条件,因此还需要2个条件才能确定()s x 。
通常可在区间[,]a b 端点0,n a x b x ==上各加一个条件(称边界条件),边界条件可根据实际的问题要求给定。
计算方法大作业——三次样条插值
![计算方法大作业——三次样条插值](https://img.taocdn.com/s3/m/63356e31af45b307e8719768.png)
计算方法上机报告
此完成所有数据的输入。继续按 Enter 键会出现提示“选择封闭方程组的边界条件: 第 一类边界条件输入 1,第二类边界条件输入 2,第三类边界条件输入 3。 ”根据已知情况 选择相应的边界条件,若为自然三次样条插值,则选 1,并将插值区间两端点的二阶导 数值设置为 0。输入完成之后按 Enter 开始求解,程序运行结束后命令窗口会显示要求 的三次样条插值函数,同时会出现该插值函数以及插值节点的图像,便于直接观察。 2.3 算例及计算结果 (1) 《数值分析》课本第 137 页的例题 4.6.1,已知函数 y=f(x)的数值如下表,求它 的自然三次样条插值函数。 xi yi -3 7 -1 11 0 26 3 56 4 29
2 三次样条插值
2 三次样条插值
2.1 算法原理及程序框图 设在区间[a, b]上给定 n+1 个节点 xi(a ≤ x0 < x1 < … < xn ≤ b),在节点 xi 处的函数 值为 yi = f(xi) (i = 0,1,…,n)。若函数 S(x)满足以下三个条件: (1) 在每个子区间[xi-1, xi] (i = 0,1,…,n)上,S(x)是三次多项式; (2) S(xi) = yi (i = 0,1,…,n); (3) 在区间[a, b]上,S(x)的二阶导数 S”(x)连续, 则称 S(x)为函数 yi = f(x) 在区间[a, b]上的三次样条插值函数。 由定义可知 S(x)共有 4n 个待定参数,根据条件(3)可得如下 3n-3 个方程,
S x
x x i
6hi
3
M i 1
x xi 1
6hi
3
x x hi2 M i yi 1 M i 1 i 6 hi
三次样条插值算法详解
![三次样条插值算法详解](https://img.taocdn.com/s3/m/a91bcea2541810a6f524ccbff121dd36a32dc40f.png)
三次样条插值算法要求数据点数量较多,且在某些情况下可能存在数值不稳定性,如数据 点过多或数据点分布不均等情况。此外,该算法对于离散数据点的拟合效果可能不如其他 插值方法。
对未来研究的展望
01
02
03
改进算法稳定性
针对数值不稳定性问题, 未来研究可以探索改进算 法的数值稳定性,提高算 法的鲁棒性。
3
数据转换
对数据进行必要的转换,如标准化、归一化等, 以适应算法需求。
构建插值函数
确定插值节点
根据数据点确定插值节点,确保插值函数在节点处连续且光滑。
构造插值多项式
根据节点和数据点,构造三次多项式作为插值函数。
确定边界条件
根据实际情况确定插值函数的边界条件,如周期性、对称性等。
求解插值函数
求解线性方程组
06
结论
三次样条插值算法总结
适用性
三次样条插值算法适用于各种连续、光滑、可微的分段函数插值问题,尤其在处理具有复 杂变化趋势的数据时表现出色。
优点
该算法能够保证插值函数在分段连接处连续且具有二阶导数,从而在插值过程中保持数据 的平滑性和连续性。此外,三次样条插值算法具有简单、易实现的特点,且计算效率较高 。
根据数据点的数量和分布,合理分段,确保 拟合的精度和连续性。
求解线性方程组
使用高效的方法求解线性方程组,如高斯消 元法或迭代法。
结果输出
输出拟合得到的插值函数,以及相关的误差 分析和图表。
03
三次样条插值算法步骤
数据准备
1 2
数据收集
收集需要插值的原始数据点,确保数据准确可靠。
数据清洗
对数据进行预处理,如去除异常值、缺失值处理 等。
三次样条插值c++代码实现及注释
![三次样条插值c++代码实现及注释](https://img.taocdn.com/s3/m/f30ef47242323968011ca300a6c30c225801f06d.png)
一、引言在计算机编程和数据处理领域,插值是一种常见的数值分析方法,用于在已知数据点之间估算未知点的数值。
而三次样条插值是插值方法中的一种重要技术,它可以在使用较少插值节点的情况下,实现更为平滑和精确的插值结果。
本文将着重探讨三次样条插值的原理和C++代码实现,并给出详细的注释和解释。
二、三次样条插值的原理三次样条插值是一种分段插值方法,它将整个插值区间分割为若干个小区间,每个小区间内采用三次多项式进行插值。
这样做的好处是可以在每个小区间内实现更为细致和精确的插值,从而提高插值的准确性和平滑性。
而三次样条插值的核心在于确定每个小区间内的三次多项式的系数,一般采用自然边界条件进行求解。
在具体实现中,我们需要先对给定的插值节点进行排序,并求解出每个小区间内的三次多项式系数。
最终将这些系数整合起来,就可以得到整个插值区间的三次样条插值函数。
三、C++代码实现及注释接下来,我们将给出使用C++语言实现三次样条插值的代码,并对每个关键步骤进行详细注释和解释。
```cpp// include necessary libraries#include <iostream>#include <vector>using namespace std;// define the function for cubic spline interpolationvector<double> cubicSplineInterpolation(vector<double> x, vector<double> y) {// initialize necessary variables and containersint n = x.size();vector<double> h(n-1), alpha(n), l(n), mu(n), z(n), c(n), b(n), d(n);vector<double> interpolatedValues;// step 1: calculate the differences between x valuesfor (int i = 0; i < n-1; i++) {h[i] = x[i+1] - x[i];}// step 2: calculate alpha valuesfor (int i = 1; i < n-1; i++) {alpha[i] = (3/h[i]) * (y[i+1] - y[i]) - (3/h[i-1]) * (y[i] - y[i-1]); }// step 3: calculate l, mu, and z valuesl[0] = 1;mu[0] = 0;z[0] = 0;for (int i = 1; i < n-1; i++) {l[i] = 2*(x[i+1] - x[i-1]) - h[i-1]*mu[i-1];mu[i] = h[i]/l[i];z[i] = (alpha[i] - h[i-1]*z[i-1])/l[i];}l[n-1] = 1;z[n-1] = 0;c[n-1] = 0;// step 4: calculate coefficients for the cubic polynomials for (int j = n-2; j >= 0; j--) {c[j] = z[j] - mu[j]*c[j+1];b[j] = (y[j+1] - y[j])/h[j] - h[j]*(c[j+1] + 2*c[j])/3;d[j] = (c[j+1] - c[j])/(3*h[j]);}// step 5: interpolate values using the cubic polynomials for (int i = 0; i < n-1; i++) {double xi = x[i];while (xi < x[i+1]) {double dx = xi - x[i];double interpolatedValue = y[i] + b[i]*dx + c[i]*dx*dx + d[i]*dx*dx*dx;interpolatedValues.push_back(interpolatedValue);xi += 0.1; // adjust the step size for finer interpolation }}return interpolatedValues;}// main function for testing the cubic spline interpolation int main() {vector<double> x = {1, 2, 3, 4, 5};vector<double> y = {3, 6, 8, 10, 15};vector<double> interpolatedValues = cubicSplineInterpolation(x, y);for (int i = 0; i < interpolatedValues.size(); i++) {cout << "Interpolated value " << i << " : " << interpolatedValues[i] << endl;}return 0;}```四、总结与展望通过本文的学习,我们了解了三次样条插值的原理和C++代码实现。
数值分析三次样条插值函数
![数值分析三次样条插值函数](https://img.taocdn.com/s3/m/f6151ce4b8f67c1cfbd6b80f.png)
数值分析三次样条插值函数【问题】对函数f x =ex, x∈[0,1]构造等距节点的三次样条插值函数,对以下两种类型的样条函数1. 三次自然样条2. 满足S′ 0 =1,S′ 1 =e的样条并计算如下误差:max{ f x1 −S x1 ,i=1,…,N} i−i−i这里xi−1为每个小区间的中点。
对N=10,20,40比较以上两组节点的结果。
讨论你的结果。
【三次样条插值】在每一个区间[t1,t2],…,[tn−1,tn]上,S都是不同的三次多项式,我们把在[ti−1,ti]上表示S的多项式记为Si,从而,S0 x x∈[t0,t1]∈[t1,t2] S x = S1 x x…Sn−1 x x∈[tn−1,tn]通过在节点处函数值、一阶导数和二阶导数的连续性可以得到:Si−1 ti = yi= Si ti 1≤i≤ n−1Si−1′ ti = Si′ tix→ti+limS′′ x =zi=limS′′(x) x→ti−再给定z0和zn 的值就构成了4n个条件,而三次样条插值函数共4n个系数,故可以通过这4n个条件求解三次样条函数的系数,从而求得该三次样条插值函数。
特别的,当z0=zn=0 时称为自然三次样条。
文本预览:一、自然三次样条插值【自然三次样条插值算法】1.由上面的分析可知,求解三次样条函数实际上就是求解一个矩阵:u 1h 1h1u2h2h2u3…v1 z1 v2 z2 z3=v3 … z…hn−2 n−2 vn−2 z vn−1 un−1 n−1ih3…hn−3un−2hn−26…其中hi=ti+1−ti,ui=2(hi+hi−1),ui=h(yi+1−yi),vi=bi−bi−1 所以自然三层次样条插值的算法就是在得到端点的函数值,一次导数值和二次导数值,然后根据上述求解矩阵得到v,代入自然三次样条的表达式即可。
2.根据题目中所给出的误差估计,计算在区间中点处的最大误差。
【实验】通过Mathematica编写程序得到如下结果:N=101. 计算得到zi的值为:由此可以得到各个区间的自然三次样条插值函数。
%E4%B8%89%E6%AC%A1%E6%A0%B7%E6%9D%A1%E6%8F%92%E5%80%BC%E5%AE%9E%E9%AA%8C%20
![%E4%B8%89%E6%AC%A1%E6%A0%B7%E6%9D%A1%E6%8F%92%E5%80%BC%E5%AE%9E%E9%AA%8C%20](https://img.taocdn.com/s3/m/72b4b7e119e8b8f67c1cb939.png)
Lab03.三次样条插值实验【实验目的和要求】1.使学生深入理解三次样条插值法,深入进行程序设计能力训练;2.对第一与第二种边界条件,按三弯矩法,通过用Matlab 语言设计计算三次样条插值的程序,以提高学生程序设计的能力。
【实验内容】1.根据Matlab 语言特点,描述三次样条插值法。
2.对第一与第二种边界条件,按三弯矩法,用Matlab 语言设计计算三次样条插值的程序。
3对(1) 自然边界条件0)0.1()2.0(=''=''S S ;(2) 第一种边界条件55741.1)0.1( ,20271.0)2.0(='='S S .输出用追赶法解出的弯矩向量),,(521M M M 和)1.02.0(i S + (i =0,1,…,8)的值,并画出)(x S y=的图形。
【实验仪器与软件】1.CPU 主频在1GHz 以上,内存在128Mb 以上的PC ;2.Matlab 6.0及以上版本。
实验讲评:实验成绩:评阅教师: 200 年 月 日Lab03.三次样条插值实验一、算法描述 1.定义:函数2()[,]S x C a b ∈,且在每个小区间1[,]j j x x +上是三次多项式,其中01 <... n a x x x b=<<=是给定节点,则称S(x)是节点01,,,n x x x 上的三次样条函数。
若在节点j x 上给定函数值()i i y f x =.( j =0,1,… ,n) ,并成立(),0,1,,.j j S x y j n == ,则称S(x)为三次样条插值函数。
2.边界条件第一种边界条件:已知两端的一阶导数值,即()()00'',''.n n S x f S x f ==第二种边界条件:已知两端的二阶导数值,即()()00'''','''',n n S x f S x f ==其特殊情况(自然边界)为:()()0''''0n S x S x ==第三种边界条件:当()f x 是以0n x x -为周期的周期的函数时,则要求()S x 也条件 是周期函数,这时边界应满足''00''''00(0)(0),(0)(0),(0)(0)n n S x S x S x S x S x S x ⎧+=-+=-⎪⎨+=-⎪⎩ 3.算法利用函数的二阶导数来求三次样条函数。
三次样条插值
![三次样条插值](https://img.taocdn.com/s3/m/ca6acc0590c69ec3d5bb75d2.png)
一、问题提出
为给定的节点, 设 x0 , x1 xn 为给定的节点,yi = f ( xi ) ,i = 0,1, n 为相应的函数值, 为相应的函数值,求一个次数不超过 n 的多项式 Pn (x), 使其满足
Pn ( xi ) = yi,
i = 0,1, n .
这类问题称为插值问题。 称为被插值函数 P 被插值函数, 这类问题称为插值问题。 f ( x) 称为被插值函数, n ( x) 称 插值问题 插值函数, 称为插值节点 为插值函数, x0 , x1 xn 称为插值节点
六、 分段插值
所谓分段插值,就是将被插值函数逐段多项式化。 所谓分段插值,就是将被插值函数逐段多项式化。在每 个 [ xi , xi +1 ] 子段上构造插值多项式,然后把它们装配在一, 子段上构造插值多项式,然后把它们装配在一, 作为整个区间 [ a, b ] 上的插值函数,即称为分段多项式。如果 上的插值函数,即称为分段多项式。 次式, 函数 Sk ( x ) 在每个子段上都是 k 次式,则称为 一般(低次: 一般(低次:k=1,2,3) ) 次式。 k 次式。
f [ x0 , x1 ] = 5, f [ x0 , x1, x2 , x3 ] = 1,
N n ( x) = 0 5( x 1) + 2( x 1)( x 2)
+ ( x 1)( x 2)( x 3)
= x3 4 x + 3
五、 Hermite插值多项式 插值多项式
给定的是节点上的函数值和导数值 问题: 问题:已知
∑
i=0
y i li ( x )
( x x0 ) ( x xi 1 )( x xi +1 ) ( x xn ) , i = 0,1, n ( xi x0 ) ( xi xi 1 )( xi xi +1 ) ( xi xn )
三次样条插值cubicsplineinterpolation
![三次样条插值cubicsplineinterpolation](https://img.taocdn.com/s3/m/bcf783ef900ef12d2af90242a8956bec0975a5d6.png)
三次样条插值cubicsplineinterpolation什么是三次样条插值 插值(interpolation)是在已知部分数据节点(knots)的情况下,求解经过这些已知点的曲线,然后根据得到的曲线进⾏未知位置点函数值预测的⽅法(未知点在上述已知点⾃变量范围内)。
样条(spline)是软尺(elastic ruler)的术语说法,在技术制图中,使⽤软尺连接两个相邻数据点,以达到连接曲线光滑的效果。
样条插值是⼀种分段多项式(piecewise polynomial)插值法。
数学上,曲线光滑需要在曲线上处处⼀阶导连续,因此,在节点处需要满⾜⼀阶导数相等。
另外,为了使得曲线的曲率最⼩,要求曲线⼆阶导连续【1】,在节点处需要⼆阶导相等。
三次及以上多项式可以满⾜节点处光滑和曲率最⼩要求,但是次数⾼的曲线容易震荡,因此,就选⽤三次多项式即可。
数学表述 假设有n个已知节点: 函数关系记为:。
在区间中插值多项式曲线:注意,这⾥头曲线为,尾曲线为。
插值在节点处满⾜条件: (1)曲线经过节点: (2)曲线⼀阶导连续(光滑): (3)曲线⼆阶导连续(曲率最⼩): 边界条件:对两端节点的约束。
(B1)⾃然(natural (or free))边界条件 (B2)固定(clamped)边界条件 固定⼀阶导数: , 固定⼆阶导数: , (B3)⾮节点边界(not-a-knot ) 要求在第⼆个节点和倒数第⼆个节点,曲线的三阶导也连续:三次多样式函数的计算 样条函数采⽤n-1个三次多项式,每个三次多项式有4个参数,⼀共是4n-4个参数,因此需要4n-4个⽅程。
条件(1)n-1个曲线每个两端经过节点,提供2(n-1)=2n-2个⽅程; 条件(2)n-1个曲线相邻⼀阶导连续,提供n-2个⽅程; 条件(3)n-1个曲线相邻⼆阶导连续,提供n-2个⽅程; 以上⼀共是4n-6个⽅程,还需要2个⽅程,这两个⽅程由边界条件提供,条件(B1), (B2), (B3)每个均提供2个⽅程,这样就凑够了4n-4个⽅程。
详细讲解三次样条插值法及其实现方法
![详细讲解三次样条插值法及其实现方法](https://img.taocdn.com/s3/m/4c4adede33d4b14e852468cb.png)
k 2,3,,n 2
m n1 n2 2mn1 gn1 n1 fn
化为矩阵形式
17
2 1
2
2
2
m1 g1 1m0
m2
g2
3 2 3 4 2
m3
g3
n2 2 n2 mn2
gn2
n1 2 mn1 gn1 n1mn
这是一个严格对角占优的三对角方程组, 用追赶法可以求解!
x xi i i 1 hi
) mi1hi
( ) xi1x
1 hi
hi xi1 xi , i 0,1,, n 1
H3 (x) HH33((10))((xx))
x0 x x1 x1 x x2
H
( 3
n1)
(
x)
xn1 x xn
12
我们采用待定一阶导数的方法即设
S(x j ) m j , j 0,1,, n
)
y1
( ) x1x
0 h0
m h ( xx0 0 0 1 h0
)
m1h01
(
x1 h0
x
)
0
(x
1)
30
(2
x)
17 8
1
(
x
1)
7 4
1
(2
x)
1 x3 3 x2 7 x 1 88 4
1 x 2
S1(x)
y10
(
x x1 h1
)
y20
(
x2 h1
x
)
m1h11
(
x x1 h1
19
稍加整理得
2m0
m1
3
y1 y0 h0
h0 2
M0
三次样条插值的方法和思路 -回复
![三次样条插值的方法和思路 -回复](https://img.taocdn.com/s3/m/728455cba1116c175f0e7cd184254b35eefd1af4.png)
三次样条插值的方法和思路-回复三次样条插值是一种常用的插值方法,它可以在已知的离散数据点上构造出一条光滑的曲线。
这种方法被广泛应用在曲线拟合、图像处理、数据分析等领域。
本文将介绍三次样条插值的方法和思路,并详细阐述每个步骤。
第一步是确定插值段数。
在进行三次样条插值时,首先需要将已知数据点划分成若干个插值段。
插值段越多,插值曲线越接近原始数据,但也会使插值算法复杂度增加。
因此,在确定插值段数时需要权衡精度和计算效率。
第二步是计算每个插值段的系数。
对于每个插值段,我们需要计算出一个三次曲线,该曲线会通过该段的两个端点。
具体的计算方法是,假设有n 个插值点,则有n-1个插值段,每个插值段的系数需要通过以下步骤计算:1. 计算边界条件:这是三次样条插值的关键一步。
我们需要根据已知数据点的性质,来确定边界条件是自然边界、固定边界还是其他类型的边界。
自然边界要求二阶导数在两个端点处为0,即S''(x_0) = S''(x_n) = 0。
固定边界要求插值曲线通过端点的给定导数值,即S'(x_0) = d_0、S'(x_n) = d_n。
2. 构建三对角矩阵:三次样条插值的求解过程可以转化为解线性方程组的问题。
为了解这个方程组,我们需要构建一个三对角矩阵。
其中的对角线元素是2,上下对角线元素是1。
3. 计算方程组的右侧:方程组的右侧是一个n-1维的向量,每个元素对应插值段的边界条件。
对于自然边界,右侧元素都是0;对于固定边界,则通过求解给定的导数值得到。
4. 解线性方程组:将三对角矩阵与右侧向量相乘,即可得到每个插值段的系数。
第三步是构造插值曲线。
在前两步中,我们计算得到了每个插值段的系数。
现在,我们需要将这些系数整合起来,构造出整个插值曲线。
具体的构造方法为,对于第i个插值段,其插值函数可表示为:S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3其中x_i和x_{i+1}为插值段的端点,a_i、b_i、c_i、d_i为第i个插值段的系数。