偏微分方程求解方法及其比较
偏微分方程与常微分方程的解法
偏微分方程与常微分方程的解法在数学领域中,微分方程是一类重要的方程,常见的包括偏微分方程和常微分方程。
本文将介绍偏微分方程和常微分方程的解法。
一、偏微分方程的解法偏微分方程是涉及多个变量的方程,其中包含了未知函数的偏导数。
解决偏微分方程的方法有很多种,以下将介绍其中两种常见的解法。
1. 分离变量法分离变量法是一种常用的解偏微分方程的方法。
首先,将多变量的偏微分方程转化为一个或多个只包含一个变量的常微分方程。
然后,通过求解这些常微分方程,得到原偏微分方程的解。
举例来说,考虑一个常见的分离变量法的应用:热传导方程。
热传导方程描述了物质内部温度的变化情况。
假设我们要解决一维热传导方程,可以将变量分离为时间变量和空间变量。
通过引入一个分离常数,将方程转化为两个常微分方程,然后求解这两个方程得到温度分布的解析解。
2. 变量替换法变量替换法是解决偏微分方程的另一种常见方法。
该方法通过引入适当的变量替换,将原方程转化为一个更简单的形式。
通过这种变换,可以使得方程的求解更加容易。
以二阶线性偏微分方程为例,假设要解决的方程为:$$\frac{{\partial^2 u}}{{\partial x^2}} + \frac{{\partial^2 u}}{{\partialy^2}} = 0$$我们可以通过引入新的变量替换,例如令$v = \frac{{\partialu}}{{\partial x}}$,将原方程转化为两个常微分方程$\frac{{dv}}{{dx}} = 0$和$\frac{{dv}}{{dy}} = 0$。
然后,求解这两个方程,再回代求解原方程,得到偏微分方程的解。
二、常微分方程的解法常微分方程是只依赖一个自变量的方程,其中包含了未知函数的导数。
解决常微分方程的方法也有很多种,以下介绍其中两种常见的解法。
1. 分离变量法分离变量法同样可用于求解常微分方程。
通过将方程中的未知函数和自变量分离,将其转化为可分离变量的形式。
偏微分方程求解方法总结
偏微分方程求解方法总结偏微分方程(Partial Differential Equations,简称PDE)是描述自然界中许多现象的重要数学工具。
求解偏微分方程有许多不同的方法,下面将对其中一些常用的方法进行总结和介绍。
I. 分离变量法(Method of Separation of Variables)分离变量法是求解偏微分方程最常用的方法之一。
它的基本思想是将多个变量的偏微分方程分解成一系列只包含一个变量的常微分方程,再通过求解这些常微分方程来获得原偏微分方程的解。
具体步骤如下:1. 根据问题所给的边界条件和初始条件,确定偏微分方程的类型(椭圆型、双曲型或抛物型)以及边界条件的类型(Dirichlet条件、Neumann条件等)。
2. 假设原方程的解可以表示为一系列只包含一个变量的函数的乘积形式,即 u(x, y) = X(x)Y(y)。
3. 将 u(x, y) 和其各个分量的偏导数代入原偏微分方程,得到关于X(x) 和 Y(y) 的常微分方程。
4. 求解得到 X(x) 和 Y(y) 的表达式,并根据给定的边界条件,确定它们的取值。
5. 最后将 X(x) 和 Y(y) 的表达式代入 u(x, y) 的乘积形式,得到原偏微分方程的解。
分离变量法适用于边界条件分离的情况,并且对于较简单的偏微分方程求解效果较好。
II. 特征线法(Method of Characteristics)特征线法主要用于求解一阶偏微分方程,尤其是双曲型和抛物型偏微分方程。
该方法通过引入新的独立变量和新的变量关系,将原偏微分方程转化为一系列常微分方程来求解。
具体步骤如下:1. 根据偏微分方程的类型,确定要求解的未知函数及其偏导数之间的关系。
2. 引入新的自变量和新的关系式,将偏微分方程化为带有新变量的常微分方程组。
3. 将常微分方程组进行求解,并得到新变量的表达式。
4. 根据新的变量表示原方程的解,进而确定未知函数的表达式。
偏微分方程求解方法及其比较
偏微分方程求解方法及其比较摘要:近些年来,无限维动力系统得到了很大的发展.随着对它研究的深入和计算能力的迅速提高,使得与之相关的数值研究越来越被人们关注.谱方法作为一种数值求解偏微分方程的方法,它具有无穷阶收敛性.因此,谱方法也就引起人们更多的关注.关键词:谱方法;偏微分;收敛;逼近;1偏微分方程及其谱方法的介绍偏微分方程主要借助于未知函数及其导数来刻画客观世界的物理量的一般变化规律。
理论上,对偏微分方程解法的研究已经有很长的历史了。
最初的研究工作主要集中在物理,力学,几何学等方面的具体问题,其经典代表是波动方程,热传导方程和位势方程(调和方程)。
通过对这些问题的研究,形成了至今仍然使用的有效方法,例如,分离变量法,fourier变换法等。
早期的偏微分方程研究主要集中在理论上,而在实际操作中其研究方法和研究结果都难以得到广泛的应用。
求解的主要方法为:有限差分法,有限元法,谱方法。
谱方法起源于Ritz-Galerkin方法,它是以正交多项式(三角多项式,切比雪夫多项式,勒让得多项式等)作为基函数的Galerkin方法、Tau方法或配置法,它们分别称为谱方法、Tau方法或拟谱方法(配点法),通称为谱方法。
谱方法是以正交函数或固有函数为近似函数的计算方法。
从函数近似角度看.谱方法可分为Fourier方法.Chebyshev或Legendre方法。
前者适用于周期性问题,后两者适用于非周期性问题。
而这些方法的基础就是建立空间基函数。
下面介绍几种正交多项式各种节点的取值方法及权重。
1) Chebyshev-Gauss:2) Chebyshev-Gauss-Radau: x0 =1,3) Chebyshev-Gauss-Lobatto: x0 =1, xN =1,4)Legendre-Gauss: xj 是的零点且5) Legendre-Gauss-Radau: xj 是的N+1个零点且6) Legendre-Gauss-Lobatto: x0=-1,xN=1其它N-1个点是的零点且下面介绍谱方法中最重要的Jacobi正交多项式其迭代公式为:其中:Jacobi正交多项式满足正交性:而Chebyshev多项式是令时Jacobi多项式的特殊形式,另外Legendre多项式是令时Jacobi多项式的特殊形式。
偏微分方程解法
偏微分方程解法导言偏微分方程是数学中一个重要的研究领域,它涉及到物理、工程、经济等众多学科,对于解决现实世界中的问题起着至关重要的作用。
本文将深入探讨偏微分方程的解法,包括常见的求解方法和应用示例。
偏微分方程简介在分析偏微分方程之前,我们先了解一下什么是偏微分方程。
简单来说,偏微分方程是由未知函数及其偏导数构成的方程。
它包含多个自变量和多个偏导数,用于描述有多个变量的物理现象或者其他现象。
常见的偏微分方程求解方法分离变量法分离变量法是解偏微分方程的主要方法之一。
它的基本思想是将偏微分方程中的未知函数表示为多个单变量函数的乘积,然后进行求解。
具体步骤如下: 1. 分离变量:将未知函数表示为多个单变量函数的乘积。
2. 将方程化为两端只含单变量函数的方程。
3. 求解单变量函数的方程。
4. 将求解得到的单变量函数组合在一起,得到原方程的解。
特征线法特征线法是另一种常用的偏微分方程求解方法。
它的基本思想是通过引入曲线方程(特征线),将偏微分方程转化为常微分方程,然后再进行求解。
特征线法的步骤如下: 1. 引入曲线方程,将偏微分方程转化为常微分方程。
2. 求解常微分方程。
3. 将常微分方程的解代回原方程,得到原方程的解。
变换方法除了分离变量法和特征线法,还有一些其他的变换方法可以用来求解偏微分方程。
其中比较常用的有变换坐标法和变换函数法。
变换坐标法的基本思想是通过适当的坐标变换,将原方程转化为更简单的形式,然后再进行求解。
变换函数法的基本思想是通过引入新的未知函数,将原方程转化为只含有新未知函数的形式,然后再进行求解。
偏微分方程解法的应用示例偏微分方程解法广泛应用于各个领域,下面将简要介绍一些应用示例。
热传导方程热传导方程是物理学中的一个重要方程,它描述了热量在物体中的传导过程。
通过对热传导方程进行求解,可以得到物体温度分布随时间的变化规律,从而可以预测物体的热传导行为。
斯托克斯方程斯托克斯方程是流体力学中的一个基本方程,描述了流体在静止或者稳定的情况下的运动规律。
偏微分方程的几种解法
偏微分方程的几种解法偏微分方程(Partial Differential Equations, PDEs)是数学中的一个重要分支,广泛应用于物理学、工程学、经济学等领域。
解决PDEs的问题是科学研究和工程实践中的一个关键任务。
本文将介绍几种常见的偏微分方程的解法。
一、分离变量法分离变量法是解偏微分方程最常用的方法之一。
其基本思想是将未知函数表示为一系列互相独立的分离变量的乘积,然后将方程两边同时关于这些变量积分。
这样就可以得到一系列常微分方程,然后通过求解这些常微分方程得到原偏微分方程的解。
例如,对于二维的泊松方程(Poisson Equation)∇²u = f,可以假设u(x, y) = X(x)Y(y),将其代入方程后得到两个常微分方程,然后分别求解这两个常微分方程,最后将其合并即可得到泊松方程的解。
分离变量法的优点是简单易行,适用于一些特定的偏微分方程。
但也存在一些限制,例如只适用于线性齐次方程、边界条件满足一定条件等。
二、变量替换法变量替换法是另一种常见的解偏微分方程的方法。
通过合适的变量替换,可以将原方程转化为一些形式简单的方程,从而更容易求解。
例如,对于热传导方程(Heat Equation)∂u/∂t = α∇²u,可以通过变量替换u(x, t) = v(x, t)exp(-αt)将其转化为∂v/∂t = α∇²v,然后再利用分离变量法或其他方法求解新方程。
变量替换法的优点是可以将一些复杂的偏微分方程转化为简单的形式,便于求解。
但需要根据具体问题选择合适的变量替换,有时可能会引入新的困难。
三、特征线法特征线法是解一阶偏微分方程的一种有效方法。
通过寻找方程的特征线,可以将方程转化为常微分方程,从而更容易求解。
例如,对于一维线性对流方程(Linear Convection Equation)∂u/∂t + c∂u/∂x = 0,其中c为常数,可以通过特征线法将其转化为沿着特征线的常微分方程du/dt = 0,然后求解得到解。
偏微分方程数值算法综述及应用案例分析
偏微分方程数值算法综述及应用案例分析偏微分方程(Partial Differential Equation,简称PDE)是数学和工程学科领域中经常用到的基础概念。
偏微分方程的求解对于许多领域的研究和实践具有重要的作用,例如材料科学、地球物理学、计算机科学和机械工程学等。
然而,由于偏微分方程的求解难度较大,传统的解析方法无法处理更加复杂的情况。
为了解决这个问题,人们发展出了一些数值算法,使得偏微分方程的数值求解可以得以实现。
本文主要介绍偏微分方程数值算法的综述和应用案例分析。
一、偏微分方程数值算法综述偏微分方程的数值求解方法可以分为有限差分法、有限元法和谱方法等。
1. 有限差分法有限差分法是一种比较常见的偏微分方程数值求解方法。
其基本思想是用有限差分代替微分,将偏微分方程化为差分方程,并通过迭代求解差分方程得到数值解。
有限差分法的优点是实现简单,易于理解,缺点是精度较低,适用范围有限。
2. 有限元法有限元法是一种更为精确的偏微分方程数值求解方法。
在有限元法中,原问题被抽象成一组离散化的小问题,每一个小问题都在一个有限元形状中求解。
通过求解多个小问题的结果来近似求解原问题。
有限元法的优点是精度较高,适用范围广泛,缺点是计算量较大,实现难度也较大。
3. 谱方法谱方法是一种通过函数级数展开求解偏微分方程的方法。
谱方法基于傅里叶级数展开,将解表示为一组基函数的线性组合。
通过确定系数来求解偏微分方程,谱方法的优点是精度高,实现简单,缺点是需要求解傅里叶系数。
二、偏微分方程数值算法的应用案例分析偏微分方程的数值算法在科学计算和工程应用中有着广泛的应用。
本文简要介绍一些偏微分方程数值算法应用案例。
1. 热传导方程的数值求解偏微分方程中的热传导方程是一类广泛应用的模型。
通过对热传导方程的数值求解可以实现对一些热传导问题的模拟和实验研究。
其中,使用有限差分法可以求解热传导方程,并可以得到热传导的温度分布。
2. 构造三维曲面的谱方法谱方法在计算机辅助设计、建模和制造等领域中应用广泛。
偏微分方程求解算法性能比较
偏微分方程求解算法性能比较引言偏微分方程(Partial Differential Equations, PDEs)在科学和工程领域中具有广泛的应用。
它们描述了许多自然现象,如传热、流体力学、电磁学等。
求解PDEs是理解这些现象和预测系统行为的关键步骤之一。
随着计算机技术的进步,出现了许多不同的求解PDEs的算法。
本文将比较几种常见的偏微分方程求解算法的性能。
常见的偏微分方程求解算法1. 有限差分法(Finite Difference Method)有限差分法是一种数值求解常微分方程和偏微分方程的常见方法。
它将要求解的区域进行离散化,将连续的方程转化为离散的差分方程。
通过在网格上逐点计算差商,可以得到数值解。
有限差分法的优点是简单易实现,对于简单的偏微分方程效果良好。
然而,对于复杂的问题和高维空间,由于网格的规模会呈指数增长,导致计算量巨大。
2. 有限元法(Finite Element Method)有限元法是一种常见的数值求解PDEs的方法,尤其适用于非线性、大变形和复杂几何形状的问题。
有限元法通过将求解区域划分为有限个子域,选择适当的函数空间进行插值和逼近,将方程离散化成代数方程组。
有限元法的优点是适用范围广,可以处理各种不规则和复杂的几何形状,并且能够精确描述解的行为。
然而,有限元法对于计算资源的要求较高,需要进行大规模的矩阵计算。
3. 边界元法(Boundary Element Method)边界元法是一种基于边界积分方程的求解方法,主要用于处理边界上的问题。
在边界元法中,将求解区域转化为边界上的积分方程,通过离散化边界上的点来近似求解。
边界元法的优点是可以减少计算域的维数,从而降低计算复杂性,尤其适用于二维和轴对称的问题。
然而,边界元法只能用于特定的问题类型,且对于非线性问题和奇异问题的处理比较复杂。
性能比较在性能比较方面,需要考虑以下几个因素:1. 精度:求解算法的精度是评估算法质量的重要指标。
偏微分方程的解法
偏微分方程的解法偏微分方程(Partial Differential Equation,简称PDE)是数学中一种重要的方程形式,广泛应用于物理、工程、金融等领域。
本文将介绍几种常见的偏微分方程的解法,并对其原理和应用进行详细的讨论。
一、分离变量法分离变量法是求解偏微分方程中最常用的方法之一。
该方法的基本思想是将偏微分方程中的未知函数表示为多个单变量函数的乘积,然后通过分别求解这些单变量函数的常微分方程来得到原方程的解。
以下以一个简单的例子来说明该方法的具体步骤。
考虑一个常见的一维热传导方程:\[\frac{{\partial u}}{{\partial t}} = \alpha \frac{{\partial^2 u}}{{\partial x^2}}\]假设 u(x,t) 可以表示为两个单变量函数的乘积形式:u(x,t) =X(x)T(t),将其代入原方程,可以得到如下的形式:\[\frac{1}{\alpha}\cdot\frac{1}{X(x)}\cdot\frac{{d^2X}}{{dx^2}} =\frac{1}{T(t)}\cdot\frac{{dT}}{{dt}} = -\lambda\]通过解这两个单变量函数所满足的常微分方程,可以得到 X(x) 和T(t) 的解,再将其组合即可得到原方程的通解。
二、变换方法变换方法是另一种重要的求解偏微分方程的技巧。
通过对原方程进行适当的变换,可以将其转化为常微分方程或者其他更容易求解的形式。
以下介绍两种常见的变换方法。
1. 傅立叶变换法傅立叶变换法被广泛应用于分析和求解各种偏微分方程。
通过将原方程进行傅立叶变换,可以将其转化为代数方程,并通过解代数方程来得到原方程的解。
具体来说,假设原方程为:\[L[u(x,t)] = f(x,t)\]将其进行傅立叶变换,可以得到:\[L[\hat{u}(k,\omega)] = \hat{f}(k,\omega)\]然后通过解代数方程来求得 \(\hat{u}(k,\omega)\),再进行逆傅立叶变换即可得到 u(x,t) 的解。
偏微分方程的求解与应用实例解读
偏微分方程的求解与应用实例解读偏微分方程(Partial Differential Equations,简称PDE)是数学中的一类重要方程,广泛应用于物理、工程、经济等领域。
本文将探讨偏微分方程的求解方法,并通过应用实例解读其在实际问题中的应用。
一、偏微分方程的基本概念和分类偏微分方程是包含多个未知函数及其偏导数的方程,通常涉及多个自变量。
常见的偏微分方程包括椭圆型、抛物型和双曲型方程。
椭圆型方程描述稳态问题,如静电场分布;抛物型方程描述热传导、扩散等过程;双曲型方程描述波动、振动等动态问题。
二、偏微分方程的求解方法1. 分离变量法分离变量法是求解偏微分方程的常用方法。
通过假设解可以表示为各个自变量的乘积形式,将偏微分方程转化为一系列常微分方程,再求解常微分方程得到解的形式。
2. 特征线法特征线法适用于一阶偏微分方程的求解。
通过找到特征曲线,将原方程转化为常微分方程,进而求解得到解析解。
3. 变换法变换法是通过引入适当的变换将原方程转化为更简单的形式,再进行求解。
常见的变换方法包括拉普拉斯变换、傅里叶变换等。
4. 数值方法对于复杂的偏微分方程,常常无法找到解析解,此时可以借助数值方法进行求解。
常用的数值方法包括有限差分法、有限元法、谱方法等。
三、偏微分方程的应用实例解读1. 热传导方程热传导方程是抛物型偏微分方程的典型代表,描述了物体内部的温度分布随时间的变化规律。
在工程领域中,热传导方程被广泛应用于热传导、传热系统的设计与优化等问题。
2. 波动方程波动方程是双曲型偏微分方程的典型代表,描述了波动现象的传播规律。
在物理学中,波动方程被用于描述声波、光波等传播过程。
在地震学中,波动方程被用于模拟地震波的传播与地震灾害的预测。
3. 斯托克斯方程斯托克斯方程是椭圆型偏微分方程的典型代表,描述了流体的运动规律。
在流体力学中,斯托克斯方程被广泛应用于流体的稳定性分析、流体的流动模拟等问题。
四、结语偏微分方程作为数学中重要的研究对象,不仅具有严谨的理论基础,还在各个领域的实际问题中起到了重要的作用。
偏微分方程求解的基本方法及应用
偏微分方程求解的基本方法及应用偏微分方程(PDE)是数学界中一种重要的工具,可用于研究许多科学领域中的物理和工程问题。
求解偏微分方程是求解这些问题的关键步骤之一。
本文将介绍偏微分方程求解的基本方法及其在实际应用中的应用。
一、偏微分方程概述偏微分方程是一种包含未知函数及其偏导数的方程。
它们广泛应用于物理学、工程学、生物学、经济学等领域中的数学模型中。
偏微分方程的形式可以是线性或非线性的,同样适用于部分性质的描述,包括地理界、天气、机器、电路和量子物理学等。
举个例子,假设我们想要模拟一个电容器的充电过程。
该问题可以表示为偏微分方程:τVt + VRC = E(t)其中V表示电容器的电压,τ、R和C分别表示电容器的时间常数、电阻和电容,E(t)是外部电源函数。
解这个方程将得到电容器充电的渐进过程。
二、偏微分方程的求解方法1. 分离变量法分离变量法是求解常见偏微分方程的一种强大方法,它通常适用于偏微分方程的局部稳定分析。
该方法是使用传统的实分离变量方法,这样可以将偏微分方程转换为微分方程的线性组合,并形成一个简单的解析解。
例如,假设我们要求解一类亥姆霍兹方程(偏微分方程的形式为uxx + uyy + k2u = 0)。
我们可以将u(x, y)表示为分离变量的形式,即u(x, y) = X(x)Y(y),用椭圆PDE的方程来得到解。
2. 有限差分法有限差分法是一种数值方法,它是将偏微分方程的连续形式转换为离散形式的数值解,然后计算整个网格上所有点的值。
该方法通常需要大量计算,但是可以得到一个非常准确的解。
有限差分法的核心是网格的选择和采样方法,通常取决于偏微分方程的性质和问题的特定条件。
例如,我们可以使用有限差分法来模拟波动方程。
该方程形式为:utt – c2uxx – c2uyy = 0其中c表示波速。
我们可以使用有限差分法来将偏微分方程离散化,这样可以找到网格中所有点的解。
三、偏微分方程的应用1. 电力工程偏微分方程在电力工程中有着广泛的应用。
偏微分方程的解法
偏微分方程的解法偏微分方程(Partial Differential Equations, PDEs)是数学中的重要分支,在科学和工程领域具有广泛的应用。
解决偏微分方程的问题,可帮助我们理解自然界中的各种现象,如电磁场的传播、流体运动等。
本文将介绍几种常见的偏微分方程的解法。
一、分离变量法分离变量法是解偏微分方程最常见的方法之一。
我们以二阶线性偏微分方程为例,假设其形式为:A(x,y)u_{xx} + B(x,y)u_{xy} + C(x,y)u_{yy} + D(x,y,u,u_x,u_y) = 0其中u表示未知函数,A、B、C、D为已知函数。
为了使用分离变量法,我们假设解可以表示为两个函数的乘积形式:u(x,y) = X(x)Y(y)将上述形式代入方程,利用变量分离的性质,可将原方程化简为两个常微分方程。
解决这两个常微分方程,即可得到偏微分方程的解。
二、特征线法特征线法适用于一类特殊的偏微分方程,其中包含一阶偏导数和高阶偏导数的混合项。
我们以一维波动方程为例,其形式为:u_{tt} - c^2 u_{xx} = 0其中c表示波速。
特征线法的思想是引入新的变量,使得原方程可以转化为一组常微分方程。
对于波动方程,我们引入变量ξ和η,定义如下:ξ = x + ctη = x - ct通过做变量替换后,原方程可以转化为常微分方程:u_{ξη} = 0这样,我们可以通过求解常微分方程得到偏微分方程的解。
三、变换方法变换方法包括拉普拉斯变换、傅里叶变换等,通过引入新的变量,将原偏微分方程转化为代数方程,然后利用代数方程的解法解出未知函数。
变换方法的优势在于可以将一些常见的偏微分方程转化为代数方程,从而简化解法的步骤。
四、数值解法对于复杂的偏微分方程,解析解可能难以求得或不存在。
此时,数值解法就变得非常重要。
常用的数值解法包括差分法、有限元法、有限差分法等。
这些方法将连续的偏微分方程离散化,将其转化为差分方程或代数方程,然后使用计算机进行求解。
偏微分方程求解技巧
偏微分方程求解技巧偏微分方程是数学中一个重要的分支,广泛应用于自然科学、工程技术等领域。
求解偏微分方程是一项非常有挑战性的任务,需要熟练的理论知识和计算方法。
本文将介绍一些偏微分方程求解的技巧和方法。
一、运用变量分离法变量分离法是解常微分方程常用的方法,同样适用于偏微分方程。
其基本思想是将方程中的多个变量分开作为单独的一部分,再按其各自的变化规律进行积分。
例如,对于拉普拉斯方程,我们可以采用变量分离法,将其分解为两个单元方程,分别求解,再将其合并作为原方程的解。
二、运用线性化方法在许多实际应用中,偏微分方程的解是非线性的,难以直接求解。
这时,我们可以采用线性化方法解决问题。
例如,当偏微分方程为二阶非线性方程时,我们可以通过相应的变换将其化为一阶线性方程,再采用标准的线性方程求解技巧求解。
三、运用变分法变分法是一种利用极值原理求解偏微分方程的方法。
其基本思想是将偏微分方程转化为极值问题,并通过极值原理求得方程的解。
其中,变分原理是变分法的基础,它提供了求解极值问题的基本思路和方法,是变分法求解偏微分方程的核心。
四、运用数值方法数值方法是一种通过数值计算求解偏微分方程的方法。
其基本思想是将偏微分方程转化为差分方程,通过计算机程序对差分方程进行离散化处理,然后得到偏微分方程的数值解。
数值方法适用于一些无法用解析方法求解的复杂偏微分方程问题,并且便于在计算机程序中实现。
五、运用对称性分析对称性分析是一种运用对称性理论对偏微分方程进行分析和求解的方法。
其基本思想是通过对偏微分方程的对称性进行分析,找到方程的一些特殊性质,并据此求解方程。
例如,对称性可以帮助我们判断方程的解的形式和性质,提高求解的效率和准确性。
在偏微分方程求解的过程中,不同的问题需要采用不同的方法和技巧,需要根据具体情况进行选择。
同时,求解偏微分方程需要充分理解数学理论,加强数学应用能力,这是一个极具挑战性的学科,需要付出持续的努力和学习。
求解偏微分方程三种数值方法
数值模拟偏微分方程的三种方法介绍(有限差分方法、有限元方法、有限体积方法)I.三者简介有限差分方法(Finite Difference Methods)是数值模拟偏微分方程最早采用的方法,至今仍被广泛使用。
该方法包括区域剖分和差商代替导数两个步骤。
首先将求解区域划分为差分网格,用有限个网格节点代替连续的求解区域。
其次,利用Taylor级数展开等方法将偏微分方程中的导数项在网格节点上用函数值的差商代替进行离散,从而建立以网格节点上的值为未知量的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且十分成熟的数值方法。
差商代替导数后的格式称为有限差分格式,从格式的精度来考虑,有一阶格式、二阶格式和高阶格式。
从差分的空间离散形式来考虑,有中心格式和迎风格式。
对于瞬态方程,考虑时间方向的离散,有显格式、隐格式、交替显隐格式等。
目前常见的差分格式,主要是以上几种格式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于结构网格,网格的大小一般根据问题模型和Courant 稳定条件来决定。
有限元方法(Finite Element Methods)的基础是虚位移原理和分片多项式插值。
该方法的构造过程包括以下三个步骤。
首先,利用虚位移原理得到偏微分方程的弱形式,将计算区域划分为有限个互不重叠的单元(三角形、四边形、四面体、六面体等),在每个单元上选择合适的节点作为求解函数的插值点,将偏微分方程中的变量改写成由各变量或其导数的节点值与所选用的分片插值基函数组成的线性表达式,得到微分方程的离散形式。
利用插值函数的局部支集性质及数值积分可以得到未知量的代数方程组。
有限元方法有较完善的理论基础,具有求解区域灵活(复杂区域)、单元类型灵活(适于结构网格和非结构网格)、程序代码通用(数值模拟软件多数基于有限元方法)等特点。
有限元方法最早应用于结构力学,随着计算机的发展已经渗透到计算物理、流体力学与电磁学等各个数值模拟领域。
偏微分方程掌握偏微分方程的基本概念与解法
偏微分方程掌握偏微分方程的基本概念与解法偏微分方程(Partial Differential Equations,PDEs)是数学中一种重要的方程类型,在数学、物理、工程等领域中具有广泛的应用。
掌握偏微分方程的基本概念与解法对于深入理解和应用相关领域的知识至关重要。
本文将介绍偏微分方程的基本概念,并详细讨论几种常见的偏微分方程解法。
一、偏微分方程的基本概念在介绍偏微分方程的解法之前,我们有必要先了解一些偏微分方程的基本概念。
偏微分方程是包含多个未知函数的方程,这些未知函数的导数以及它们本身都可能出现在方程中。
偏微分方程通常用来描述物理、化学、工程等自然科学领域中的过程和现象。
常见的偏微分方程类型包括椭圆型方程、双曲型方程和抛物型方程。
椭圆型方程常用于描述稳态问题,如静电场分布;双曲型方程常用于描述波动传播过程,如声波、电磁波的传播;抛物型方程常用于描述热传导、扩散以及其他变化速度较慢的现象。
二、偏微分方程解法1. 分离变量法分离变量法是解偏微分方程中常用的一种方法。
它适用于一些特定的偏微分方程类型,如线性齐次方程。
分离变量法的基本思想是假设待求解函数可以表示为若干个单变量函数的乘积形式,然后将原方程中的导数进行分离,并且令各个单变量函数分别等于常数。
通过求解这些常数,再将各个单变量函数组合起来,得到最终的解函数。
2. 特征线法特征线法常用于解决双曲型方程。
该方法通过分析偏微分方程的特征线和特征曲面来求解方程。
首先,通过特征曲线对自变量进行参数化,并将其代入原方程,得到关于未知函数的常微分方程(ODE)。
然后,通过求解此常微分方程,得到未知函数的一般解。
最后,通过特征线与边界条件的关系确定未知常数,得到特定的解。
3. 变换法变换法是通过对偏微分方程进行变量变换,将原方程转化为更简单的形式,从而求解方程的方法。
常见的变换方法有齐次化变量、特征变量法等。
通过适当的变量替换,可以将原方程转化为常微分方程、分离变量的偏微分方程或者恒定系数的变系数常微分方程。
偏微分方程的几种经典解法
偏微分方程的几种经典解法经过一个学期偏微分方程课程的学习,我们掌握了几种求解三种典型方程的方法,如分离变量法、行波法、特征函数展开法、求解非齐次方程的Duhanmel 原理灯,此外,我们通过学习还掌握了求解波动方程的'D Alembert 公式,求解位势方程的Green 公式等等.这些经典方法的综合运用可以求解很多初等偏微分方程,故而是基本而重要的.本文着重总结了偏微分方程的几种经典解法,一次介绍了分离变量法、行波法、幂级数解法、Fourier 变换法以及Green 函数法,通过对典型方程的研究,深入理解集中经典方法.1.分离变量法分离变量法:基本思想是设法把偏微分方程的问题转化为解常微分方程的问题.1.1第一初边值问题例:利用分离变量法求解下述问题(非齐次0边值双曲方程)2222sin 2cos 2,u ux t t x ∂∂-=∂∂ 0,0x t π<<> (1.1) (0,)(,)0,u t u t π== 0t > (1.2) (,0)sin ,u x x =0x π<< (1.3)(,0)sin 2,ux x t∂=∂ 0x π<< (1.4) 解:用分离变量法求问题(1.1)—(1.4)的形式解.设该问题有如下形式的非零解(,)()()u x t X x T t = (1.5)方程(1.1)对应的齐次方程为22220,u ut x∂∂-=∂∂0,0x t π<<> (1.6) 将(1.5)式代入方程(1.6)得""()()()(),X x T t X x T t =0,0x t π<<>即""()()()()X x T t X x T t λ∆==- (1.7) 其中λ为固定常数,下面证明0λ>. 由(1.7)有"()()0,X x X x λ+=上式两端同乘()X x ,并在(0,)π上积分,得"20()()()0,X x X x dx X x dx ππλ+=⎰⎰注意到由(1.2)和(1.5)有(0)()0,X X π==所以有'220()()X x dx X x dx ππλ=⎰⎰易见0λ>.所以(1.2)—(1.6)可以化为如下形式的两个常微分问题,即()()"()()0,1(0)()0,2X x X x X X λπ⎧+=⎪⎨==⎪⎩ 以及由"()()0T t T t λ+=和适当的定解条件确定的关于()T t 的常微分问题. 求解问题(1).根据常微分方程的理论可知,问题(1)的通解为().X x A B =+将其带入(0)0,X =得0A =.再将()X x B =带入()0X π=,得2,1,2,3,n n n λ==特征值2n n λ=相应的特征函数为()sin ,1,2,n X x nx n == (1.8)注意到{}1()n n X x ∞=是一个直交系统,即0,,()(),,2m n m n X x X x dx m n ππ≠⎧⎪=⎨=⎪⎩⎰这表明{}1()n n X x ∞=正规化后是2((0,))L π的一个基底.将问题(1.1)—(1.4)中的非齐次项和初值按{}1()n n X x ∞=展开,得1sin 2cos 2()sin ,n n x t f t nx ∞==∑ 0,0x t π≤≤≥1sin sin ,n n x a nx ∞==∑ 0,x π≤≤1sin 2sin ,n n x b nx ∞==∑ 0,x π≤≤其中0,1()cos 2,20,0,3n n f t t n t n =⎧⎪==≥⎨⎪≥⎩ 1,10,2n n a n =⎧=⎨≥⎩,0,11,20,3n n b n n =⎧⎪==⎨⎪≥⎩设1(,)()()n n n u x t X x T t ∞==∑, 0,0x t π≤≤≥ (1.9)是问题(1.1)—(1.4)的形式解,将上式代入(1.1)—(1.4)可得,()n T t 是如下常微分方程初值问题的解,"'()()(),0(0),(0),n n n n n n n n T t T t f t t T a T b λ⎧+=>⎪=⎨⎪=⎩,其中1,2,n =.求解问题(2).当1n =时,问题(2)转化为求常微分问题"11'11()()0,(0)0,(0)1,T t T t T T ⎧+=⎪=⎨⎪=⎩ (3) 有常微分方程理论可知,问题(3)的通解为112()cos sin T t c t c t =+.将其代入1(0)1T =,得11c =.将12()cos sin T t t c t =+代入'1(0)0T =得20c =.故1()cos T t t =. 当2n =时,问题(2)转化为常微分问题"22'22()4()cos 2,(0)1,(0)0,T t T t t T T ⎧+=⎪=⎨⎪=⎩ (4)对应其次方程的特征根为2i α=±,用常微分方程中的算子解法求特解.2(4)cos2,D x t +=故sin 24tx t =.所以问题(4)的通解为212()cos 2sin 2sin 2.4tT t c t c t t =++将其代入2(0)0T =得10c =,将22()sin 2sin 24t T t c t t =+代入'2(0)1T =得212c =,故22()sin 2.4t T t t +=当3n ≥时,问题(2)转化为常微分问题"2'()()0,(0)0,(0)0,n n n nT t n T t T T ⎧+=⎪=⎨⎪=⎩ (5) 由常微分理论可知,问题(5)的通解为12()cos sin ,3,4,n T t c nt c nt n =+=将其代入(0)0,n T =得10c =.将2()sin n T t c nt =代入'(0)0,n T =得20c =.故()0n T t =. 综上有cos ,1,2()sin 2,2,040,3,n t n t T t t n t n =⎧⎪+⎪==≥⎨⎪≥⎪⎩(1.10)将(1.8)(1.10)代入(1.9)中,得问题(1.1)—(1.4)的形式解为2(,)sin cos sin 2sin 2,4t u x t x t x t +=+ 0,0x t π≤≤≥经检验,该形式解满足原问题及初边值条件,该形式解就是原问题的解. 例:利用分离变量法求解下述问题22220,u ut x ∂∂-=∂∂ 0,0x t π<<> (1.11) (0,)sin ,(,)0,u t t u t π== 0t >, (1.12) (,0)0,u x = 0x π<<, (1.13)(,0),u x x t ππ∂-=∂ 0x π<<, (1.14) 解:将上述非零边值问题转化为零边值问题,用变量代换,设(,)u x t 是原问题的解,令(,)(,)sin ,xv x t u x t t ππ-=-0,0x t π≤≤≥. 则(,)v x t 是如下问题的解2222(,),v vf x t t x ∂∂-=∂∂ 0,0x t π<<> (1.15) (0,)(,)0,v t v t π== 0t >, (1.16) (,0)0v x =, 0x π<<, (1.17)(,0)0,vx t∂=∂ 0x π<<, (1.18) 其中(,)sin ,xf x t t ππ-=0,0x t π≤≤≥. 用分离变量法求问题(1.15)—(1.18)的形式解.设该问题有如下形式的形式解(,)()()v x t X x T t =, (1.19)方程(1.15)对应的齐次方程为22220,v vt x ∂∂-=∂∂ 0,0x t π<<>, (1.20) 将(1.19)代入方程(1.20)得""()()()(),X x T t X x T t =0,0x t π<<>即""()()()()X x T t X x T t λ∆==- (1.21) 其中λ为固定常数,下面证明0λ>. 由(1.21)有"()()0,X x X x λ+=上式两端同乘()X x ,并在(0,)π上积分,得"20()()()0,X x X x dx X x dx ππλ+=⎰⎰注意到由(1.16)和(1.19)有(0)()0,X X π==所以有'220()()X x dx X x dx ππλ=⎰⎰易见0λ>.所以(1.16)—(1.18)(1.20)可以化为如下形式的两个常微分问题,即"()()0,(0)()0,X x X x X X λπ⎧+=⎨==⎩ (6) 以及由"()()0T t T t λ+=和适当的定解条件确定的关于()T t 的常微分问题.(7) 求解问题(6).根据常微分方程的理论可知,问题(6)的通解为().X x A B =+将其带入(0)0,X =得0A =.再将()X x B =带入()0X π=,得2,1,2,3,n n n λ==特征值2n n λ=相应的特征函数为()sin ,1,2,n X x nx n == (1.22)注意到{}1()n n X x ∞=是一个直交系统,即0,,()(),,2m n m n X x X x dx m n ππ≠⎧⎪=⎨=⎪⎩⎰这表明{}1()n n X x ∞=正规化后是2((0,))L π的一个基底. 将问题(1.15)—(1.18)的非齐次项按{}1()n n X x ∞=展开,得1sin ()sin ,n n xt f t nx ππ∞=-=∑0,0.x t π≤≤≥ 令sin n xc nx ππ-=,则在其两端同乘sin nx 再在(0,)π上积分,得 200sin sin 2nn x nxdx c nxdx c πππππ-==⎰⎰. 由分部积分,经计算可得2n c n π=.从而2()sin n f t t n π=,0t ≥,1,2,n =.设1(,)()()n n n v x t X x T t ∞==∑,0,0.x t π≤≤≥是问题(1.15)—(1.18)的形式解,将其带入(1.15)—(1.18)可得,()n T t 是如下常微分问题的解"22()()sin ,n n T t n T t t n π+=0,t > (1.23) (0)0,n T = (1.24) '(0)0,n T = (1.25)其中1,2,n=(1.23)—(1.25)对应的齐次方程的特征根为ni α=±,则通解为()cos sin n n n T t A nt B nt =+.用算子算法求特解,222()()sin n D n T t t n π+=,解得 22sin ()(1)n tT t n n π=-. 故该问题的通解为22sin ()cos sin (1)n n n tT t A nt B nt n n π=++-. (1.26)将上式代入(0)0,n T =得0n A =,将22sin ()sin (1)n n t T t B nt n n π=+-代入'(0)0,n T =得222(1)n B n n π-=-,1,2,n =.故2222sin 2sin ()(1)(1)n nt tT t n n n n ππ-=+--,0,t >1,2,n =.因此,问题(1.15)—(1.18)的形式解为22212sin 2sin (,)sin (1)(1)n nt t v x t nx n n n n ππ∞=⎛⎫-=+ ⎪--⎝⎭∑,0,0.x t π≤≤≥ (1.27) 考察(1.27)右端级数的收敛性.记2222sin 2sin sin (1)(1)n nt t a nx n n n n ππ⎛⎫-=+ ⎪--⎝⎭,0,0,x t π≤≤≥1,2,n =.容易验证下列级数均在[0,][0,)π⨯+∞上一致收敛1n n a ∞=∑,1n n a x ∞=∂∂∑,1n n a t ∞=∂∂∑,221n n a x ∞=∂∂∑,221n n a t ∞=∂∂∑,21nn a x t ∞=∂∂∂∑. 经检验,(,)v x t 满足问题(1.15)—(1.18),就是 问题(1.15)—(1.18)解.将(1.27)代入(,)(,)sin xu x t v x t t ππ-=+,0,0,x t π≤≤≥ 得22212sin 2sin (,)sin sin (1)(1)n nt t xu x t nx t n n n n ππππ∞=⎛⎫--=++ ⎪--⎝⎭∑,0,0,x t π≤≤≥ 此即为原问题(1.11)—(1.14)的解.1.2第二初边值问题例:利用分离变量法求解下述问题(抛物型)220,u ut x ∂∂-=∂∂ 01,0x t <<> (1.28) (0,)(1,)0,u u t t x x ∂∂==∂∂ 0,t > (1.29) (,0)cos ,u x x π= 01,x << (1.30)解:用分离变量法求解问题(1.28)—(1.30)的形式解.设该问题有如下形式的非零解(,)()()u x t X x T t = (1.31)将其代入(1.28)有"'()()()()X x T t X x T t λ∆==-,01,0x t <<> (1.32) 其中λ为某一常数,且0λ≥. 由(1.32)有"()()0,X x X x λ+=上式两端同乘()X x ,并在(0,1)上积分,得11"20()()()0,X x X x dx X x dx λ+=⎰⎰注意到由(1.29)和(1.31)有''(0)(1)0,X X ==所以有11'220()()X x dx X x dx λ=⎰⎰易见0λ≥.故(1.28)—(1.30)可化为如下形式的两个常微分问题,即"''()()0,01,(0)(1)0,X x X x x X X λ⎧+=<<⎨==⎩ (8) 和'()()0,0T t T t t λ+=> (9)求解问题(8),当0λ=时,有"()0X x =,''(0)(1)0,X X ==由常微分方程的理论可知,问题(8)的通解为12()X x c c x =+,01x ≤≤.将其代入'(0)0X =,有20c =,故1()X x c =,其中1c 为任意常数. 当0λ>时,由常微分方程的理论可知,问题(8)的通解为12(),X x c c =+ 01x ≤≤将其代入'(0)0X =,则20c =,将1()X x c =代入'(1)0X =,得2()n n λπ=, 1,2,n=特征值n λ对应的特征函数为()cos n X x n x π=,1,2,n =,01x ≤≤.所以,对于0λ≥,有()cos n X x n x π=,01x ≤≤, 0,1,2,n=注意到{}1()n n X x ∞=是一个直交系统,即100,,()(),,2m nm n X x X x dx m n π≠⎧⎪=⎨=⎪⎩⎰ 这表明{}1()n n X x ∞=正规化后是2((0,1))L 的一个基底. 下面求解问题(9),将2()n n λπ=代入,可有'22()()0,n n T t n T t π+=0,1,2,n =,0t ≥.有常微分方程理论可知其通解为223()n t n T t c e π-=, 0,1,2,n =, 0t ≥.此时,形式解为2230(,)()()cos n t n n n n u x t X x T t c n xe ππ∞∞-====∑∑, 01x ≤≤,0t ≥.将其代入(1.30)中,得30(,0)cos cos n u x c n x x ππ∞===∑,01,x <<由比较系数法,可得31,10,1n c n =⎧=⎨≠⎩ 故问题(1.28)—(1.30)的形式解为2(,)cos t u x t xe ππ-=,01x ≤≤,0t ≥.经检验,该形式解满足原问题(1.28)—(1.30),此即为原问题的解.1.3 Poisson 方程的边值问题分离变量法还适用于某些特殊形状区域上的二维Poisson 方程的各种边值问题,如果所考虑的定解区域是矩形域,那么可以完全仿照前面的方法来求解,只是此时x,y 之一要扮演t 的角色;如果定解区域是圆域或环形域,则应先做极坐标变换将定解问题化为矩形区域上的定解问题,然后利用分离变量法求解. 例:利用分离变量法求解下述问题22222212(),u u x y x y∂∂+=-∂∂ 12,<< (1.33)(,)0,u x y =1,= (1.34)(,)0,ux y υ∂=∂2,= (1.35)其中υ为2{(,):2}x y R ∂∈<上的单位外法向量.解:用分离变量法求解问题(1.33)—(1.35)的形式解.首先,通过极坐标变换将环形域上的定解问题化为矩形域上的定解问题,做极 坐标变换cos ,sin ,x y ρθρθ=⎧⎨=⎩ 12,02ρθπ≤≤≤≤, 则(1.33)—(1.35)化为2222221112cos 2,v v vρθρρρρθ∂∂∂++=∂∂∂ 12,02ρθπ<<<<, (1.36) (1,)0,(2,)0,vv θθρ∂==∂ 02θπ<<, (1.37) 其中(,)(cos ,sin )v u ρθρθρθ=,12,02ρθπ≤≤≤≤.注意到在极坐标条件下(,0)ρ与(,2)ρπ表示同一点,故(,)v ρθ还满足如下周期性条件(,0)(,2),(,0)(,2),v v v v ρρπρρπθθ∂∂==∂∂ 12,ρ<< (1.38) 问题(1.36)—(1.38)是一个定解问题. 方程(1.36)对应的齐次方程为22222110,v v vρρρρθ∂∂∂++=∂∂∂ 12,02ρθπ<<<<, (1.39) 设问题对应的形式解为(,)()()v R ρθρθ=ψ,12,02ρθπ≤≤≤≤. (1.40)将(1.40)代入(1.37)中,得"'"211()()()()()()0,R R R ρθρθρθρρψ+ψ+ψ= 12,02ρθπ<<<<即"2"'()()(),()()R R R θρρρρλθρ∆ψ+=-=-ψ12,02ρθπ<<<<, (1.41) 其中λ为固定常数,下面证明0λ≥.由(1.41)有"()()0,θλθψ+ψ= 02θπ<<,在上式两端同乘()θψ,并在(0,2)π上积分,由(1.38)和(1.40)可知''(0)(2),(0)(2),ππψ=ψψ=ψ所以有22'220()(),d d ππθθλθθψ=ψ⎰⎰易见0λ≥.所以问题(1.37)(1.38)(1.40)可化为两个常微分问题,即"''()()0,(0)(2),(0)(2),θλθππ⎧ψ+ψ=⎪⎨ψ=ψψ=ψ⎪⎩ 02θπ<<, (10) 以及2"'()()()0R R R ρρρρλρ+-=和适当定解条件的常微分问题(11)求解问题(10).当0λ=时,有"''()0,(0)(2),(0)(2),θππψ=ψ=ψψ=ψ由常微分方程的理论可知,问题(10)的通解为()A B θθψ=+,02θπ≤≤,代入(0)(2)πψ=ψ得()A θψ=,其中A 为任意实数. 当0λ>时,通解为(),A B θψ=+02θπ≤≤, 将其代入''(0)(2),(0)(2)ππψ=ψψ=ψ有sin ,A A B =+=-+, 故2,1,2,n n n λ==特征值n λ对应的特征函数为()cos sin ,02,1,2,n n n A n B n n θθθθπψ=+≤≤=.其中n A 和n B 是任意不同时为零的实数,综上可知()cos sin ,02,0,1,2,n n n A n B n n θθθθπψ=+≤≤=,其中0A 是任意不为零的实数,n A 和n B 是任意不同时为零的实数. 注意到1{cos sin }n n n θθ∞=+是一个直交系统,即20()()0,,,0,1,2,m n m n m n πθθψψ=≠=⎰,这表明1{cos sin }n n n θθ∞=+正规化后是2((0,2))L π的一个基底.设1(,)()()()cos ()sin ,n n n n n n n v R A n B n ρθρθρθρθ∞∞∞====ψ=+∑∑∑12,02ρθπ≤≤≤≤,将非齐次项按1{cos sin }n n n θθ∞=+展开,有2n =时,2212A ρ=代入(1.4)—(1.6)有"'22222'2214()()()12,(1)(2)0,A A A A A ρρρρρρ⎧+-=⎪⎨⎪==⎩ 12,ρ<< 2"'2'1()()()0,12,(1)(2)0,n n n nn n A A A A A ρρρρρρ⎧+-=<<⎪⎨⎪==⎩ 0,1,3,4,n =,和2"'2'1()()()0,12,(1)(2)0,n n n nn n B B B B B ρρρρρρ⎧+-=<<⎪⎨⎪==⎩ 1,2,3,n =.解得2242129112(),1717A ρρρρ-=-++ 12ρ≤≤, ()0n A ρ=, 12ρ≤≤,0,1,3,4,n =, ()0n B ρ=, 12ρ≤≤,1,2,3,n =.故224129112(,)()cos 21717v ρθρρρθ-=-++, 12,02ρθπ≤≤≤≤ 因此,原问题的形式解为2222222112(,)[12917()],17()x y u x y x y x y -=-++++12≤. 经检验,该形式解满足原问题,即为原问题的解.二.行波法行波法:求解一维波动方程的常用解法,利用这种方法得到波动方程的一个重要求解公式('d Alembert 公式)1.齐次波动方程cauchy 问题定理2.1('d Alembert 公式)设2C R ϕ∈(),1C R ψ∈(),则函数 ()()()()()x+atx-at11u x t =x-at +x+at +d 22a ϕϕψξζ⎰,,[)()2u C R 0+∈⨯∞,是cauchy 问题22222u u-a =0t x∂∂∂∂, x R t>0∈, ()(),0u x x ϕ=, x R ∈()(),0ux x tψ∂=∂, x R ∈的解.例:求解下述波动方程的cauchy 问题()()2222120,,0,0cos ,,0cos ,u u uu x R t t x t u x x x R ux e x x R t -⎧∂∂∂-++=∈>⎪∂∂∂⎪⎪=∈⎨⎪∂⎪=-∈⎪∂⎩解:首先将方程化为标准形式.设u 是原问题的解,令()(),,,,0t v x t e u x t x R t =∈≥则v 是如下问题的解()()222210,,0,cos ,,0,v vx R t t x v x t x x Rvx e x R t-⎧∂∂-=∈>⎪∂∂⎪⎪=∈⎨⎪∂⎪=∈∂⎪⎩ 由定理2.1可知()()()()1111,cos cos 22cos cos ,,0x t x tv x t x t x t e d x t te x R t ζ+---=-+++=+∈≥⎰ 因此()()()1,cos cos t u x t e x t t e -+=+, ,0x R t ∈≥为原问题的解.利用一维齐次波动方程cauchy 问题的通解表达式,还可以求解其他定解问题.在此不再赘述.2.非齐次波动方程的cauchy 问题定理2.2('d Alembert 公式)设2C R ϕ∈(),1C R ψ∈(),[)()10,f C R ∈⨯+∞, 则函数()()()()()()()()011,221,,,02x atx at t x a t x a t u x t x at x at d af d d x R t aττϕϕψξζζτζτ+-+---=-++++∈≥⎰⎰⎰属于[)()20,C R ⨯+∞,是cauchy 问题()()()()()22222,,,0,0,,0,u u a f x t x R t t x u x x x R ux x x R t ϕψ⎧∂∂-=∈>⎪∂∂⎪⎪=∈⎨⎪∂⎪=∈∂⎪⎩的解,其中0a >.注2.1上述问题解得光滑程度本质上取决于初值和非齐次项的光滑程度. 注2.2 如果()(),x x ϕψ和(),f x t 都是x 的奇(偶,周期)函数,则上述问题的解也是x 的奇(偶,周期)函数. 例:求解下述波动方程的定解问题()()()()()()22222,,00,0,0,0,0,0,0u u a f x t x t x u t t u x x x ux x x tϕψ∂∂-=>∂∂=>=>∂=>∂其中0a >,[)()[)()[)[)()2110,,0,,0,0,C C f C ϕψ∈+∞∈+∞∈+∞⨯+∞,且满足相容性条件()()()()2''000,00,0a f ϕψϕ==-=解:注意到如果u 是x 的奇函数,则u 自然满足边值条件.因此,根据注2.2,我们可以采用奇延拓方法来求解上述问题.将()(),x x ϕψ和(),f x t 关于0x =做奇延拓,即令()()(),0,0x x x x x ϕϕ≥⎧⎪Φ=⎨-<⎪⎩ ()()(),,0x x x x x ψψ≥⎧⎪ψ=⎨-<⎪⎩ ()()(),,0,0,,,0,0f x t x t F x t f x t x t ≥≥⎧⎪=⎨-<≥⎪⎩考虑cauchy 问题()()()()()22222,,,0,0,,0,u u a F x t x R t t x u x x x R ux x x R t⎧∂∂-=∈>⎪∂∂⎪⎪=Φ∈⎨⎪∂⎪=ψ∈∂⎪⎩ 按'd Alembert 公式形式地写出其解()()()()()()()()011,221,,,02x atx at t x a t x a t u x t x at x at d F d d x R t aττξζζτζτ+-+---=Φ-+Φ++ψ+∈≥⎰⎰⎰回到原来的初值,ϕψ和非齐次项f ,就可以得到原问题的形式解如下:当0x at ≥≥时,()()()()()()()()011,221,2x atx att x a t x a t u x t x at x at d a f d d a ττϕϕψξζζτζτ+-+---=-++++⎰⎰⎰ ()1而当0x at ≤≤时,()()()()()()()()()()())/0/11,221(,,2x atat x t x a x a t t x a t a t x t x a x a t u x t at x x at d af d d f d d aττττϕϕψξζζτζτζτζτ+--+-+------=--+++++⎰⎰⎰⎰⎰ ()2可以直接验证由()1和()2确定的形式解[)[)()20,0,u C ∈+∞⨯+∞就是定解问题的解.三.幂级数解法幂级数解法:是求解偏微分方程的经典解法之一,不仅可以求解一维问题,还可以求解高维问题.我们先来求解如下的常微分方程初值问题()()()()2''0,00,'00,u t a u t t u A u +=>== ()()()3.13.23.3其中0a >方程()3.1的通解是()12cos sin ,0u t C at C at t =+≥其中1C 和2C 是任意实数.由边值条件()3.2和()3.3,可得12,0C A C ==.于是,问题()()3.1 3.3-的解为()cos ,0u t A at t =≥注意到()()()201cos ,02!nnn at at t n ∞=-=≥∑因此,问题()()3.1 3.3-的解可写为如下的级数形式()()()()()()222001,02!2!nn nnn n at tu x A a A t n n ∞∞==-==-≥∑∑. ()3.4定理3.1 假设()C R ϕ∞∈,并且对任意的0R >,都存在非负数列{}0n n a ∞=,满足级数()202!nn n t a n ∞=∑在[)0,+∞上收敛,且()2,,0,1,2,n n D x a x R n ϕ≤≤=则函数()()()()()2222200,,,0,2!2!nnn nn n t t u x t x D x x R t n x n ϕϕ∞∞==⎛⎫∂==∈≥ ⎪∂⎝⎭∑∑ 就是波动方程Cauchy 问题()()()22220,,0,0,,0=0,u ux R t t x u x x x R u x x Rt ϕ⎧∂∂-=∈>⎪∂∂⎪⎪=∈⎨⎪∂⎪∈∂⎪⎩的级数形式的形式解.定理3.2 假设()C R ϕ∞∈,并且对任意的0R >,都存在非负数列{}0n n a ∞=,满足级数0!nn n t a n ∞=∑在[)0,+∞上收敛,且()2,,0,1,2,n n D x a x R n ϕ≤≤=则函数()()()22200,,,0,!!nnn nn n t t u x t x D x x R t n x n ϕϕ∞∞==⎛⎫∂==∈≥ ⎪∂⎝⎭∑∑就是热传导方程Cauchy 问题220,,0u u x R t t x∂∂-=∈>∂∂()(),0,u x x x R ϕ=∈的级数形式地形式解.幂级数方法求解问题的一大优点就是空间维数不限,下面的例子是一个高维问题.例:求解三维波动方程的Cauchy 问题()()()()()()()()()232330,,,,0, 3.5,,,0,,,,,, 3.6,,,00,,,,3.7uu x y z R t t u x y z x y z x y z R ux y z x y z R tϕ∂-∆=∈>∂=∈∂=∈∂ 其中222222,x y z∂∂∂∆=++∂∂∂()()2223,,,,,x y z x y z x y z R ϕ=++∈解:令2,a A ϕ=-∆=,则由()3.4可得到问题()()3.5 3.7-的级数形式的形式解()()()()230,,,,,,,,,02!n nn t u x y z t x y z x y z R t n ϕ∞==∆∈≥∑ ()3.8将ϕ的表达式代入()3.8,得()()22223,,,3,,,,0u x y z t x y z t x y z R t =+++∈≥容易验证,这个形式解的确是定解问题的解.四.Fourier 变换方法1.()R ε,()D R 和()R ϕ空间(i )()R ε空间:对于{}()1n n u C R ∞∞=⊂和()u C R ∞∈,如果对任何a b <及任何非负整数k ,都有[]()()()(),0sup limk knn x a b u x u x →∞∈-= 则称()n u x 在()C R ∞中收敛于()u x ,赋予上述收敛性的函数空间()C R ∞,称为基本空间()R ε.(ii )()D R 空间:对于{}()01n n u C R ∞∞=⊂和()0u C R ∞∈,如果存在a b <,使得[],n u a b ⊂supp 且对任何非负整数k ,都有()()()()0sup lim k knn x Ru x u x →∞∈-=则称()n u x 在()0C R ∞中收敛于()u x ,赋予上述收敛性的函数空间()0C R ∞,称为基本空间()D R .(iii )()R ϕ空间:如果()u C R ∞∈,且对任何非负整数k 和m ,都有()()sup k mx Rxu x ∈<+∞,则称()u R ϕ∈.()R ϕ中序列收敛的概念:对于{}()1n n u R ϕ∞=⊂和()u R ϕ∈,如果对任何非负整数m 和k ,都有()()()()()0sup limkkmnn x Rx u x u x →∞∈-= 则称()n u x 在()R ϕ中收敛于()u x .2.速降函数空间上的Fourier 变换(i )定义:设(),R ϕϕ∈称函数[]()(),ix Rx e dx R ξϕξϕξ-=∈⎰F为ϕ的Fourier 变换,也记为();ϕξ∧称函数[]()-11x (),2ix Re d x R ξϕϕξξπ=∈⎰F为ϕ的Fourier 逆变换,也记为()x ϕ∨. (ii )性质:a )设()R ϕϕ∈,对任意正整数m 有()()()[]()()()()[]()11,;m m m m i x ix x ϕξξϕξϕϕ--⎡⎤⎡⎤==-⎣⎦⎣⎦F F F F[]()()()()()[]()()()()()11,.m m mm ix x i x ϕξϕξϕξϕ--⎡⎤⎡⎤=-=⎣⎦⎣⎦F F FFb) 设()R ϕϕ∈,对任意正整数0a R b R ∈≠∈和,有[]()[]()()()[]()11(),;ia iaxx a e a x e x ξϕξϕξϕξϕ----=-=⎡⎤⎣⎦F F FF[]()[]()()()[]()1111(),.x bx b x b b bbξϕξϕϕξϕ--==⎡⎤⎣⎦F F FFc) 设()12,R ϕϕϕ∈,则[][][][][][]11112121212,2ϕϕϕϕϕϕπϕϕ---*=*=;F F F FF F [][][][][][]111121212121,.2ϕϕϕϕϕϕϕϕπ---=*=*F F F F FF其中12ϕϕ*表示1ϕ与2ϕ的卷积,即()()()()1212,.R x x y y dy x R ϕϕϕϕ*=-∈⎰d )Fourier 变换与Fourier 逆变换都是()R ϕ上的连续线性变换.e )Fourier 变换与Fourier 逆变换互为逆变换. (iii)在速降函数空间中求解热传导方程 考虑热传导方程的Cauchy 问题()()()()()()220,,0,,4.1,0,,4.2u u x t R t xu x g x x R ∂∂-=∈⨯+∞∂∂=∈ 其中()g R ϕ∈.由于()g R ϕ∈,因此,我们猜想Cauchy 问题()()4.1,4.2的解u 满足(),u t •∈()()0.R t ϕ≥将方程()4.1和初值问题()4.2关于x 作Fourier 变换,并利用Fourier 变换的微分性质,得()()20,0,,0,u u t tu g ξξξ∧∧∧∧⎧∂⎪+=>⎪∂⎨⎪=⎪⎩其中R ξ∈.求解这个常微分方程的初值问题,得()()2,,,0.t u t g e R t ξξξξ∧∧-=∈≥关于ξ作Fourier 逆变换,并利用()R ϕ上Fourier 逆变换的线性性质,得(),u x t ()212t ix Rg ee d ξξξξπ∧-=⎰()()22241()21()2().iy t ix R R t i x y R R x y tR g y e dye e d g y e d dy g y e dy ξξξξξξπξπ---+---===⎰⎰⎰⎰ 即问题()()4.1,4.2的解u 具有如下表达式的形式解()()24,(),,0.x y tRu x t g y edy x R t --=∈>特别地,若()22,xg x ex R -=∈,则问题()()4.1,4.2的解u 的形式解为()()()2222442,,,0.x x y y t tRu x t eedy x R t ----+==∈≥⎰且容易验证这个形式解满足方程(4.1)和初值问题(4.2),从而是问题(4.1),(4.2)的解.(iv)在速降函数空间中求解弦振动方程考虑弦振动方程的Cauchy 问题()()()()()()()()()22220,,0,,4.3,0,, 4.4,0,,4.5u ux t R t x u x x x R ux x x R tϕψ∂∂-=∈⨯+∞∂∂=∈∂=∈∂其中()()(),x x R ϕψϕ∈.由于()()(),x x R ϕψϕ∈,因此,我们猜想Cauchy 问题()()4.3 4.5-的解u 满足(),u t •∈()()0.R t ϕ≥将方程()4.3和初值问题()()4.4,4.5关于x 作Fourier 变换,并利用Fourier 变换的微分性质,得()()()()()()()2220,0,4.6,0, 4.7,0, 4.8u u t t u ut ξξϕξξψξ∧∧∧∧∧∧⎧∂⎪+=>⎪∂⎪⎪=⎨⎪⎪∂=⎪∂⎪⎩其中R ξ∈.求解这个常微分方程,方程()4.6的通解为()()()12,.i t i t u t C e C e ξξξξξ∧-=+由()()4.7 4.8和,得()()()()()()12121==,.C C C C R i ξξϕξξξψξξξ∧∧+-∈,因此()()()()()()1211=,.22C C R i i ψξψξξϕξξϕξξξξ∧∧∧∧⎛⎫⎛⎫ ⎪ ⎪=+-∈ ⎪ ⎪⎝⎭⎝⎭,从而()()()()()11,22i t i t u t e e i i ξξψξψξξϕξϕξξξ∧∧∧∧∧-⎛⎫⎛⎫ ⎪ ⎪=++-⎪ ⎪⎝⎭⎝⎭()()()()1,,0.(4.9)22i t i t i t i t e e e e R t i ξξξξψξϕξξξ∧∧--=++-∈≥将())i t i t e e i ξξξ--改写为()1,,0.t i t i t i t e e e d R t i ξξξττξξ---=∈≥⎰ 对()4.9两端同时关于ξ作Fourier 变换,结合上式可得(),u x t ()()()()11222i t i t i t i t ix R e e e e e d i ξξξξξψξϕξξπξ∧∧--⎡⎤⎢⎥=++-⎢⎥⎣⎦⎰ ()()()()()()()()()()()()()()()()()()()1144111222112211,,0.22t i x t i x t i i xR Rt t i x t t R ttx tx te e d e d e d x t x t e d d x t x t x d x t x t d x R t ξξξτξξϕξξψξτξππϕϕψξξτπϕϕψττϕϕψξξ∧∧+--∧+--+-=++⎛⎫=++-+ ⎪⎝⎭=++-++=++-+∈≥⎰⎰⎰⎰⎰⎰⎰ 即问题()()4.3 4.5-的解u 具有如下表达式的形式解()()()()()11,,,0.22x t x t u x t x t x t d x R t ϕϕψξξ+-==++-+∈≥⎰3.广义函数(i )定义:(),D R ()R ε和()R ϕ上的连续线性泛函分别称为()',D R ()'R ε和()'R ϕ广义函数,它们统称为广义函数;(),D R ()R ε和()R ϕ上的全体连续线性泛函分别记为()',D R ()'R ε和()'.R ϕ(ii)判定:a )设F 为()D R 上的线性泛函,则()'F D R ∈的充分必要条件是对任何闭区间[],ab ,存在非负整数~k 和正实数,M 使得()[]()()()[]~,0,,.sup k x a b k kF u M u x u D R a b ∈≤≤≤∈⊂且supp ub )设F 为()R ε上的线性泛函,则()'F R ε∈的充分必要条件是存在闭区间[],a b 以及非负整数~k 和正实数,M 使得()[]()()()~,0,.sup k x a b k kF u M u x u R ε∈≤≤≤∈c )设F 为()R ϕ上的线性泛函,则()'F R ϕ∈的充分必要条件是存在非负整数~~,m k 和正实数,M 使得()()()()~~0,0,.supk m x Rm m k kF u Mx u x u R ϕ∈≤≤≤≤≤∈4.广义函数空间上的Fourier 变换(i )定义:设()[]()',f R f Fourier f R ϕϕ∈定义的变换为如下的上的泛函F[][](),,,f f R ϕϕϕϕ=∈,FF也记为;f ∧[]()-1f Fourier f R ϕ定义的逆变换为如下的上的泛函F[][]()-1-1,,,f f R ϕϕϕϕ=∈,F F也记为f ∨. (ii )性质:a )设()'f R ϕ∈,有()[]()[]()'1'1,;f i f f x ix f x ξξ--⎡⎤⎡⎤==-⎣⎦⎣⎦F FFF[]()()()()[]()()()()'11,'.f ixf x f x i f x ξξξξ--=-=⎡⎤⎡⎤⎣⎦⎣⎦F FFF这里,导数指广义导数,乘积是指广义函数与其乘子的乘积.b )Fourier 变换与Fourier 逆变换都是()'R ϕ上的连续线性变换.c )Fourier 变换与Fourier 逆变换互为逆变换.(iii )()'R Fourier ϕ上的变换方法考虑热传导方程的Cauchy 问题()()()()()()220,,0,,4.10,0,,4.11u u x t R t x u x g x x R ∂∂-=∈⨯+∞∂∂=∈其中()'g R ϕ∈.由于()g R ϕ∈,因此,我们猜想Cauchy 问题()()4.10,4.11的解u 满足(),u t •∈()()'0.R t ϕ≥将方程()4.10和初值问题()4.11关于x 作Fourier 变换,并利用()'R ϕ上Fourier 变换的微分性质,得()()20,0,,0,u u t tu g ξξξ∧∧∧∧⎧∂⎪+=>⎪∂⎨⎪=⎪⎩其中R ξ∈.求解这个常微分方程的初值问题,得()()2,,,0.t u t g e R t ξξξξ∧∧-=∈≥()()()2'',0t g R e t R ξϕϕ∧-∈≥这里是的乘子.关于ξ作Fourier 逆变换,就可以得到问题()()4.10,4.11的形式解. 例:求解问题()()()()()()220,,0,,4.12,0,,4.13u ux t R t xu x x x R δ⎧∂∂-=∈⨯+∞⎪∂∂⎨⎪=∈⎩解:由于初值不是一个普通函数,所以问题()()4.12,4.13的解不可能在 0t =处连续,因此我们需要重新定义u 满足初值条件()4.13的含义.既然g 是一个不是普通函数的()'R ϕ广义函数,因此我们可以把初值条件()4.13定义为:作为()'R ϕ广义函数,(),u t •在0t =处等于g ,即()()'0lim ,.t u t g R ϕ+→•=于下面我们来求解问题()()()4.12,4.13.1, 5.3g ∧=注意到于是由,得()()22,=,,0.ttu t g eeR t ξξξξξ∧∧--=∈≥0t >因此当时,有()()224-14,,.x t tu x t e x R ξ--⎡⎤==∈⎢⎥⎣⎦F()()4.12,4.13于是我们得到问题的形式解()()24,,0.xt u x t x R t -=∈>,()()()0, 5.1.u C R ∞∈⨯+∞容易验证这个形式解满足方程最后验证它还满足初值条件()5.2,即()()()0lim ,,,,.t u x t x R ϕδϕϕϕ+→=∈事实上,对任意的()R ϕϕ∈,有()()()()()()2244,,,xxt t Ru x t x x ex dx ϕϕϕ--==⎰(22,0.yRe dy t ϕ-=>由控制收敛定理可知()()(200lim ,,lim 2y Rt t u x t x edyϕϕ++-→→=(()200,yRe dy ϕϕδϕ-===五.Laplace 方程的基本解和Green 函数place 方程的基本解求解全空间上的N (≥2)维Poisson 方程()(), 5.1Nu f x x R -∆=∈的解的表达式,先寻找其次Poisson 方程,即Laplace 方程()0, 5.2Nu x R -∆=∈的径向解,设()(||),N u x w x x R =∈是方程(5.2)的一个解,将u 的表达式代入方程(5.2),得1''(||)'()0,\{0}N N w x w r x R r---=∈也就是说,w 满足方程1''()'()0,0N w r w r r r-+=>即1('())'0,0N r w r r -=>因此1'(),0,N A w r r r-=>其中A 是任意实数.从而2ln ,2(),3N B r C N w r BC N r-+=⎧⎪⎨+≥⎪⎩当,当, 其中B 和C 是任意实数, 定义:称N R 上的函数211ln 22||()1,3(2)||N N N x x N N x πω-⎧=⎪⎪Γ=⎨⎪≥⎪-⎩,当当 为Laplace 方程(5.2)的基本解,也成为Newton 位势,其中N ω是N 维单位球的表面积,Laplace 方程的基本解具有的性质:(1) (\{0})N C R ∞Γ∈,且对任意的\{0}N x R ∈,有()0x ∆Γ=;(2) Γ,1()()Nloc x L R ∇Γ∈,且在广义函数意义下()(),N x x x R δ-∆Γ=∈,即对任意的0()N C R ϕ∞∈,有()()(0)NR x x dx ϕϕ∇Γ⋅∇=⎰或者()()(0)NR x x dx ϕϕΓ⋅∇=-⎰2.Green 函数考虑Poisson 方程的第一边值问题()(),, 5.3u f x x -∆=∈Ω()()(),,5.4u x g x x =∈∂Ω其中Ω是(2)N R N ≥中具有光滑边界的有界区域,设21()()u C C ∈Ω⋂Ω是为题(5.3),(5.4)的解,可以得到对任意的ξ∈Ω,()()()()()(()()),u x x x u x dx u x x u x dS v vξξξΩ∂Ω∂∂Γ-Γ-∆=-+Γ--∂∂⎰⎰ 即()()()()()()(()()), 5.5u x x u x x u x dx x u x dS v vξξξΩ∂Ω∂∂Γ-=Γ-∆+Γ--∂∂⎰⎰其中v 表示∂Ω的单位外法向量,因此,问题(5.3),(5.4)属于21()()C C Ω⋂Ω的解可用(5.5)右侧积分值表示出来,但第二个积分式子中含未知数u 沿外法向量的导数,这是我们所不知道的,注意到由Green 公式可以推出:对任意的21()()v C C ∈Ω⋂Ω,有()()(()()()())(()()),v x u x u x v x v x u x dx u x v x dS v vΩ∂Ω∂∂∆-∆=-∂∂⎰⎰ 即()()()(()()()())(()()). 5.6v x u x u x v x v x f x dx g x v x dS v vΩ∂Ω∂∂∆+=-∂∂⎰⎰由(5.5)和(5.6)得()()()()()[(()())()()()][(()())()()].5.7u u x v x x x v x f x u x v x dx x v x g x dS v v v ξξξξΩ∂Ω=∂∂∂Γ-Γ-++∆+Γ-+-+∂∂∂⎰⎰ 如果21(,)()()()v C C ξξ⋅∈Ω⋂Ω∈Ω是问题()(,)0,,5.8x v x x ξ-∆=∈Ω()(,)(), 5.9v x x x ξξ=-Γ-∈∂Ω的解,那么根据(5.7)有()()()(,)()(),, 5.10G x u G x f x dx g x dS vξξξΩ∂Ω∂=-∈Ω∂⎰⎰其中(,)()(,),(,),.G x x v x x x ξξξξξ=Γ-+∈Ω⨯Ω≠这样我们得到了问题(5.3),(5.4)一个解的表达式(5.10)定义:如果对任意固定的21(,)()()()v C C ξξ⋅∈Ω⋂Ω∈Ω满足方程(5.8)和边值条件(5.9),则我们称定义于{(,):}x x ξξ∈Ω⨯Ω≠上的函数(,)()(,)G x x v x ξξξ=Γ-+为Laplace 算子关于区域Ω的Green 函数,称()x ξΓ-为Green 函数(,)G x ξ的奇异部分,而称(,)v x ξ为Green 函数(,)G x ξ的正则部分,注:如果Green 函数(,)G x ξ的正则部分(,)v x ξ存在,则根据第一边值问题(5.8)(5.9)解的唯一性,可知(,)(,),(,).v x v x x ξξξ=∈Ω⨯Ω因此21()().v C C ∈Ω⨯Ω⋂Ω⨯ΩLaplace 算子关于区域Ω的Green 函数(,)G x ξ具有以下性质: (1) 对任意的(,)x ξ∈Ω⨯Ω,x ξ≠,都有(,)(,);G x G x ξξ=(2) 对任意的ξ∈Ω,有21(,)(\{})(\{}),(,)|0,G C C G ξξξξ∂Ω⋅∈Ω⋂Ω⋅=且对任意的\{}x ξ∈Ω,(,)0x G x ξ∆=;(3) 对任意的ξ∈Ω,有1(,),(,)(),x G G x L ξξ⋅∇∈Ω且在广义函数意义下(,)(),x G x x x ξδξ-∆=-∈Ω.注:资料可能无法思考和涵盖全面,最好仔细浏览后下载使用,感谢您的关注!。
偏微分方程解法
偏微分方程解法一、概述偏微分方程是数学中的一个重要分支,广泛应用于物理、工程、经济等领域。
解决偏微分方程的方法有很多种,其中最常用的方法是数值解法和解析解法。
本文将重点介绍偏微分方程的解析解法。
二、基本概念1. 偏微分方程:含有多个自变量和它们的偏导数的方程。
2. 解析解:能够用一定的代数式或函数表示出来的解。
3. 常微分方程:只含一个自变量和它的导数的方程。
4. 偏微分方程分类:(1)线性偏微分方程:各项次数之和为1或2。
(2)非线性偏微分方程:各项次数之和大于2。
5. 解析解法分类:(1)可分离变量法(2)相似变量法(3)积分因子法(4)特征线法(5)变换法三、可分离变量法可分离变量法是求解一类特殊形式线性偏微分方程最常用的方法,其基本思想是将未知函数表示成各自变量之积,然后将其带入原偏微分方程中得到一组常微分方程,再求解这些常微分方程,最后将得到的解代回原方程中即可。
以一阶线性偏微分方程为例:$$\frac{\partial u}{\partial t}+a(t)u=b(t)$$其中$a(t)$和$b(t)$为已知函数,$u=u(x,t)$为未知函数。
将未知函数表示成各自变量之积:$$u=X(x)T(t)$$将其带入原方程中得到:$$XT'+aXT=bXt$$将$X$和$T$分离变量并整理得到:$$\frac{1}{X}\frac{dX}{dx}=\frac{1}{at+b}-\frac{c}{X}$$其中$c$为常数。
对上式两边同时积分得到:$$ln|X|=ln|at+b|-ct+D_1,D_1为常数。
$$即可得到$X(x)$的解析解。
同理,对于$T(t)$也可以通过可分离变量法求出其解析解。
最后将$X(x)$和$T(t)$的解代入原方程中即可得到未知函数$u=u(x,t)$的解析解。
四、相似变量法相似变量法是一种适用于非线性偏微分方程的方法,其基本思想是通过引入新的自变量和因变量,将原偏微分方程转化成一个形式相似但更简单的方程,从而求出原方程的解析解。
偏微分方程数值计算方法及其应用
偏微分方程数值计算方法及其应用偏微分方程(partial differential equation, PDE)是一个广泛应用于自然科学和工程领域中的数学对象。
在数学中,我们可以通过数值方法对偏微分方程进行计算,以模拟实际的物理现象,例如天气预报、流体力学、结构力学、生物医学等。
本文将介绍偏微分方程数值计算方法及其应用。
一、偏微分方程的数值计算方法偏微分方程在数学中的求解是一个极其复杂的问题,我们很难通过解析的方式求出具体的解。
而数值方法在实际中展现了它重要的作用。
下面,我们逐个介绍常用的数值方法。
1.常用方法(1)有限差分法:有限差分法是一个求解偏微分方程的常见方法。
这种方法通过对偏微分方程进行离散化,将偏微分方程转化为代数方程组,然后通过求解方程组得到解。
有限差分法主要分为前向、后向和中心差分法。
(2)有限元法:有限元法是一个广泛应用于实际工程计算中的数值方法。
该方法通过将求解区域离散化为有限个节点,使用基函数将节点处的函数值以非常简单的方式进行近似,得到一个代数方程组。
(3)谱方法:谱方法对函数进行基函数展开,利用傅里叶级数和切比雪夫级数等展开式来逼近函数。
由于这种方法可以得到很高的精度和稳定性,所以近年来在海洋模拟、大气科学、仿生学和深度学习等领域得到了广泛应用。
2.新方法(1)机器学习方法:随着深度学习和神经网络的广泛应用,越来越多的研究者开始将机器学习方法应用于偏微分方程的求解中。
例如,Deep Galerkin Method 和 Physics-Informed Neural Networks 等方法已经在某些领域中得到了成功应用。
(2)稳定方法:稳定方法是一类特殊的数值方法,它们试图消除数值计算中发生的一些常见问题,例如数值震荡和数值波动。
可以使用一些稳定性条件和行之有效的技术来保证这些方法的稳定性。
二、偏微分方程的应用1.天气预报:天气预报是一个依赖偏微分方程的应用领域。
大气中的运动可以通过一组完整的偏微分方程来描述。
偏微分方程的分类与求解方法
偏微分方程的分类与求解方法偏微分方程(Partial Differential Equations, PDEs)是描述自然界和物理现象中的变化过程的重要数学工具。
它涉及多个自变量和导数,可以用来描述涉及多个变量及其变化率的复杂问题。
在数学、物理学、工程学等领域中,偏微分方程广泛应用于研究和解决实际问题。
本文将介绍偏微分方程的分类与求解方法。
一、偏微分方程的分类偏微分方程可以根据方程中未知函数的阶数、方程类型以及系数的性质等多个因素来进行分类。
下面将介绍几种常见的偏微分方程分类。
1. 齐次与非齐次偏微分方程当方程中未知函数及其各阶偏导数的总次数都为整数时,称为齐次偏微分方程。
齐次偏微分方程的解是一类特殊的函数族。
与之相反,非齐次偏微分方程中的未知函数及其各阶偏导数总次数之和不等于整数。
求解非齐次偏微分方程需要特殊的方法。
2. 线性与非线性偏微分方程根据方程中未知函数的线性性质,可以将偏微分方程分为线性和非线性两类。
当方程中未知函数及其各阶偏导数的系数与未知函数之间都是线性关系时,称为线性偏微分方程。
线性偏微分方程的求解较为简单。
与之相对,非线性偏微分方程的系数与未知函数之间存在非线性关系,求解较为困难。
3. 一阶、二阶和高阶偏微分方程根据未知函数的导数阶数,可以将偏微分方程分为一阶、二阶以及高阶偏微分方程。
一阶偏微分方程中涉及到未知函数的一阶导数,例如常见的一阶线性偏微分方程:$\frac{\partial u}{\partial x} +\frac{\partial u}{\partial y} = 0$。
二阶偏微分方程中涉及到未知函数的二阶导数,例如常见的二阶线性齐次偏微分方程:$\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = 0$。
高阶偏微分方程则涉及到更高次的导数。
二、偏微分方程的求解方法对于不同类型的偏微分方程,可以采用不同的求解方法。
求解偏微分方程三种数值方法
求解偏微分方程三种数值方法偏微分方程是数学中研究包含多个变量及其偏导数的方程。
解决偏微分方程的数值方法有很多,但本文将重点介绍三种常用的数值方法,分别是有限差分法、有限元法和谱方法。
一、有限差分法:有限差分法是一种常用的数值方法,用于求解偏微分方程的数值解。
其基本思想是通过建立网格来离散化偏微分方程中的空间变量,并近似替代导数,将偏微分方程转化为代数方程组,进而求解。
常见的有限差分格式有向前差分、向后差分和中心差分。
有限差分法主要包括以下步骤:1.空间离散化:将区域划分为网格点,在每个网格点上计算方程中的函数值。
2.近似代替导数:使用差分公式,将导数近似替代为函数在相邻网格点上的差分。
3.建立代数方程组:根据近似的导数和偏微分方程的形式,可以建立相应的代数方程组。
4.求解方程组:使用求解线性方程组的方法,如高斯消元法或迭代法,求解代数方程组。
5.恢复连续解:通过插值或者其他方法,将离散解恢复为连续解。
二、有限元法:有限元法是一种广泛应用的数值方法,用于求解偏微分方程的数值解。
其基本思想是将区域划分为有限个小区域,称为单元,通过求解单元上的局部方程,最终得到整个区域上的数值解。
有限元法主要包括以下步骤:1.离散化:将区域划分为单元,并选择适当的有限元空间。
2.建立局部方程:在每个单元上,根据选择的有限元空间和边界条件,建立局部方程。
3.组装全局方程:将所有单元上的局部方程组装成整个区域上的全局方程。
4.施加边界条件:根据问题的边界条件,施加适当的边界条件。
5.求解方程组:使用求解线性方程组的方法,求解全局方程组,得到数值解。
6.后处理:通过插值等方法,将离散解恢复为连续解,并进行后续的分析。
三、谱方法:谱方法是一种高精度的数值方法,适用于求解偏微分方程的数值解。
其基本思想是将区域上的函数展开为一组基函数的线性组合,通过选取适当的基函数和系数,来逼近求解方程。
谱方法主要包括以下步骤:1. 选择基函数:根据问题的性质,选择合适的基函数,如Legendre多项式、Chebyshev多项式等。
偏微分方程经典解法与数值解法对比分析
偏微分方程经典解法与数值解法对比分析偏微分方程(Partial Differential Equations, PDEs)是数学中的一个重要分支,广泛应用于物理学、工程学、生物学等领域。
解决偏微分方程的问题通常可以通过经典解法和数值解法两种途径来进行。
本文将对这两种解法进行对比分析。
一、经典解法经典解法是指通过数学分析的方法,从数学的角度推导出偏微分方程的解析解。
这种解法的优点是能够给出精确的解,从而对问题的本质有更深入的理解。
然而,经典解法往往只适用于简单的偏微分方程,对于复杂的问题往往难以找到解析解。
以一维热传导方程为例,假设有一根长度为L的杆,两端分别固定温度为T1和T2,初始时刻整根杆的温度分布为f(x),则可以得到热传导方程:∂u/∂t = α∂²u/∂x²其中,u(x,t)表示杆上某点的温度,α为热扩散系数。
对于上述方程,可以通过分离变量法得到解析解。
假设u(x,t)可以表示为f(x)g(t)的形式,将其代入方程中,得到两个常微分方程:f''(x)/f(x) = g'(t)/αg(t) = -λ²通过求解这两个常微分方程,可以得到f(x)和g(t)的表达式,从而得到u(x,t)的解析解。
二、数值解法相对于经典解法,数值解法是通过计算机模拟的方法来求解偏微分方程的近似解。
数值解法的优点是可以处理复杂的偏微分方程,并且可以得到数值解的近似误差。
常见的数值解法有有限差分法、有限元法、谱方法等。
以有限差分法为例,该方法通过将偏微分方程中的导数用差分近似代替,将偏微分方程转化为差分方程,然后通过迭代求解差分方程得到数值解。
对于一维热传导方程,可以将空间和时间分别离散化,得到差分方程:(u_i,j+1 - u_i,j)/Δt = α(u_i+1,j - 2u_i,j + u_i-1,j)/Δx²其中,u_i,j表示在网格点(i,j)处的温度,Δt和Δx分别为时间和空间的步长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偏微分方程求解方法及其比较
发表时间:2008-12-11T09:32:01.530Z 来源:《科海故事博览科教创新》2008年第10期供稿作者:曹海洋吕淑娟王淑芬
[导读] 近些年来,无限维动力系统得到了很大的发展.随着对它研究的深入和计算能力的迅速提高,使得与之相关的数值研究越来越被人们关注.谱方法作为一种数值求解偏微分方程的方法,它具有无穷阶收敛性.因此,谱方法也就引起人们更多的关注.
摘要:近些年来,无限维动力系统得到了很大的发展.随着对它研究的深入和计算能力的迅速提高,使得与之相关的数值研究越来越被人们关注.谱方法作为一种数值求解偏微分方程的方法,它具有无穷阶收敛性.因此,谱方法也就引起人们更多的关注.
关键词:谱方法;偏微分;收敛;逼近;
1偏微分方程及其谱方法的介绍
偏微分方程主要借助于未知函数及其导数来刻画客观世界的物理量的一般变化规律。
理论上,对偏微分方程解法的研究已经有很长的历史了。
最初的研究工作主要集中在物理,力学,几何学等方面的具体问题,其经典代表是波动方程,热传导方程和位势方程(调和方程)。
通过对这些问题的研究,形成了至今仍然使用的有效方法,例如,分离变量法,fourier变换法等。
早期的偏微分方程研究主要集中在理论上,而在实际操作中其研究方法和研究结果都难以得到广泛的应用。
求解的主要方法为:有限差分法,有限元法,谱方法。
谱方法起源于Ritz-Galerkin方法,它是以正交多项式(三角多项式,切比雪夫多项式,勒让得多项式等)作为基函数的Galerkin方法、Tau 方法或配置法,它们分别称为谱方法、Tau方法或拟谱方法(配点法),通称为谱方法。
谱方法是以正交函数或固有函数为近似函数的计算方法。
从函数近似角度看.谱方法可分为Fourier方法.Chebyshev或Legendre方法。
前者适用于周期性问题,后两者适用于非周期性问题。
而这些方法的基础就是建立空间基函数。
下面介绍几种正交多项式各种节点的取值方法及权重。
1) Chebyshev-Gauss:
2) Chebyshev-Gauss-Radau: x0 =1,
3) Chebyshev-Gauss-Lobatto: x0 =1, xN =1,
4)Legendre-Gauss: xj 是的零点且
5) Legendre-Gauss-Radau: xj 是的N+1个零点且
6) Legendre-Gauss-Lobatto: x0=-1,xN=1其它N-1个点是的零点且
下面介绍谱方法中最重要的Jacobi正交多项式其迭代公式为:
其中:
Jacobi正交多项式满足正交性:
而Chebyshev多项式是令时Jacobi多项式的特殊形式,另外Legendre多项式是令时Jacobi多项式的特殊形式。
2 几种典型的谱方法
谱方法是以正交函数或固有函数为近似函数的计算方法。
谱近似可以分为函数近似和方程近似两种近似方式。
从函数近似角度看.谱方法可分为Fourier方法.Chebyshev或Legendre方法。
前者适用于周期性问题,后两者适用于非周期性问题。
从方程近似角度看,谱方法可分为在物理空间离散求解的Collocation法、在谱空间进行离散求解的Galerkin法,以及先在物理空间离散求积,再变换到谱空间求解的Pseudo-spectral法。
Collocation法适用于非线性问题.Galerkin法适用于线性问题,而Pseudo-spectral法适用于展开方程时的非线性项的处理。
谱方法的特点是对光滑函数指数性逼近的谱精度;以较少的网格点得到较高的精度;无相位误差;适合多尺度的波动性问题;计算精度高于其他方法。
快速傅立叶变化的提出大大促进了谱方法的发展,迄今已有各种的谱方法计算格式被提出.并被应用于天文学、电磁学、地理学等各种问题的计算。
下面介绍一下应用于各个区域的几种谱方法:
1)以Fourier谱方法为例介绍谱方法解方程的主要过程
以一阶波动方程为例:
其中u(x,t)为方程的解,L是包含u和u关于空间变量的导数的算子,除了方程以有初始条件和适当的边界条件。
故可设其中为试探空间的基函数,ak(t)为展开系数,对于傅立叶谱方法中的共轭有:
其中从而利用其正交性和周期性可以减少工作量,另外再结合边界条件就可以求出来。
2) Galerkin方法是谱方法中十分经典的解偏微分方程的方法,但还有其局限性,而利用Hermite谱方法中依赖时间的权函数对经典的Galerkin方法进行拓展后的新的方法能适用范围扩大了很多。
它能很好的应用在微分方程最优控制问题有限元方法的分析中,并且如果能够灵活运用利用Chebyshev方法、Galerkin方法和配置方法,则会形成更强的计算方法。
如将Tau方法的思想成功地应用于奇数阶微分方程Petrov-Galerkin谱方法。
3)在无界区域上谱方法和拟谱方法发展了以Hermite函数和Laguerre函数为基函数的正交逼近和插值理论,在这些结果的基础上发展了全空间和半空间上数理方程的谱方法和拟谱方法,从而形成一种新的能更好解决误解区域问题的方法,此种方法被很好的应用于统计物理、量子力学和流体力学中。
4) 我们利用非一致带权Sobolev空间中的Jacobi多项式正交逼近和Jacobi-Gauss型插值理论,提出以Jacobi多项式为基函数的Jacobi谱方法和拟谱方法用来解决一些奇异问题和计算某些特定的无界区域问题。
5)有限谱方法是基于有限点、有限项的局域谱方法。
这种方法要求近似函数应具有等同隔网格和非周期性的性质。
有限谱方法分为基于非
周期性傅立叶插值的有限谱法和基于截断傅立叶积分的有限谱法。
3 谱方法的几个相关问题
1)谱微分快速逼近
函数的微分逼近形式是偏分方程数值解中的一个重要问题, 它某种意义上决定了采用方法的实质。
例如常见的差分方法是采用少数几个离散值组合来逼近函数在某点的微分值。
离散点与微分估值点的位置是决定差分格式的重要依据。
对谱方法, 其情形与差分离散有所不同, 对变量的谱方法微分逼近实质上是决定对应导函数展开序列的系数。
一般正交函数均存在3项递推公式,它可以在谱微分逼近中加以利用。
但利用3项递推容易出现舍入误差过度积累, 导致计算不稳定, 在涉及坐标变换时该问题显得更为严重。
另一种计算谱微分的方法基于拉格朗日核函数 , 该方法主要针对拟谱方法。
其关键是如何在一个简单的微分矩阵(三对角或者五对角等稀疏情形) 基础上控制计算误差。
微分逼近在基于样条函数的PDE 配置方法以及观测数据导函数逼近中经常出现。
2)快速多极方法
快速多极方法(FMM ) 是目前较新的一种快速方法, 起源于多体问题模拟, 目前已被较广泛应用到工程计算加速中。
基于拉格朗日核函数的序列估值及微分估值都可以使用FMM , FMM 还可用于球谐谱计算中对勒让德变换的加速。
FFT 只适用于离散点等距的情况, 而在谱方法计算中大多数情况的离散点是不等距的, 特别是在复杂几何解域谱计算问题中, 此时FMM 可以作为FFT 的替代。
FMM 的计算复杂度和FFT 在量级上相同, 但增加了一个很大的比例系数。
4 结论
谱方法的计算量大大超过了有限差分和有限元方法, 由于计算机速度的限制, 谱方法的研究与应用曾一度处于低谷。
近年来, 在计算机技术、区域分解技术和应用需求的共同推动下, 关于谱方法的研究和应用逐渐升温。
目前, 谱方法计算的大量研究和应用集中在谱元素方法、多域拟谱方法及其预条件和并行计算。
由于基于区域分解的谱方法在并行计算中具有很小的通信计算比, 特别适合于粗粒度分布式并行计算。
随着谱方法计算研究的深入基于区域分解的谱方法在科学计算中的地位将显得愈来愈重要。
参考文献
[1]向新民.谱方法的数值分析.北京,科学出版社,2000
[2]Wang J P.Non-periodic fourier transform and limite spectral method.
[3]任宗修. SRLW方程的Chebyshev拟谱方法. 工程数学学报,1995,12(2):34-40
[4]余德浩.汤华中. 微分方程数值解法. 科学出版社
[5]张理论.李晓梅. 谱方法数值计算研究进展. 指挥技术学院学报, 2001。