《直线与圆、圆与圆的位置关系复习》教案

合集下载

《复习直线和圆的位置关系》说课稿

《复习直线和圆的位置关系》说课稿

《复习直线和圆的位置关系》说课稿《复习直线和圆的位置关系》说课稿范文《复习直线和圆的位置关系》说课稿1今天我的说课内容是人教版九年级上册第二十四章第二节第二课时的直线与圆的位置关系。

下面我将以教什么、怎么样教、为什么这样教为思路从教材分析、学情分析、教学目标、学法教法、教学过程和板书设计六个方面对本课进行说明。

一、教材分析教材的地位和作用。

圆在平面几何中占有重要地位,它被安排在初中数学第二十四章,属于一个提高阶段。

而直线和圆的位置关系又是本章的一个中心内容。

从知识体系上看:它有着承上启下的作用,既是对点与圆的位置关系的延续与提高,又是后面学习切线的性质和判定、圆和圆的位置关系及高中继续学习几何知识的基础。

从数学思想方法层面上看:它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比等数学思想方法,有助于提高学生的数学思维品质。

二、学情分析在此之前学生已经学习了点和圆的位置关系,对圆有了一定的感性和理性认识,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象。

加之九年级学生好奇心强,活泼好动,注意力易分散,认知水平大都停留在表面现象,对亲身体验的事物容易激发求知的渴望,因此要想方设法,引导学生深入思考、主动探究、主动获取新知识。

三、教学目标:根据学生已有的认知基础及本课的教材的地位、作用,结合数学课程标准我将确定如下的教学目标:(1)掌握直线和圆的三种位置关系性质及判定。

(2)通过观察、实验、合作交流等数学活动使学生了解探索问题的一般方法;(3)通过直线和圆的位置关系的探究,向学生渗透分类讨论、数形结合、类比的数学思想,陪养学生观察、分析和概括的能力;(4)体会事物间的相互渗透,感受数学思维的严谨性,并在合作学习中体验成功的喜悦。

教学的重难点:重点:直线和圆的三种位置关系的性质与判定。

难点:用数量法刻画直线与圆的三种位置关系。

突破难点的策略:引导学生动手动脑、操作实践,类比点和圆的位置关系的判定方法,配合几何画板直观演示来加深学生对知识的理解。

《直线与圆的位置关系》教案

《直线与圆的位置关系》教案

《直线与圆的位置关系》教案第一章:引言教学目标:1. 让学生了解直线与圆的位置关系的概念。

2. 引导学生通过观察和思考,探索直线与圆的位置关系。

教学内容:1. 直线与圆的定义。

2. 直线与圆的位置关系的分类。

教学步骤:1. 引入直线和圆的定义,让学生回顾相关概念。

2. 提问:直线和圆有什么关系?它们可以相交、相切还是相离?3. 引导学生观察和思考直线与圆的位置关系,让学生举例说明。

练习题目:a) 直线x=2与圆x^2+y^2=4b) 直线y=3与圆x^2+y^2=9c) 直线x+y=4与圆x^2+y^2=8第二章:直线与圆的相交教学目标:1. 让学生了解直线与圆相交的概念。

2. 引导学生通过观察和思考,探索直线与圆相交的性质。

教学内容:1. 直线与圆相交的定义。

2. 直线与圆相交的性质。

教学步骤:1. 引入直线与圆相交的概念,让学生了解相交的含义。

2. 提问:直线与圆相交时,会有什么特殊的性质?3. 引导学生观察和思考直线与圆相交的性质,让学生举例说明。

练习题目:a) 直线y=2x+3与圆x^2+y^2=16b) 直线x-y+4=0与圆x^2+y^2=16c) 直线x+y-6=0与圆x^2+y^2=36第三章:直线与圆的相切教学目标:1. 让学生了解直线与圆相切的概念。

2. 引导学生通过观察和思考,探索直线与圆相切的性质。

教学内容:1. 直线与圆相切的定义。

2. 直线与圆相切的性质。

教学步骤:1. 引入直线与圆相切的概念,让学生了解相切的含义。

2. 提问:直线与圆相切时,会有什么特殊的性质?3. 引导学生观察和思考直线与圆相切的性质,让学生举例说明。

练习题目:a) 直线y=3x+2与圆x^2+y^2=16b) 直线x-y+4=0与圆x^2+y^2=16c) 直线x+y-6=0与圆x^2+y^2=36第四章:直线与圆的相离教学目标:1. 让学生了解直线与圆相离的概念。

2. 引导学生通过观察和思考,探索直线与圆相离的性质。

直线和圆的位置关系的数学教案

直线和圆的位置关系的数学教案

直线和圆的位置关系的数学教案一、教学目标:1. 让学生理解直线和圆的位置关系,并能运用其解决实际问题。

2. 让学生掌握判断直线和圆位置关系的方法,提高空间想象力。

3. 培养学生的逻辑思维能力和团队合作精神。

二、教学内容:1. 直线和圆的位置关系:相离、相切、相交。

2. 判断直线和圆位置关系的方法。

3. 实际问题中的应用。

三、教学重点与难点:1. 教学重点:直线和圆的位置关系,判断方法及实际应用。

2. 教学难点:直线和圆位置关系的判断,空间想象能力的培养。

四、教学方法:1. 采用问题驱动法,引导学生探究直线和圆的位置关系。

2. 利用多媒体辅助教学,直观展示直线和圆的位置关系。

3. 开展小组讨论,培养学生的团队合作精神。

五、教学过程:1. 导入新课:通过生活中的实例,引出直线和圆的位置关系。

2. 知识讲解:讲解直线和圆的相离、相切、相交三种位置关系,及判断方法。

3. 案例分析:分析实际问题,运用直线和圆的位置关系解决问题。

4. 课堂练习:布置练习题,巩固所学知识。

5. 小组讨论:探讨直线和圆位置关系在实际问题中的应用。

7. 课后作业:布置作业,巩固所学知识。

六、教学评估:1. 课堂练习题目的完成情况,以检验学生对直线和圆位置关系的理解和应用能力。

2. 小组讨论的参与度,观察学生是否能够主动思考和解决问题。

3. 课后作业的质量,评估学生对课堂所学知识的掌握程度。

4. 学生对拓展问题的回答,了解学生的思维拓展和创造性解决问题的能力。

七、教学反思:1. 学生是否能够清晰理解直线和圆的位置关系?2. 学生是否能够熟练运用判断方法解决实际问题?3. 教学方法和教学内容的安排是否适合学生的学习水平?4. 如何改进教学策略以提高学生的空间想象力和逻辑思维能力?八、教学资源:1. 多媒体教学课件,用于展示直线和圆的位置关系示意图。

2. 实际问题案例库,用于引导学生将理论知识应用于解决实际问题。

3. 练习题库,包括不同难度的题目,以满足不同学生的学习需求。

北师大版数学九年级下册3.6《直线和圆的位置关系》教案1

北师大版数学九年级下册3.6《直线和圆的位置关系》教案1

北师大版数学九年级下册3.6《直线和圆的位置关系》教案1一. 教材分析北师大版数学九年级下册3.6《直线和圆的位置关系》是本节课的主要内容,这部分内容是在学生已经掌握了直线、圆的基本性质的基础上进行学习的。

通过学习直线和圆的位置关系,可以让学生更好地理解直线和圆之间的相互关系,为后续学习圆的方程和解决实际问题打下基础。

二. 学情分析九年级的学生已经具备了一定的数学基础,对直线和圆的基本性质有了初步的了解。

但是,对于直线和圆的位置关系的理解和应用还有一定的困难。

因此,在教学过程中,需要引导学生通过观察、思考、探究,从而理解直线和圆的位置关系,并能够运用到实际问题中。

三. 教学目标1.让学生理解直线和圆的位置关系,并能够运用到实际问题中。

2.培养学生的观察能力、思考能力和探究能力。

3.培养学生的合作意识和交流能力。

四. 教学重难点1.直线和圆的位置关系的理解和应用。

2.如何引导学生通过观察、思考、探究来理解直线和圆的位置关系。

五. 教学方法1.观察法:通过观察直线和圆的位置关系,让学生直观地理解直线和圆的位置关系。

2.讨论法:引导学生通过小组讨论,共同探究直线和圆的位置关系。

3.练习法:通过适量的练习,让学生巩固对直线和圆的位置关系的理解。

六. 教学准备1.准备一些直线和圆的图片,用于导入和呈现。

2.准备一些练习题,用于巩固和拓展。

七. 教学过程1.导入(5分钟)通过展示一些直线和圆的图片,让学生观察并思考直线和圆之间的相互关系。

引导学生提出问题,激发学生的学习兴趣。

2.呈现(10分钟)通过PPT或者黑板,呈现直线和圆的位置关系的定义和性质。

引导学生理解直线和圆的位置关系,并能够运用到实际问题中。

3.操练(10分钟)让学生进行一些实际的操作,例如画出给定直线和圆的位置关系,或者找出给定直线和圆的位置关系。

通过操作,让学生加深对直线和圆的位置关系的理解。

4.巩固(10分钟)让学生做一些练习题,巩固对直线和圆的位置关系的理解。

北师大版数学九年级下册3.6《直线和圆的位置关系》教案2

北师大版数学九年级下册3.6《直线和圆的位置关系》教案2

北师大版数学九年级下册3.6《直线和圆的位置关系》教案2一. 教材分析《直线和圆的位置关系》是北师大版数学九年级下册第3.6节的内容。

本节主要让学生了解直线和圆的位置关系,包括相切和相交两种情况,并掌握判断直线和圆位置关系的方法。

通过本节的学习,学生能够进一步理解直线和圆的性质,为后续解析几何的学习打下基础。

二. 学情分析学生在学习本节内容前,已经掌握了直线、圆的基本性质和相互之间的交点性质。

但对于判断直线和圆位置关系的实践操作能力尚待提高,需要通过实例分析和动手操作,进一步理解和掌握。

三. 教学目标1.让学生了解直线和圆的位置关系,包括相切和相交两种情况。

2.让学生掌握判断直线和圆位置关系的方法。

3.培养学生的实践操作能力和解决实际问题的能力。

四. 教学重难点1.教学重点:直线和圆的位置关系的判断方法。

2.教学难点:如何运用位置关系解决实际问题。

五. 教学方法采用问题驱动法、案例分析法和动手操作法,引导学生主动探究,合作交流,从而提高学生对直线和圆位置关系的理解和应用能力。

六. 教学准备1.准备相关的教学案例和图片。

2.准备课件和教学道具。

3.安排学生在课前预习相关内容。

七. 教学过程1.导入(5分钟)通过提问方式复习直线和圆的基本性质,为新课的学习做好铺垫。

例如:“直线和圆有哪些基本的性质?它们之间有什么联系?”2.呈现(15分钟)展示直线和圆的位置关系图片,让学生观察并描述它们之间的位置关系。

接着,通过课件演示直线和圆相切、相交的动态过程,引导学生直观地理解两种位置关系。

3.操练(15分钟)让学生分组讨论,每组选取一个实例,分析直线和圆的位置关系。

学生可以利用直尺、圆规等工具进行实际操作,验证理论。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)请学生上台演示刚才的操作,并讲解直线和圆位置关系的判断方法。

其他学生认真听讲,互相交流心得。

5.拓展(10分钟)出示一些实际问题,让学生运用所学知识解决。

2014届高考一轮复习教学案直线与圆、圆与圆的位置关系

2014届高考一轮复习教学案直线与圆、圆与圆的位置关系

直线与圆、圆与圆的位置关系[知识能否忆起]一、直线与圆的位置关系(圆心到直线的距离为d,圆的半径为r)二、圆与圆的位置关系(⊙O1、⊙O2半径r1、r2,d=|O1O2|)[小题能否全取]1.(教材习题改编)圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是()A.相切B.相交但直线不过圆心C.相交过圆心D.相离解析:选B由题意知圆心(1,-2)到直线2x+y-5=0的距离d=5,0<d<6,故该直线与圆相交但不过圆心.2.(2012·银川质检)由直线y=x+1上的一点向圆x2+y2-6x+8=0引切线,则切线长的最小值为()A.7 B.2 2C.3 D. 2解析:选A由题意知,圆心到直线上的点的距离最小时,切线长最小.圆x2+y2-6x+8=0可化为(x-3)2+y2=1,则圆心(3,0)到直线y=x+1的距离为42=22,切线长的最小值为(22)2-1=7.3.直线x -y +1=0与圆x 2+y 2=r 2相交于A ,B 两点,且AB 的长为2,则圆的半径为( )A.322B.62C .1D .2解析:选B 圆心(0,0)到直线x -y +1=0的距离d =12.则r 2=⎝⎛⎭⎫12|AB |2+d 2=32,r =62. 4.(教材习题改编)若圆x 2+y 2=1与直线y =kx +2没有公共点,则实数k 的取值范围是________.解析:由题意知21+k 2>1,解得-3<k < 3. 答案:(-3, 3)5.已知两圆C 1:x 2+y 2-2x +10y -24=0,C 2:x 2+y 2+2x +2y -8=0,则两圆公共弦所在的直线方程是____________.解析:两圆相减即得x -2y +4=0. 答案:x -2y +4=01.求圆的弦长问题,注意应用圆的几何性质解题,即用圆心与弦中点连线与弦垂直的性质,可用勾股定理或斜率之积为-1列方程来简化运算.2.对于圆的切线问题,要注意切线斜率不存在的情况.典题导入[例1] (2012·陕西高考) 已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( ) A .l 与C 相交 B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能[自主解答] 将点P (3,0)的坐标代入圆的方程,得 32+02-4×3=9-12=-3<0, 所以点P (3,0)在圆内.故过点P 的直线l 定与圆C 相交. [答案] A本例中若直线l 为“x -y +4=0”问题不变. 解:∵圆的方程为(x -2)2+y 2=4, ∴圆心(2,0),r =2. 又圆心到直线的距离为d =62=32>2. ∴l 与C 相离.由题悟法判断直线与圆的位置关系常见的方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. (2)代数法:联立直线与圆的方程消元后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内可判断直线与圆相交.以题试法1.(2012·哈师大附中月考)已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是( )A .(-22,22)B .(-2,2) C.⎝⎛⎭⎫-24,24D.⎝⎛⎭⎫-18,18 解析:选C 易知圆心坐标是(1,0),圆的半径是1,直线l 的方程是y =k (x +2),即kx -y +2k =0,根据点到直线的距离公式得|k +2k |k 2+1<1,即k 2<18,解得-24<k <24.典题导入[例2] (1)(2012·广东高考)在平面直角坐标系xOy 中,直线3x +4y -5=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长等于( )A .33B .2 3 C. 3D .1(2)(2012·天津高考)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+ 3 ]B .(-∞,1- 3 ]∪[1+3,+∞)C .[2-22,2+2 2 ]D .(-∞,2-2 2 ]∪[2+22,+∞)[自主解答] (1)圆x 2+y 2=4的圆心(0,0),半径为2,则圆心到直线3x +4y -5=0的距离d =532+42=1. 故|AB |=2r 2-d 2=24-1=2 3.(2)圆心(1,1)到直线(m +1)x +(n +1)y -2=0的距离为|m +n |(m +1)2+(n +1)2=1,所以m +n+1=mn ≤14(m +n )2,整理得[(m +n )-2]2-8≥0,解得m +n ≥2+22或m +n ≤2-2 2.[答案] (1)B (2)D由题悟法1.圆的弦长的常用求法:(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则⎝⎛⎭⎫l 22=r 2-d 2. (2)代数方法:运用韦达定理及弦长公式: |AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]. [注意] 常用几何法研究圆的弦的有关问题.2.求过一点的圆的切线方程时,首先要判断此点与圆的位置关系,若点在圆内,无解;若点在圆上,有一解;若点在圆外,有两解.以题试法2.(2012·杭州模拟)直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( )A.⎣⎡⎦⎤-34,0B.⎣⎡⎦⎤-33,33 C .[-3, 3]D.⎣⎡⎦⎤-23,0解析:选B 如图,设圆心C (2,3)到直线y =kx +3的距离为d ,若|MN |≥23,则d 2=r 2-⎝⎛⎭⎫12|MN |2≤4-3=1,即|2k |21+k2≤1,解得-33≤k ≤ 33.典题导入[例3] (1)(2012·山东高考)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( )A .内切B .相交C .外切D .相离(2)设两圆C 1、C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=________. [自主解答] (1)两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17.∵3-2<d <3+2,∴两圆相交.(2)由题意可设两圆的方程为(x -r i )2+(y -r i )2=r 2i ,r i >0,i =1,2.由两圆都过点(4,1)得(4-r i )2+(1-r i )2=r 2i ,整理得r 2i -10r i +17=0,此方程的两根即为两圆的半径r 1,r 2,所以r 1r 2=17,r 1+r 2=10,则|C 1C 2|=(r 1-r 2)2+(r 1-r 2)2=2×(r 1+r 2)2-4r 1r 2= 2×100-68=8.[答案] (1)B (2)8由题悟法两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到.以题试法3.(2012·青岛二中月考)若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________.解析:依题意得|OO 1|=5+20=5,且△OO 1A 是直角三角形,S △O O 1A =12·|AB |2·|OO 1|=12·|OA |·|AO 1|,因此|AB |=2·|OA |·|AO 1||OO 1|=2×5×255=4. 答案:4一、选择题1.(2012·人大附中月考)设m >0,则直线2(x +y )+1+m =0与圆x 2+y 2=m 的位置关系为( )A .相切B .相交C .相切或相离D .相交或相切解析:选C 圆心到直线l 的距离为d =1+m 2,圆半径为m .因为d -r =1+m 2-m =12(m -2m +1)=12(m -1)2≥0,所以直线与圆的位置关系是相切或相离.2.(2012·福建高考)直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于( )A .2 5B .2 3 C. 3D .1解析:选B 因为圆心(0,0)到直线x +3y -2=0的距离为1,所以AB =24-1=2 3. 3.(2012·安徽高考)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)解析:选C 欲使直线x -y +1=0与圆(x -a )2+y 2=2有公共点,只需使圆心到直线的距离小于等于圆的半径2即可,即|a -0+1|12+(-1)2≤2,化简得|a +1|≤2,解得-3≤a ≤1.4.过圆x 2+y 2=1上一点作圆的切线与x 轴,y 轴的正半轴交于A ,B 两点,则|AB |的最小值为( )A. 2B. 3 C .2D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则切线方程为x 0x +y 0y =1.分别令x =0,y =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |= ⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2.当且仅当x 0=y 0时,等号成立.5.(2013·兰州模拟)若圆x 2+y 2=r 2(r >0)上仅有4个点到直线x -y -2=0的距离为1,则实数r 的取值范围为( )A .(2+1,+∞)B .(2-1, 2+1)C .(0, 2-1)D .(0, 2+1)解析:选A 计算得圆心到直线l 的距离为22= 2>1,如图.直线l :x -y -2=0与圆相交,l 1,l 2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l 2的距离 2+1.6.(2013·临沂模拟)已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,P A ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点,若四边形P ACB 的最小面积是2,则k 的值为( )A. 2B.212C .2 2D .2解析:选D 圆心C (0,1)到l 的距离d =5k 2+1, 所以四边形面积的最小值为2×⎝⎛⎭⎫12×1×d 2-1=2, 解得k 2=4,即k =±2. 又k >0,即k =2.7.(2012·朝阳高三期末)设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则实数m 的值是________.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1,即|1-2m -1|1+m 2=1,解得m =±33.答案:±338.(2012·东北三校联考)若a ,b ,c 是直角三角形ABC 三边的长(c 为斜边),则圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为________.解析:由题意可知圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为 2 4-⎝ ⎛⎭⎪⎫c a 2+b 22,由于a 2+b 2=c 2,所以所求弦长为2 3. 答案:2 39.(2012·江西高考)过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.解析:∵点P 在直线x +y -22=0上,∴可设点P (x 0,-x 0+22),且其中一个切点为M .∵两条切线的夹角为60°,∴∠OPM =30°.故在Rt △OPM 中,有OP =2OM =2.由两点间的距离公式得OP =x 20+(-x 0+22)2=2,解得x 0= 2.故点P 的坐标是( 2, 2).答案:( 2, 2)10.(2012·福州调研)已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB |=423,求|MQ |及直线MQ 的方程; (2)求证:直线AB 恒过定点.解:(1)设直线MQ 交AB 于点P ,则|AP |=223,又|AM |=1,AP ⊥MQ ,AM ⊥AQ ,得|MP |=12-89=13,又∵|MQ |=|MA |2|MP |,∴|MQ |=3.设Q (x,0),而点M (0,2),由x 2+22=3,得x =±5, 则Q 点的坐标为(5,0)或(-5,0).从而直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.(2)证明:设点Q (q,0),由几何性质,可知A ,B 两点在以QM 为直径的圆上,此圆的方程为x (x -q )+y (y -2)=0,而线段AB 是此圆与已知圆的公共弦,相减可得AB 的方程为qx -2y +3=0,所以直线AB 恒过定点⎝⎛⎭⎫0,32. 11.已知以点C ⎝⎛⎭⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,若|OM |=|ON |,求圆C 的方程. 解:(1)证明:由题设知,圆C 的方程为 (x -t )2+⎝⎛⎭⎫y -2t 2=t 2+4t 2, 化简得x 2-2tx +y 2-4t y =0,当y =0时,x =0或2t ,则A (2t,0); 当x =0时,y =0或4t ,则B ⎝⎛⎭⎫0,4t , 所以S △AOB =12|OA |·|OB |=12|2t |·⎪⎪⎪⎪4t =4为定值. (2)∵|OM |=|ON |,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN ,∴C 、H 、O 三点共线,则直线OC 的斜率 k =2t t =2t 2=12,∴t =2或t =-2.∴圆心为C (2,1)或C (-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5,由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d >r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5.12.在平面直角坐标系xOy 中,已知圆x 2+y 2-12x +32=0的圆心为Q ,过点P (0,2),且斜率为k 的直线与圆Q 相交于不同的两点A 、B .(1)求k 的取值范围;(2)是否存在常数k ,使得向量OA +OB 与PQ共线?如果存在,求k 值;如果不存在,请说明理由.解:(1)圆的方程可写成(x -6)2+y 2=4,所以圆心为Q (6,0).过P (0,2)且斜率为k 的直线方程为y =kx +2,代入圆的方程得x 2+(kx +2)2-12x +32=0,整理得(1+k 2)x 2+4(k -3)x +36=0.①直线与圆交于两个不同的点A 、B 等价于Δ=[4(k -3)]2-4×36(1+k 2)=42(-8k 2-6k )>0,解得-34<k <0,即k 的取值范围为⎝⎛⎭⎫-34,0. (2)设A (x 1,y 1)、B (x 2,y 2)则OA +OB=(x 1+x 2,y 1+y 2),由方程①得x 1+x 2=-4(k -3)1+k 2.②又y 1+y 2=k (x 1+x 2)+4.③因P (0,2)、Q (6,0),PQ=(6,-2),所以OA +OB 与PQ共线等价于-2(x 1+x 2)=6(y 1+y 2),将②③代入上式,解得k =-34. 而由(1)知k ∈⎝⎛⎭⎫-34,0,故没有符合题意的常数k.1.已知两圆x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,则它们的公共弦所在直线的方程为________________;公共弦长为________.解析:由两圆的方程x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,相减并整理得公共弦所在直线的方程为2x +y -5=0.圆心(5,5)到直线2x +y -5=0的距离为105=25,弦长的一半为50-20=30,得公共弦长为230.答案:2x +y -5=0 2302.(2012·上海模拟)已知圆的方程为x 2+y 2-6x -8y =0,a 1,a 2,…,a 11是该圆过点(3,5)的11条弦的长,若数列a 1,a 2,…,a 11成等差数列,则该等差数列公差的最大值是________.解析:容易判断,点(3,5)在圆内部,过圆内一点最长的弦是直径,过该点与直径垂直的弦最短,因此,过(3,5)的弦中,最长为10,最短为46,故公差最大为10-4610=5-265.答案:5-2653.(2012·江西六校联考)已知抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,圆M 的圆心在x 轴的正半轴上,圆M 与y 轴相切,过原点O 作倾斜角为π3的直线n ,交直线l 于点A ,交圆M 于不同的两点O 、B ,且|AO |=|BO |=2.(1)求圆M 和抛物线C 的方程;(2)若P 为抛物线C 上的动点,求PM ,·PF,的最小值;(3)过直线l 上的动点Q 向圆M 作切线,切点分别为S 、T ,求证:直线ST 恒过一个定点,并求该定点的坐标.解:(1)易得B (1,3),A (-1,-3),设圆M 的方程为(x -a )2+y 2=a 2(a >0), 将点B (1,3)代入圆M 的方程得a =2,所以圆M 的方程为(x -2)2+y 2=4,因为点A (-1,-3)在准线l 上,所以p2=1,p =2,所以抛物线C 的方程为y 2=4x .(2)由(1)得,M (2,0),F (1,0),设点P (x ,y ),则PM ,=(2-x ,-y ),PF,=(1-x ,-y ),又点P 在抛物线y 2=4x 上,所以PM ,·PF ,=(2-x )(1-x )+y 2=x 2-3x +2+4x =x 2+x+2,因为x ≥0,所以PM ,·PF ,≥2,即PM ,·PF,的最小值为2.(3)证明:设点Q (-1,m ),则|QS |=|QT |=m 2+5,以Q 为圆心,m 2+5为半径的圆的方程为(x +1)2+(y -m )2=m 2+5,即x 2+y 2+2x -2my -4=0,①又圆M 的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0,② 由①②两式相减即得直线ST 的方程3x -my -2=0, 显然直线ST 恒过定点⎝⎛⎭⎫23,0.1.两个圆:C 1:x 2+y 2+2x +2y -2=0与C 2:x 2+y 2-4x -2y +1=0的公切线有且仅有( )A .1条B .2条C .3条D .4条解析:选B 由题知C 1:(x +1)2+(y +1)2=4,则圆心C 1(-1,-1),C 2:(x -2)2+(y -1)2=4,圆心C 2(2,1),两圆半径均为2,又|C 1C 2|=(2+1)2+(1+1)2=13<4,则两圆相交⇒只有两条外公切线.2.(2012·江苏高考)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.解析:设圆心C (4,0)到直线y =kx -2的距离为d ,则d =|4k -2|k 2+1,由题意知,问题转化为d ≤2,即d =|4k -2|k 2+1≤2,得0≤k ≤43,所以k max =43. 答案:433.过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为 2,则直线l 的斜率为________.解析:将圆的方程化成标准方程为(x -1)2+(y -1)2=1,其圆心为(1,1),半径r =1.由弦长为2得弦心距为22.设直线方程为y +2=k (x +1),即kx -y +k -2=0,则|2k -3|k 2+1=22,化简得7k 2-24k +17=0,得k =1或k =177. 答案:1或1774.圆O 1的方程为x 2+(y +1)2=4,圆O 2的圆心为O 2(2,1).(1)若圆O 2与圆O 1外切,求圆O 2的方程;(2)若圆O 2与圆O 1交于A 、B 两点,且|AB |=22,求圆O 2的方程.解:(1)设圆O 2的半径为r 2,∵两圆外切,∴|O 1O 2|=r 1+r 2,r 2=|O 1O 2|-r 1=2(2-1),故圆O 2的方程是(x -2)2+(y -1)2=4(2-1)2.(2)设圆O 2的方程为(x -2)2+(y -1)2=r 22,又圆O 1的方程为x 2+(y +1)2=4,此两圆的方程相减,即得两圆公共弦AB 所在直线的方程:4x +4y +r 22-8=0.因为圆心O 1(0,-1)到直线AB 的距离为|r 22-12|42= 4-⎝⎛⎭⎫2222=2,解得r22=4或r22=20.故圆O2的方程为(x-2)2+(y-1)2=4或(x-2)2+(y-1)2=20.。

公开课教案《直线和圆的位置关系》精品教案(市一等奖)

公开课教案《直线和圆的位置关系》精品教案(市一等奖)

按照新课程标准要求,学科核心素养作为现代教育体系的核心理论,提高学生的兴趣、学习的主动性,是当前教育教学研究所注重的重要环节之一。

2021年4月,教育部发布文件,对教育机构改革进行了深入和细致的解读。

从中我们不难看出,作为一线教师,教育教学手段和理论知识水平是下一步需要进一步提高的重要能力。

本课作为课本中比较重要的一环,对核心素养进行了贯彻,将课堂环节设计进行了细致剖析,力求达到学生乐学,教师乐教的理想状态。

2.1直线与圆的位置关系教学过程[复习引入]1、直线和圆有几种位置关系?分别是什么?2、填写下表位置关系相交相切相离公共点的个数d与r的关系公共点的名称直线的名称[探索新知]试一试:结合圆的切线的定义,经过⊙O上一点A,怎样准确画出⊙O的切线?如图,联结OA,过点A画半径OA的垂线,则直线AB为⊙O的切线,A为切点。说出有几种位置关系。并分别说出定义?填表画图,可讨论想一想:这样画图的理由是什么?此时圆心O到AB的距离等于半径,即AB为圆O的切线。

也就是说,经过半径外端,并且垂直于这条半径的的直线是圆的切线-----圆的切线判定教学过程例1:已知,如图,AB为⊙O的直径,AB=1cm,BC=2cm,AC=1cm.判断直线AC与⊙O是否相切,并说明理由。例2:如图,AB为⊙O的直径,点D在AB的延长线上,BD=OB,点C在圆上,∠CAB=90°,求证:DC是⊙O的切线。[课堂练习]1、AB是⊙O的直径,AE=AB,连结BE交⊙O于点C,CD⊥AE,垂足为D,求证:CD是⊙O的切线。2、已知直线AB经过⊙O上一点C,并且OA=OB,CA=CB,求证:直线AB是⊙O的切线。3、延长⊙O的半径OC至A,使得CA=OC,弦CB=OC,求证:AB是⊙O的切线[课堂小结]当已知直线与圆有公共点时,要证明直线与圆相切,可连接圆心与公共点,在证明连线垂直于这条直线。这是证明且显得一种方法。与老师一起完成解题过程,注意书写的规范性DOEDACBOCBAACOB布置作业见《轻巧夺冠》中考链接必做,课外拓展与提高练习选作板书设计:2.1直线与圆的位置关系 (2)经过半径外端,并且垂直于这条半径的的直线是圆的切线-----圆的切线判定例1:例2:课后自评与反思:本节课仍存在着一些不足:学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。

直线与圆的位置关系教案

直线与圆的位置关系教案

直线与圆的位置关系教案教学目标:1. 理解直线与圆的位置关系,掌握相关概念。

2. 学会利用直线与圆的位置关系解决实际问题。

3. 培养学生的空间想象能力和逻辑思维能力。

教学重点:1. 直线与圆的位置关系的判定。

2. 直线与圆的位置关系的应用。

教学难点:1. 理解并掌握直线与圆的位置关系的判定条件。

2. 解决实际问题时,如何正确运用直线与圆的位置关系。

教学准备:1. 教学课件或黑板。

2. 直线与圆的位置关系的相关例题和练习题。

教学过程:第一章:直线与圆的基本概念1.1 直线的定义及性质1.2 圆的定义及性质1.3 直线与圆的位置关系的基本概念第二章:直线与圆的位置关系的判定2.1 直线与圆相交的判定条件2.2 直线与圆相切的判定条件2.3 直线与圆相离的判定条件第三章:直线与圆的位置关系的应用3.1 求圆的方程3.2 求直线的方程3.3 求直线与圆的位置关系第四章:实际问题中的应用4.1 求点到直线的距离4.2 求点到圆心的距离4.3 求直线与圆的交点坐标第五章:综合练习5.1 判断直线与圆的位置关系5.2 求直线与圆的位置关系5.3 解决实际问题教学反思:通过本章的学习,学生应能掌握直线与圆的位置关系的基本概念,判定条件以及应用。

在教学过程中,应注意引导学生运用数学知识解决实际问题,培养学生的空间想象能力和逻辑思维能力。

通过练习题的训练,使学生巩固所学知识,提高解题能力。

第六章:直线与圆的位置关系的性质6.1 直线与圆相交的性质6.2 直线与圆相切的性质6.3 直线与圆相离的性质本章主要学习直线与圆的位置关系的性质。

学生将学习到在直线与圆相交、相切、相离的情况下,直线和圆的特定性质。

这些性质包括交点的数量、切点的位置、距离的关系等。

教学活动:通过图形和实例,让学生观察和总结直线与圆相交、相切、相离时的性质。

引导学生通过几何推理证明这些性质。

提供练习题,让学生应用这些性质解决具体问题。

教学评估:通过课堂讨论和练习题,评估学生对直线与圆位置关系性质的理解程度。

直线与圆的位置关系(复习)教案

直线与圆的位置关系(复习)教案

24.2直线与圆的位置关系(复习)
城关中学梁静
【教学任务分析】
【教学环节安排】
_D
图24.2-18
连接OC如图图24.2-18
【当堂达标自测题】
一、填空题
1.OA 平分∠BOC ,P 是OA 上任意一点(O 除外),若以P 为圆心的⊙P 与OC 相切,那么⊙P 与OB 的
位置位置是( )
A .相交
B .相切
C .相离
D .相交或相切
2.一个点到圆的最小距离为4cm,最大距离为9cm ,则该圆的半径是( ) A .2.5cm 或6.5cm B .2.5cm C . 6.5cm D .5cm 或13cm 二、选择题
3.如图2
4.2-15:PA 切⊙O 于A ,PB 切⊙O 于B ,OP 交⊙O 于C ,下列结论中错误的是( )
A :∠APO=∠BPO
B :PA=PB
C :AB ⊥OP
D :C 是PO 的中点
4.菱形的对角线相交于O ,以O 为圆心,以点O 到菱形一边的距离为半径的⊙O•与菱
形其它三边的位置关系是( )
A .相交
B .相离
C .相切
D .无法确定 图24.2-15 三、解答题
5.如图24.2-16,P 为⊙O 外一点,PO 交⊙O 于C ,过⊙O 上一点A 作弦AB ⊥
PO 于E ,若∠EAC=∠CAP ,求证:PA 是⊙O 的切线.
图24.2-16
6. PA ,PB 是⊙O 的切线,点A ,B 为切点,AC 是⊙O 的直径,∠ACB =70°. 求∠P 的度数.
6.如图24.2-17已知⊙O 中的弦AB=CD ,求证:AD=BC.
图24.2-17。

2024北师大版数学九年级下册3.6.2《直线和圆的位置关系》教案

2024北师大版数学九年级下册3.6.2《直线和圆的位置关系》教案

2024北师大版数学九年级下册3.6.2《直线和圆的位置关系》教案一. 教材分析《直线和圆的位置关系》是北师大版数学九年级下册第3章第6节的内容。

本节课主要探讨直线和圆的位置关系,包括相切和相交两种情况。

通过本节课的学习,学生能够理解直线和圆的位置关系的概念,掌握判断直线和圆位置关系的方法,并能够运用到实际问题中。

二. 学情分析九年级的学生已经学习了直线、圆的基本知识,对图形的几何特性有一定的了解。

但是,对于直线和圆的位置关系的理解和运用还需要进一步的引导和培养。

因此,在教学过程中,需要关注学生的认知水平,通过合适的教学方法引导学生理解和掌握直线和圆的位置关系。

三. 教学目标1.理解直线和圆的位置关系的概念,包括相切和相交。

2.学会判断直线和圆位置关系的方法。

3.能够运用直线和圆的位置关系解决实际问题。

四. 教学重难点1.重点:直线和圆的位置关系的概念和判断方法。

2.难点:直线和圆的位置关系的运用。

五. 教学方法1.采用问题驱动的教学方法,通过提问引导学生思考和探索直线和圆的位置关系。

2.利用几何图形和实例,直观地展示直线和圆的位置关系,帮助学生理解和记忆。

3.提供丰富的练习题,让学生在实践中巩固和拓展知识。

六. 教学准备1.准备相关的几何图形和实例,用于教学演示和练习。

2.准备教案和教学材料,确保教学过程的顺利进行。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾直线和圆的基本知识,为新课的学习做好铺垫。

2.呈现(15分钟)利用几何图形和实例,直观地展示直线和圆的位置关系,引导学生理解和记忆。

3.操练(15分钟)讲解判断直线和圆位置关系的方法,让学生进行练习,巩固知识。

4.巩固(10分钟)提供一些练习题,让学生在实践中巩固所学知识。

5.拓展(5分钟)引导学生思考直线和圆位置关系在实际问题中的应用,提升学生的解决问题的能力。

6.小结(5分钟)对本节课的内容进行总结,强调直线和圆位置关系的概念和判断方法。

初中数学复习教案直线和圆的位置关系

初中数学复习教案直线和圆的位置关系

初中数学复习教案直线和圆的位置关系教学目标:1. 理解直线和圆的位置关系的概念。

2. 掌握判断直线和圆位置关系的方法。

3. 能够应用直线和圆的位置关系解决实际问题。

教学内容:一、直线和圆的位置关系概念介绍1. 直线和圆的相离2. 直线和圆的相切3. 直线和圆的相交二、判断直线和圆位置关系的方法1. 利用圆心到直线的距离与圆的半径比较2. 利用直线的斜率和圆的半径判断三、实际问题应用1. 求直线与圆的交点2. 求直线与圆的切点3. 求直线与圆的距离四、巩固练习1. 判断给定的直线和圆的位置关系。

2. 解决给定的实际问题,求直线与圆的交点、切点或距离。

五、总结与评价1. 总结直线和圆的位置关系的概念及判断方法。

2. 评价自己在解决问题中的表现及提高空间。

教学方法:1. 采用讲解法,讲解直线和圆的位置关系概念及判断方法。

2. 采用案例分析法,分析实际问题并解决问题。

3. 采用练习法,巩固所学知识,提高解题能力。

教学评价:1. 课堂参与度:观察学生在课堂上的发言和提问情况,评价学生的参与度。

2. 练习完成情况:检查学生完成练习的情况,评价学生的掌握程度。

3. 问题解决能力:评估学生在解决实际问题时的表现,评价学生的应用能力。

教学资源:1. 教学PPT:展示直线和圆的位置关系概念及判断方法。

2. 练习题库:提供丰富的练习题,巩固所学知识。

3. 教学辅导书:提供详细的解题思路和方法,帮助学生自主学习。

初中数学复习教案直线和圆的位置关系教学内容:六、直线和圆的交点求解1. 直线与圆的交点性质2. 求解直线与圆的交点方法七、直线和圆的切点求解1. 直线与圆的切点性质2. 求解直线与圆的切点方法八、直线和圆的距离求解1. 直线与圆的距离公式2. 求解直线与圆的距离方法九、实际问题应用举例1. 求解直线与圆的交点、切点或距离的实际问题2. 分析问题、解决问题步骤及方法十、总结与评价1. 总结直线和圆的位置关系及其应用2. 评价学生在解决问题中的表现及提高空间教学方法:1. 采用案例分析法,分析直线和圆的交点、切点及距离的求解方法。

高考数学复习知识点讲解教案第50讲 直线与圆、圆与圆的位置关系

高考数学复习知识点讲解教案第50讲 直线与圆、圆与圆的位置关系

2
2和圆:
+
2

− 2 = 0满足对直
线上任意一点,在圆上存在点,使得 ⋅ = 0,则实数的取值范围是
(
B
)
A.{| ≥ 3}
B.{| − 3 ≤ ≤ 3}
C.{| ≥ 2 3}
D.{| − 2 3 ≤ ≤ 2 3}
[解析] 根据题意可知,圆的标准方程为 − 1
含圆2 的方程,所以注意检验圆2 的方程是否满足题意,以防丢解.
◆ 对点演练 ◆
题组一 常识题
2
是圆
1.[教材改编] 已知点 3, 6
+ 2 − 3 3 = 0
线方程是______________________.
[解析] ∵ 点
2

=
2
9.圆
2
2
+
2
2

=
2
上的一点,则过点的圆的切
2
+ −
2
=
2
上一点
0 − − + 0 − ( − ) =
2
2
.特别地,过圆
0 , 0 的圆的切线方程为0 + 0 =
2
0 , 0 的圆的切线方程为
+
2

=
2
上一点
2
.
2
(2)经过圆 + + + + = 0外一点 0 , 0 向圆作切线,经过两个切
2

+
∴ 圆心 0,0 到直线的距离 =
对于C,∵ 点在圆外,∴
2

+
∴ 圆心 0,0 到直线的距离 =

直线与圆的位置关系(复习课)

直线与圆的位置关系(复习课)

\ 圆心 C 到直接 kx - y - 4k + 4 = 0 的距离 d =
| 2k - 4k + 4 | k 2 + (- 1)2
=2,
根据圆心到 直线的距离 d =R
解得 k =
3 3 ,\ 切线方程为 y = x + 1 . 4 4
化简方程求 解k 注意斜率不 存在的情况
(2)当斜率不存在时,则切线方程为 x = 4
d= | 2k - k + 3 | k 2 + (- 1) 2 = 2 ,解得 k =
3 3 2 3 x+ ,\ 切线方程为 y = 3 3 3
方法二: 解:如图 3 所示 设直接的斜率为 k ,则直线方程 y = k ( x - 1) + 3
y 4
点P(1, 3) 在圆上,则 点P(1, 3) 为切点
| - 28 |
7 = , 42 + 7 2 2
求圆心到直线的距离 d
d > R = 3 ,\ 直线与圆相离.
比较弦心距 d 与半径 R 的大小 问题 5.代数法解题步骤是什么? 确定直线与圆的方程
代数特征
直线方程 4 x + 7 y - 28 = 0 ,圆 O 的方程 x 2 + y 2 = 9
联立 í
1
三、教学设计: 一、知识回顾 导入语:大家知道数学来源于生活,又服务于生活。下面有一道生活问题, 你能用学过哪方面的知识求解? 一个小岛的周围有环岛暗礁,暗礁分布在以小岛的中心为圆心,半径为 的圆形区域.已知小岛中心位于轮船正西 处,港口位于小岛中心正北 处.
如果轮船沿直线返港,那么它是否会有触礁的危险? 问题 1.你能否将此生活问题转化为我们熟悉的数学问题?

《直线和圆的位置关系》教学设计

《直线和圆的位置关系》教学设计

《直线和圆的位置关系》教学设计《直线和圆的位置关系》教学设计(精选5篇)教学设计是把教学原理转化为教学材料和教学活动的计划。

教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。

今天应届毕业生店铺为大家编辑整理了《直线和圆的位置关系》教学设计,希望对大家有所帮助。

《直线和圆的位置关系》教学设计篇1一、素质教育目标㈠知识教学点⒈使学生理解直线和圆的位置关系。

⒉初步掌握直线和圆的位置关系的数量关系定理及其运用。

㈡能力训练点⒈通过对直线和圆的三种位置关系的直观演示,培养学生能从直观演示中归纳出几何性质的能力。

⒉在7.1节我们曾学习了“点和圆”的位置关系。

⑴点P在⊙O上OP=r⑵点P在⊙O内OP<r⑶点P在⊙O外OP>r初步培养学生能将这个点和圆的位置关系和点到圆心的距离的数量关系互相对应的理论迁移到直线和圆的位置关系上来。

㈢德育渗透点在用运动的观点揭示直线和圆的位置关系的过程中向学生渗透,世界上的一切事物都是变化着的,并且在变化的过程中在一定的条件下是可以相互转化的。

二、教学重点、难点和疑点⒈重点:使学生正确理解直线和圆的位置关系,特别是直线和圆相切的关系,是以后学习中经常用到的一种关系。

⒉难点:直线和圆的位置关系与圆心到直线的距离和圆的关径大小关系的对应,它既可做为各种位置关系的判定,又可作为性质,学生不太容易理解。

⒊疑点:为什么能用圆心到直线的距离九圆的关径大小关系判断直线和圆的位置关系?为解决这一疑点,必须通过图形的演示,使学生理解直线和圆的位置关系必转化成圆心到直线的距离和圆的关径的大小关系来实现的。

三、教学过程㈠情境感知⒈欣赏网页flash动画,《海上日出》提问:动画给你形成了怎样的几何图形的印象?⒉演示z+z超级画板制作《日出》的简易动画,给学生形成直线和圆的位置关系的印象,像这样平面上给定一条定直线和一个运动着的圆,它们之间虽然存在着若干种不同的位置关系,如果从数学角度,它的若干位置关系能分为几大类?请同学们打开练习本,画一画互相研究一下。

第4节 直线与圆、圆与圆的位置关系--2025高中数学一轮复习课件基础版(新高考新教材)

第4节  直线与圆、圆与圆的位置关系--2025高中数学一轮复习课件基础版(新高考新教材)

|O1O2|=2,r2-r1<|O1O2|<r2+r1,所以两圆相交.
7.(人教A版选择性必修第一册第93页2.5.1节练习第3题改编)直线2x-y+2=0
8 5
被圆(x-1)2+(y-2)2=4截得的弦长为__________.
5
解析 圆的圆心坐标为(1,2),半径 r=2.
圆心到直线的距离 d=
)
题组二 回源教材
5.(人教A版选择性必修第一册2.5.1节例1改编)直线y=x+1与圆x2+y2=1的位
置关系为( B )
A.相切
B.相交但直线不过圆心
C.直线过圆心
D.相离
解析 圆心(0,0)到直线 y=x+1,即 x-y+1=0 的距离 d=

2
0< <1,但是圆心不在直线
2
1
2
=
2
,
2
y=x+1 上,所以直线与圆相交,但直线不过圆心.
3
=1(m>0)的渐近线与圆x2+y2-4y+3=0
相切,则m=__________.
3
解析 圆的方程可化为 x2+(y-2)2=1,双曲线的一条渐近线方程为 x=my(m>0),
由题意得
|2|
1+
=1,解得
2
3
m= 或
3
3
m=- .又
3
m>0,所以
3
m= .
3
研考点
精准突破
考点一
直线与圆的位置关系
于m,则m的值为__________.
2
解析 由题知,圆心(1,1)到直线

“直线与圆的位置关系”教案

“直线与圆的位置关系”教案
将①式代入②式,整理得x2+2x+1=0,
解得x=-1.
将x=-1代入①式得y=1.
所以直线l和圆O有且只有一个公共点(-1,1),即直线l和圆O相切.
课堂练习:判断直线 和圆 的位置关系
新的问题:类比于点与圆的位置关系,能否借助于数量关系判断直线与圆的位置关系?
用圆心到直线的距离和圆半径的数量关系来揭示圆和直线的位置关系.
结论:直线l:Ax+By+C=0圆C:(x-a)2+(y-b)2=r2(r>0)
(1) 直线与圆相交
(2) 直线与圆相切
(3) 直线与圆相离
例2的另一种解法:圆心(0,0),半径
圆心到直线的距离
所以直线与圆相切
例3:判断下列各直线与圆的位置关系
(1)直线 ,圆
(2)直线 ,圆
(3)直线 ,圆
三.课堂小结
判定直线与圆的位置关系的方法有两种:
(1)根据定义,由直线与圆的公共点的个数来判断;
(2)根据性质,由圆心到直线的距离与半径的关系来判断.
在实际应用中,常采用第二种方法判定.




1.《创新学案》
2.《导学与同步训练》




在《直线和圆的位置关系》这节课中,我首先由生活中的情景——黄昏日落引入,让学生发现地平线和太阳位置关系的变化,从而引出课题:直线和圆的位置关系。然后要求学生自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着回顾之前讲点与圆位置关系时用数量关系来判断的方法,引导学生探索直线与圆的位置关系中是否也可以用数量关系来判断直线与圆的位置关系。由“做一做”进行应用,最后去解决实际问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《直线与圆、圆与圆的位置关系复习》教案
教学目标:
1、通过复习理解直线和圆、圆与圆的位置关系
2、掌握直线与圆相切的判定与性质定理;
3、理解三角形的内切圆、三角形内心的性质,并会利用内心性质解题。

4、通过解题思路的探索,提高学生观察、分析和解决问题的能力。

5、培养正确的学习方法和良好的学习习惯。

教学重点:掌握切线的判定和性质,并能灵活运用。

教学难点:切线的判定和性质的综合运用。

教学过程: 一、梳理知识点
学生完成课本第64页的小结部分 二、例题讲解
例1、在Rt △ABC 中,∠C=90°,AC=3cm,BC=4cm,以C 为圆心,r 为半径的圆与AB 有何位置关系?为什么?
分析:求圆心C 到AB 的距离,再与半径r 比较。

例2、如图,△ADC 内接圆O ,AB 是⊙O 的直径,且∠EAC=∠D ,
求证:AE 是⊙O 的切线。

分析:要证AE 是⊙O 的切线,只要证 OA ⊥AE ,即证∠OAE=90°。

学生自己完成证明过程。

提问:上题中若去掉“AB 是⊙O 的直径”这个题设条件,原题为“如图,△ADC 内接圆O ,且∠EAC=∠D ”,AE 仍是⊙O 的切线吗?
小结:判定切线时,往往需要添加辅助线,其规律是:
①如果已知直线经过圆上的一点,那么连接这点和圆心得到辅助线半径,再证明所作半径与这条直线垂直即可;
A
B
E
A
②如果已知条件即没有给出圆上一点,也没有指出直径上的点,那么过圆心作直线的垂线段为辅助线,再证明垂线段的长度等于半径的长即可。

练习:1、 在△ABC 中,BC=6cm, ∠B=30°, ∠C=45°,以点A 为圆心,当半径多长时所作的⊙A 与BC 所在的直线相切?相交?相离?
2、已知O 为∠BAC 的平分线上一点,OD ⊥AB ,D 为垂足,以O 为圆心,OD 为半径作⊙O ,如图。

求证:⊙O 与AC 相切。

例3、某数学学习小组为了测量仪公园里放置于平台上的一个巨型球体石料的半径,采用了如下的方法:在球体石料的一侧紧挨一个已知直径的钢球,其截面如图所示,设⊙C 与大圆外切的切点为D ,⊙C 与大圆都与平台相切,切点为A 、B 且⊙C 的直径为10cm,测得AB=50cm, 求球体石料的半径R 。

分析:设大圆的圆心为O ,连接OC ,CA ,OB ,作CE ⊥OB 于E ,则OC=R+5,OE=R-EB=R-CA=R-5,
CE=AB=50cm,在Rt △COE 中用勾股定理可求出R 。

小结:根据两圆相切,构造直角三角形,用勾股定理求解是一种常用的方法。

例4、某公园有一块由三条马路围成的三角形绿地(如图)现准备在其中建一个尽可能大的圆亭供人们休息,试作出这个圆。

四、布置作业:见课本目标与评定。

A B。

相关文档
最新文档