2014广州大学复变函数期末试卷习题三解答
复变函数与积分变换(14-15-1.A2)参考答案 (1)
2014---2015学年第1学期:复变函数与积分变换(30学时,A 卷)参考答案及评分标准一.填空题1、3; 2;2、e -; i π-2;3、0;4、0;5、πi ;6、12<+i z ;7、 -+-!6!4!2142z z ; 8、3; 9、t cos ; 10、1. 二.解:令,θi e z = 则,θθd ie dz i =,izdzd =θ 且根据Euler 公式, 有 ()(),2121cos 1--+=+=z z e e i i θθθ ()(),21212cos 2222--+=+=z z e e i i θθθ则有()()⎰⎰=--⋅+-+=-112220256cos 452cos 12z iz dzzz z z d πθθθ ()⎰=+-+=122425216z dz z z z z i().61⎰==z dz z f i 4分上述积分中被积函数()z f 有三个有限奇点 .2,21,0 而在积分曲线1=z 围成区域内只有二个奇点,21,0 分别是二级和一级极点. 6分 根据留数定理, 有()[]()⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+=⎰21,Re 0,Re 2)(z f s z f s i dz z f Cπ. 8分根据留数计算规则, 分别有⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡→)(21lim 21),(Re 21z f z z f s z()221lim 2421-+=→z z z z ()2124221=-+=z z z z1217-=; 11分[][])(lim0),(Re 20z f z dzd z f s z →=2521lim 240+-+=→z z z dz d z ()()()()2242302525412524lim+--+-+-=→z zz z z z z z()()()()224232525412524=+--+-+-=z z z z z z z z.45=14分 所以有 ()[](),6121,Re 0,Re -=⎥⎦⎤⎢⎣⎡+z f s z f s.3)(i dz z f Cπ-=⎰则积分πθθθπ2cos 452cos 1220=-⎰d 15分三.解: (1) 解:根据钟形脉冲函数的Fourier 变换公式, 有822222][ωπ--=e e F t. 2分又22cos 22ti t i e e t -+=, 根据Fourier 变换位移性质, 有[][]()2222222221]2[cos t t i t t i t e e F e e F et F ----⋅+⋅=⋅[][])(21222222+=--=-+=ωωωωtt e F e F())(42828)2(22+---+=ωωπee . 6分根据能量谱密度的定义()()2ωωF S =得到函数222cos )(te t tf -⋅=的能量谱密度())2(84)2(44)2(222+----++=ωωωπωee eeS . 8分(2)解:根据能量谱密度()ωS 和相关函数()τR 之间有关系式, 有()()[]ωτS F R 1-=⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡+⎥⎥⎦⎤⎢⎢⎣⎡=--+-----414)2(14)2(122248ωωωππe F e e F e F 2分根据Fourier 变换的位移性质, 有,4124)2(122⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡-----ωτωe F e e F i .4124)2(122⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡-----ωτωe F e e F i 4分 则有()()⎥⎥⎦⎤⎢⎢⎣⎡+⎥⎥⎦⎤⎢⎢⎣⎡+=----4141222248ωωττππτe F e e F eeR i i 注意到 τττ2cos 222=+-i i e e , 则()()⎥⎥⎦⎤⎢⎢⎣⎡+=---41122cos 4ωτπτe F e R . 6分 根据钟形脉冲函数的Fourier 变换公式 []βωββπ422--=e eF t , 有22141τωπ---=⎥⎥⎦⎤⎢⎢⎣⎡e e F . 所以有()()212cos 4ττπτ--+=ee R . 8分四.解:根据Laplace 变换积分性质, 有[]t e L sdt t e L t tt 2sin 1]2sin [0--=⎰. 2分 由42]2[sin 2+=s t L , 根据Laplace 变换的位移性质, 有 ()412]2sin [2++=-s t e L t ,即422]2sin [2++=-s s t e L t. 4分 所以有 ()522]2sin [2++=⎰-s s s dt t e L tt . 6分 五.解:(1) 根据Euler 公式和Fourier 变换的定义, 有[]⎰+∞∞-⋅-=dx xe x F x i ω2sin 2sin⎰∞+∞-⋅--⎪⎪⎭⎫ ⎝⎛-=dx e i e e xi xi x i ω222 ()()⎥⎦⎤⎢⎣⎡-=⎰⎰+∞∞-⋅+-+∞∞-⋅--dx e dx e i x i x i 2221ωω. 4分 根据基本公式可以得到[]()()[]2222212sin +--=ωπδωπδix F ()()[]22--+=ωδωδπi . 8分(2) 对方程两边关于函数自变量x 作Fourier 变换. 记()()[]x y F Y =ω. 根据Fourier 变换的微分和积分性质, 有()()[]02sin 322=++x F i Y Y i ωωωω. 2分 利用(1)的结论, 有()()()()[]221232+---=ωδωδωπωωY . 4分 根据Fourier 逆变换的定义和-δ函数的筛选性质, 有()()[]ωY F x y 1-=()()[]⎰+∞∞--+--=ωωωωδωδωd e xi 122432()()⎥⎦⎤⎢⎣⎡-+---=⎰⎰∞+∞-∞+∞-ωωωωδωωωωδωωd e d e xi x i 12124322⎪⎪⎭⎫ ⎝⎛-⋅--⋅=-==22221143ωωωωωωωωxi xi e e()x i xi e e 2221-+=x 2cos =. 8分六.解:根据Laplace 变换的位移性质, 有()[]()()()⎥⎦⎤⎢⎣⎡++++=--1212122211s s L s F L()()⎥⎦⎤⎢⎣⎡++=--11122212s s L et. 2分 令()()()11122++=ss s G ,则()s G 有两个一级极点i i ,-和一个二级极点-.14分 根据求Laplace 逆变换的留数公式, 有()[]()[]()[]()[]1,Re ,Re ,Re 1-++-=-s G e s i s G e s i s G e s s G L st st st . 6分根据留数计算规则, 有()[]()()[]s G e i s i s G e s st is st +=--→lim ,Re()()i s s e stis -+=-→21lim()()is sti s s e -=-+=21()212i i e it --=-.4it e --=9分()[]()()[]s G e i s i s G e s st is st -=→lim ,Re()()i s s e stis ++=→21lim()()is sti s s e =++=21()212i i e it +=.4it e -=12分()[]()()[]s G e s ds d s G e s st s st 211lim1,Re +=--→1lim21+=-→s e ds d sts()()2221121lim +-+=-→s se s te stst s()()1222121-=+-+=s ststs se s te().21t e t -+=15分代入上式,并利用Euler 公式, 有()[]()4211itit t e e e t s G L---+-+=()2cos 1te t t -+=-. 所以有()[]().cos 1231t t e t e t s F L ---⋅-+=17分。
复变函数期末试卷及答案
20**-20** 1 复变函数与积分变换(A 卷)(答案写在答题纸上,写在试题纸上无效)一、单项选择题(每小题3分,共30分) 1.设 复数1z i =-,则arg z =( )A .4π-B .4πC .34πD .54π 2.设z 为非零复数,,a b 为实数且z a bi z=+,则22a b +( )A .等于0B .等于1C .小于1D .大于1 3.函数()f z z =在0z =处( )A .解析B .可导C .不连续D .连续 4.设z x iy =+,则下列函数为解析的是( )A 22()2f z x y i xy =-+ B ()f z x iy =- C ()2f z x i y =+ D ()2f z x iy =+ 5.设C 为正向圆周||1z =,则积分Czdz =⎰( )A .6i πB .4i πC .2i πD .0 6. 设C 为正向圆周||1z =,则积分(2)Cdzz z =-⎰( ).A .i π-B .i πC .0D .2i π7. 设12,C C 分别是正向圆周||1z =与|2|1z -=,则积分121sin 222z C C e z dz dz i z z π⎛⎫+= ⎪--⎝⎭⎰⎰ A .2i π B .sin 2 C .0 D .cos2 8.幂级数1(1)nnn z i ∞=+∑的收敛半径为 ( ) A.0 B.12C. 2D. 2课程考试试题学期 学年 拟题人:校对人: 拟题学院(系): 适 用 专 业:9. 0z =是函数2(1)sin ()(1)z e zf z z z -=-的( ) A .本性奇点 B .可去奇点 C .一级极点 D .二级极点10.已知210(1)sin (21)!n n n z z n ∞+=-=+∑,则4sin Re [,0]zs z =( )A .1B .13!C .13!-D .1-二、填空题(每空3分,共15分)1 复数1i -+,的指数形式为__________。
复变函数考题及答案
复变函数考题及答案【篇一:复变函数试题与答案】>一、选择题1.当z?1?i时,z100?z75?z50的值等于() 1?i(a)i (b)?i(c)1 (d)?12.设复数z满足arc(z?2)??3,arc(z?2)?5?,那么z?() 61331?i (d)??i 2222(a)?1?3i (b)?3.复数z?tan??i(3?i (c)??????)的三角表示式是() 2 ???)?i??)] (b)sec?(a)sec22??3?3???)?i??)] 22?(c)?sec3?3?????)?i??)](d)?sec???)?i??)] 2222224.若z为非零复数,则z?与2z的关系是()2222(a)z??2z (b)z??2z22(c)z??2z (d)不能比较大小5.设x,y为实数,则动点(x,y)z1?x??yi,z2?x??yi且有z1?z2?12,的轨迹是()(a)圆(b)椭圆(c)双曲线(d)抛物线6.一个向量顺时针旋转?3,向右平移3个单位,再向下平移1个单位后对应的复数为1?3i,则原向量对应的复数是()(a)2(b)1?i (c)3?i (d)3?i17.使得z2?z成立的复数z是() 2(a)不存在的(b)唯一的(c)纯虚数(d)实数8.设z为复数,则方程z??2?i的解是()(a)?3333?i (b)?i (c)?i (d)??i 44449.满足不等式z?i?2的所有点z构成的集合是() z?i(a)有界区域(b)无界区域(c)有界闭区域(d)无界闭区域10.方程z?2?3i?2所代表的曲线是()(a)中心为2?3i,半径为2的圆周(b)中心为?2?3i,半径为2的圆周(c)中心为?2?3i,半径为2的圆周(d)中心为2?3i,半径为2的圆周11.下列方程所表示的曲线中,不是圆周的为()(a)z?1?2 (b)z?3?z?3?4 z?2z?a?1(a?1) (d)z?a?z?a?c?0(c?0) 1?az(c)12.设f(z)?1?,z1?2?3i,z2?5?i,,则f(z1?z2 )(a)?4?4i(b)4?4i(c)4?4i(d)?4?4i13.limim(z)?im(z0)() x?x0z?z0(a)等于i(b)等于?i(c)等于0(d)不存在14.函数f(z)?u(x,y)?iv(x,y)在点z0?x0?iy0处连续的充要条件是()(a)u(x,y)在(x0,y0)处连续(b)v(x,y)在(x0,y0)处连续(c)u(x,y)和v(x,y)在(x0,y0)处连续(d)u(x,y)?v(x,y)在(x0,y0)处连续 2z2?z?115.设z?c且z?1,则函数f(z)?的最小值为() z (a)?3 (b)?2(c)?1 (d)1二、填空题1.设z?(1?i)(2?i)(3?i),则z? (3?i)(2?i)2.设z?(2?3i)(?2?i),则argz?3.设z?,arg(z?i)?3?,则z? 4(cos5??isin5?)24.复数的指数表示式为 2(cos3??isin3?)5.以方程z?7?i的根的对应点为顶点的多边形的面积为6.不等式z?2?z?2?5所表示的区域是曲线的内部 67.方程2z?1?i?1所表示曲线的直角坐标方程为2?(1?i)z8.方程z?1?2i?z?2?i所表示的曲线是连续点和的线段的垂直平分线9.对于映射??2i22,圆周x?(y?1)?1的像曲线为 z410.lim(1?z?2z)? z?1?i三、若复数z满足z?(1?2i)z?(1?2i)?3?0,试求z?2的取值范围.四、设a?0,在复数集c中解方程z2?2z?a.五、设复数z??i,试证z是实数的充要条件为z?1或im(z)?0. 21?z3六、对于映射??11(z?),求出圆周z?4的像. 2z七、试证1.z1?0(z2?0)的充要条件为z1?z2?z1?z2; z2z1?0(zj?0,k?j,k,j?1,2,?,n))的充要条件为 z22.z1?z2???zn?z1?z2???zn.八、若limf(z)?a?0,则存在??0,使得当0?z?z0??时有f(z)?x?x01a. 2九、设z?x?iy,试证x?y2?z?x?y.十、设z?x?iy,试讨论下列函数的连续性: ?2xy,z?0?1.f(z)??x2?y2 ?0,z?0??x3y?,z?02.f(z)??x2?y2.?0,z?0?第二章解析函数一、选择题:1.函数f(z)?3z在点z?0处是( )(a)解析的(b)可导的(c)不可导的(d)既不解析也不可导2.函数f(z)在点z可导是f(z)在点z解析的( )4 2(a)充分不必要条件(b)必要不充分条件(c)充分必要条件(d)既非充分条件也非必要条件3.下列命题中,正确的是( )(a)设x,y为实数,则cos(x?iy)?1(b)若z0是函数f(z)的奇点,则f(z)在点z0不可导(c)若u,v在区域d内满足柯西-黎曼方程,则f(z)?u?iv在d内解析(d)若f(z)在区域d内解析,则在d内也解析4.下列函数中,为解析函数的是( )(a)x2?y2?2xyi(b)x2?xyi(c)2(x?1)y?i(y2?z?x20?2x)(d)x3?iy35.函数f(z)?z2im(z)在处的导数( )(a)等于0 (b)等于1 (c)等于?1(d)不存在6.若函数f(z)?x2?2xy?y2?i(y2?axy?x2)在复平面内处处解析,那么实常数a?( )(a)0(b)1(c)2(d)?27.如果f?(z)在单位圆z?1内处处为零,且f(0)??1,那么在z?1内f(z)?( )(a)0(b)1(c)?1(d)任意常数8.设函数f(z)在区域d内有定义,则下列命题中,正确的是(a)若f(z)在d内是一常数,则f(z)在d内是一常数(c)若f(z)与f(z)在d内解析,则f(z)在d内是一常数(d)若argf(z)在d内是一常数,则f(z)在d内是一常数9.设f(z)?x2?iy2,则f?(1?i)?( )5【篇二:复变函数期末考试复习题及答案详解】=txt>1、 ?|z?z?1(z?z)n?0|__________.(n为自然数) 022.sinz?cos2z? _________.3.函数sinz的周期为___________.f(z)?14.设z2?1,则f(z)的孤立奇点有__________.?5.幂级数?nzn的收敛半径为__________.n?06.若函数f(z)在整个平面上处处解析,则称它是__________. lim 1?z2?...?zn7.若nlim??zn??z,则n??n?______________.zres(ezn,0)?8.________,其中n为自然数.9. sinzz的孤立奇点为________ .limf(10.若z0是f(z)z?zz)?___的极点,则0.三.计算题(40分):f(z)?11. 设(z?1)(z?2),求f(z)在d?{z:0?|z|?1}内的罗朗展式.1dz2. ?|z|?1cosz.2??13. 设f(z)??3??7c??zd?,其中c?{z:|z|?3},试求f(1?i).w?z?14. 求复数z?1的实部与虚部.四. 证明题.(20分) 1. 函数f(z)在区域d内解析. 证明:如果|f(z)|在d内为常数,那么它在d内为常数.2. 试证: f(z)在割去线段0?rez?1的z平面内能分出两个单值解析分支, 并求出支割线0?rez?1上岸取正值的那支在z??1的值.《复变函数》考试试题(二)二. 填空题. (20分)1. 设z??i,则|z|?__,argz?__,?__2.设f(z)?(x2?2xy)?i(1?sin(x2?y2),?z?x?iy?c,则zlim?1?if(z)?________.3.?dz|z?z0|?1(z?zn?_________.(n为自然数)0)?4. 幂级数?nzn的收敛半径为__________ .n?05. 若z0是f(z)的m阶零点且m0,则z0是f(z)的_____零点.6. 函数ez的周期为__________.7. 方程2z5?z3?3z?8?0在单位圆内的零点个数为________.8. 设f(z)?11?z2,则f(z)的孤立奇点有_________.9. 函数f(z)?|z|的不解析点之集为________.10. res(z?1z4,1)?____. 三. 计算题. (40分)1. 求函数sin(2z3)的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点z?i处的值.i3. 计算积分:i???i|z|dz,积分路径为(1)单位圆(|z|?1)的右半圆.sinzz?24. 求(z?dz)22.四. 证明题. (20分)1. 设函数f(z)在区域d内解析,试证:f(z)在d内为常数的充要条件是f(z)在d内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)二. 填空题. (20分) 1. 设f(z)?1z2?1,则f(z)的定义域为___________. 2. 函数ez 的周期为_________.3. 若zn?21?n?i(1?1n?n)n,则limn??zn?__________.4. sin2z?cos2z?___________.dz5. ?|z?z?0|?1(z?zn_________.(n为自然数) )?6. 幂级数?nxn的收敛半径为__________.n?07. f(z)?1设z2?1,则f(z)的孤立奇点有__________.8. 设ez??1,则z?___. 9. 若z0是f(z)的极点,则limz?zf(z)?___.z10. res(ezn,0)?____.三. 计算题. (40分)11. 将函数f(z)?z2ez在圆环域0?z??内展为laurent级数.??2. 试求幂级数?n!nzn的收敛半径. n?n3. 算下列积分:?ezdzcz2(z2?9),其中c是|z|?1.4. 求z9?2z6?z2?8z?2?0在|z|1内根的个数.四. 证明题. (20分) 1. 函数f(z)在区域d内解析. 证明:如果|f(z)|在d内为常数,那么它在d内为常数.2. 设f(z)是一整函数,并且假定存在着一个正整数n,以及两个正数r及m,使得当|z|?r时|f(z)|?m|z|n,证明f(z)是一个至多n次的多项式或一常数。
《复变函数》考试试题与答案各种总结.docx
---《复变函数》考试试题(一)一、判断题( 20 分):1. 若 f(z) 在 z 0 的某个邻域内可导,则函数f(z) 在 z 0 解析 .2. 有界整函数必在整个复平面为常数.3. 若{ z n }收敛,则{Re z n } 与{Im z n }都收敛 .4. 若 f(z) 在区域 D 内解析,且f '( z),则f ( z) C(常数) 5. 若函数 f(z) 在 z 0 处解析,则它在该点的某个邻域内可以展开为幂级数6. 若 z 0 是 f ( z)的 m 阶零点,则 z 0 是 1/f (z)的 m 阶极点 .lim f ( z)7. 若 zz 0存在且有限,则 z 0 是函数 f(z) 的可去奇点 .( ) ( ) ( ). ( ).( )()()8. 若函数 f(z) 在是区域 D 内的单叶函数,则f ' (z) 0( zD ).()9. 若 f(z)在区域 D 内解析 , 则对 D 内任一简单闭曲线Cf z dz.( )C( )10. 若函数 f(z) 在区域 D 内的某个圆内恒等于常数,则 f(z)在区域 D 内恒等于常数 . ()二. 填空题( 20 分)1、|z z 0 |dz__________. ( n 为自然数)1 ( z z )n2.sin 2zcos 2z_________.3. 函数sin z的周期为 ___________.f (z)z 2 11,则f ( z)的孤立奇点有 __________.4.设5. 幂级数nz n 的收敛半径为 __________.n 06. 若函数 f(z) 在整个平面上处处解析,则称它是__________.lim z nlimz 1z 2 ...z n7. 若 n,则 nn______________.Res(e z8.n,0)________,其中 n 为自然数 .z---9.sin z的孤立奇点为 ________ .z若z 0 是 f (z)lim f (z)___10. 的极点,则z z.三. 计算题( 40 分):f (z)11. 设(z 1)( z 2) ,求 f ( z) 在 D { z : 0 | z | 1} 内的罗朗展式 .1dz.|z| 1cos z2.3. 设f ( z)3 271d{ z :| z | 3} ,试求 f ' (1 i ).Cz,其中 Cz 1w1 的实部与虚部 .4.求复数z四 . 证明题 .(20 分 )1. 函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2. 试证 : f ( z) z(1 z) 在割去线段 0Re z 1 的 z 平面内能分出两个单值解析分支,并求出支割线0 Re z 1上岸取正值的那支在 z 1的值 .《复变函数》考试试题(一)参考答案一. 判断题1.× 2.√ 3.√ 4.√5.√6.√ 7.×8.×9.× 10.×二.填空题2 in1 2.1 ;3. 2k , ( k z) ;4.z i ; 5.11.n;16. 整函数;7. ; 1 ; 9. 0; 10..8.(n 1)!三.计算题 .1. 解因为 0 z 1, 所以 0 z 1f ( z)1 1 1 z zn1 ( z )n.( z 1)(z 2) 1 z 2(1 )n 02 n 0 22---2.解因为z21Re s f (z)lim lim,cosz sin z1 z z z222Re s f (z)lim z2lim1 1 . cosz sin zz z z2 22所以1dz2i(Re s f (z)Re s f (z)0. z2 cosz z2z23.解令 ()3271,则它在 z 平面解析,由柯西公式有在z 3内,f (z)c ()dz2i(z) . z所以 f (1i )2i( z) z 1 i2i (136i )2(613i ) .4.解令 z a bi ,则w z 11212( a1bi )12( a1)2b2. z 1z 1222b22b( a 1) b( a 1)(a 1)z12(a1)z12bb2 .故 Re( z1)1( a1)2b2,Im(z1)(a1)2四. 证明题 .1.证明设在 D 内 f (z) C .令 f ( z) u iv ,2u2v2c2.则 f ( z)两边分别对 x, y 求偏导数,得uu x vv x0(1) uu y vv y0(2)因为函数在 D 内解析,所以 u x v y ,u y v x.代入 (2)则上述方程组变为uu x vv x0 .消去 u x得,(u2v2 )v x0 .vu x uv x01)若 u2v20 ,则 f (z)0 为常数.2)若 v x0,由方程(1) (2) 及C.R.方程有u x0,u y0 , v y0 .所以 u c1, v c2. ( c1 ,c2为常数).---所以 f ( z) c 1 ic 2 为常数 .2. 证明 f ( z)z(1 z) 的支点为 z 0,1 . 于是割去线段 0 Re z 1 的 z 平面内变点就不可能单绕 0 或 1 转一周 , 故能分出两个单值解析分支 .由于当 z 从支割线上岸一点出发 ,连续变动到 z0,1 时 , 只有 z 的幅角增加. 所以f ( z)z(1 z) 的幅角共增加. 由已知所取分支在支割线上岸取正值 , 于是可认为该分2z1的幅角为, 故 f ( 1)i2i .支在上岸之幅角为 0,因而此分支在2e22《复变函数》考试试题(二)一. 判断题 . (20 分)1. 若函数 f ( z)u( x, y) iv ( x, y) 在 D 内连续,则 u(x,y)与 v(x,y)都在 D 内连续 .( ) 2. cos z 与 sin z 在复平面内有界 .()3.若函数 f(z)在 z 解析,则 f(z)在 z 连续 .()0 04. 有界整函数必为常数 .一定不存在 .()5. 如 0是函数f(z)的本性奇点,则 lim f ( z) ()zz z 06. 若函数 f(z)在 z 0 可导,则 f(z)在 z 0 解析 .()7.若 f(z)在区域 D 内解析 , 则对 D 内任一简单闭曲线 Cf (z)dz0 .C( ) 8. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .() 9. 若 f(z)在区域 D 内解析,则 |f(z)|也在 D 内解析 .()10. 存在一个在零点解析的函数1 ) 0 1 1 1,2,... .f(z) 使 f (且 f ( ) ,nn 1 2n 2n( )二 . 填空题 . (20 分)1. 设 zi ,则 | z | __,arg z__, z __2.设 f (z) ( x 22xy) i(1 sin( x 2y 2 ), z x iy C ,则 limf ( z) ________.z 1i3.|z z 0| 1(zdz_________.z )n( n 为自然数)---4.幂级数 nz n的收敛半径为__________ .n05.若 z0是 f(z)的 m 阶零点且 m>0,则 z0是f '( z)的 _____零点 .6.函数 e z的周期为 __________.7.方程 2z5z33z 8 0 在单位圆内的零点个数为________.8.设 f ( z)1,则 f (z) 的孤立奇点有_________.21z9.函数 f ( z) | z | 的不解析点之集为________.10. Res(z41,1) ____ . z三. 计算题 . (40 分)1.求函数sin( 2z3)的幂级数展开式 .2.在复平面上取上半虚轴作割线 . 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点 z i 处的值.i3.计算积分: I| z | dz,积分路径为(1)单位圆( | z | 1)i的右半圆 .sin z dzz 2(z) 24.求2.四. 证明题 . (20 分)1. 设函数 f(z)在区域 D 内解析,试证: f(z)在 D 内为常数的充要条件是 f (z) 在D内解析 .2.试用儒歇定理证明代数基本定理 .《复变函数》考试试题(二)参考答案一.判断题 .1.√2.×3.√4.√ 5.× 6.×7.×8.√9.× 10.× .二.填空题---1.1 ,, i ;2. 3(1sin 2)i ;3.2 i n14. 1;5. m 1 . 0n;216.2k i ,( k z) .7. 0;8. i;9.R ;10. 0.三.计算题1.解 sin(2 z3 )( 1)n (2 z3 )2 n 1(1)n 22n 1 z6n3.n 0(2 n1)!n 0(2n1)!2.解令 z re i.2 ki则 f ( z)z re2,(k0,1).又因为在正实轴去正实值,所以k0 .所以 f (i)ie 4.3.单位圆的右半圆周为z e i,ide i e i 所以 zdz22i22 4.解.2 2 2i .即 u, v 满足 C.R.,且u x , v y , u y ,v x连续 , 故f ( z)在D内解析 .( 充分性 ) 令f ( z)u iv, 则 f ( z)u iv ,因为 f ( z) 与 f ( z) 在D内解析,所以u x v y , u y v x,且 u x ( v) y v y , u y( v x )v x.比较等式两边得u x v y u y v x0 .从而在 D 内 u, v 均为常数,故f ( z)在 D 内为常数.2. 即要证“任一n次方程a0 z n a1z n1a n 1z a n0(a00) 有且只有n 个根”.证明令 f (z)a0 z n a1z n 1a n1za n0 ,取 R max a1a n,1 ,当 za0在 C : z R 上时,有(z)a1 R n 1an 1R a n( a1a n )R n 1a0R n.f ( z) .由儒歇定理知在圆z R 内,方程 a0 z n a1z n 1a n 1z a n0与 a0 z n0有相---同个数的根 . 而 a 0 z n 0 在 z R 内有一个 n 重根 z 0 . 因此 n 次方程在 z R 内有 n 个根 .《复变函数》考试试题(三)一 . 判断题 . (20 分).1. cos z 与 sin z 的周期均为 2k .( )2. 若 f ( z) 在 z 0 处满足柯西 - 黎曼条件 , 则 f ( z) 在 z 0 解析 . ( )3. 若函数 f ( z) 在 z 0 处解析,则 f ( z) 在 z 0 连续 . ( )4. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .( )5.若函数 f ( z) 是区域 D 内解析且在 D 内的某个圆内恒为常数,则数 f ( z) 在区域 D 内为常数 . ( )6. 若函数 f ( z) 在 z 0 解析,则 f ( z) 在 z 0 的某个邻域内可导 . ()7.如果函数 f ( z) 在 D{ z :| z | 1} 上解析 , 且 | f (z) | 1(| z | 1) , 则| f ( z) | 1(| z | 1) .( )8.若函数 f ( z) 在 z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( ) 9. 若 z 0 是 f ( z) 的 m 阶零点 , 则 z 0 是 1/ f ( z) 的 m 阶极点 . ( )10.若z 0 是 f (z)的可去奇点,则 Res( f ( z), z 0 ) 0. ( )二 . 填空题 . (20 分)1. 设 f ( z)1 ,则 f ( z) 的定义域为 ___________.2 z 12. 函数 e z 的周期为 _________.3. 若 z nn 2 i (1 1) n ,则 lim z n__________.1 nnn4. sin 2 z cos 2 z___________.dz5.|z z 0 | 1(z z )n( n 为自然数)_________.6. 幂级数nx n 的收敛半径为 __________.n设 f (z) 1f z 的孤立奇点有z 2 1,则7.( ) __________.ez---9.若 z 是 f (z)的极点,则 lim f (z) ___ .z z 0z10.Res(en ,0) ____ .z三 . 计算题 . (40 分)11. 将函数 f ( z) z 2e z 在圆环域 0 z内展为 Laurent 级数 .2. 试求幂级数n!z n的收敛半径 .n nn3. 算下列积分:e zdz,其中 C是| z |1.Cz 2 (z29)4. 求 z92z6z 28z 2 0 在| z|<1内根的个数 .四 . 证明题 . (20 分)1.函数 f (z) 在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2.设 f (z) 是一整函数,并且假定存在着一个正整数 n ,以及两个正数 R 及 M ,使得当 | z|R 时| f ( z) |M | z |n,证明 f (z) 是一个至多 n 次的多项式或一常数。
练习题-参考答案 2014年复变函数与积分变换
2014年复变函数与积分变换练习题参考答案一、选择题 ( 每题2分,共16分) 1.设{|1||3}P z z =<<,则P 为【 B 】(A)无界区域 (B) 多连通区域 (C)单连通区域 (D) 闭区域. 2. 函数),(),()(y x iv y x u z f +=在点000z x iy =+处连续的充要条件是【 D 】 (A) 函数)(z f 在区域D 内可导 (B) 函数),(y x u 在点00,()x y 处连续(C) 函数),(y x v 在点00,()x y 处连续(D) 函数),(y x u 和),(y x v 在点00,()x y 处连续.3. 若),(),()(y x iv y x u z f +=在区域D 内解析,则下列命题中错误的是 【 D 】 (A) 函数)(z f 在区域D 内可导(B) 函数),(),,(y x v y x u 是区域D 内的调和函数(C) 函数),(),,(y x v y x u 在区域D 内满足柯西-黎曼方程 (D) 函数),(y x u 是),(y x v 在区域D 内的共轭调和函数 4.设C 为|1|0z r-=>的正向圆周,则1Czdz z =-⎰【 B 】(A) 0 (B) 2i π (C) 1 (D) 4i π5. 下列复数项级数中绝对收敛的是【 A 】(A)1(6+8)!nn i n ∞=∑(B) ∑∞=-1)1(n n(C) ∑∞=1n nni (D)113()2nn i ∞=+∑6.下列函数中以0=z 为本性奇点的是【 D 】(A) 2sin z z z - (B) z z sin (C) z sin 1 (D) 1()z cos 7.函数()h z 在单连通区域D 内解析是函数()h z 在D 内存在原函数的【 B 】 (A) 必要条件 (B) 充分条件 (C) 充要条件 (D)既非必要条件也非充分条件.8.指数衰减函数,0()=0,0t e t f t t α-⎧>⎨<⎩(其中α>0)的傅里叶变换是【 B 】 (A) 1j αω- (B) 1j αω+ (C) 11j ω+ (D) 1j ωα+二、填空题(每题2分,共14分)9.设复数z=+ 42ie π .10.计算复值函数(1)n i L += ln2(/32)k i ππ++ .11.已知C 为|1|2z -=的正向圆周,求3z Cedz z=⎰i π .12.设C 为正向圆周1||=z ,则积分2116Cdz z=-⎰ 0 .13.幂级数061nn zn ∞=+∑的收敛半径 R= 1 .14.映射2z z ω=+在点1+zi =处的伸缩率是 .15.设k 为实常数, 2()sin f t t kt t =+,则)(t f 的拉普拉斯变换为222322()ks s k s++ . 三、计算题(每题5分,共25分)16.讨论函数3232()3(3)f z y x y i x xy =-+-的解析性, 其中z x yi =+,求导函数()f z '. (参考习题集P16第5题)17.利用留数计算43|z|=1/51dz z z-⎰. (习题集P46第4题)解 令430=zz- 得到=0=1z z ,为函数431()z zf z -=孤立奇点,…….. (1分)但是=1z 在圆||=1/5z 之内,=0z 是431()z zf z -=的三阶极点。
(完整)《复变函数与积分变换》期末考试试卷及答案,推荐文档
(完整)《复变函数与积分变换》期末考试试卷及答案,推荐⽂档23∞ ?复变函数与积分变换?期末试题(A)1.1 -i⼀.填空题(每⼩题3 分,共计15 分)的幅⾓是();2. Ln(-1 +i) 的主值是(1);3.f (z) =1 +z 2,z - sin z f (5)(0) =();f (z) =1,4.z = 0 是z 4 的()极点;5.z Re s[f(z),∞]=();⼆.选择题(每⼩题3 分,共计15 分)1.解析函数f (z) =u(x, y) +iv(x, y) 的导函数为();(A)f '(z) =u x +iu y ;(B)f '(z) =u x-iu y;(C) f '(z) =ux+ivy ;(D) f '(z) =u y +iv x.2.C 是正向圆周z = 3 ,如果函数f (z) =(),则?C f (z)d z = 0 .3;(B)3(z -1);(C)3(z -1);(D)3.n=1(A)z =-2 点条件收敛;(B)z = 2i 点绝对收敛;(C)z = 1 +i 点绝对收敛;(D)z = 1 + 2i 点⼀定发散.4.下列结论正确的是( )(A)如果函数f (z) 在z0点可导,则f (z) 在z0点⼀定解析;得分e(B) 如果 f (z ) 在 C 所围成的区域内解析,则 ?C f (z )dz = 0(C )如果 ?C f (z )dz = 0 ,则函数 f (z ) 在 C 所围成的区域内⼀定解析;(D )函数 f (z ) = u (x , y ) + iv (x , y ) 在区域内解析的充分必要条件是u (x , y ) 、v (x , y ) 在该区域内均为调和函数. 5.下列结论不正确的是().(A) ∞为sin 1的可去奇点 z(B) ∞为sin z 的本性奇点 ∞为 1 的孤⽴奇点; ∞ 1 (C) sin 1z(D) 为的孤⽴奇点. sin z三.按要求完成下列各题(每⼩题 10 分,共计 40 分)(1)设 f (z ) = x 2 + axy + by 2 + i (cx 2 + dxy + y 2 ) 是解析函数,求a ,b ,c ,d .z(2).计算 ?Cz (z - 1)2d z 其中 C 是正向圆周: z = 2 ;得分zd z (3)计算? 15z =3 (1 +z 2 )2 (2 +z 4 )3(sin z )3在扩充复平⾯上有什么类型的奇点?,如果有极点,请指出它的级.四、(本题 14 分)将函数 f (z ) = 1z 2 (z - 1)在以下区域内展开成罗朗级得分数;(1) 0 < z - 1 < 1 ,(2) 0 < z < 1 ,(3)1 < z < ∞五.(本题 10 分)⽤ Laplace 变换求解常微分⽅程定解问题 y (x ) - 5 y '(x ) + 4 y (x ) = e -xy (0) = y '(0) = 1得分六、(本题 6 分)求 f (t) e t(0) 的傅⽴叶变换,并由此证明:costt2 2 d 2 e 0复变函数与积分变换?期末试题(A )答案及评分标准⼀.填空题(每⼩题 3 分,共计 15 分)得分3 的幅⾓是( 2k Ln (-1 + i ) ee 1. 1- i 2 - + , k = 0,±1,±2 );2.的主值是( 31 ln2 +3 24 iz - sin z f (z ) =3.1+ z 2 , f(5)(0) = ( 0),4. z = 0 是1 z4的(⼀级)极点;5. f (z ) = z, R e s [ f (z ),∞] =(-1);⼆.选择题(每题 3 分,共 15 分)1----5B DC B D三.按要求完成下列各题(每⼩题 10 分,共 40 分)(1).设 f (z ) = x 2 + axy + by 2 + i (cx 2 + dxy + y 2 ) 是解析函数,求a ,b ,c ,d .解:因为 f (z ) 解析,由 C-R 条件u = vx y u = -vy x2x + ay = dx + 2y ax + 2by = -2cx - dy ,a = 2, d = 2, , a = -2c ,2b = -d ,c = -1, b = -1,给出 C-R 条件 6 分,正确求导给 2 分,结果正确 2 分。
(完整版)复变函数试题及答案
-5四123456五1一二三四2、、、、、、、、5、、、填(1611-计求将计计求设证使单判计B计证空e算函函算算将函明符选断算i1算明题n)9积数数积实单数:合题题题2题题(解,2分分积位在D条(((,((每不析fff2分圆件每每每z7每每小存zzz函CC3e小小小小小在题在zL数CIxz0=2题题题2题题区解的z221zzd1k402y321域2析z零226,共(Di分1k6a7,点分分分=1iD形0,x分z分80z且是zd,,,2,5内,c映,视))1满doC孤本共共共A±1解射iL答zs:足立质,2在…1析成题2134在的6的,x006C),z单情:2C所分分分(证,位a况f9有1i)))i y明圆的可23孤2711n:去)酌01C1立+w函52心情,1z奇iy数的邻给8点41D直域21的(2i,1线内n1f,分包9u,段分展zA式括,1,成也f0线15共洛在2性01n9朗)A变D21z0级处换内分数2的解1n)w留(析,数并nL指z1出,2 收敛)的域函数____________________________________________________________________________________________________________ f z
1 解: C 的参数方程为: z=i+t, 0 t 1 dz=dt
x
y
ix 2
dz =
1
t
1
it 2 dt =
1
i
C
0
23
2 解: z 1为 f z 一阶极点
z 1 为 f z 二阶极点
2
2k
1, 2 ) , 4 ei ln 2 e 4
(k=0, 1, 2 )
5
i , 6 0, 7
《复变函数与积分变换》期末考试试卷及答案
得分得分«复变函数与积分变换»期末试题(A ) 正文:一.填空题(每小题3分,共计15分)1.231i -的幅角是( );2.)1(i Ln +-的主值是( );3. 211)(zz f +=,=)0()5(f ( ); 4.0=z 是 4sin z z z -的( )极点;5. z z f 1)(=,=∞]),([Re z f s ( );二.选择题(每小题3分,共计15分)1.解析函数),(),()(y x iv y x u z f +=的导函数为( );(A )y x iu u z f +=')(; (B )y x iu u z f -=')(; (C )y x iv u z f +=')(; (D )x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f ( ),则0d )(=⎰C z z f .(A ) 23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2)2(3-z . 3.如果级数∑∞=1n n nz c 在2=z 点收敛,则级数在(A )2-=z点条件收敛 ; (B )i z 2=点绝对收敛; (C )i z +=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;(B) 如果)(z f 在C 所围成的区域内解析,则0)(=⎰C dz z f (C )如果0)(=⎰C dz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( ). (A) 的可去奇点;为z1sin ∞(B) 的本性奇点;为z sin ∞ (C) ;1sin 1的孤立奇点为z∞(D) .sin 1的孤立奇点为z ∞ 三.按要求完成下列各题(每小题10分,共计40分)(1)设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a(2).计算⎰-C z z z z e d )1(2其中C 是正向圆周:2=z ;得分(3)计算⎰=++3342215d )2()1(z z z z z(4)函数323 2)(sin)3 ()2)(1()(z zzzzzfπ-+-=在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级.四、(本题14分)将函数)1(1)(2-=z z z f 在以下区域内展开成罗朗级数; (1)110<-<z ,(2)10<<z ,(3)∞<<z 1五.(本题10分)用Laplace 变换求解常微分方程定解问题 ⎩⎨⎧='==+'-''-1)0()0()(4)(5)(y y e x y x y x y x得分 得分六、(本题6分)求)()(0>=-ββt e t f 的傅立叶变换,并由此证明:t e d t ββπωωβω-+∞=+⎰2022cos«复变函数与积分变换»期末试题(A )答案及评分标准一.填空题(每小题3分,共计15分) 得分1.231i -的幅角是( 2,1,0,23±±=+-k k ππ);2.)1(i Ln +-的主值是( i 432ln 21π+ );3. 211)(z z f +=,=)0()5(f ( 0 ),4.0=z 是4sin z z z -的( 一级 )极点;5. zz f 1)(=,=∞]),([Re z f s (-1 ); 二.选择题(每题3分,共15分)1----5 B D C B D三.按要求完成下列各题(每小题10分,共40分)(1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xv y u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。
复变函数期末考试复习题及答案详解
《复变函数》考试试题(一) 1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin_________.3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数n n nz ∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz es ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设Ciy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(l i m 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数nn nz∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________.8. 设211)(z z f +=,则)(z f 的孤立奇点有_________.9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz .三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.3. 计算积分:⎰-=iiz z I d ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)二. 填空题. (20分) 1. 设11)(2+=z z f ,则f (z )的定义域为___________. 2. 函数e z的周期为_________.3. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n nnx的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=z e ,则___=z . 9. 若0z是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze.三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn nz nn ∑+∞=!的收敛半径. 3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。
《复变函数》考试试题与答案各种总结
《复变函数》考试试题(一)一、 判断题(20分):1、若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析、 ( )2、有界整函数必在整个复平面为常数、 ( )3、若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛、 ( )4、若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数)、 ( )5、若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数、 ( )6、若z 0就是)(z f 的m 阶零点,则z 0就是1/)(z f 的m 阶极点、 ( )7、若)(lim 0z f z z →存在且有限,则z 0就是函数f(z)的可去奇点、 ( )8、若函数f(z)在就是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠、 ( ) 9、 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=⎰Cdz z f 、( )10、若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数、( ) 二、填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________、(n 为自然数)2、=+z z 22cos sin _________、 3、函数z sin 的周期为___________、4、设11)(2+=z z f ,则)(z f 的孤立奇点有__________、5、幂级数nn nz∞=∑的收敛半径为__________、6、若函数f(z)在整个平面上处处解析,则称它就是__________、7、若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________、8、=)0,(Re n zz e s ________,其中n 为自然数、9、 zz sin 的孤立奇点为________ 、10、若0z 就是)(z f 的极点,则___)(lim 0=→z f z z 、三、计算题(40分):1、 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式、2、 .cos 11||⎰=z dz z3、 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4、 求复数11+-=z z w 的实部与虚部、四、 证明题、(20分) 1、 函数)(z f 在区域D 内解析、 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数、 2、 试证: ()f z =0Re 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值、 《复变函数》考试试题(一)参考答案一. 判断题1.×2.√ 3.√ 4.√ 5.√ 6.√ 7.×8.×9.×10.× 二.填空题 1、 2101i n n π=⎧⎨≠⎩ ; 2、 1; 3、 2k π,()k z ∈; 4、 z i =±; 5、 16、 整函数;7、 ξ;8、 1(1)!n -; 9、 0; 10、 ∞、三.计算题、1、 解 因为01,z << 所以01z <<111()(1)(2)12(1)2f z z z z z ==-----001()22nn n n z z ∞∞===-∑∑、 2、 解 因为22212Re ()limlim 1cos sin z z z z s f z z z ππππ→→=+===--, 22212Re ()limlim 1cos sin z z z z s f z z zππππ→-→-=--===-、 所以22212(Re ()Re ()0cos z z z dz i s f z s f z z πππ==-==+=⎰、 3、 解 令2()371ϕλλλ=++, 则它在z 平面解析, 由柯西公式有在3z <内, ()()2()c f z dz i z z ϕλπϕλ==-⎰、所以1(1)2()2(136)2(613)z i f i i z i i i πϕππ=+''+==+=-+、 4、 解 令z a bi =+, 则 222222122(1)2(1)211111(1)(1)(1)z a bi a bw z z a b a b a b -+-+==-=-=-+++++++++、 故 2212(1)Re()11(1)z a z a b -+=-+++, 2212Im()1(1)z bz a b-=+++、 四、 证明题、1、 证明 设在D 内()f z C =、令2222(),()f z u iv f z u v c =+=+=则、两边分别对,x y 求偏导数, 得 0(1)0(2)x x yy uu vv uu vv +=⎧⎨+=⎩因为函数在D 内解析, 所以,x y y x u v u v ==-、 代入 (2) 则上述方程组变为00x x x x uu vv vu uv +=⎧⎨-=⎩、 消去x u 得, 22()0x u v v +=、 1) 若220u v +=, 则 ()0f z = 为常数、2) 若0x v =, 由方程 (1) (2) 及 ..C R -方程有0,x u = 0y u =, 0y v =、 所以12,u c v c ==、 (12,c c 为常数)、 所以12()f z c ic =+为常数、2、证明()f z =0,1z =、 于就是割去线段0Re 1z ≤≤的z 平面内变点就不可能单绕0或1转一周, 故能分出两个单值解析分支、由于当z 从支割线上岸一点出发,连续变动到0,1z = 时, 只有z 的幅角增加π、 所以()f z =2π、 由已知所取分支在支割线上岸取正值, 于就是可认为该分支在上岸之幅角为0, 因而此分支在1z =-的幅角为2π,故2(1)i f e π-==、《复变函数》考试试题(二)一. 判断题、(20分)1、 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续、 ( )2、 cos z 与sin z 在复平面内有界、 ( )3、 若函数f (z )在z 0解析,则f (z )在z 0连续、 ( )4、 有界整函数必为常数、 ( )5、 如z 0就是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在、 ( )6、 若函数f (z )在z 0可导,则f (z )在z 0解析、 ( )7、 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f 、( )8、 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛、 ( ) 9、 若f (z )在区域D 内解析,则|f (z )|也在D 内解析、 ( )10、 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f 、( )二、 填空题、 (20分)1、 设i z -=,则____,arg __,||===z z z2、设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________、3、=-⎰=-1||00)(z z n z z dz_________、(n 为自然数)4、 幂级数0n n nz ∞=∑的收敛半径为__________ 、5、 若z 0就是f (z )的m 阶零点且m >0,则z 0就是)('z f 的_____零点、6、 函数e z 的周期为__________、7、 方程083235=++-z z z 在单位圆内的零点个数为________、 8、 设211)(zz f +=,则)(z f 的孤立奇点有_________、 9、 函数||)(z z f =的不解析点之集为________、10、 ____)1,1(Res 4=-zz 、 三、 计算题、 (40分)1、 求函数)2sin(3z 的幂级数展开式、2、 在复平面上取上半虚轴作割线、 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值、3、 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆、4、 求dzz zz ⎰=-22)2(sin π、四、 证明题、 (20分)1、 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件就是)(z f 在D 内解析、2、 试用儒歇定理证明代数基本定理、《复变函数》考试试题(二)参考答案一. 判断题、1.√ 2.×3.√ 4.√ 5.×6.×7.×8.√ 9.×10.×、 二、 填空题1、1,2π-, i ; 2、 3(1sin 2)i +-; 3、2101i n n π=⎧⎨≠⎩; 4、 1; 5、 1m -、 6、 2k i π,()k z ∈、 7、 0; 8、 i ±; 9、 R ; 10、 0、 三、 计算题1、 解 3212163300(1)(2)(1)2sin(2)(21)!(21)!n n n n n n n z z z n n +++∞∞==--==++∑∑、2、 解 令i z re θ=、则22(),(0,1)k if z k θπ+===、又因为在正实轴去正实值,所以0k =、所以4()if i eπ=、3、 单位圆的右半圆周为i z e θ=, 22ππθ-≤≤、所以22222ii i iz dz de ei ππθθππ---===⎰⎰、4、 解dz z zz ⎰=-22)2(sin π2)(sin 2ππ='=z z i 2cos 2ππ==z zi =0、四、 证明题、1、 证明 (必要性) 令12()f z c ic =+,则12()f z c ic =-、 (12,c c 为实常数)、 令12(,),(,)u x y c v x y c ==-、 则0x y y x u v u v ====、 即,u v 满足..C R -, 且,,,x y y x u v u v 连续, 故()f z 在D 内解析、 (充分性) 令()f z u iv =+, 则 ()f z u iv =-, 因为()f z 与()f z 在D 内解析, 所以,x y y x u v u v ==-, 且(),()x y y y x x u v v u v v =-=-=--=-、比较等式两边得 0x y y x u v u v ====、 从而在D 内,u v 均为常数,故()f z 在D 内为常数、2、 即要证“任一 n 次方程 101100(0)n n n n a z a z a z a a --++⋅⋅⋅++=≠ 有且只有 n 个根”、证明 令1011()0nn n n f z a z a z a z a --=++⋅⋅⋅++=, 取10max ,1n a a R a ⎧⎫+⋅⋅⋅+⎪⎪>⎨⎬⎪⎪⎩⎭, 当z 在:C z R =上时, 有 111110()()n n nn n n z a R a R a a a R a R ϕ---≤+⋅⋅⋅++<+⋅⋅⋅+<、()f z =、由儒歇定理知在圆 z R < 内, 方程10110n n n n a z a z a z a --++⋅⋅⋅++= 与 00na z = 有相 同个数的根、 而 00na z = 在 z R < 内有一个 n 重根 0z =、 因此n 次方程在z R <内有n 个根、《复变函数》考试试题(三)一、 判断题、 (20分)、1、 cos z 与sin z 的周期均为πk2、 ( ) 2、 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析、 ( )3、 若函数f (z )在z 0处解析,则f (z )在z 0连续、 ( )4、 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛、 ( )5、 若函数f (z )就是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数、 ( )6、 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导、 ( )7、 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f 、 ( )8、 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数、( )9、 若z 0就是)(z f 的m 阶零点, 则z 0就是1/)(z f 的m 阶极点、 ( ) 10、 若z 就是)(z f 的可去奇点,则)),((Res 0=z z f 、( )二、 填空题、 (20分)1、 设11)(2+=z z f ,则f (z )的定义域为___________、2、 函数e z的周期为_________、3、 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________、4、 =+z z 22cos sin ___________、5、 =-⎰=-1||00)(z z n z z dz_________、(n 为自然数) 6、 幂级数∑∞=0n n nx 的收敛半径为__________、7、 设11)(2+=z z f ,则f (z )的孤立奇点有__________、8、 设1-=ze ,则___=z 、9、 若0z 就是)(z f 的极点,则___)(lim 0=→z f z z 、10、 ____)0,(Res =n zze 、三、 计算题、 (40分)1、 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数、2、 试求幂级数nn n z nn ∑+∞=!的收敛半径、3、 算下列积分:⎰-C z z z ze )9(d 22,其中C 就是1||=z 、4、 求0282269=--+-z z z z在|z |<1内根的个数、四、 证明题、 (20分) 1、 函数)(z f 在区域D 内解析、 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数、 2、 设)(z f 就是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 就是一个至多n 次的多项式或一常数。
(完整版)《复变函数》考试试题与答案(十三)
《复变函数》考试试题(十三)一、填空题.(每题2分)1.设(cos sin )z r i θθ=+,则1z=_____________________. 2.设函数()(,)(,)f z u x y iv x y =+,00A u iv =+,000z x iy =+,则0lim ()z z f z A →=的充要条件是_______________________.3.设函数()f z 在单连通区域D 内解析,则()f z 在D 内沿任意一条简单闭曲线C 的积分()C f z dz =⎰_________________________.4.设z a =为()f z 的极点,则lim ()z a f z →=____________________.5.设()sin f z z z =,则0z =是()f z 的________阶零点. 6.设21()1f z z=+,则()f z 在0z =的邻域内的泰勒展式为_________________. 7.设z a z a b -++=,其中,a b 为正常数,则点z 的轨迹曲线是_________________. 8.设sincos 66z i ππ=--,则z 的三角表示为_________________________. 9.40cos z zdz π=⎰___________________________. 10.设2()ze f z z-=,则()f z 在0z =处的留数为________________________. 二、计算题.1.计算下列各题.(9分)(1) cos i ; (2) ln(23)i -+; (3) 33i - 2.求解方程380z +=.(7分)3.设22u x y xy =-+,验证u 是调和函数,并求解析函数()f z u iv =+,使之()1f i i =-+.(8分)4.计算积分.(10分)(1)2()C x iy dz +⎰,其中C 是沿2y x =由原点到点1z i =+的曲线. (2) 120[()]ix y ix dz +-+⎰,积分路径为自原点沿虚线轴到i ,再由i 沿水平方向向右到1i +. 5.试将函数1()(1)(2)f z z z =--分别在圆环域01z <<和12z <<内展开为洛朗级数.(8分)6.计算下列积分.(8分) (1) 2252(1)z z dz z z =--⎰; (2) 224sin (1)z z dz z z =-⎰.7.计算积分241x dx x +∞-∞+⎰.(8分) 8.求下列幂级数的收敛半径.(6分)(1) 11n n nz∞-=∑; (2) 1(1)!n n n z n ∞=-∑. 9.讨论2()f z z =的可导性和解析性.(6分)三、证明题.1.设函数()f z 在区域D 内解析,()f z 为常数,证明()f z 必为常数.(5分) 2.试证明0az az b ++=的轨迹是一直线,其中a 为复常数,b 为实常数.(5分) 《复变函数》考试试题(十三)参考答案一、填空题.(每题2分)1. 1i e r θ-2. 0lim (,)x x o y y ou x y u →→=及0lim (,)x x o y y o v x y v →→= 3. 0 4. ∞ 5. 2 6. 24621(1)n n z z z z -+-+⋅⋅⋅-+⋅⋅⋅ 7.椭圆8. 1(1)2-+ 9. )124π+- 10. 1- 二、计算题.1.计算下列各题.(9分)解: (1) 11cos ()2i e e -=+ (2) ln(23)ln 23arg(23)i i i i -+=-++-+13ln13(arctan )22i π=+- (3) 3(3)ln3(3)(ln32)3ln32(6ln3)3i i i i k k i k e e e πππ---+⋅++-===227[cos(ln 3)sin(ln 3)]k ei π=- 2. 解: 233802k i z z e ππ++=⇒=== (0,1,2)k =故380z +=共有三个根: 01z =, 12z =-, 21z =3. 解: 222,2x y u x y xy u x y u y x =-+⇒=+=-+2222220u u u x y∂∂⇒+=-=⇒∂∂是调和函数. (,)(,)(0,0)(0,0)(,)()(2)(2)x y x y y x v x y u dx u dy c y x dx x y dy c =-++=-+++⎰⎰ 00()(2)x yx dx x y dy c =-+++⎰⎰22222x y xy c =-+++ 22221()()(2)222x y f z u iv x y xy i xy ⇒=+=-++-+++ 211(2)22i z i =-+ 4. 解 (1)12222015()()()66c x iy dz x ix d x ix i +=++=-+⎰⎰ (2) 11122000[()]()[(1)]ix y ix dz i y dy x ix dx +-+=-+-+⎰⎰⎰ 11(3)2326i i i =-+-=-+ 5. 解: 01z <<时01111()()(1)(2)2122n n n o n z f z z z z z z ∞∞====-=-+----∑∑ 101(1)n n n z z ∞+==-∑ 12z <<时11111()1(1)(2)212(1)(1)2f z z z z z z z z-==-=------- 0121n n n o n z n z+∞+∞===--+∑∑ 6. 解: (1) 22522[Re (,)]4(1)c z z dz i s f i z z ππ==-=-∞=--⎰(2) 224sin 2[Re (,)]0(1)z z dz i s fz z π==-∞=-⎰ 7.解: 设24()1z f z z =+ 1(1)2z i =+和21)2z i =-+为上半平面内的两个一级极点,且121Re [(),]z z s f z z →==222Re [(),]lim 2z z s f z z →==24212x dx i x ππ+∞-∞=+=+⎰ 8. (1) 1R = (2) R =∞9. 解: 设z x iy =+,则222()f z z x y ==+ 2,2,0x y x y u x u y v v ==== 当且仅当0x y ==时,满足C R -条件,故()f z 仅在0z =可导,在z 平面内处处不解析.三、1. 证明: 设f u iv =+,因为()f z 为常数,不妨设22u v C += (C 为常数)则0x y u u v v ⋅+⋅= 0y y u u v v ⋅+⋅=由于()f z 在D 内解析,从而有x y u v =, y x u v =-将此代入上述两式可得0x y x y u u v v ====于是12,u C v C ≡≡ 因此()f z 在D 内为常数.2. 解: 设z x iy =+, a A Bi =+ (A ,B 为实常数) 则()()()()az A Bi x iy Ax By i Ay Bx =-+=++- 0az az b az az b ++=++=⇔2()0Ax By b ++= 故0az az b ++=的轨迹是直线22)0Ax By b ++=。
复变函数考试题和答案
复变函数考试题和答案****一、选择题(每题5分,共30分)1. 复数 \( z = a + bi \) 的共轭复数为()。
A. \( a - bi \)B. \( a + bi \)C. \( -a + bi \)D. \( -a - bi \)**答案:A**2. 复数 \( z = a + bi \) 的模长为()。
A. \( \sqrt{a^2 + b^2} \)B. \( \sqrt{a^2 - b^2} \)C. \( \sqrt{a^2 + b} \)D. \( \sqrt{a + b^2} \)**答案:A**3. 函数 \( f(z) = \frac{1}{z} \) 在 \( z = 0 \) 处的性质是()。
A. 可导B. 连续C. 可微D. 奇点**答案:D**4. 函数 \( f(z) = z^2 \) 在复平面上是()。
A. 单叶函数B. 多叶函数C. 常数函数D. 线性函数**答案:A**5. 函数 \( f(z) = \sin(z) \) 是()。
A. 整函数B. 亚纯函数C. 非解析函数D. 多项式函数**答案:A**6. 函数 \( f(z) = e^z \) 在复平面上是()。
A. 整函数B. 亚纯函数C. 非解析函数D. 多项式函数**答案:A**二、填空题(每题5分,共20分)1. 复数 \( z = 3 + 4i \) 的共轭复数是 \( \_\_\_\_\_\_\_ \)。
**答案:3 - 4i**2. 复数 \( z = 1 + i \) 的模长是 \( \_\_\_\_\_\_\_ \)。
**答案:\( \sqrt{2} \)**3. 函数 \( f(z) = z^3 \) 在 \( z = 1 \) 处的导数是 \( \_\_\_\_\_\_\_ \)。
**答案:3**4. 函数 \( f(z) = \frac{1}{z-1} \) 的奇点是 \( \_\_\_\_\_\_\_ \)。
复变函数考试题及答案
复变函数考试题及答案一、选择题(每题4分,共20分)1. 若函数f(z)=u(x,y)+iv(x,y)是解析函数,则以下关系式中正确的是()。
A. u_x = v_yB. u_y = -v_xC. u_x = -v_yD. u_y = v_x答案:B2. 复变函数中,柯西-黎曼方程成立的条件是()。
A. u和v都是调和函数B. u和v都是解析函数C. u和v都是连续函数D. u和v都是可微函数答案:D3. 以下哪个函数是解析函数?()A. f(z) = |z|B. f(z) = z^2C. f(z) = z^3D. f(z) = z^4答案:B4. 函数f(z)=e^z的实部和虚部分别是()。
A. u(x,y)=e^x*cos(y), v(x,y)=e^x*sin(y)B. u(x,y)=e^x*sin(y), v(x,y)=e^x*cos(y)C. u(x,y)=e^x*cos(y), v(x,y)=e^x*sin(y)D. u(x,y)=e^x*sin(y), v(x,y)=e^x*cos(y)答案:C5. 以下哪个函数是多值函数?()A. f(z) = log(z)B. f(z) = sin(z)C. f(z) = cos(z)D. f(z) = z^2答案:A二、填空题(每题3分,共15分)1. 若f(z)=z^2,则f'(z)=________。
答案:2z2. 函数f(z)=z+1/z的极点是________。
答案:z=03. 函数f(z)=1/z的留数在z=0处为________。
答案:14. 函数f(z)=z^3的导数是________。
答案:3z^25. 函数f(z)=e^z的导数是________。
答案:e^z三、解答题(每题10分,共30分)1. 证明函数f(z)=z^2是解析函数,并求其导数。
答案:函数f(z)=z^2是解析函数,因为其满足柯西-黎曼方程。
设z=x+iy,则f(z)=(x+iy)^2=x^2-y^2+2ixy。
复变函数 期末试题及答案
复变函数期末试题及答案一、选择题1. 下列哪个不是复变函数的定义?A. 函数表达式包含复数部分和常数部分。
B. 函数的定义域为复数集合。
C. 函数表达式只包含实数。
D. 复变函数可以进行加法、减法、乘法和除法运算。
答案:C2. 设函数 f(z) = z^2 - 2z。
那么 f(z) 在 z = 1 处的导数是多少?A. 0B. -1C. 2D. 4答案:B3. 设函数 f(z) = sin(z)。
则它的周期是多少?A. 2πB. πC. 2D. 1答案:A二、填空题1. 复数的共轭是指实数部分相等,虚数部分______的两个复数。
答案:相反2. 设 z = a + bi 是一个复数,其中 a 和 b 分别表示实部和虚部。
那么实部 a = ______,虚部 b = ______。
答案:a,b三、计算题1. 计算复数 z = 2 + 3i 和 w = -1 - 4i 的和 z + w。
解答:z + w = (2 + 3i) + (-1 - 4i)= 1 - i答案:1 - i2. 计算复数 z = 1 + 2i 和 w = 3 - i 的乘积 z × w。
解答:z × w = (1 + 2i)(3 - i)= 3 + 6i - i - 2i^2= 3 + 5i + 2= 5 + 5i答案:5 + 5i四、问答题1. 复数的解析函数具有什么特点?答:复数的解析函数具有以下特点:- 函数的实部和虚部都是解析函数。
- 函数的导数在定义域内处处存在。
- 函数满足柯西-黎曼方程。
2. 复数在数学和实际应用中有什么作用?答:复数在数学和实际应用中具有广泛的作用,包括但不限于以下几个方面:- 复数可以用于表示电路中的交流电信号。
- 复数可以用于解决数学方程中的平方根问题。
- 复数可以用于描述波的传播和干涉现象。
- 复数可以用于解析几何中的向量运算。
以上为复变函数期末试题及答案,希望能对您有所帮助。
复变函数期末练习题参考答案
复变函数期末练习题 一、填空题 1.0||10()n z z dzz z -==-⎰ .(n 为自然数)2. 22sin cos z z += _________. 3. 函数sin z 的周期为___________. 4. 设21()1f z z =+,则()f z 的孤立奇点有__________. 5. 幂级数nn nz∞=∑的收敛半径为__________.6. 若函数()f z 在整个平面上处处解析,则称它是__________.7. 若lim n n z ξ→∞=,则12 (i)nn z z z n→∞+++= ______________.8. Re (,0)zn e s z= ________,其中n 为自然数.9.sin zz的孤立奇点为________ . 10. 若0z 是()f z 的极点,则0lim ()z z f z →= 。
11. 设z i =-,则||z = ,arg z = ,z = 。
12. 设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.13. 幂级数nn nz∞=∑的收敛半径为__________ .14. 若0z 是()f z 的m 阶零点且0m >,则0z 是)('z f 的_____零点. 15. 函数ze 的周期为__________.16. 方程083235=++-z z z 在单位圆内的零点个数为________. 17. 函数||)(z z f =的不解析点之集为________.18. 41Res(,1)z z -= 。
19. 设21()1f z z =+,则()f z 的定义域为___________.20. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __________.21. 设1ze =-,则z = .22. 设11z i=-,则Re z = ,Im z = . 23. 函数211)(z z f +=的幂级数展开式为___ _______。
复变函数与积分变换期末试题及答案
复变函数与积分变换试题与答案一、填空题:(每题3分)1.i 31--的三角表达形式: ; 指数表达形式: ; 几何表达形式: . 2.=-i 2)3( ;3. 设Max =M {}C z z f ∈|)(|,L 为曲线C 的长度,则≤⎰z z f C d )( . 4.级数21n z z z +++++的和函数的解析域是 。
5. 分式线性函数、指数函数、幂函数的映照特点各是 二、解答题(每题8分)1.设22()i f z xy x y =+,则()f z 在何处可导?何处解析?2.已知f (z )的虚部为222121),(y x y x v +-=,求解析函数0)0()(=+=f iv u z f 且.3.求积分 ,C I zdz =⎰ C 为沿单位圆(||1)z =的逆时针一周的曲线。
4.求sin d (1)Czz z z -⎰,其中C 为||2z =。
5.求e d cos zCz z⎰,其中C 为||2z =。
6.把函数)2)(1(12-+z z 在2||1<<z 内展开成罗朗级数。
7.指出 6sin )(z zz z f -= 在有限复平面上的孤立奇点及类型,并求奇点处的留数。
8.求将单位圆 | z | < 1内保形映照到单位圆 | w | < 1内, 且满足0)21(=f ,2)21(arg π='f 的分式线性映照。
四、利用拉氏变换求解微分方程(6分)⎩⎨⎧='==+'+''-1)0()0(34y y e y y y t (提示:1[]1t L e s -=+)试题答案一、填空题:(每题3分) 1.i 31--的三角表达形式:222[cos(2)sin(2)]33k i k ππππ-++-+; 指数表达形式:2(2)32k i eππ-+ ;几何表达形式:|12,-=2(1(2)3Arg k ππ-=-+. 2.=-i 2)3(222ln3k ieππ--+;3. 设Max =M {}C z z f ∈|)(|,L 为曲线C 的长度,则()d Cf z z ML ≤⎰.4.级数21n z z z +++++的和函数的解析域是||1z <。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.沿下列路线计算积分 ∫
3+ i 0
z 2 dz 。
(1)自原点到 3 + i 的直线段 (2)自原点沿实轴至 3,再由 3 沿垂直向上至 3 + i ;
⎧ x = 3t , 解(1) ⎨ ⎩ y = t,
0 ≤ t ≤ 1 ,故 z = 3t + i t , 0 ≤ t ≤ 1 。 dz = (3 + i )dt
4 z 2 Z dz = ∫C | z | ∫|z|=2 2 dz = ∫|z|=2 z dz = 4π i
(2)因在 C 上有 | z |= 4 , z ⋅ z =| z | 2 = 16 ,从而有 z =
16 ,故有 z 4 dz = 8π i z
∫
z dz = C| z|
∫
16 Z
| z| = 4
f ( z ) = (1 − i ) z 3 + ic, c ∈ \ ;
2) f '( z ) = v y + ivx =
−2 xy x2 − y 2 x 2 − y 2 − 2ixy z2 1 + = = = 2 ,故 i 2 2 2 2 2 2 2 2 2 2 z (x + y ) (x + y ) (x + y ) ( zz )
0
z 2 dz =
∫
3+ i
0
z 2 dz +
∫
C1
z 2 dz +
∫
C2
z 2 dz 。 C1 之参数方程为 ⎨
⎧ x = 3t , (0 ≤ t ≤ 1) ; C2 之参数方程为 y = t , ⎩
⎧ x = 3, (0 ≤ t ≤ 1) ⎨ ⎩ y = t,
故
∫
3+ i
0
z 2 dz =
∫ 9t
2
∫
C
=∫
| z −i| =
1 3
(z + i )(z 2 + 4) dz +
z −i
1
∫
| z +i| =
1 3
(z + i )(z 2 + 4) dz
z +i =
z =− i
1
= 2π i
1 ( z + i)( z 2 + 4)
+ 2π i
z =i
1 ( z − i)( z 2 + 4)
π
3
−
π
(8 )
e z dz v ∫C z 5 , C :| z |= 1
= 2πe 2 i
解
(1)由 Cauchy 积分公式, ∫ 解 1: ∫ 解 2: ∫
C
ez dz = 2π i e z z−2
z =2
(2)
C
1 dz z a dz = 2π i 1 + =∫ 2 2 C z−a z+a z −a
=
4) f '( z ) = v y + ivx =
x x − iy z 1 −y +i 2 = 2 = = ,故 f ( z ) = ln z + c, c ∈ \ 。 2 2 2 x +y x +y x +y zz z
2
-8-
3
=0
(7)由高阶求导公式, ∫
sin z
C
π⎞ ⎛ ⎜z − ⎟ 2⎠ ⎝
2
dz = 2π i(sin z )'
z=
π
2
=0
(8 )由高阶求导公式, 5.计算下列各题: 1) 2)
e z dz 2π i z (4) πi v ∫C z 5 = 4! (e ) |z =0 = 12
∫
1
0 i
z sin zdz ;
8x2 y 2y 8 y3 6y − = − 2 v , ,则 yy 2 2 3 2 2 2 2 2 3 (x + y ) (x + y ) ( x + y ) ( x + y 2 )2 8x2 y 8 y3 8y + − 2 =0。 2 2 3 2 2 3 ( x + y ) ( x + y ) ( x + y 2 )2
1 1 1 f ( z ) = − + c, 又f (2) = 0,则f ( z ) = − ; z 2 z
3) f '( z ) = u x − iu y = 2 y − 2i( x − 1) = −2i( x − 1 + iy ) = −2i( z − 1) ,故
f ( z ) = −i( z − 1) 2 + c, 又f (2) = −i,则f ( z ) = −i( z − 1)2 ;
z =a
π
a
i,
C
1 dz 1 ⎡ 1 1 ⎤ = dz −∫ dz ⎥ = [2π i− 0] = π i ∫ C z −a C z +a 2 a a z 2 − a 2 2a ⎢ ⎣ ⎦
(3)由 Cauchy 积分公式,
v ∫
C
eiz dz eiz dz /( z + i) e iz π = = 2 i ∫ z -i z2 +1 v z +i C
4
dz =
∫
| z| = 4
3.利用观察法得出下列积分的值。 解 利用柯西-古萨基本定理和柯西积分公式。 4.沿指定曲线的正向计算下列各积分。 (1) ∫ (3)
C
ez dz , C :| z − 2 |= 1 z−2
(2)
v ∫
C
C
dz , C :| z − a |= a z − a2
2
v ∫
C
eiz dz , C :| z − 2i |= 3 / 2 z2 +1
=π /e
z =i
-2-
(4) (5) 由柯西基本定理知:其结果均为 0 (6)因被积函数的奇点 z = ± i 在 C 的内部, z = ±2 i 在 C 的外部,故由复合闭路定理及 Cauchy 积分公式有:
dz dz dz =∫ 1 2 +∫ 1 2 2 2 2 | i | | i | z − = z + = ( z + 1)( z + 4) 3 ( z + 1)( z + 4) 3 ( z + 1)( z + 4)
∫ v
2
-3-
9 .证明: u = x 2 − y 2 和 v =
y 都是调和函数,但是 u + iv 不是解析函数。 x + y2
2
证明
u x = 2 x , u y = −2 y , vx =
vxx =
−2 xy x2 − y2 = v , , y ( x 2 + y 2 )2 ( x2 + y 2 )2
−z
∫ ( z − i)e
0
dz ;
解 1) 2)
∫
1
0 i
z sin zdz = (sin z − z cos z ) |1 0 = sin1 − cos1
−z
∫ ( z − i)e
dz = (i − 1 − z )e − z |i0 = 1 − cos1 + i(sin1 − 1)
6.计算积分:
cos z dz, 其中C1 :| z |= 2为正向,C2 :| z |= 3为负向 3 z C = C1 + C2
∫ v
解
cos z cos z cos z 2π i 2π i dz = v dz − v dz = (cos z ) '' |z =0 − (cos z ) '' |z =0 = 0 3 3 3 ∫ ∫ z z z 2! 2! − C =C1 + C2 C1 C
u xx + u yy = 2 + (−2) = 0 , vxx + v yy =
10.由下列各已知调和函数求解析函数 f ( z ) = u + iv : 1) u = ( x − y )( x + 4 xy + y ) ;
2 2
2) v =
y , f (2) = 0 ; x + y2
2
3) u = 2( x − 1) y, f (2) = −i ; 解
于是
y
∫
3+1
0
z 2 dz =
∫ (3t + i t ) (3 + C4
(z) 3+i C2
= (3 + i )
3 1 2 0
∫ t dt
C1
3
1 1 1 26 3 = (3 + i) 3 t 3 | = (3 + i ) = 6 + i 0 3 3 3
x
(2) ∫
3+ i
0
1
2
⋅ 3dt +
∫ (3 + i t )
1 0
2
⋅ i dt = 6 +
26 i。 3
-1-
2.计算积分 ∫ C 解
z (1) z = 2 ; (2) z = 4 dz 的值,其中 C 为正向圆周: z 4 ,故有 z
(1)因在 | z |= 2 上有 | z |= 2 , z ⋅ z =| z | 2 = 4 ,从而有 z =
(4)
v ∫ z − 3 , C :| z |= 2
zdz
(5)
v ∫
C
C
z 3 cos zdz , C为包围z=0的闭曲线
(6)
v ∫ (z