利用空间向量求点到平面的距离及异面直线间距离

合集下载

用空间向量求点到面的距离 PPT

用空间向量求点到面的距离 PPT

2、求向量—求点到平面内任一点对应的向量AP
3、求法向量—求出平面的一个uuu法r 向r 量
4、代入公式—通过公式 d
|
A
P r
n
|
代入求解.
n
练考题、验能力、轻巧夺冠
[题后感悟] 用向量法求点面距的方法与步骤,n
O
为法向量。
练习.已知平面α的一个法向量n=(-2,-2,1), 点A(-1,3,0)在α内,则P(-2,1,4)到α的距离为________. 解析: d=|P→|An·|n|=|1×-2-+222×+--22+2+-124×1| =130.
答案:
10 3
变式练习:已知正方形ABCD的边长为1,PD⊥平面ABCD, 且PD=1,E,F分别为AB,BC的中点.求点D到平面PEF的距 离;
解析:建立以D为坐标原点,DA,DC,DP分别为x轴, y轴,z轴的空间直角坐标系,如图所示.
则P(0,0,1),A(1,0,0),C(0,1,0), E1,12,0,F12,1,0, E→F=-12,12,0,P→E=1,12,-1, 设平面PEF的法向量n=(x,y,z), 则n·E→F=0,且n·P→E=0, 所以-12x+12y=0, x+12y-z=0.
[例1] 正方体ABCD-A1B1C1D1的棱长为2,E,F,G分别 是C1C,D1A1,AB的中点,求点A到平面EFG的距离.
解: 建系 如图,建立空间直角坐标系,
求向量 求法向量
则 A(2,0,0),E(0,2,1),F(1,0,2),G(2,1,0),
uuur
uuur
∴ EF =(1,-2,1), EG =(2,-1,-1),
uur GA=(0,-1,0).设 n=(x,y,z)是平面 EFG 的法向量,

1.4空间向量的应用-1.4.2用空间向量研究距离、夹角问题

1.4空间向量的应用-1.4.2用空间向量研究距离、夹角问题
空间向量的应用
用空间向量研究距离、夹角问题
第1课时
距离问题
核心素养
能用向量方法解决点到
直线、点到平面、互相
平行的直线、互相平行
的平面的距离问题.(直
观想象、数学运算)
思维脉络
激趣诱思
知识点拨
某人在一片丘陵上开垦了一块田地,在丘陵的上方架有一条直的水
渠,此人想从水渠上选择一个点,通过一条管道把水引到田地中的
·1 = 0,
取 z=1,则 x=y=2,所以 n=(2,2,1).
|·1 1 |
所以点 B1 到平面 AD1C 的距离 d=
||
8
= 3.
探究一
探究二
素养形成
当堂检测
利用空间向量求点线距
例1已知直三棱柱ABC-A1B1C1中,AA1=1,AB=4,BC=3,∠ABC=90°,求
点B到直线A1C1的距离.
)
3
A.
2
2
B.
2
C. 3
D.3 2
答案:B
解析:∵两平行平面 α,β 分别经过坐标原点 O 和点 A(2,1,1),
=(2,1,1),且两平面的一个法向量 n=(-1,0,1),
|· |
∴两平面间的距离 d=
||
=
|-2+0+1|
2
=
2
2
.故选 B.
探究一
探究二
素养形成
当堂检测
2.若三棱锥P-ABC的三条侧棱两两垂直,且满足PA=PB=PC=1,则点
所以点 B 到直线 A1C1 的距离
1 1
2
d= |1 | - 1 ·|
= 8-
-1+3+0

2025年高考数学一轮复习-8.7-利用空间向量研究距离问题【课件】

2025年高考数学一轮复习-8.7-利用空间向量研究距离问题【课件】

·

·
·e= ·e,故其模为

·
3.点到平面的距离公式
如图,点P为平面α外一点,点A为平面α内的定点,过点P作平面α的垂线l,交平面α于
点Q,则n是直线l的方向向量,且点P到平面α的距离就是在直线l上的投影向量

· |·|
的长度,则PQ=|· |=|
|=
.
||
第八章
立体几何初步、空间向量与立体几何
第七节
利用空间向量研究距离问题
必备知识·逐点夯实
核心考点·分类突破
【课标解读】
【课程标准】
能用向量方法解决点到直线、点到平面、相互平行的直线、相互平行的平面的
距离问题,并能描述解决这一类问题的程序,体会向量方法在研究几何问题中的
作用.
【核心素养】
直观想象、数学运算、逻辑推理.
2
2
.
【解析】依题意,平行平面α,β间的距离即为点O到平面β的距离,而=(2,1,1),所
|·| |−1×2+0×1+1×1| 1 2
以平行平面α,β间的距离d=
=
= = .
2 2
||
(−1)2 +02 +12
核心考点·分类突破
考点一点线距及其应用
[例1](1)空间中有三点P(1,-2,-2),M(2,-3,1),N(3,-2,2),则点P到直线MN的距离
则=(-2,1( 2) 2 = 3.
·

=
|−2×1+1×0+0×(−1)|
2
= 2,所以点P(-1,2,1)到
4.(不能正确使用公式)若两平行平面α,β分别经过坐标原点O和点A(2,1,1),且两

向量法求空间距离

向量法求空间距离

向量法求空间距离(教师用)淄博五中 孙爱梅一.重点:掌握空间各种距离概念,并能进行他们之间的转化,能通过向量计算求出这些距离.二.难点:异面直线及点面距离求法.三.知识点及例题【知识点一】 两点的距离公式应用空间中两点的距离公式:A (x 1,y 1,z 1),B (x 2,y 2,x 2),则|AB →|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2.〖例1〗如图,在正方体OABC -O ′A ′B ′C ′中,棱长为1,|AN |=2|CN |, |BM |=2|MC ′|,求MN 的长.解:由题意得A (1,0,0),B (1,1,0),C (0,1,0),C ′(0,1,1)∵|AN |=2|CN |,∴N (13,23,0),又∵|BM |=2|MC ′|,∴M (13,1,23) ∴|MN |=(13-13)2+(1-23)2+(23-0)2=53,即MN 的长为53. 注:此类题目直接套用公式,准确、迅速找到空间两点坐标是解题关键.【知识点二】通过向量求空间线段的长.|a →|=a →2〖例2〗如图,在60°的二面角的棱上,有A 、B 两点,线段AC 、BD 分别在二面角的两个面内,且都垂直于AB ,已知AB =4,AC =6,BD =8,求CD 的长度.解:∵<AC →,BD →>=60°,∴<CA →,BD →>=120°,又∵CD →=CA →+AB →+BD →, 故有|CD →|2=CD →2=(CA →+AB →+BD →)·(CA →+AB →+BD →)=CA →2+AB →2+BD →2+2CA →·AB →+2AB →·BD →+2CA →·BD →∵CA ⊥AB ,BD ⊥AB ,则CA →·AB →=0,AB →·BD →=0,∴|CD →|2=62+42+82-2×6×8×12=68,∴|CD →|=217.注:使用向量法对此题计算时,由于考虑到未知条件CD ,故应用已知的AB →,AC →,BD→三个向量将未知向时CD →表示出来,再利用|CD →|2=CD →2这一知识解题.【知识点三】求点到平面距离|AB →|=|OA →||c os <OA →,n →>|=|OA →·n →||n →|=|OA →,e →|(其中n →为α的一→.〖例3〗正方体ABCD -A 1B 1C 1D 1的棱长为2,E 、F 分别是BB 1、CD 的中点,求点F 到平面A 1D 1E的距离.解:以D 1为坐标原点,D 1A 1,D 1C 1,D 1D 所在直线分别x 轴、y 轴、z 轴建立空间直角坐标系D 1-xyz . F (0,1,2),D 1(0,0,0),A 1(2,0,0),E (2,2,1),D 1A →=(2,0,0),D 1E →=(2,2,1).设n →=(x ,y ,z )为平面A 1D 1E 的一个法向量,则n →·D 1A →=0,且n →·D 1E →=0, ⎩⎨⎧2x =0 2x +2y +z =0,则x =0,令z =2,y =-1,即n →=(0,-1,2), 又D 1F →=(0,1,2),∴点F 到平面A 1D 1E 的距离.【思考】若G 、H 分别为D 1D ,AA 1中点,如何求平面A 1D 1与平面HGB 距离? 思路:易证平面A 1D 1E ∥平面HGB ,只须求B 到平面AD 1E 的距离就可.d =|D 1F →·n →| |n →|=|(0,1,2)·(0,-1,2)|12+22=35=355,即F 到面A 1D 1E 的距离为355. 注:①用向量求点面距离可避免了过点向面作距离的麻烦.②注意面面距离与点面距离的转化.l 1,l 2为异面直线,AB 为l 1,l 2公垂线估,C 、D 分别为l 1,l 2上任意两点,则异面直线l 1,l 2的距离d =|AB →|=|CD →|·|c os <CD →·n →>|=|CD →·n →| |n →|=|CD →·e →|(其中n →为公垂线AB 的一个方向向量,e →为公垂线AB 的一个单位方向向量). 〖例4〗在直三棱柱ABD -A 1B 1C 1中,∠BAC =90°,AB =BB 1=1,直线B 1C 与平面ABC 所成的角为30°,试求异面直线A 1C 1与B 1C 距离.解:以A 为坐标原点,AB 、AC 、AA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系.∵B 1B ⊥平面ABC ,∴∠B 1CB 为B 1C 与平面ABC 所成角,∴∠B 1CB =30°, Rt △B 1BC 中,BB 1=1,∴BC =3,又AB =1,Rt △BAC 中,ACA 1(0,0,1),C 1(0,1,1),A 1C 1→=(0,1,0),B 1(1,0,1),C (0,1,0),B 1C →(-1,1,-1),且A 1B 1→=(1,0,0),设n →=(x ,y ,z )为异面直线A 1C 1与B 1C 公垂线的一个方向向量,则n →·A 1C 1→=0,n →·B1C →=0⎩⎨⎧y =0 -x +y -z =0,∴y =0,令x =1,则z =-1,∴n →=(1,0,-1), 则两异面直线A 1C 1与B 1C 是距离d =|A 1B 1→·n →| |n →|=|(0,1,2)·(0,-1,2)|2=22. 注:用向量求异面直线距离可避免做异面直线的公垂线段麻烦.课堂测试1、在棱长为1的正方体ABCD -A 1B 1C 1D 1中,F 是BD 的中点,G 在棱CD 上,且CG =14CD ,E 为C 1G 的中点,则EF 的长为( ) A .58 B .12 C .23 D .418,∠=A .62 B .6 C .12 D .1443、在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,求异面直线AC 与BC 1间距离.4、正四棱柱ABCD-A1B1C1D1,AB=1,AA1=2,点E为CC1中点,求点D1到BDE 的距离.1、如图,建立空间直角坐标系D-xyz,已知正方体ABCD-A1B1C1D1的棱长为1,点P是正方体对角线D1B的中点,点Q在棱CC1上.①当2|C1Q|=|QC|时,求|PQ|.②当点Q在棱CC1上移动时,探究|PQ|的最小值.2、在长方体ABCD-A1B1C1D1中,AB=4,BC=3,CC1=2,⑴求证:平面A1BC1∥平面ACD1;⑵求⑴中两个平面距离.。

第1课时 用空间向量研究距离问题 高中数学人教A版选择性必修第一册课件

第1课时 用空间向量研究距离问题 高中数学人教A版选择性必修第一册课件
A(0,0,0),C(1,1,0),N 1,0,
所以=
1
,0,1
2
1
2
1
,0,1
2
1
0,-1,
2
,M
,=
,
, =(1,1,0).
设 n=(x,y,z),且 n⊥,n⊥,
1

2
+ = 0,
· = 0,
所以

1
· = 0,
- + = 0,
2
= -2,
1

取 z=2,则 x=-4,y=1,
情境:在平面内任取一点 O,作=a,=b,过点 A 作直线
OB 的垂线,垂足为 A1,则1 就是 a 在 b 上的投影向量.
【思考】
已知两个非零向量 a,b,a 和 b 的夹角为 θ,那么 a 在 b 上
的投影是什么?a 在 b 上的投影向量是什么?
提示:a 在 b 上的投影为|a|cos θ,a 在 b 上的投影向量
5 5
ABC 的一个法向量.
由题意,知 =(-7,-7,7),
所以点 D 到平面 ABC
84
5
|·|
42 2
的距离为
= =
.
||
2
5
4.同类练如图,已知正方体 ABCDA1B1C1D1 的棱长为 1,则点 A 到平面 BDC1 的
3 .
距离为
3
解析:以 D 为坐标原点,DA,DC,DD1 所在直线分别为 x 轴、
.
【思考】
(1)若“单位方向向量 u”变为“方向向量 s”,投影向量
,PQ 分别如何表示?

||
· ·
·

高中数学空间向量求距离教案人教新课标

高中数学空间向量求距离教案人教新课标
课题:空间的距离第一课时
教学目标:
知识与技能:能用向量方法进行有关距离的计算。
过程与方法:分组合作,示范交流,应用小结。
情感态度与价值观:掌握空间向量的应用。
教学环节
教师活动
学生活动
一、复习引入
二、新课导入
三、例题讲解
四、练习
五、小结
课后反思
1、空间中的距离包括:两点间的距离,点到直线的距离,点到平面的距离,平行直线间的距离,异面直线直线间的距离,直线与平面的距离,两个平行平面间的距离。这些距离的定义各不相同,但都是转化为平面上两点间的距离来计算的。
A(1,0,0),B(0,1,0),C(0,0,0)A1(1,0, ),B1(0,1, ),C1(0,0, )
∴ =(-1,1,- ), =(-1,0,- ) =(1,-1,0)
设平面A1BC的一个法向量为 ,则

所以,点B1到平面A1BC的距离
解2建系设点同上(略),设平面A1BC的方程为ax+by+cz+d=0
2、向量法在求异面直线间的距离
设分别以这两异面直线上任意两点为起点和终点的向量为 ,与这两条异面直线都垂直的向量为 ,则两异面直线间的距离是 在 方向上的正射影向量的模。
4、向量法在求点到平面的距离中
(1)设分别以平面外一点P与平面内一点M为起点和终点的向量为 ,平面的法向量为 ,则P到平面的距离d等于 在 方向上正射影向量的模。
2、距离的特征:⑴距离是指相应线段的长度;⑵此线段是所有相关线段中最短的;⑶除两点间的距离外,其余总与垂直相联系。
3、求空间中的距离有⑴直接法,即直接求出垂线段的长度;⑵转化法,转化为线面距或面面距,或转化为某三棱锥的高,由等积法或等面积法求解;⑶向量法求解。

《空间向量及其运算》距离

《空间向量及其运算》距离

AB ( x1 x2 )2 ( y1 y2 )2 ( z1 z2 )2
3.求点到平面的距离:如图点P为平面外一点, 点A为平面内的任一点,平面的法向量为n,过 点P作平面的垂线PO,记PA和平面所成的 角为,则点P到平面的距离 n
P
d PO PA sin
1
A
这个晶体的对角线 AC1 的长是棱长的
6倍。
思考: (1)本题中四棱柱的对角线BD1的长与棱长有什么关系?
(2)如果一个四棱柱的各条棱长都相等,并且以 某一顶点为端点的各棱间的夹角都等于 , 那么 有这个四棱柱的对角线的长可以确定棱长吗?
A1 B1 D C
D1
C1Βιβλιοθήκη (3)本题的晶体中相对的两个平面之间的距离 A B 是多少? (提示:求两个平行平面的距离,通常归结为求点到平 面的距离或两点间的距离)
补充作业:
已知正方形ABCD的边长为4,CG⊥平面 ABCD,CG=2,E、F分别是AB、AD的中点, z G 求点B到平面GEF的距离。
x
F
D
C
A
E
B
y
4.异面直线的距离:
①作直线a、b的方向向量a、 b,求a、b的法向量n,即此 异面直线a、b的公垂线的方 向向量; ②在直线a、b上各取一点 A、B,作向量AB; ③求向量AB在n上的射影 d,则异面直线a、b间的距 离为
1 解:∵ D1 (0, 0,1), B(1,1, 0), A1 (1, 0,1), E (0, ,1) 2 1 A1 E 1, , 0 , D1B 1,1, 1 2 设 n ( x , y , z )是与 A1 E , D1 B都垂直的向量, A1 1 则 n A E 0, 1 x y 0, y 2 x , 2 即 z 3 x, n D1 B 0, x y z 0, 取x=1,得其中一个n (1, 2, 3) A 选A1 E与BD1的两点向量为 D1 A1 1, 0, 0 , D1 A1 n 14 得A1 E与BD1的距离 d 14 n

利用向量求点到平面的距离

利用向量求点到平面的距离

利用向量求点到平面的距离点到平面的距离是计算一个点到一个平面的最短距离,可以使用向量的方法来进行计算。

在二维空间中,平面可以由一个法向量和一个过平面上一点的向量表示。

而在三维空间中,平面可以由一个法向量和平面上一点的向量表示。

首先,我们从二维空间开始讨论。

假设我们有一个平面的法向量n = (a, b)和过平面上一点的向量p = (x0, y0)。

现在我们需要计算一个点Q = (x, y)到这个平面的最短距离。

我们可以假设Q到平面的最短距离是D。

这意味着Q到平面上的任意一点M的距离都是D。

现在我们将点M表示为向量m = (x, y)。

注意,由于点M在平面上,所以点M与法向量n是垂直的。

假设向量m0是向量p = (x0, y0)指向点M的向量,即m0 = m - p。

我们可以将m0分解为两个分量:一个平行于法向量n的分量m1和一个垂直于法向量n的分量m2。

这样我们可以写出向量m0:m0 = m - p= (x, y) - (x0, y0)= (x-x0, y-y0)向量m1是m0在法向量n方向上的投影,即m1 = proj_n(m0)。

投影的计算方法是将m0与法向量n进行点积,再将结果除以法向量n的模的平方,并与法向量n相乘:m1 = proj_n(m0)= (m0 · n / |n|^2) * n我们可以计算出m0 · n = (x-x0) * a + (y-y0) * b,计算出|n|^2 = a^2 + b^2,将这些值代入上式中:m1 = ((x-x0) * a + (y-y0) * b / (a^2 + b^2)) * (a, b)因为点M位于平面上,所以向量m2与法向量n垂直。

因此,垂直分量m2等于向量m0减去平行分量m1:m2 = m0 - m1现在,我们可以计算垂直分量m2的模长|m2|,这个模长等于Q到平面的最短距离D。

我们有:D = |m2|这就是二维空间中点到平面的距离的计算方法。

点到平面的距离空间向量求法_概述说明以及解释

点到平面的距离空间向量求法_概述说明以及解释

点到平面的距离空间向量求法概述说明以及解释1. 引言1.1 概述在几何学中,计算点到平面的距离是一个常见的问题。

点到平面的距离可以用来描述点与平面之间的物理距离或者代数上的数值关系。

这个问题涉及到利用空间向量进行计算和分析。

本篇文章将详细介绍点到平面的距离空间向量求法,并概述相关定义、计算方法、实例分析以及数学推导和证明。

1.2 文章结构本文分为五个主要部分:引言、正文、实例分析、数学推导和证明以及结论与应用展望。

在引言部分,我们将对文章内容进行概述,并介绍本篇文章的结构安排。

此外,我们还将解释点到平面距离问题的目标和重要性。

在正文部分,我们将详细讨论点到平面距离的定义以及两种常用的计算方法:垂直距离法和投影距离法。

我们将明确这些方法的原理和步骤,并提供具体示例来帮助读者更好地理解和应用这些方法。

在实例分析部分,我们将通过两个实例来对点在平面上和点在平面外两种情况进行深入分析。

通过具体的例子,我们将展示如何根据问题的不同情况选择合适的计算方法,并解释计算过程和结果的含义。

在数学推导和证明部分,我们将回顾基本向量运算、向量投影和正交性质等相关数学知识,并推导出点到平面距离的公式。

这一部分将为读者提供理论基础,并帮助他们更好地理解和应用点到平面距离的求解方法。

最后,在结论与应用展望部分,我们将总结全文内容并讨论关键观点。

同时,我们还将展望点到平面距离求解方法在实际应用中的潜力,并提出进一步研究方向建议。

1.3 目的本篇文章旨在深入介绍点到平面的距离空间向量求法。

通过阐述相关定义、计算方法、实例分析以及数学推导和证明,希望读者能够全面了解该问题背后的原理和应用。

此外,本文还旨在引起读者对于点到平面距离求解方法的兴趣,并为进一步研究提供启示和指导。

2. 正文:2.1 点到平面的距离定义点到平面的距离是指从给定点到平面上的垂直线段的长度。

这个距离可以用空间向量来表示和计算。

2.2 距离计算方法一:垂直距离法通过垂直距离法,我们可以通过点P到平面上任意一点Q所在直线的向量N(法向量)来计算点P到平面的距离。

2021届高考数学专题突破利用空间向量求空间距离(解析版)

2021届高考数学专题突破利用空间向量求空间距离(解析版)

2021届高考数学立体几何突破性讲练09利用空间向量求空间距离一、考点传真:能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用. 二、知识点梳理:空间距离的几个结论(1)点到直线的距离:设过点P 的直线l 的方向向量为单位向量n ,A 为直线l 外一点,点A 到直线l 的距离d =|P A →|2-|P A →·n |2. (2)点到平面的距离:设P 为平面α内的一点,n 为平面α的法向量,A 为平面α外一点,点A 到平面α的距离d =|P A →·n ||n |.(3)线面距离、面面距离都可以转化为点到面的距离. 三、例题:例 1.(2018天津)如图,AD BC ∥且2AD BC =,AD CD ⊥,EG AD ∥且EG AD =,CD FG ∥且2CD FG =,DG ⊥平面ABCD ,2DA DC DG ===.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN ∥平面CDE ; (2)求二面角E BC F --的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60,求线段DP 的长.【解析】依题意,可以建立以D 为原点,分别以DA ,DC ,DG 的方向为x 轴,y 轴,z轴的正方向的空间直角坐标系(如图),可得(0,0,0)D ,(2,0,0)A ,(1,2,0)B ,(0,2,0)C ,(2,0,2)E ,(0,1,2)F ,(0,0,2)G ,3(0,,1)2M ,(1,0,2)N .N ABC D EF G M(1)证明:依题意(0,2,0)DC =,(2,0,2)DE =.设0(,,)x y z =n 为平面CDE 的法向量,则0000DC DE ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即20220y x z =⎧⎨+=⎩,,不妨令1z =-,可得0(1,0,1)=-n . 又3(1,,1)2MN =-,可得00MN ⋅=n ,又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE .(2)依题意,可得(1,0,0)BC =-,(122)BE =-,,,(0,1,2)CF =-.设(,,)x y z =n 为平面BCE 的法向量,则00BC BE ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即0220x x y z -=⎧⎨-+=⎩,,不妨令1z =,可得(0,1,1)=n .设(,,)x y z =m 为平面BCF 的法向量,则00BC BF ⎧⋅=⎪⎨⋅=⎪⎩,,m m 即020x y z -=⎧⎨-+=⎩,, 不妨令1z =,可得(0,2,1)=m .因此有cos ,||||10⋅<>==m n m n m n,于是sin ,<>=m n 所以,二面角E BC F --. (3)设线段DP 的长为h ([0.2]h ∈),则点P 的坐标为(0,0,)h ,可得(12)BP h =--,,. 易知,(0,2,0)DC =为平面ADGE 的一个法向量,故cos BP DC BP DC BP DCh ⋅<⋅>==3sin602==,解得[0,2]3h=.所以线段DP例2. (2014新课标2)如图,四棱锥P ABCD-中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D AE C--为60°,AP=1,AD求三棱锥E ACD-的体积.【解析】(Ⅰ)连接BD交AC于点O,连结EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.(Ⅱ)因为PA⊥平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直.如图,以A为坐标原点,AB的方向为x轴的正方向,AP为单位长,建立空间直角坐标系Axyz-,则D1(0,),22E1(0,)2AE=.设(,0,0)(0)B m m>,则(C m(AC m=.设1(,,)x y z=n为平面AEC的法向量,则110,0,AC AE ⎧⋅=⎪⎨⋅=⎪⎩n n即0,10,22mx y z ⎧+=+=⎪⎩,可取1=-n . 又2(1,0,0)=n 为平面DAE 的法向量, 由题设121cos ,2=n n12=,解得32m =. 因为E 为PD 的中点,所以三棱锥E ACD -的高为12. 三棱锥E ACD -的体积113132228V =⨯⨯=. 例3.(2013天津) 如图, 四棱柱1111ABCD A B C D -中,侧棱1A A ⊥底面ABCD ,AB DC ∥,AB AD ⊥,1AD CD ==,12AA AB ==,E 为棱1AA 的中点.(Ⅰ)证明11B C CE ⊥;(Ⅱ)求二面角11B CE C --的正弦值;(Ⅲ)设点M 在线段1C E 上;且直线AM 与平面11ADD A, 求线段AM 的长.【解析】解法一 如图,以点A 为原点建立空间直角坐标系,1A 1依题意得A(0,0,0),B(0,0,2),C(1,0,1),B 1(0,2,2),C 1(1,2,1),E(0,1,0)(Ⅰ)易得=(1,0,-1),=(-1,1,-1),于是,所以. (Ⅱ) =(1,-2,-1).设平面1B CE 的法向量,则,即消去,得y+2z =0,不妨令z=1,可得一个法向量为=(-3,-2,1).由(Ⅰ)知,,又,可得平面,故=(1,0,-1)为平面的一个法向量. 于是从而 所以二面角B 1-CE -C 1的正弦值为. (Ⅲ)=(0,1,0),=(1,l ,1),设,,有.可取=(0,0,2)为平面的一个法向量,设为直线AM 与平面所成的角, 则,解得,所以11B C CE 110BC CE ⋅=11B C CE ⊥1B C (),,x y z =m 100B C CE ⎧⋅=⎪⎨⋅=⎪⎩m m 200x y z x y z --=⎧⎨-+-=⎩x m 11B C CE ⊥111CC B C ⊥11B C ⊥1CEC 11B C 1CEC 111111cos ,||||14B C B C B C ⋅<>===m m m 1121sin ,7B C <>=m 7AE 1EC ()1,,EM EC λλλλ==01λ≤≤(),1,AM AE EM λλλ=+=+AB 11ADD A θ11ADD A sin cos ,3AM AB AM AB AM ABθ⋅=<>==⋅6=13λ=AM =例4.(2012福建)如图,在长方体1111ABCD A B C D -中11AA AD ==,E 为CD 中点.(Ⅰ)求证:11B E AD ⊥;(Ⅱ)在棱1AA 上是否存在一点P ,使得DP ∥平面1B AE ?若存在,求AP 的行;若存在,求AP 的长;若不存在,说明理由.(Ⅲ)若二面角11A B E A --的大小为30°,求AB 的长. 【解析】(Ⅰ)以A 为原点1,,AB AD AA 的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB a =,则(0,0,0)A ,(0,1,0)D ,1(0,1,1)D ,,1,02a E ⎛⎫⎪⎝⎭, 1(,0,1)B a 故1(0,1,1)AD =,1,1,12a B E ⎛⎫=-- ⎪⎝⎭,1(,0,1)AB a =,,1,02a AE ⎛⎫= ⎪⎝⎭.∵11011(1)102aAD B E ⋅=-⨯+⨯+-⨯=, ∴11B E AD ⊥ (Ⅱ)假设在棱AA 1上存在一点0(0,0,)P z , 使得DP ∥平面1B AE .此时0(0,1,)DP z =-.又设平面1B AE 的法向量n =(x ,y ,z ).∵n ⊥平面1B AE ,∴1AB ⊥n ,AE ⊥n ,得002ax z ax y +=⎧⎪⎨+=⎪⎩取1x =,得平面1B AE 的一个法向量1,,2a a ⎛⎫=-- ⎪⎝⎭n . 要使DP ∥平面1B AE ,只要DP ⊥n ,有002a az -=,解得012z =. 又DP ⊄平面1B AE ,∴存在点P ,满足DP ∥平面1B AE ,此时AP =12.(Ⅲ)连接A 1D ,B 1C ,由长方体ABCD -A 1B 1C 1D 1及AA 1=AD =1,得AD 1⊥A 1D .∵B 1C ∥A 1D ,∴AD 1⊥B 1C .又由(Ⅰ)知B 1E ⊥AD 1,且B 1C ∩B 1E =B 1,∴AD 1⊥平面DCB 1A 1.∴1AD 是平面A 1B 1E 的一个法向量,此时1AD =(0,1,1). 设1AD 与n 所成的角为θ,则11cos a an AD n AD θ--⋅==⋅.∵二面角A -B 1E -A 1的大小为30°,∴cos cos30θ=3a=解得2a =,即AB 的长为2. 四、巩固练习:1.如图,已知圆柱OO 1底面半径为1,高为π,平面ABCD 是圆柱的一个轴截面,动点M 从点B 出发沿着圆柱的侧面到达点D ,其运动路程最短时在侧面留下曲线Γ.将轴截面ABCD 绕着轴OO 1逆时针旋转θ(0<θ<π)后得到平面A 1B 1C 1D 1,边B 1C 1与曲线Γ相交于点P .(1)求曲线Γ的长度;(2)当θ=π2时,求点C 1到平面APB 的距离.【解析】 (1)将圆柱一半展开后底面的半个圆周变成长方形的边BA ,曲线Γ就是对角线BD .由于AB =πr =π,AD =π,∴BD =2π. 故曲线Γ的长度为2π.(2)当θ=π2时,建立如图所示的空间直角坐标系,则O (0,0,0),A (0,-1,0),B (0,1,0),P ⎝⎛⎭⎫-1,0,π2,C 1(-1,0,π),则AB →=(0,2,0),AP →=⎝⎛⎭⎫-1,1,π2,OC 1→=(-1,0,π), 设平面ABP 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧2y =0,-x +y +π2z =0, 取z =2得n =(π,0,2),∴点C 1到平面P AB 的距离d =|OC 1→·n ||n |=ππ2+4.2.如图,在多面体ABCDE 中,平面ABD ⊥平面ABC ,AB ⊥AC ,AE ⊥BD ,DE ∥12AC ,AD =BD =1.(1)求AB 的长;(2)已知2≤AC ≤4,求点E 到平面BCD 的距离的最大值.【解析】 (1)∵平面ABD ⊥平面ABC ,且交线为AB ,而AC ⊥AB ,∴AC ⊥平面ABD . 又∵DE ∥AC ,∴DE ⊥平面ABD ,从而DE ⊥BD . 注意到BD ⊥AE ,且DE ∩AE =E ,∴BD ⊥平面ADE , 于是,BD ⊥AD .而AD =BD =1,∴AB = 2. (2)∵AD =BD ,取AB 的中点为O ,∴DO ⊥AB . 又∵平面ABD ⊥平面ABC ,∴DO ⊥平面ABC .过O 作直线OY ∥AC ,以点O 为坐标原点,直线OB ,OY ,OD 分别为x ,y ,z 轴,建立空间直角坐标系Oxyz ,如图所示.记AC =2a ,则1≤a ≤2, A ⎝⎛⎭⎫-22,0,0,B ⎝⎛⎭⎫22,0,0, C ⎝⎛⎭⎫-22,2a ,0,D ⎝⎛⎭⎫0,0,22,E ⎝⎛⎭⎫0,-a ,22,BC →=(-2,2a,0),BD →=⎝⎛⎭⎫-22,0,22.设平面BCD 的法向量为n =(x ,y ,z ). 由⎩⎪⎨⎪⎧BC →·n =0,BD →·n =0得⎩⎪⎨⎪⎧-2x +2ay =0,-22x +22z =0. 令x =2,得n =⎝⎛⎭⎫2,1a ,2. 又∵DE →=(0,-a,0),∴点E 到平面BCD 的距离d =|DE →·n ||n |=14+1a2.∵1≤a ≤2,∴当a =2时,d 取得最大值, d max =14+14=21717.3.如图,三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD .(1)证明:DC 1⊥BC ;(2)设AA 1=2,A 1B 1的中点为P ,求点P 到平面BDC 1的距离. 【解析】 (1)证明:由题设知,三棱柱的侧面为矩形. 由于D 为AA 1的中点,故DC =DC 1.又AC =12AA 1,可得DC 21+DC 2=CC 21,所以DC 1⊥DC .DC 1⊥BD ,DC ∩BD =D ,所以DC 1⊥平面BCD .又因为BC ⊂平面BCD ,所以DC 1⊥BC .(2)由(1)知BC ⊥DC 1,且BC ⊥CC 1,则BC ⊥平面ACC 1A 1,所以CA ,CB ,CC 1两两垂直.以C 为坐标原点,CA →的方向为x 轴的正方向,建立如图所示的空间直角坐标系Cxyz .由题意知B (0,1,0),D (1,0,1),C 1(0,0,2),B 1(0,1,2),P ⎝⎛⎭⎫12,12,2,则BD →=(1,-1,1),DC 1→=(-1,0,1),PC 1→=⎝⎛⎭⎫-12,-12,0. 设m =(x ,y ,z )是平面BDC 1的法向量,则⎩⎪⎨⎪⎧ m ·BD →=0,m ·DC 1→=0,即⎩⎪⎨⎪⎧x -y +z =0,-x +z =0,可取m =(1,2,1). 设点P 到平面BDC 1的距离为d ,则d =⎪⎪⎪⎪⎪⎪PC 1→·m |m |=64. 4.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为直角梯形,90CDA BAD ∠=∠=︒,2AB AD DC ===E ,F 分别为PD ,PB 的中点.(1)求证://CF 平面PAD ;(2)若截面CEF 与底面ABCD 所成锐二面角为4π,求PA 的长度. 【解析】(1)证明:取PA 的中点Q ,连接QF ,QD ,F 是PB 的中点,//QF AB ∴且12QF AB =, 底面ABCD 为直角梯形,90CDA BAD ∠=∠=︒,2AB AD DC ===//CD AB ∴,12CD AB =, //QF CD ∴且QF CD =,∴四边形QFCD 是平行四边形,//FC QD ∴,又FC ⊄平面PAD ,QD ⊂平面PAD ,//FC ∴平面PAD .(2)如图,分别以AD ,AB ,AP 为x ,y ,z 轴建立空间直角坐标系,设PA a =。

1.4.2-用空间向量研究距离、夹角问题

1.4.2-用空间向量研究距离、夹角问题

探究 已知直线l的单位方向向量为u, A是直线l上的定点,P是直线l外一点. 如何利
用这些条件求点P到直线l的距离? 如图示,向量AP在直线l上的投影向量为 AQ ,则△APQ是直角
u
P
三角形,因为A,P都是定点,所以|AP|,AP 与 u 的夹角∠PAQ都
dn
是确定的. 于 是可求 |AQ|. 再利用勾股定理,可以求出点P到直线l
点C1到平面AB1 E
的距离为 |
C1B1 |n|
n
|
1 3
.
D
A x
F
C
y
B
即直线FC1到平面AB1
E的距离为
1 3
.
3. 如图,在棱长为1的正方体ABCD-A1B1C1D1中,求平面A1DB与平面D1CB1的距离.
解 : 平面A1DB//平面D1CB1,平面A1DB与平面D1CB1的距离 z
MN AN AM
1 ( AB AF ) 1 ( AB AD)
2
2
1 (c b) 2
∴|MN|2 1 (c b )2 1 ,
4
2
∴|MN| 2 ,即MN 2 .
2
2
【巩固训练4】如图,两条异面直线a, b所成的角为θ,在直线a, b上分别取点A′, E和
点A, F,使AA′⊥a,且AA′⊥b (AA′称为异面直线a, b的公垂线). 已知A′E=m, AF=n,
易得C1 (0, 1, 1),
A(1,
0, 0),
E(0,
0,
1 ). 2
E
∴C1 A
(1,
1, 1),
AE
(1, 0,
1 ). 2
D
F

3.2.3空间距离的向量求法

3.2.3空间距离的向量求法

DB (2,2,0), DN (0,1,2),
设平面BDMN的一个法向量为
z
n ( x, y, z), 则
2 x 2 y 0 n (2, 2,1), y 2z 0
x
O
y
| AB n | | 2 (2) | 4 d . 2 2 2 n 3 2 (2) 1
P d O
n

PA n ( PO OA) n PO n,
| PA n || PO n || PO || n |
| PA n | | PA n | PO , 即d n n
例1.已知正方形ABCD的边长为4,CG⊥平面ABCD, CG=2,E、F分别是AB、AD的中点,求点B到平面GEF 的距离。
n
| PA n | ★所以计算公式还是: d n
例2.
如图,正方体ABCD-A1B1C1D1的棱长为2,E,F,M,N 分别为A1B1,A1D1,B1C1,C1D1 的中点. 求平面AEF和平面BDMN的距离.
解: (2)如图建立空间直角坐标系,则A(2,0,0), B(2, 2,0), N (0,1, 2), AB (0, 2,0),
解:∵BD//平面C1MN, ∴只需求点B与 平面C1MN的距离, 如图建立直角坐标系,则B(2,2,0), M (1, 2,0), N (0,1,0), C1 (0, 2, 2),
NM (1,1, 0), NC1 (0,1, 2) BM (1, 0, 0)
z
y x
x y 0 x 2z , 令z 1, 则n (2, 2,1), y 2 z 0 y 2 z | n BM | | (1) 2 | 2 d . |n| 22 (2) 2 12 3

空间几何向量法之点到平面的距离

空间几何向量法之点到平面的距离

空间几何向量法之点到平面的距离1.要求一个点到平面的距离,可以分为三个步骤:(1) 找出从该点出发的平面的任意一条斜线段对应的向量; (2) 求出该平面的法向量;(3) 求出法向量与斜线段对应的向量的数量积的绝对值,再除以法向量的模,这就是该店到平面的距离。

例子:点A 到面α的距离AB n d n•=(注:AB 为点A 的斜向量,n →是α面的法向量,点B 是面α内任意一点。

)2.求立体几何体积(向量法) 体积公式:1、柱体体积公式:.V S h =2、椎体体积公式:1.3V S h =3、球体体积公式:343V R π=课后练习题例题:在三棱锥B —ACD 中,平面ABD ⊥平面ACD ,若棱长AC=CD=AD=AB=1,且∠BAD=300,求点D 到平面ABC 的距离。

要求平面α外一点P 到平面α的距离,可以在平面α内任取一点A ,则点P 到平面α的距离即为d=||PA =⋅建立如图空间直角坐标系,则A (0,0,21-),B (21213,0,-),C (0,,023),D ()0,0,21∴)0,,(2321=,),0,(2123=,)0,,(2321-=设n =(x,y,z)为平面α的一个法向量,则⎪⎩⎪⎨⎧=+=⋅=+=⋅0023212123y x AC n z x AB n∴x z x y 3,33-=-= ,可取)3,1,3(-=n代入d =得,1339132323==+d ,即点D 到平面ABC 的距离是1339。

1. 已知A(2,3,1)、B(4,1,2)、C(6,3,7)、D(-5,-4,8)是空间不共面的四点,求点D 到平面ABC 的距离.解:设),,(z y x n =是平面ABC 的一个法向量,则由0n AB =及10n BC =,得2x 2y z 02x 2y 5z 0--+=⎧⎨++=⎩⇒2y x 32z x 3⎧=⎪⎪⎨⎪=-⎪⎩,取x=3,得)2,2,3(-=n ,于是点D 到平面ABC 的距离为d=DA n n=1749=171749.2.已知四边形ABCD 是边长为4的正方形,E 、F 分别是AB 和AD 的中点,GC ⊥平面ABCD ,且GC=2,求点B 到平面EFG 的距离.解:建立如图2所示的空间直角坐标系C-xyz ,则G(0,0,2),E(2,4,0),B(0,4,0), F(4, 2,0),∴GE =(2,4,-2),GF =(4,2,-2),BE =(2,0,0).设平面EFG 的一个法向量为),,(z y x n =,则由0n GE =及0n GF =,得2x+4y 2z 04x 2y 2z 0-=⎧⎨+-=⎩⇒x=y z 3y ⎧⎨=⎩,取y=1,得(1,1,3)n =,于是点B 到平面EFG 的距离为d=BE n n =11112112=.3.在棱长为1的正方体ABCD-A 1B 1C 1D 1中,求点C 1到平面A 1BD 的距离。

向量求点到平面的距离和两异面直线间距离

向量求点到平面的距离和两异面直线间距离

教师姓名 学生姓名 教材版本 人教版学科名称 数学年 级高一上上课时间2012.课题名称 利用向量解决立体几何教学目标 1掌握向量运算在几何中如何求点到平面的距离和两异面直线间距离的计算方法; 2.熟练掌握向量方法在实际问题中的作用 教学重点向量运用方法。

教 学 过 程备 注一、课前准备复习1:已知()()1,2,0,0,1,1,A B ()1,1,2C ,试求平面ABC 的一个法向量.复习2:什么是点到平面的距离?什么是两个平面间距离?二、新课导学探究一:点到平面的距离的求法问题:如图A ,α∈空间一点P 到平面α的距离为d ,已知平面α的一个法向量为n ,且AP 与n 不共线,能否用AP 与n 表示d ? 分析:过P 作PO ⊥α于O ,连结OA ,则d =|PO |=||cos .PA APO ⋅∠ ∵PO ⊥α,,n α⊥ ∴PO ∥n .∴cos ∠APO=|cos ,PA n 〈〉| ∴D. =|PA ||cos ,PA n 〈〉| =|||||cos ,|||PA n PA n n ⋅⋅〈〉=||||PA n n ⋅αnA ⋅O⋅P⋅新知:用向量求点到平面的距离的方法:设A ,α∈空间一点P 到平面α的距离为d ,平面α的一个法向量为n ,则D. =||||PA n n ∙ 试:在棱长为1的正方体''''ABCD A B C D -中,求点'C 到平面''A BCD 的距离.三、典型例题例1 已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,求点B 到平面EFG 的距离.变式:如图,ABCD 是矩形,PD ⊥平面ABCD ,PD DC a ==,2AD a =,M N 、分别是AD PB 、的中点,求点A 到平面MNC 的距离.APD C BMN小结:求点到平面的距离的步骤:⑴ 建立空间直角坐标系,写出平面内两个不共线向量的坐标;⑵ 求平面的一个法向量的坐标; ⑶ 找出平面外的点与平面内任意一点连接向量的坐标;⑷ 代入公式求出距离.探究任务二:两条异面直线间的距离的求法例 2 如图,两条异面直线,a b 所成的角为θ,在直线,a b 上分别取点',A E 和,A F ,使得'AA a ⊥,且'AA b ⊥.已知',,A E m AF n EF l ===,求公垂线'AA 的长.变式:已知直三棱柱111ABC A B C ─的侧棱14AA =,底面ABC △中, 2AC BC ==,且90BCA ∠=,E 是AB 的中点,求异面直线CE 与1AB 的距离.四、当堂检测1. 在棱长为1的正方体''''ABCD A B C D -中,平面''ABB A 的一个法向量为 ;2. 在棱长为1的正方体''''ABCD A B C D -中,异面直线'A B 和'CB 所成角是 ;3. 在棱长为1的正方体''''ABCD A B C D -中,两个平行平面间的距离是 ;4. 在棱长为1的正方体''''ABCD A B C D -中,异面直线'A B 和'CB 间的距离是 ;5. 在棱长为1的正方体''''ABCD A B C D -中,点O 是底面''''A B C D 中心,则点O 到平面''ACDB 的距离是 .6. 如图,正方体1111ABCD A B C D 的棱长为1,点M 是棱1AA 中点,点O 是1BD 中点,求证:OM 是异面直线1AA 与1BD 的公垂线,并求OM 的长.7. 如图,空间四边形OABC 各边以及,AC BO 的长都是1,点,D E 分别是边,OA BC 的中点,连结DE .⑴ 计算DE 的长;⑵ 求点O 到平面ABC 的距离.课后小结上课情况:课后需再巩固的内容:配合需求家 长学管师学科组长审批教研主任审批。

用空间向量研究距离、夹角问题

用空间向量研究距离、夹角问题

直角坐标系.
C
D
F
B
D1
C1
A1
E
B1
问:应用向量方法求距离,共同点是什么?
问:为此我们要做什么准备?
z
以D1为原点,D1 A1,D1 C1,
A
D1 D所在直线为x轴、y轴、
C
D
z轴,建立如图所示的空间
F
B
D1
直角坐标系.
C1
A1
E
x
B1
y
问: 相关点的坐标是什么?
A(1,0,1),B(1,1,1),
)

A
Q

= ∙

P
平面 α的法向量为n
A是平面α内的定点
点P 到平面 α的距离
n
A



= ∙
=
=



α
Q
小结:整理向量方法求距离的相关公式
距离问题
图示
两点间的距离
点到直线
的距离
两平行线之间
的距离
点到平面
的距离
向量法距离公式
Q
P
=
u
的距离可以转化为点到平面的距离.
P
β
P
α
n
α
n
A
Q
A
Q

= ∙

直线到平面的距离


=
=


两个平行平面间的距离
P
β
P
α
n
α
n
A
Q
A
Q
例题小结
2.用向量方法解决距离问题的“三步曲”:

向量法求异面直线的距离公式

向量法求异面直线的距离公式

向量法求异面直线的距离公式全文共四篇示例,供读者参考第一篇示例:向量法求异面直线的距离公式是一种用向量的方法来计算异面直线之间的距离的公式。

在三维空间中,有时候我们需要求出两条不在同一平面上的直线之间的距离,这时就可以使用向量法来解决这个问题。

下面我们将详细介绍向量法求异面直线的距离公式的推导和应用。

我们假设有两条异面直线,分别用参数方程表示为:直线1:r1(t) = a1 + tb1其中a1,a2分别为直线1和直线2的某一点,b1,b2为方向向量,t,u为参数。

我们首先要确定这两条直线之间的距离,可以通过向量的投影来实现。

假设有一条从直线1上的某一点a1到直线2上的垂足点P的向量p,则有p = a2 - a1 + s(b1 x b2)(1)其中x表示向量叉乘,s为比例因子。

p为两条直线之间的距离向量,我们需要求出它的模长作为实际距离。

为了简化运算,可以令p与b1垂直,即p·b1 = 0,代入公式(1)中得到:(a2 - a1 + s(b1 x b2)) · b1 = 0将s代入公式(1)中,即可求出向量p。

我们求出p的模长即可得到两条异面直线之间的距离。

需要注意的是,如果两条直线平行,则它们之间的距离为0;如果两条直线相交,则直线之间的距禀为0。

向量法求异面直线的距离公式在实际工程和物理问题中有着广泛的应用。

比如在建筑设计中,我们需要确定两个不在同一平面上的梁之间的距离;在机械设计中,我们需要确定两个不在同一平面上的零件之间的距禀。

掌握向量法求异面直线的距离公式对于解决实际问题具有重要意义。

第二篇示例:向量法求解异面直线距离的问题是解析几何中的一个重要问题。

异面直线是指两条不在同一平面内的直线,它们之间的距离是在空间几何学中一个非常基础的问题。

在实际问题中,当我们需要求解两条异面直线之间的距离时,使用向量法可以简化计算,提高效率。

首先我们来了解一下向量的相关知识。

在空间直角坐标系中,我们可以用一个有方向和大小的有向线段来表示一个向量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五节利用空间向量求点到平面的距离及异面直线间距离 一、 点到平面的距离
设A 是平面α外一点,B 是α内一点,n
为α的一个法向量,则点A 到平面α的
距离n n
AB d ⋅=
例1、 如图,已知ABCD 是边长为4的正方形,
E 、
F 分别是AB 、AD 的中点,GC ⊥平面ABCD
且GC=2,求点B 到平面EFG 的距离。

例2、 在三棱锥S-ABC 中,ABC ∆是边长为4的正三角形,
平面SAC ⊥平面ABC ,SA=SC=32,M 、N 分别是
AB 、SB 的中点。

(04福建)
(1)证明AC ⊥SB ; (2)求二面角N-CM-B 的大小; (3)求点B 到平面CMN 的距离。

练习:已知ABCD 是边长为1的正方形,PD ⊥平面ABCD 且PD=1,E 、F 分别是AB 、BC 的中点.
(1) 求点D 到平面PEF 的距离;
(2) 求直线AC 到平面PEF 的距离。

二、 异面直线间距离 设n 是异面直线a 、b 的公垂向量,C 为a 上任一点,
D 为b 上任一点,则a 、b 间的距离n
n
CD d
⋅=. 例3、 在正方体ABCD-A 1B 1C 1D 1中,棱长为a. (1) 求异面直线BD 与B 1C 间的距离;
(2) 求异面直线AA 1与BD 1间的距离。

三、 证线面平行 若a 是平面α外一直线,所在向量为a ,n 是α的一个法向量,若a ⊥n ,则a ∥α.
例4、 在直三棱柱ABC-A 1B 1C 1中,AC ⊥BC , AC=3,BC=4,AA 1=4,点D 是AB 的中点。

(1) 求证:AC ⊥BC 1;
(2) 求证:AC 1∥平面CDB 1;
(3) 求异面直线AC 1与B 1C 所成角的余
弦值。

(05北京文) 作业:1、如图所示,在正方体
ABCD-A 1B 1C 1D 1中,棱长为a.
(1)求异面直线AA 1与B 1D 1间的距离;
(2)求异面直线A 1B 与B 1D 1间的距离。

F E
G D C B
A N M S
C
B
A P
F
E D C B A D 1
D C 1 C B 1 B
A A
1
D 1 D C 1 C
B 1
B
A 1
A
2、如图,已知三棱锥O-ABC 的侧棱OA 、OB 、OC 两两垂直,且OA=1,OB=OC=2,E 是OC 的中点。

(1)求点O 到平面ABC 的距离; (2)求异面直线BE 与AC 所成的角; (3)求二面角E-AB-C 的大小。

(06江西)
3、如图,已知正三棱柱ABC-A 1B 1C 1的侧棱长和底面边长均为1,M 是底面BC 边上的中点,N 是侧棱CC 1上的点,且CN =2C 1N.
(1)求二面角B 1-AM -N 的平面角的余弦值;
(2)求点B 1到平面AMN 的距离。

(06湖北文)
4、如图,在四棱锥P —ABCD 中,底面ABCD 为矩形,PD ⊥底面ABCD ,E 是AB 上一点,PE ⊥
EC.已知,21
,2,2===AE CD PD 求
(Ⅰ)异面直线PD 与EC 的距离;
(Ⅱ)二面角E —PC —D 的大小.(05重庆文)
5、如图,在长方体ABCD —A 1B 1C 1D 1,中,AD=AA 1=1,AB=2,点E 在棱AD
上移动.
(1)证明:D 1E ⊥A 1D ;
(2)当E 为AB 的中点时,求点E 到面ACD 1的距离; (3)AE 等于何值时,二面角D 1—EC —的大小为4
π
. 6、如图,直二面角D-AB-E 中,四边形ABCD
是边长为2的 正方形,AE =EB ,F 为CE 上的点,且⊥平面ACE .
(1)求证:AE ⊥平面BCE ; (2)求二面角B-AC-E 的大小;
(3)求点D 到平面ACE 的距离。

(05福建)
7、如图,在直三棱柱ABC-A 1B 1C 1中, 底面是等腰直角三角形,090=∠ACB ,侧棱AA 1=2,D 、E 分别是CC 1与A B 的中点,点E 在平面ABD 上的射影是ABD ∆的重心G.
(1) 求A 1B 与平面ABD 所成角的大小; (2) 求点A 1到平面AED 的距离。

(03全国)

O E


D
P E C
B A E D 1
D C 1 C
B 1
B A 1 A E G D
C 1
C
B 1
B
A
1
A
E
F
B
A
D C。

相关文档
最新文档