分子轨道理论
分子轨道理
分子轨道理
分子轨道(Molecular Orbital, MO)理论是描述分子电子结构的重要理论之一,它不仅可以用来解释分子性质,还能预测分子的化学反应。
分子轨道理论最早由德国化学家恩斯特·洪德(Ernst Hückel)和罗伯特·穆勒(Robert Mulliken)提出,它是从分子的原
子轨道出发,通过其线性组合得到的分子轨道来描述分子电子云的。
分子轨道理论的基本假设是:分子中的每一个电子都能够占据一个空间中的分子轨道,这个分子轨道可以由两个或多个原子的原子轨道以一定比例线性叠加得到。
根据叠加方式的不同,分子轨道可分为成键分子轨道(Bonding Molecular Orbital, BMO)和反键分子轨道(Anti-Bonding Molecular Orbital, ABMO)两种
类型。
成键分子轨道是由原子轨道同相叠加得到的,与成键但未叠加的原子轨道相比,成键分子轨道的电子密度在原子间区域增加,使原子间的距离缩短,因此能够形成共价键。
反键分子轨道则是由原子轨道异相叠加得到的,电子密度在原子间区域减小,反应了电子数目的减少,导致原子间的距离拉长,从而阻碍了化学键的形成。
分子轨道理论还可以用于解释和预测分子的光谱性质,如吸收光谱、紫外-可见光谱和荧光光谱等。
分子轨道理论可以通过
构建分子轨道的线性组合来预测光谱峰位和强度,从而推断分子的结构和构象。
此外,分子轨道还可以用于模拟并预测分子的反应性质,如电荷传递、电子转移和原子转移等反应。
总之,分子轨道理论是化学中非常重要的理论之一,它为我们理解分子结构、性质和反应提供了重要的工具和方法。
分子轨道理论解释
分子轨道理论1 分子轨道理论分子轨道是由2个或多个原子核构成的多中心轨道。
分子轨道的波函数也是Schrödinger方程的解。
分子轨道分为成键分子轨道与反键分子轨道,前者是原子轨道同号重叠(波函数相加)形成,核间区域概率密度大,其能量比原子轨道低;后者是原子轨道异号重叠(波函数相减)形成的,核间区域概率密度小,两核间斥力大,系统能量提高,如图所示:2 同核双原子分子1).氢分子氢分子是最简单的同核双原子分子。
两个氢原子靠近时,两个1s原子轨道(AO),组成两个分子轨道(MO):一个叫成键轨道,另一个叫反键轨道。
氢分子的两个电子进入成键轨道电子构型或电子排布式为。
电子进入成键轨道,使系统能量降低,进入反键轨道将削弱或抵消成键作用。
2).分子轨道能级图与分子轨道形状第二周期元素原子组成分子时,用2s,2p 原子轨道组成的分子轨道,示于图9-3-2由图可见,分子轨道的数目等于用于组合原子轨道数目。
两个2s原子轨道组成两个分子轨道和,6个2p原子轨道组成6个分子轨道,其中两个是σ分子轨道(和)4个是π分子轨道(两个和两个)。
相应的原子轨道及分子轨道的形状如图下所示。
由图可见:●成键轨道中核间的概率密度大,而在反键轨道中,则核间的概率密度小。
●一对2p z 原子轨道以“头碰头”方式组合形成分子轨道,时,电子沿核间联线方向的周围集中;一对2p x(2p y)原子轨道以“肩并肩”方式组合形成分子轨道,时,电子分布在核间垂直联线的方向上。
3).氧分子O2共有16个电子,O2的电子构型:O2分子有两个自旋方式相同的未成对电子,这一事实成功地解释了O2的顺磁性。
O2中对成键有贡献的是(σ2p)2和(π2p)4这3 对电子,即是一个σ键和两个π键。
O2的两个π键是三电子π键,反键轨道中的一个电子削弱了键的强度,一个三电子π键相当于半个键,故O2的叁键实际上与双键差不多。
4).氮分子N2的分子轨道能级图与O2比较,只是在和的相互位置有区别。
什么是分子轨道理论
什么是分子轨道理论
分子轨道理论(Molecular Orbital Theory,简称MO理论)是1932年由美国化学家马利肯(R.S.Mulliken)及德国物理学家洪特(F.Hund)提出的一种描述多原子分子中电子所处状态的方法。
该理论认为原子形成分子后,电子不再属于个别的原子轨道,而是属于整个分子的分子轨道,分子轨道是多中心的。
分子轨道由原子轨道组合而成,形成分子轨道时遵从能量近似原则、对称性一致(匹配)原则、最大重叠原则,即通常说的“成键三原则”。
在分子中电子填充分子轨道的原则也服从能量最低原理、泡利不相容原理和洪特规则。
以上信息仅供参考,建议查阅化学专业书籍文献或咨询化学专业人士获取更全面更准确的信息。
分子轨道理
分子轨道理分子轨道是描述分子中电子运动状态的波函数。
主要有4种类型的分子轨道:σ轨道、π轨道、非键轨道和反键轨道。
这些轨道的形状和能量级别决定了分子中电子的排布和化学性质。
下面将详细介绍这几种分子轨道的特征和相关理论。
首先是σ轨道。
σ轨道是分子中电子云最密集的轨道,具有球对称的形状。
它沿着化学键的轴向分布,所以也被称为轴向轨道。
σ轨道可以由两个原子轨道叠加而成,每个原子提供一个电子。
根据平面对称性的不同,σ轨道可以分为σ-s和σ-p轨道,前者为电子密度在分子中心沿轴向对称的轨道,后者为电子密度在分子平面中的两个方向上对称的轨道。
σ轨道主要参与形成化学键,是稳定的分子轨道。
接下来是π轨道。
π轨道具有两个相互垂直的环面,分别在化学键的上、下两侧。
与σ轨道不同,π轨道是运动在较大空间范围内的,所以也被称为侧向轨道。
π轨道可以由两个平行的原子轨道叠加而成,每个原子提供一个电子。
根据能级的不同,π轨道可以细分为π-s和π-p轨道,两者的电子密度在平面内的分布形式不同。
π轨道在化学键的形成中起到重要作用,决定了分子的共轭结构和反应性质。
非键轨道是分子中存在于原子之间的轨道。
它们是离域的电子轨道,不通过化学键与特定原子相关联。
非键轨道的能量相对较高,电子密度较低。
由于非键轨道的存在,分子可以吸收外部能量激发电子至非键轨道,从而进行各种光化学和电化学反应。
反键轨道与化学键中的σ和π轨道相对应,具有相同的空间分布形式,但电子的运动方向相反。
反键轨道的能级相对较高,电子密度较低。
它们主要参与分子中电子的排斥和共振现象,以及反应中的电荷转移。
分子轨道理论是通过量子力学的计算方法和原理来描述分子中电子的分布和运动状态,为解释分子光谱和化学反应提供了依据。
根据分子轨道理论,可以计算分子轨道的能级、形状和电子密度,并预测分子的化学性质。
分子轨道理论的成功应用包括描述分子的电子结构、解释分子间相互作用、预测分子的稳定性和反应性,以及设计新的功能分子。
分子轨道理论
M
Cr
Mn
Fe
Co
Ni
价电子数 需要电子数
6 12
7 11
8 10
9 9
10 8
Ni(CO)4
形成的羰基配
位化合物
Cr(CO)6 Mn2(CO)10
Fe(CO)5 Co2(CO)8
谢
谢
!
e
g
配位 体群 轨道
反键MO
s
d
△ 非键MO σ
eg t1u
金属 a1g 络合物
成键 MO 配位体
分子轨道理论不像晶体场理论那样只考虑静电作用,也考虑 到了d轨道的能级分裂。
在晶体场理论中: 其差别在于: 分子轨道理论中:
E
0
eg
Et Et
2g
E
0
e g
2g
⑴ [FeF6]3-
中心金属和配位体之间σ配键和反馈∏键的形成是同时进 行的,而且σ配键的形成增加了中心原子的负电荷,对反馈 ∏键的形成更加有利,反馈∏键的形成则可减少中心原子的 负电荷,对σ配键的形成更加有利。两者互相促进,互相加 强,这就是协同效应。
大多数羰基配位化合物具有如下特点:
每个金属原子的价电子数和它周围配位体提供的价电子数加在
dx2-y2 dz2
eg Δ
这种π型轨道的形 成,使得体系的分裂能 Δ增大。 故,此类配合物常 是低自旋构型。 配体的π 空轨道
Δ=10 Dq
E0 3d
中央原子 轨道
t2g
dxy dxz dyz
t2g
受配位场微扰 d轨道分裂 分子轨道
例如,CN-、CO、NH3、NO2- 等就属于此类配体,其造
分子轨道理论的基本概念
分子轨道理论的基本概念分子轨道理论是描述分子内电子结构的理论框架,它是理解分子化学和化学反应的重要工具。
在分子轨道理论中,分子中的电子被认为存在于由原子核构成的分子轨道中,这些分子轨道是原子轨道的线性组合。
通过分子轨道理论,我们可以更好地理解分子的稳定性、反应性以及光谱性质。
本文将介绍分子轨道理论的基本概念,包括分子轨道的构成、分子轨道的类型以及分子轨道的能级顺序等内容。
1. 分子轨道的构成在分子轨道理论中,分子轨道是由原子轨道线性组合而成的。
原子轨道可以是原子的1s、2s、2p等轨道,它们在形成分子时会相互叠加、重叠并形成新的分子轨道。
分子轨道的构成可以通过线性组合原子轨道(Linear Combination of Atomic Orbitals,LCAO)方法来描述。
在LCAO方法中,原子轨道的波函数被线性组合,从而形成分子轨道的波函数。
通过适当的线性组合系数,可以得到不同类型的分子轨道,如σ轨道、π轨道等。
2. 分子轨道的类型根据分子轨道的对称性和能量特征,可以将分子轨道分为不同类型。
其中,σ轨道是沿着两原子核之间轴向的对称轨道,具有较高的电子密度;π轨道则是垂直于两原子核之间轴向的对称轨道,电子密度主要集中在两原子核之间的区域。
此外,还有δ轨道、φ轨道等其他类型的分子轨道,它们在不同的分子结构中扮演着重要的角色。
这些不同类型的分子轨道在分子的形成和反应中起着至关重要的作用。
3. 分子轨道的能级顺序分子轨道的能级顺序是指不同类型的分子轨道在能量上的排布顺序。
一般来说,σ轨道的能量较低,π轨道的能量次之,而δ轨道、φ轨道等能级较高。
这种能级顺序的排布对于分子的稳定性和反应性具有重要影响。
例如,在烯烃分子中,π轨道的能级较低,因此烯烃具有较高的反应活性;而在芳香烃中,芳香环中的π轨道形成了稳定的共轭体系,使得芳香烃具有较高的稳定性。
4. 分子轨道的叠加和排斥在分子轨道理论中,分子轨道之间存在叠加和排斥的相互作用。
分子轨道理
分子轨道理
分子轨道理论是一种解释分子化学性质的理论,主要应用于复杂化学物质的计算和设计。
该理论结合量子力学和分子对称性理论,通过对分子中原子轨道的组合和相互作用的分析,得出分子轨道能级和电子分布,进而预测分子性质及其反应活性。
其主要内容包括:
1. 原理:分子轨道理论的核心原理是“波函数线性组合原理”,即分子轨道是由原子轨道按照一定的线性组合方式组成的。
线性组合系数称为“分子轨道系数”。
2. 能级:分子轨道能级是由原子轨道相互作用而形成的,其数目等于参与组合的原子轨道数目。
能级顺序和大小与分子轨道系数及原子轨道能级之间的相互作用有关。
3. 分子轨道类型:根据分子轨道能级和分子轨道系数的不同,分子轨道可分为sigma(σ)轨道、pi(π)轨道、delta(δ)轨道等。
4. 分子轨道的对称性:分子对称性对分子轨道的能级和分子性质有很大影响。
相同对称性的原子轨道组合会形成对称性相同的分子轨道。
5. MO图解:MO图是分子轨道理论的重要表述方式,用于描述分子中电子的能级和分布情况。
其结构为横坐标为分子轨道能级,纵坐标为分子轨道系数的坐标轴。
6. 应用:分子轨道理论可应用于物理、化学、生物等领域,如
化学反应机理、分子光谱学、药物设计等。
7. 限制和局限:分子轨道理论适用于与原子轨道相似的分子,但对于复杂分子和高能态的描述有一定局限性。
分子轨道理论
* 2px
2px
2p ?
2py
2pz
* 2 s
2p
N2的键级=(10-4)/2=3
2s
2s
1*s
2s
1s AO
1s
1s AO
MO
同核与异核双原子的分子轨道符号的关系
1s
1
Байду номын сангаас
1*s
2
2s
3
* 2 s
2p
5
2p
1
* 2 p
* 2 p
3s
7
* * 2 py 2pz 2py 2pz
2p
* 2 s
2px
2p
O2的键级=(10-6)/2=2
2s
2s
1*s
2s
1s AO
1s
1s AO
MO
N2分子轨道能级图
* * 2 py 2pz
N2分子轨道表示式
* 2 2 * 2 2 2 2 (1s )2(1 ) ( ) ( ) ( ) ( ) ( ) s 2s 2s 2py 2pz 2 px
MO c11 c2 2 MO
*
c11 - c2 2
成键原则 能量相近原则 决定成键效率 决定能否成键
分子轨道电子排布遵循原则 能量最低原理 Pauli不相容原理 Hund法则
最大重叠原则
对称性匹配原则
处理分子轨道方法
1. 弄清分子轨道的数目和能级高低 2. 由原子价电子算出可用来填充的分子轨道的电子数 3. 按规则将电子填入分子轨道
分子轨道类型
分子轨道表示式
根据分子轨道能级高低及轨道电子数,将分子轨道从 低能级到高能级的每个能级用括号括起来,右上角注 明轨道电子数。如,H2的分子轨道表达式 (1s )2
分子轨道理论
s,px 沿y轴重迭,β= 0, LCAO无效,对称性不允许. s,px沿x轴重迭, Sab>0,|β| 增大,对称性允许.
Sab>0, 对称性匹配, 是MO形成的首要条件,决定能否成键。
其它两条件解决效率问题。
只有对称性相同的AO才能组成MO。
S ab a* bd
对称性允许 +
+ + 相长
Eb
a Ea
A
U
1
E1
AB
B
两个AO形成两个MO时,AO能级差越小,形 成的MO能级分裂越大,电子转移到低能量的成键 MO后越有利。 反之,AO能级差越大,形成的MO 能级分裂越小,电子转移到低能量的成键MO后能 量下降越不明显.
在低能量的成键MO中, 低能量的AO组份较多; 在高能量的反键MO中, 高能量的AO组份较多。
轨道重叠与共价键的方 向性有密切关系. 例如, 环丙 烷中C采取sp3杂化,应以 109.5o重叠成键, 而键角只有 60o . 所以, 杂化轨道在核连 线之外重叠成弯键. 重叠不能 达到最大, 成键效率不高.
弯键模型
以往的解释是: 沿核连线成键 时, 为适应键角所要求的60o , sp3 杂化键被迫弯曲而产生“张力”.
分子轨道理论
分子轨道理论(MO理论) 1932年美国科学家莫立根(Mulliken)洪特(Humd)等人先后 提出了分子轨道理论 (Molecular Orbital Theory)
一. 理论要点: 1、分子轨道理论的基本观点是把分子看作一个整体,其中电子
不再从属于某一个原子而是在整个分子的势场范围内运动。 分子中每个电子的运动状态也可用相应的波函数来描述。 2、分子轨道是由分子中原子的原子轨道线性组合而成,简称 LCAO。组合形成的分子轨道数目与组合前的原子轨道数目 相等。 3、原子轨道线性组合成分子轨道后,每一个分子轨道都有一相 应的能量,分子轨道中能量高于原来的原子轨道者称为反键 轨道,能量低于原来的原子轨道者称为成键轨道。 4、分子轨道中的电子的排布原则:保里不相容、能量最低、洪 特规则。 5、根据分子轨道的对称性不同,可分为σ键和π键。
分子轨道理论
分子轨道理论1. 引言分子轨道理论是化学中的一种重要理论,它用量子力学的原理解释了分子的电子结构和化学性质。
本文将介绍分子轨道理论的基本概念、应用以及相关的计算方法。
2. 基本概念2.1 原子轨道在分子轨道理论中,首先要了解的是原子轨道。
原子轨道是描述单个原子中电子运动的波函数。
根据量子力学的原理,一个原子可以存在多个不同的原子轨道,每个原子轨道都对应着不同的能量状态。
2.2 分子轨道当两个或更多个原子靠近形成化学键时,原子轨道会互相重叠,形成新的分子轨道。
分子轨道描述的是电子在整个分子中的运动状态。
根据分子轨道理论,分子轨道可以分为两类:成键分子轨道和反键分子轨道。
成键分子轨道对应着电子的主要分布区域,而反键分子轨道则对应着电子分布相对较少的区域。
2.3 分子轨道能级分子轨道能级与原子轨道能级类似,分子轨道的能量随着轨道的能级增加而增加。
有时,分子轨道能级之间会有一定的能隙,这种能隙反映了分子稳定性的特征。
3. 分子轨道的应用分子轨道理论可以解释大量的化学现象和性质,下面列举了几个常见的应用:3.1 化学键的形成分子轨道理论提供了解释化学键产生的机制。
当两个原子靠近并形成化学键时,原子轨道会发生线性组合形成分子轨道。
通过分子轨道理论,我们可以理解不同类型的化学键(如共价键、离子键和金属键)是如何形成的以及其性质的差异。
3.2 分子轨道的能级顺序分子轨道理论还可以预测分子轨道的能级顺序,从而解释分子的化学性质。
能级较低的分子轨道通常具有较高的稳定性,从而决定了分子的化学反应性质。
3.3 分子光谱在分子光谱中,分子轨道理论被广泛应用。
分子轨道理论可以解释分子在吸收或发射光的过程中所发生的能级跃迁,从而解释不同光信号的产生和分子结构的变化。
4. 分子轨道的计算方法4.1 原子轨道模型著名的原子轨道计算方法包括Hartree-Fock方法和密度泛函理论。
这些方法通过求解原子的薛定谔方程,得到原子轨道及其能量。
分子轨道理论
得到的产物和在光照条件下得到的产物具有不同的立 体选择性,是高度空间定向反应。
3. 周环反应的主要反应类别:
电环化反应 环加成反应 σ-迁移反应
2.2 分子轨道对称守恒原理简解
分子轨道对称守恒原理的中心内容及内函:
电环化反应选择规则的应用实例
实例一:完成下列反应式
CH3 H3C H
H
实例二:完成下列反应式
175oC
CH3 H CH3 H
CH3 H
H H3C
CH3
H
H+
CH3
主要产物
H CH3 CH3 H
实例三:完成反应式
H H
(CH2)m
H
(CH2)m
H
m > 6 对正反应有利 m < 6 对逆反应有利
E Z (Z,E)-1,3-环辛二烯
σ1s: 成键分子轨道,电子在两核间出现的几 率较大
σ*1s:反键分子轨道,电子在两核的左右两 侧出现几率较大,核间节面处电子云密 度等于零。
电子排布三原则:保里原理,能量最低原理, 洪特规则。
s2*p p2*p s2p
p2p s2*s s2s
分子光谱实验数据
s, p轨道相互作用问题
Li2 Be2 B2
化学反应是分子轨道重新组合的过程,分 子轨道的对称性控制化学反应的进程,在一 个协同反应中,分子轨道对称性守恒。(即 在一个协同反应中,由原料到产物,轨道的 对称性始终保持不变)。因为只有这样,才 能用最低的能量形成反应中的过渡态。
包括两种理论:前线轨道理论,能级相关理论
2.3 前线轨道理论的概念和中心思想
分子轨道理论
分子轨道理论2011级弘毅学堂化学班2011301040014 田健吾分子轨道理论(又称MO法)是建立在量子力学理论体系基础之上的理论,以薛定谔波动方程为基础。
通过对原子轨道的线性组合(LCAO,linear combination of atomic orbitals)来确定其组合而成的分子轨道的形状以及能量高低。
分子轨道理论与现有的其他几种理论的比较现有的常用分析分子构型与能量的理论有路易斯结构理论,VESPER theory,VB法,杂化轨道理论与MO法。
此外还有建立于VB法上的共振理论,这些理论在各自适用范围内对分子进行处理各有其优点:路易斯结构理论最为简单,仅需考虑最外层电子数为8(氢为2)来调整共用电子对数即可,但是局限性也相对较大,仅能粗略分析共用电子对情况,不能预测与解释分子构型与能量;VESPER理论也是较为简单的理论,但是在处理很多的分子中都取得了非常好的结果,如对甲烷、六氟化硫等分子的构型,都能很成功的预测与解释,使用起来十分方便。
缺点也比较明显:过于强调价层电子的排斥效应而忽略了其内层电子以及轨道之间相互作用对构型的影响,特别是涉及到过渡金属配合物的John-Taller效应的时候,就完全无法解释,由于没有考虑到具体中心离子与配体轨道的作用,这是可想而知的结果;经典VB 法基于自旋反平行的两电子波函数符号一致,通过组合使得体系能量降低而形成稳定分子。
有单电子原子轨道与另一原子上填充单电子的原子轨道相结合形成共价键或带成对电子的轨道与另一原子中的空轨道重叠形成配位键两种。
经典VB法也是较为朴素的理论之一,因此局限性也是较大的,只能得出与参与成键的AO形状及伸展方向相同的分子构型,对于甲烷等分子的构型就完全不能解释,此时则需要引入杂化轨道理论,杂化轨道理论总体思想是通过两个或多个原子轨道的组合变形,使得达到成键轨道重叠最大的目的,从而使得体系能量达到较低的值。
但是Pauling对于杂化轨道理论的解释特别是对电子的激发与轨道杂化的能量来源的解释比较牵强,用薛定谔波动方程来理解其杂化过程可能可以用原子接近时对其各自波动方程的势能项有影响,从而改变了其原子轨道的形状来解释,但是如此也并不能解释电子的激发是如何进行的,除此之外,是否势能项的变化真的总是朝着使得轨道变形后趋向于与其他原子轨道重叠更充分的方向进行,这还是一个很大的问题。
分子轨道理论
φ
{φ
φ1
φ 1 = Φ1 + Φ2
2
能 量
=Φ - Φ 1
2
反 成 φ 2 = Φ1 - Φ 2 成 成
φ
2
1
成成 成 φ 成
= Φ1 + Φ
2
* σ 反 成成 成 成 成
能 量 1s原 成 成 成 1s原成 成 成
Hale Waihona Puke σ 成成 成成 成 成* σ 反 成成 成 成 成
2p原 成 成 成
2p原 成 成 成
分子轨道理论 按照分子轨道理论,当原子组成分子时,形成共价键的 按照分子轨道理论,当原子组成分子时, 电子运动于整个分子区域。 电子运动于整个分子区域。 分子中价电子的运动状态,即分子轨道, 分子中价电子的运动状态,即分子轨道,可以由波函数 φ来描述。 来描述。 来描述 分子轨道由原子轨道通过线性组合而成。 分子轨道由原子轨道通过线性组合而成。 组合前后的轨道数是守恒的, 组合前后的轨道数是守恒的,即形成的分子轨道数与参 与组成原子轨道数相等。每个分子轨道有一定的能量, 与组成原子轨道数相等。每个分子轨道有一定的能量,分 子轨道容纳电子对遵循能量最低原理, 保里( 子轨道容纳电子对遵循能量最低原理 , 保里 ( Pauli) 原 ) 理和洪特( 理和洪特(Hund)规则。 )规则。
σ 成成 成成 成 成
* π 成成 成成 成 成
2p原成 成 成
2p原成 成 成
π 成成 成成 成 成
以1,3 -丁二烯为例 丁二烯为例
π 4*
基态
π3
﹡
H
H
H
H
H
H
H
H
π2 H
H
H
第二节 分子轨道理论
事实上,因为原子是分子的组成单元,由原子到分子必然存在着原
子轨道和分子轨道间的过渡和对应关系。
尽管分子轨道属于分子整体,但当电子运动到某些区域时,必然会
表现出原子轨道的某些特征。 基于上述理由,根据变分法原理,我们可以把分子轨道ψi写成有关
原子轨道φi的线性组合。即:
n
ψji = ∑cjiφji
-
+
σh 失效
记为:σ*
记为:σ
共三十页
2.π轨道
对称性特征:对键轴中心呈对称性或反对称性
例如:
++
--
np
np
对称
+ -
记为:πg 或 π*
(antibonding π orbital)
记为:πu 或 π
(bonding π orbital)
反对称
± ±
ndxy
ndxy
对称
+ -
反对称
共三十页
记为:πg 或 π* 记为:πu 或 π
美国化学家,1966获
单电子波函数(轨道近似)
诺贝尔化学奖
原子轨道线性组合成分子轨道
LCAO-MO的基本原则
共三十页
1.单电子波函数(轨道近似)
若分子体系中含有 m 个核和 n 个电子,根据Born-Oppenheimer定
核近似,其哈密顿算符可写成:
H
=
-
1 2
∑i=1 ▽2i
mn
-∑∑ ai
rZaai
1.分子轨道能级图
为了能够简便地运用分子轨道能级
讨论分子结构,我们常用轨道能级图定 2p
性地描述分子轨道的能级。
(精品课件)7.分子轨道理论-new
H2:
1
ψ H2 = σ1s (1) + σ1s (2) = 2 ⎡⎣ϕ A,1s (1) + ϕ B,1s (1)⎤⎦ ⎡⎣ϕ A,1s (2) − ϕ B,1s (2)⎤⎦
S-S轨道 LCAO
5. 分子轨道理论:
p-p轨道LCAO σ键 σ* 键
π 键 π* 键
5. 分子轨道理论:
BO = 1 BO = 0.5 (三电子σ键 ) BO = 0 (不形成稳定分子)
He2分子不能稳定存在,但是He2+或He22+可以稳定存在
5. 分子轨道理论:
Li2
Be2
气体 r = 267.3 pm D= 101kJ/mol
不存在
5. 分子轨道理论:
顺 磁 性 成 单 电 子
B2只存在 π 键无 σ 键
2s AO of O
σs
MO of NO
00 NO
NO
5. 分子轨道理论:
5. 分子轨道理论:
5. 分子轨道理论:
5. 分子轨道理论:
共轭π键 离域π键 大 π键
Π
6 6
5. 分子轨道理论:
形成π键的电子不局限于两个原子的区域,而是在参加成键
的多个原子形成的分子骨架中运动,这种化学键称为离域π键。
若满足以下两个条件,就可形成离域π键:
(1) 成键的原子共面(或共曲面),每个原子可提供一个垂直
于平面的p轨道 。
(2) π电子数小于参加成键原子的p轨道总数的二倍。
离域π键一般用
Π
m n
表示,n为参与成键的原子轨道数,m为电
子数。
5. 分子轨道理论:
非键轨道 n : nonbonding molecular orbital 能量较之原子轨道基本不变的分子轨道。
有机化学中的分子轨道理论
有机化学中的分子轨道理论在有机化学中,分子轨道理论是一种重要的理论工具,用于解释有机分子的化学性质和反应机理。
分子轨道理论基于量子力学的原理,通过计算和描述分子中电子的运动状态,从而揭示了分子中化学键的形成和断裂、化学反应的进行等重要现象。
本文将介绍有机化学中的分子轨道理论的基本概念、应用以及研究进展。
一、分子轨道理论的基本概念分子轨道理论是基于原子轨道的概念,原子轨道是描述单个原子中电子运动状态的函数。
在一个分子中,原子之间通过共价键形成连接。
根据量子力学的原理,分子中的电子不再局限于单个原子,而是在整个分子中运动。
因此,分子的电子状态需要用一组轨道来描述,这组轨道被称为分子轨道。
分子轨道可以通过线性组合原子轨道(Linear Combination ofAtomic Orbitals,简称LCAO)的方法得到。
LCAO方法假设分子中的分子轨道是由原子轨道线性组合而成的,即每个原子轨道会形成分子轨道的一部分。
通过线性组合的过程,得到的分子轨道既保留了原子轨道的主要特征,又反映了分子中电子的运动状态。
分子轨道可以分为成键轨道和反键轨道。
成键轨道是由原子轨道线性组合形成的,对分子中的共价键的形成起着积极的作用;而反键轨道则是在原子轨道的基础上得到的,它们对共价键的形成没有帮助,反而会削弱共价键。
在分子中,成键轨道和反键轨道总是呈成对存在,它们之间通过分子中的原子核进行相互作用,形成了稳定的分子。
二、分子轨道理论的应用分子轨道理论在有机化学中有着广泛的应用。
它可以通过分析分子轨道的能级和电子分布,预测有机分子的性质和反应行为。
1. 能级结构分子轨道理论可以帮助确定分子中的能级结构。
不同的分子轨道具有不同的能级,电子会填充在低能级的轨道中。
通过计算和实验,可以确定分子中各个分子轨道的能级顺序,从而预测有机分子的稳定性、光谱性质等重要特性。
2. 共价键的形成和断裂分子轨道理论解释了共价键的形成和断裂过程。
分子轨道理论的基本概念
分子轨道理论的基本概念分子轨道理论是描述分子内电子结构的理论基础,是理解和预测分子性质的重要工具。
它通过对分子中电子行为的定量描述,为我们提供了深入理解分子结构和化学性质的途径。
本文将介绍分子轨道理论的基本概念,包括分子轨道的形成、分子轨道能级、分子轨道的排布规律等内容。
分子轨道分子轨道是描述整个分子内所有电子运动状态的波函数。
在分子轨道理论中,通过线性组合原子轨道(Linear Combination of Atomic Orbitals, LCAO)方法,可以得到分子轨道波函数。
例如,两个氢原子相互结合形成氢气分子的过程中,每个原子的1s轨道可以线性组合形成一个成键分子轨道和一个反键分子轨道。
这种过程称为成键和反键形成。
通过这种方式形成的分子轨道波函数,可以用来描述氢气分子内电子的运动状态。
分子轨道能级根据量子力学原理,不同类型的分子轨道具有不同的能级。
一般来说,成键分子轨道的能级较低,反键分子轨道的能级较高。
在填充电子时,按照Pauli不相容原理和Hund规则,电子会依次填充到较低能级的成键分子轨道上,直到所有电子填充完毕。
这种填充顺序决定了分子的稳定性和化学性质。
分子轨道排布规律根据对称性和能量原理,我们可以确定不同类型分子轨道在空间中的排布规律。
以双原子分子为例,通过简单的组合对称性和量子力学计算,可以得到成键σ、反键σ、成键π和反键π四种主要类型的分子轨道。
每一种类型的分子轨道在空间中具有特定形状和取向,并且对应着不同的能级。
分子轨道理论在实践中的应用凭借其对化学键性质和反应活性等方面的深刻认识,分子轨道理论在近现代化学研究中扮演了重要角色。
它被广泛应用于有机合成设计、催化剂设计、光催化材料设计等领域。
例如,在有机合成设计中,我们可以通过对不同配体结构下电荷传递与空间排布特性进一步加深对反应机制及活性位点与其实际功能之间关联作用进一步了解。
结论总之,分子轨道理论为我们提供了揭示和预测化学现象背后原理的新视角,并且在许多实际应用中发挥着重要作用。
分子轨道名词解释
分子轨道名词解释
分子轨道是描述分子中电子分布和行为的数学函数。
它们是原子轨道在分子中相互作用下形成的新的波函数。
分子轨道理论是量子力学中的重要概念,可以用来解释分子的性质和化学反应。
在分子轨道理论中,有两种类型的分子轨道:成键轨道和反键轨道。
成键轨道是通过原子轨道线性组合形成的,具有较低的能量。
它们主要位于分子中心区域,是电子密度高的区域。
成键轨道有助于形成共价键,稳定分子结构。
反键轨道则是相对于成键轨道而言的,它们具有较高的能量,并且在成键轨道两侧呈现电子密度低的区域。
反键轨道不参与化学键的形成,但对于分子的稳定性和反应性起到重要作用。
除了成键轨道和反键轨道,还有非成键轨道。
非成键轨道是分子中电子分布的一部分,但不直接参与键的形成。
它们可以是孤对电子轨道、自由基轨道或非键σ轨道等。
非成键轨道对于描述分子中的电子行为和化学反应也非常重要。
分子轨道的形成可以通过量子化学方法进行计算。
常用的方法包括Hartree-Fock方法、密度泛函理论等。
通过计算得到的分子轨道可
以用以解释分子的几何结构、电子云密度和电子的运动行为,从而进一步理解分子的性质和化学反应机理。
总的来说,分子轨道是分子中电子分布和行为的描述,可以用来解释分子的性质和化学反应。
成键轨道和反键轨道是分子中电子密度高低的区域,而非成键轨道描述了分子中电子的其他行为。
通过计算分子轨道可以进一步理解分子的结构和反应机理。
分子轨道理论
ca (αa − E) + cbβ = 0
caβ + cb (αb − E) = 0
久期行列式: 久期行列式:
αa − E β =0 β αb − E
2
(αa − E)(αb − E) − β = 0 E2 − (αa +αb )E +αaαb − β 2 = 0
−b ± b2 − 4ac E= 2a
∑cji [φjĤj φidv - Ejφjφidv] =0 ∫ ∫ 令: Hji=φjĤj φidv ∫ 则上式成为: 则上式成为: Sji=φjφidv ∫
∑cji (Hji - SjiEj) =0
对于每个原子轨道,都有一个这样的方程, 对于每个原子轨道,都有一个这样的方程,如 一个分子中有n个原子轨道,就有n 一个分子中有n个原子轨道,就有n个这样的方 个分子轨道)。这些方程联立, )。这些方程联立 程(即n个分子轨道)。这些方程联立,得到 一个方程组,称为久期方程 久期方程。 一个方程组,称为久期方程。 ∑(Hji - SjiEj) 称为久期行列式 久期方程的系数C 久期方程的系数 ji,仅当久期行列式 ∑(Hji - SjiEj)=0时,有非零解。 时 有非零解。
… …
0 1 X
…
0 0 1
… …
0 0 0
… …
… … … …
0 0 0
…
=0
0 … …
1
X
Dn(x)为休克尔行列式,上式为链式共轭分子的 ) 休克尔行列式, HMO行列式 行列式 展开即可解出E 再利用齐次方程确定C 可得π轨道 展开即可解出 i,再利用齐次方程确定 i可得 轨道
在结构化学中, 在结构化学中,我们可以用以下的方法来写休克尔 行列式: 行列式: 1. 同一碳原子的相应值为 同一碳原子的相应值为x 2. 相邻碳原子的相应值为 相邻碳原子的相应值为1 3. 不相邻碳原子的相应值为 不相邻碳原子的相应值为0
分子轨道理论
分子轨道理论分子轨道理论(MO理论)是处理双原子分子及多原子分子结构的一种有效的近似方法,是化学键理论的重要内容。
它与价键理论不同,后者着重于用原子轨道的重组杂化成键来理解化学,而前者则注重于分子轨道的认知,即认为分子中的电子围绕整个分子运动。
1932年,美国化学家 Mulliken RS和德国化学家Hund F 提出了一种新的共价键理论——分子轨道理论(molecular orbital theory),即 MO法。
该理论注意了分子的整体性,因此较好地说明了多原子分子的结构。
目前,该理论在现代共价键理论中占有很重要的地位。
一种化学键理论,是原子轨道理论对分子的自然推广。
其基本观点是:物理上存在单个电子的自身行为,只受分子中的原子核和其他电子平均场的作用,以及泡利不相容原理的制约;数学上则企图将难解的多电子运动方程简化为单电子方程处理。
因此,分子轨道理论是一种以单电子近似为基础的化学键理论。
描写单电子行为的波函数称轨道(或轨函),所对应的单电子能量称能级。
对于任何分子,如果求得了它的系列分子轨道和能级,就可以像讨论原子结构那样讨论分子结构,并联系到分子性质的系统解释。
有时,即便根据用粗糙的计算方案所得到的部分近似分子轨道和能级,也能分析出很有用处的定性结果。
⒈原子在形成分子时,所有电子都有贡献,分子中的电子不再从属于某个原子,而是在整个分子空间范围内运动。
在分子中电子的空间运动状态可用相应的分子轨道波函数ψ(称为分子轨道)来描述。
分子轨道和原子轨道的主要区别在于:⑴在原子中,电子的运动只受 1个原子核的作用,原子轨道是单核系统;而在分子中,电子则在所有原子核势场作用下运动,分子轨道是多核系统。
⑵原子轨道的名称用s、p、d…符号表示,而分子轨道的名称则相应地用σ、π、δ…符号表示。
⒉分子轨道可以由分子中原子轨道波函数的线性组合(linear combination of atomic orbitals,LCAO)而得到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
σ*1s:反键分子轨道,电子在两核的左右两 侧出现几率较大,核间节面处电子云密 度等于零。
电子排布三原则:保里原理,能量最低原理, 洪特规则。
s2*p p2*p s2p
p2p s2*s s2s
分子光谱实验数据
s, p轨道相互作用问题
Li2 Be2 B2
其中对成键有贡献的是一
个σ键。与价键结构式完全
一致。
FF
苯分子的结构——离域π键的概念
实验测得苯分子中6个C-C键的键长相等 各键角都等于120o
NO2分子的结构—— π33离域π键
非键轨道
Ozone的分子结构
价键理论和分子轨道理论的比较:
✓价键理论将共价键看作原子之间的定域键 ✓反映了原子间直接的相互作用 ✓形象直观而易于与分子的几何构型相联系
Molecular-orbital diagrams for the diatomic molecules and ions of the first-period elements.
Molecular Orbitals of the Second Period
LCAO– Linear combination of atomic orbitals
2.1 周环反应概况简解
1. 定义
周环反应 在化学反应过程中,能形成环状过渡态的协同反应。
协同反应 协同反应是指在反应过程中有两个或两个以上的化学 键破裂和形成时,它们都相互协调地在同一步骤中完成。
+
环状过渡态
2. 周环反应的特点:
1. 反应过程中没有自由基或离子这一类活性中间体产生; 2. 反应速率极少受溶剂极性和酸,碱催化剂的影响,也
化学反应是分子轨道重新组合的过程,分 子轨道的对称性控制化学反应的进程,在一 个协同反应中,分子轨道对称性守恒。(即 在一个协同反应中,由原料到产物,轨道的 对称性始终保持不变)。因为只有这样,才 能用最低的能量形成反应中的过渡态。
包括两种理论:前线轨道理论,能级相关理论
2.3 前线轨道理论的概念和中心思想
分子轨道理论及前线轨 道理论
1 分子轨道理论
1分子轨道理论
• 分子轨道的概念 ➢组成分子的原子的价电子属于整个分子 ➢在原子中电子在空间的运动状态称原子轨
道(原子波函数) ➢分子中的电子在整个分子中的运动状态则
称为分子轨道(分子波函数) ➢每个原子轨道能容纳2个自旋相反的电子 ➢每个分子轨道也能容纳2个自旋相反的电子,
➢AO可形成“成键”和“反键” (MO
Bonding and antibonding MOs ) ➢遵循洪特规则(Hund’s rule is followed )
Combining Atomic Orbitals
轨道线性叠加: 同相位波增强,能量降低,形成成键轨道; 反相位波减弱,能量升高,形成反键轨道。
不受自由基引发剂和抑制剂的影响; 3. 反应条件一般只需要加热或光照,而且在加热条件下
得到的产物和在光照条件下得到的产物具有不同的立 体选择性,是高度空间定向反应。
3. 周环反应的主要反应类别:
电环化反应 环加成反应 σ-迁移反应
2.2 分子轨道对称守恒原理简解
分子轨道对称守恒原理的中心内容及内函:
✓分子轨道理论着眼于分子的整体性
✓说明的问题给以比较合理的解释
✓不如价键模型直观
✓在数学处理方面远比价键理论方便
✓目前发展较快 ✓应用较广
价键理论为基础 分子轨道理论为补充
2 前线轨道理论
在研究周环反应时提出 周环反应和分子轨道对称守恒原理
2.1 周环反应概况简解 2.2 分子轨道对称守恒原理简解 2.3 前线轨道理论的概念和中心思想 2.4 直链共轭多烯π分子轨道的一些特点
➢如A + B = AB 则所得分子的分子轨道(或 分子波函数)是原子轨道的线性组合,同 样也是薛定谔方程的解。
ψABI = CAψA + CBψB ψABII = CA’ψA + CB’ψB ➢分子轨道形成三原则: 能量相近 最大重叠 对称性匹配(即波函数的符号相同)
H2分子的成键和反键分子轨道
2.4直链共轭多烯的π分子轨道的一些特点
1. π分子轨道的数目与参与共轭体系的碳原子数是一致的。 2. 对镜面( δv)按对称--反对称--对称交替变化。对二重对
称轴(C2)按反对称--对称--反对称交替变化。 3. 结(节)面数由0→1→2…逐渐增多。 4 轨道数目n为偶数时,n /2为成键轨道,n /2为反键轨道。n
1. 前线轨道和前线电子
已占有电子的能级最高的轨道称为最高占有轨道,用 HOMO表示。未占有电子的能级最低的轨道称为最低未 占有轨道,用LUMO表示。HOMO、LUMO统称为前线 轨道,处在前线轨道上的电子称为前线电子。
有的共轭体系中含有奇数个电子,它的已占有电子 的能级最高的轨道中只有一个电子,这样的轨道称为单 占轨道,用SOMO表示,单占轨道既是HOMO,又是 LUMO。
并有一定的能级。 ➢在不违背保利原理的前提下,电子尽可能
地分占不同轨道。
•分子轨道的概念
➢分子轨道是由原子轨道按某种线性组合的 方式形成的
➢有多少原子轨道参与分子轨道的形成,就 生成多少个分子轨道
➢原子轨道的线性组合(LCAO– Linear combination of atomic orbitals) Ψ1 = φ1 + φ2 Ψ2 = φ1 -φ2
C2
N2
O2
F2
第二周期同核双原子分子的分子轨道能级图
O2分子 Lewis结构式:
O2分子的顺磁性实验 O2分子表现为顺磁性 键 = 3
N 其N中对成键有贡献的是 一个σ键、2个π键。与 价键结构式完全一致。
F: 1s22s22p5 BOF2 = (6 - 4)/2 = 1
2. 前线轨道理论的中心思想
前线轨道理论认为:分子中有类似于单个原子的 “价电子”的电子存在,分子的价电子就是前线电子, 因此在分子之间的化学反应过程中,最先作用的分子 轨道是前线轨道,起关键作用的电子是前线电子。
这是因为分子的HOMO对其电子的束缚较为松弛, 具有电子给予体的性质,而LUMO则对电子的亲和力 较强,具有电子接受体的性质,这两种轨道最易互相 作用,在化学反应过程中起着极其重要作用。