分子发光分析法课件
合集下载
第五章 分子发光分析法PPT课件
菏泽学院化学与化工系
9
(二) 荧光效率及其影响因素 1. 荧光效率 发射荧光的分子数目与激发态分子总数的比值。
荧光效率(f)=
发荧光的分子数 激发态分子总数
也可以各种跃迁的速率常数表示
f
Kf K f Ki
式中:Kf为荧光发射过程的速率常数,∑Ki为非辐射跃迁的 速率常数之和。一般来说,Kf决定于物质的化学结构;∑Ki 主要决定于化学环境,同时也与化学结构相关,有分析应用
长;
‘ 2
>
2
>
1
;
磷光发射:电子由第一激发三重态的最低振动能级→基态(
T1 → S0跃迁); 电子由S0进入T1的可能过程:( S0 → T1禁阻跃迁)
S0 →激发→振动弛豫→内转移→系间跨越→振动弛豫→ T1 发光速度很慢: 10-4~100 s 。
光照停止后,可持续一段时间。
2020/10/31
的电子跃回第一激发单重态的最低振动能级。
外转换:激发分子与溶剂或其他分子之间产生相互作用而转
移能量的非辐射跃迁;外转换使荧光或磷光减弱或“猝灭”
。
系间跨越(intersystem conversion):不同多重态,有重叠的转动
能级间的非辐射跃迁。改变电子自旋,禁阻跃迁,通过自旋
—轨道耦合进行。
2020/10/31
❖ 直到1852年,Stokes在考察奎宁和叶绿素的荧光时,用分光光度 计观察到其荧光的波长比入射光的波长稍微长些,才判断这种 现象是这些物质在吸收光能后重新发射不同波长的光,而不是 由光的漫射作用所引起的,从而导入了荧光是光发射的概念, 他还由发荧光的矿石“萤石”推演而提出“荧光”这一术语。
2020/10/31
分子发光分析ppt课件
仪器分析
光谱分析
原子光谱
原子吸收 原子发射 原子荧光
分子吸收 分子光谱
分子发光
紫外-可见光谱 红外光谱
2
第八章 分子发光分析法
分子 吸收能量 激发为激发态 释放出能量 基态
电能 化学能 光能
分子发光
光致发光 化学发光
辐射跃迁 非辐射跃迁
光的形式释放 以热的形式释放
称为“发光”
荧光 磷光
3
分子荧光/磷光分析法 一、基本原理
式中为荧光量子效率,又根据Beer定律
A=-lg I/ I0 I= I0 .10- A Ia = I0 - I = I0(1- 10 -A)
I0和I分别是入射光强度和透射光强度。代入 上式得
If = I0(1- 10 -kb c)
28
整理得:
If =2.3 I0 kbc 当入射光强度I0 和b一定时,上式为:
特殊化学作用如氢键的生成
同一种荧光物质在不同的溶剂中的荧光光谱不同
因素
温度
内部能量转化作用增大 碰撞频率增加,使外转换的几率增加
温度上升使荧光强度下降
化合物所处状态不同
酸度 电子构型上有所不同
荧光强度和荧光光谱不同
30
31
3、荧光猝灭
定义:荧光物质分子与溶剂分子或其它溶质分子
的相互作用引起荧光强度降低的现象
增加试样的刚性:
低温冷冻
固体磷光法:
吸附于固相载体(滤纸)
分子缔合物的形成:
加入表面活性剂等
重原子效应:
加入含重原子的物质,如银盐等
敏化磷光:
通过能量转移产生磷光
42
磷光分析仪器
荧光计上配上磷光测量附件即可对磷光进行测量。 在有荧光发射的同时测量磷光
光谱分析
原子光谱
原子吸收 原子发射 原子荧光
分子吸收 分子光谱
分子发光
紫外-可见光谱 红外光谱
2
第八章 分子发光分析法
分子 吸收能量 激发为激发态 释放出能量 基态
电能 化学能 光能
分子发光
光致发光 化学发光
辐射跃迁 非辐射跃迁
光的形式释放 以热的形式释放
称为“发光”
荧光 磷光
3
分子荧光/磷光分析法 一、基本原理
式中为荧光量子效率,又根据Beer定律
A=-lg I/ I0 I= I0 .10- A Ia = I0 - I = I0(1- 10 -A)
I0和I分别是入射光强度和透射光强度。代入 上式得
If = I0(1- 10 -kb c)
28
整理得:
If =2.3 I0 kbc 当入射光强度I0 和b一定时,上式为:
特殊化学作用如氢键的生成
同一种荧光物质在不同的溶剂中的荧光光谱不同
因素
温度
内部能量转化作用增大 碰撞频率增加,使外转换的几率增加
温度上升使荧光强度下降
化合物所处状态不同
酸度 电子构型上有所不同
荧光强度和荧光光谱不同
30
31
3、荧光猝灭
定义:荧光物质分子与溶剂分子或其它溶质分子
的相互作用引起荧光强度降低的现象
增加试样的刚性:
低温冷冻
固体磷光法:
吸附于固相载体(滤纸)
分子缔合物的形成:
加入表面活性剂等
重原子效应:
加入含重原子的物质,如银盐等
敏化磷光:
通过能量转移产生磷光
42
磷光分析仪器
荧光计上配上磷光测量附件即可对磷光进行测量。 在有荧光发射的同时测量磷光
《分子发光》课件
详细描述
荧光光谱法利用某些物质吸收光后, 能以荧光的形式重新发射出特定波长 的光,通过测量荧光光谱,可以分析 物质的组成和结构。
磷光光谱法
总结词
一种测量物质在激发态的磷光发射光谱的方法。
详细描述
磷光光谱法利用物质吸收光后,处于激发态的分子以磷光的形式缓慢地释放出 特定波长的光,通过测量磷光光谱,可以分析物质的组成和结构。
详细介绍了分子发光的原理、发光机制以及在各个领域的 应用,是学习分子发光的基础教材。
《荧光染料与荧光分析法》
系统介绍了荧光染料的基本性质、合成方法以及荧光分析 法的应用,对于深入了解荧光染料在分子发光领域的作用 很有帮助。
"分子发光机制研究进展"
综述了近年来分子发光机制的研究成果,包括新的发光材 料、发光过程的理论模型等。
激发态的稳定性
激发态是相对不稳定的, 分子会通过各种方式释放 能量并回到基态。
分子发光的辐射过程
辐射跃迁
激发态的分子通过释放光子的形式回到基态,这 个过程称为辐射跃迁。
光子的产生
当分子从激发态回到基态时,会释放出能量并以 光子的形式辐射出去。
光子性质
光子具有特定的波长(或频率),与其所属的分 子和激发态有关。
THANKS
感谢观看
《分子发光》PPT课件
contents
目录
• 分子发光的概述 • 分子发光的原理 • 分子发光的技术与方法 • 分子发光在科学研究中的应用 • 分子发光的发展趋势与展望 • 参考文献
01
分子发光的概述
分子发光的基本概念
分子发光是指分子在吸收能量 后以光子的形式释放能量的过 程。
分子发光现象广泛存在于自然 界和人类生产生活中,如萤火 虫、发光菌、荧光棒等。
荧光光谱法利用某些物质吸收光后, 能以荧光的形式重新发射出特定波长 的光,通过测量荧光光谱,可以分析 物质的组成和结构。
磷光光谱法
总结词
一种测量物质在激发态的磷光发射光谱的方法。
详细描述
磷光光谱法利用物质吸收光后,处于激发态的分子以磷光的形式缓慢地释放出 特定波长的光,通过测量磷光光谱,可以分析物质的组成和结构。
详细介绍了分子发光的原理、发光机制以及在各个领域的 应用,是学习分子发光的基础教材。
《荧光染料与荧光分析法》
系统介绍了荧光染料的基本性质、合成方法以及荧光分析 法的应用,对于深入了解荧光染料在分子发光领域的作用 很有帮助。
"分子发光机制研究进展"
综述了近年来分子发光机制的研究成果,包括新的发光材 料、发光过程的理论模型等。
激发态的稳定性
激发态是相对不稳定的, 分子会通过各种方式释放 能量并回到基态。
分子发光的辐射过程
辐射跃迁
激发态的分子通过释放光子的形式回到基态,这 个过程称为辐射跃迁。
光子的产生
当分子从激发态回到基态时,会释放出能量并以 光子的形式辐射出去。
光子性质
光子具有特定的波长(或频率),与其所属的分 子和激发态有关。
THANKS
感谢观看
《分子发光》PPT课件
contents
目录
• 分子发光的概述 • 分子发光的原理 • 分子发光的技术与方法 • 分子发光在科学研究中的应用 • 分子发光的发展趋势与展望 • 参考文献
01
分子发光的概述
分子发光的基本概念
分子发光是指分子在吸收能量 后以光子的形式释放能量的过 程。
分子发光现象广泛存在于自然 界和人类生产生活中,如萤火 虫、发光菌、荧光棒等。
分子发光分析jPPT课件
第一节
三、荧光的产生与分子结构的 关系
分子荧光与磷光
relation between fluorescence
and molecular structure
molecular fluorescence 四、影响荧光强度的因素
and phosphorescence
influenced factor of fluorescence
过辐射跃迁(发光)和无辐射跃迁等方式失去能
量。
传递途径
辐射跃迁
无辐射跃迁
荧光
磷光
系间窜跃 内转移 外转移 振动弛豫
2020/12/29
内转换
振动弛豫 内转换
S2
系间跨越
S1
能
T1 T2
量
吸 收
发
射
外转换
荧
光
发
射
磷 振动弛豫 光
S0
λ3
λ1
λ2
λ 2
2020/12/29
无辐射跃迁
☆振动弛豫:激发态分子由同一电子能级中的较高振动能级 转至较低振动能级的过程,其速率极快,约10-14-10-12s。 ☆内转换:相同多重态的两个电子能级间,由高能级回到低 能级的分子内过程,取决于两能级的能量差,约10-13-10-11s。 ☆外转换:激发态分子与溶剂与其他溶质相互作用、能量转 换而使荧光 (或磷光)减弱甚至消失的过程。 ☆系间窜跃: 激发态分子的电子自旋发生倒转而使分子的多 重态发生变化的过程,其速率极慢,约10-6-10-2s。
1. 激发光谱曲线
如果将激发光的光源用单色器分光,测定不同波长激发光照 射下荧光强度的变化,以激发波长为横坐标,荧光强度为纵 坐标作图,便可得到荧光物质的激发光谱。(图中红线)。
仪器分析分子发光分析法课件
第七章 分子发光分析法
分子发光:
M + 能量
光致发光:
M + hv
M*
M + hv
M*
M + hv'
第七章 分子发光分析法
第一节 分子荧光、磷光产生基本原理 第二节 荧光光谱与基本特征 第三节 荧光产率与分子结构的关系 第四节 影响荧光强度的环境因素 第五节 分子发光光谱仪结构流程 第六节 定量分析方法
共轭体系越大,荧光量子产率越高,向长波方向 移动。
化合物
苯 萘 蒽 丁省
量子产率φF 0.11 0.29 0.46 0.60
λex(nm) 205 286 365 390
λem(nm) 278 321 400 480
第三节 荧光产率与分子结构的关系
(三)、 刚性平面结构 1. 减少分子振动,减小外转换。 2. 增大分子吸光截面,增大摩尔吸光系数。
第一节 分子荧光磷光产生基本原理
(一)、非辐射跃迁
1. 振动弛豫:同一电子能级内以热能量交换形式由 高振动能级至低相邻振动能级间的跃迁。发生振动 弛豫的时间10 -12 s。
S2
hv
S0
e
第一节 分子荧光磷光产生基本原理 2. 内转换:相同多重度的电子能级中, 相等能级间的 非辐射能级交换。发生内转换的时间10-12 s。
外转换使荧光或磷光减弱或“猝灭”。
第一节 分子荧光磷光产生基本原理
(二)、辐射跃迁
1. 荧光发射:电子由第一激发单重态的最低振动能 级→基态各振动能级,发射时间约为10-7~10-9 s 。
发射荧光的能量比分子吸收的能量小,波长长。
S2
S1
T1
hv
hv′
S0 e
分子发光:
M + 能量
光致发光:
M + hv
M*
M + hv
M*
M + hv'
第七章 分子发光分析法
第一节 分子荧光、磷光产生基本原理 第二节 荧光光谱与基本特征 第三节 荧光产率与分子结构的关系 第四节 影响荧光强度的环境因素 第五节 分子发光光谱仪结构流程 第六节 定量分析方法
共轭体系越大,荧光量子产率越高,向长波方向 移动。
化合物
苯 萘 蒽 丁省
量子产率φF 0.11 0.29 0.46 0.60
λex(nm) 205 286 365 390
λem(nm) 278 321 400 480
第三节 荧光产率与分子结构的关系
(三)、 刚性平面结构 1. 减少分子振动,减小外转换。 2. 增大分子吸光截面,增大摩尔吸光系数。
第一节 分子荧光磷光产生基本原理
(一)、非辐射跃迁
1. 振动弛豫:同一电子能级内以热能量交换形式由 高振动能级至低相邻振动能级间的跃迁。发生振动 弛豫的时间10 -12 s。
S2
hv
S0
e
第一节 分子荧光磷光产生基本原理 2. 内转换:相同多重度的电子能级中, 相等能级间的 非辐射能级交换。发生内转换的时间10-12 s。
外转换使荧光或磷光减弱或“猝灭”。
第一节 分子荧光磷光产生基本原理
(二)、辐射跃迁
1. 荧光发射:电子由第一激发单重态的最低振动能 级→基态各振动能级,发射时间约为10-7~10-9 s 。
发射荧光的能量比分子吸收的能量小,波长长。
S2
S1
T1
hv
hv′
S0 e
《分子发光分析法》PPT课件
F
0.11 0.29
λexmax(nm) 205 286
λemmax (nm) 278 321
蒽
丁省
0.46
0.60
365
390
400
480
精选课件ppt
7-2
戊省 0.52 580 640
提要 返20 回
3.荧光与分子结构的关系
• 2)刚性平面结构 荧光物质的刚性和平面性增加,
有利于荧光发射。
精选课件ppt
3. 荧光和磷光光谱的产生
(1)荧光:
S1或T1 发光 S0
当电子从第一激发单重态S1的最低振动 能级回到基态S0各振动能级所产生的光 辐射叫荧光
荧光是相同多重态间的允许跃迁,产生 速度快,10-9~10-6s,又叫快速荧光或瞬 时荧光,外部光源停止照射,荧光马上 猝灭
精选课件ppt
7-2 提要 返10 回
精选课件ppt
提要 返3 回
7-2 分子荧光分析法及其原理
• 一、分子荧光和磷光的产生
1.电子自旋状态的多重性
2. 无辐射跃迁
3. 荧光和磷光光谱的产生
二、分子荧光分析法的基本原理
1.激发光谱和荧光谱
2.荧光强度及其与浓度的关系
3.荧光与分子结构的关系
4.影响荧光强度的因素
精选课件ppt
提要 返4 回
一、荧光和磷光光谱的产生(图)
• 具有不饱和基团的基态分子光照后,价 电子跃迁产生荧光和磷光
基态分子
光照激发
价电子跃迁到激发态
去激发光 * * n
基态
精选课件ppt
7-2
提要 返5 回
1. 电子自旋状态的多重性
• 单重态:用 “S0” 表示 • 当物质受光照射时,基态电子能级跃迁至
分子发光分析法概况课件
分子发光分析法的优缺点
优点
高灵敏度
分子发光分析法通常具 有很高的灵敏度,能够 检测出低浓度的目标物
。
选择性
某些发光分子可以与目 标物发生特异性反应, 从而提高分析的选择性
。
操作简便
分子发光分析法通常操 作简单,所需仪器设备 相对简单,便于现场快
速检测。
缺点
背景干扰
发光分析法容易受到环 境背景光的影响,如日 光、荧光等,导致检测
01
02
研发能够延长发光分子寿命 的技术,以减少检测过程中
的误差和不确定性。
03
04
克服背景干扰
研究和发展能够有效排除背 景光干扰的技术和方法,以 提高检测的稳定性和准确性
。
拓展应用领域
进一步探索发光分析法在环 境监测、生物医药、食品安 全等领域的应用,以满足更
广泛的需求。
06 结论
总结分子发光分析法的概况与重要性
结果不稳定。
发光衰减
某些发光分子的发光强 度会随时间衰减,影响 检测的准确性和稳定性
。
成本较高
某些高灵敏度的发光分 子和仪器设备成本较高 ,限制了其在某些领域
的应用。
未来发展方向与挑战
提高灵敏度和选择性
延长发光寿命
进一步研发具有更高灵敏度 和选择性的发光分子,以满 足更低检测限和更高准确性
的需求。
新型的分子发光分析方法和技术不断 涌现,如荧光免疫分析、荧光偏振免 疫分析、时间分辨荧光免疫分析等。
02
分子发光分析法的基本原理
分子发光的过程与机制
01
分子发光是指分子吸收能量后,由基态跃迁至激发态,再由激 发态回到基态时释放光子的过程。
02
第十六章分子发光分析法-PPT精品
氧原子与CO的发光反应:
CO + O → CO2* CO2 * → CO2 + h 发射光谱范围:300~500nm;灵敏度1ng/cm-3;
2019/11/12
c. 乙烯与O3的发光反应
乙烯与O3反应,生成激发态乙醛:
CH2O* → CH2O + h 最大发射波长:435nm;对O3的特效反应;线性响应 范围1 ng/cm-3 ~1g/cm-3;
结束
2019/11/12
2019/11/12
b.硫化物
挥发性硫化物SO2 、H2S 、CH3SH、 CH3SCH3等在富 氢火焰中燃烧,产生很强的化学发光(蓝色):
SO2 + 2H2 → S + 2H2O S + S → 2S2 * S2 * → S2 + h 发射光谱范围:350~460nm; 最大发射波长:394nm; 灵敏度: 0.2 ng/cm-3; 发射光强度与硫化物浓度的平方成正比。
NADH脱氢酶
NADH + FMA + H+ NAD+ + FMNH2
黄素酶
FMNH2 + RCHO + O2 FMN + RCOOH + H2O + h 最大发射波长495 nm;
2019/11/12
二、特点 characteristics
1. 灵敏度极高
例:荧光素酶和磷酸三腺甙(ATP)的化学发光分析,可测 定210-17。Mol/L的ATP,即可检测出一个细菌中的ATP含量
2019/11/12
生物发光分析应用 1
在pH 7~8;荧光素酶(E)和Mg2+的存在下,荧光素
(LH2)与磷酸三腺甙(ATPபைடு நூலகம்的反应,生成磷酸腺甙(AMP)荧光 素和荧光素酸的复合物和镁的焦磷酸盐(ppi):
CO + O → CO2* CO2 * → CO2 + h 发射光谱范围:300~500nm;灵敏度1ng/cm-3;
2019/11/12
c. 乙烯与O3的发光反应
乙烯与O3反应,生成激发态乙醛:
CH2O* → CH2O + h 最大发射波长:435nm;对O3的特效反应;线性响应 范围1 ng/cm-3 ~1g/cm-3;
结束
2019/11/12
2019/11/12
b.硫化物
挥发性硫化物SO2 、H2S 、CH3SH、 CH3SCH3等在富 氢火焰中燃烧,产生很强的化学发光(蓝色):
SO2 + 2H2 → S + 2H2O S + S → 2S2 * S2 * → S2 + h 发射光谱范围:350~460nm; 最大发射波长:394nm; 灵敏度: 0.2 ng/cm-3; 发射光强度与硫化物浓度的平方成正比。
NADH脱氢酶
NADH + FMA + H+ NAD+ + FMNH2
黄素酶
FMNH2 + RCHO + O2 FMN + RCOOH + H2O + h 最大发射波长495 nm;
2019/11/12
二、特点 characteristics
1. 灵敏度极高
例:荧光素酶和磷酸三腺甙(ATP)的化学发光分析,可测 定210-17。Mol/L的ATP,即可检测出一个细菌中的ATP含量
2019/11/12
生物发光分析应用 1
在pH 7~8;荧光素酶(E)和Mg2+的存在下,荧光素
(LH2)与磷酸三腺甙(ATPபைடு நூலகம்的反应,生成磷酸腺甙(AMP)荧光 素和荧光素酸的复合物和镁的焦磷酸盐(ppi):
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
命等各种发光特性对所研究体系的局部环境因素的敏感性
,因此,发光分析法在光学分子传感器以及在生物医学、 药学和环境科学等方面的应用更显示了它的优越性。
1 分子荧光与磷光光谱分析法
Molecular fluorescence and phosphorescence analysis
1.1 基本原理
A. 分子能级与跃迁
电子处于激发态是不稳定状态,返回基态时,通过辐射 跃迁(发光)和无辐射跃迁等方式失去能量; 传递途径 辐射跃迁 无辐射跃迁
荧光
延迟荧光
磷光
系间跨越 内转移
外转移
振动弛预
激发态停留时间短、返回速度快的途径,发生的几率大, 发光强度相对大; 荧光:10-7~10 -9 s,第一激发单重态的最低振动能级→基态; 磷光:10-4~10s;第一激发三重态的最低振动能级→基态;
程的速率常数小,有利于荧光的产生;
(2)共轭效应:提高共轭度有利于增加荧光效率并
产生红移
(3)刚性平面结构:可降低分子振动,减少与溶剂 的相互作用,故具有很强的荧光。如荧光素和酚酞 有相似结构,荧光素有很强的荧光,酚酞却没有。 (4)取代基效应:芳环上有供电基,使荧光增强。
酚酞
荧光素
C H2
联苯(0.18)
外转换使荧光或磷光减弱或“猝灭”。
系间跨越:不同多重态,有重叠的转动能级间的非辐射跃迁。 改变电子自旋,禁阻跃迁,通过自旋—轨道耦合进行。
辐射能量传递过程
荧光发射:电子由第一激发单重态的最低振动能级→基态( 多为 S1→ S0跃迁),发射波长为 l ‘2的荧光; 10-7~10 -9 s 。 由图可见,发射荧光的能量比分子吸收的能量小,波长 长; l ‘2 > l 2 > l 1 ; 磷光发射:电子由第一激发三重态的最低振动能级→基态( T1 → S0跃迁); 电子由S0进入T1的可能过程:( S0 → T1禁阻跃迁)
芴(1)
1.3 影响分子发光的环境因素
A.溶剂的影响
除一般溶剂效应外,溶剂的极性、氢键、配位键的形成 都将使化合物的荧光发生变化;
B.温度的影响
荧光强度对温度变化敏感,温度增加,外转换去活的几
率增加。
C. 溶液pH
对酸碱化合物,溶液pH的影响较大,需要严格控制;
1.4 荧光、磷光的猝灭
A.猝灭
A.分子产生荧光必须具备的条件
(1)具有合适的结构;
(2)具有一定的荧光量子产率。
荧光量子产率():
发射的光量子数 吸收的光量子数
荧光量子产率与激发态能量释放各过程的速率常 数有关,如外转换过程速度快,不出现荧光发射;
B.化合物的结构与荧光
(1)跃迁类型:* → 的荧光效率高,系间跨越过
析法。
(2)分子发光分析法的特点
灵敏度高。较吸收光度法一般要高2 ~ 3个数量级。 选择性比较高。物质对光的吸收具有普遍性,但吸光后并 非都有发光现象。即便都有发光现象,但在吸收波长和发 射波长方面不尽相同,这样就有可能通过调节激发波长和
发射波长来达到选择性测定的目的。
样品量小,操作简便,工作曲线的动态线性范围宽。 发光检测的高灵敏度,以及发光光谱、发光强度、发光寿
分子能级比原子能级复杂; 在每个电子能级上,都存在振动、转动能级; 基态(S0)→激发态(S1、S2、激发态振动能级):吸收特定频 率的辐射;量子化;跃迁一次到位; 激发态→基态:多种途径和方式(见能级图);速度最快、 激发态寿命最短的途径占优势; 第一、第二、…电子激发单重态 S1 、S2… ; 第一、第二、…电子激发三重态 T1 、 T2 … ;
发光分子与溶剂或溶质分子之间所发生的导致发光强度 下降的物理或化学作用过程。 与发光分子相互作用而引起发光强度下降的物质,称为 猝灭剂。
B.动态猝灭与静态猝灭
猝灭剂与发光物质的激发态分子之间的相互作用引起动 态猝灭;猝灭剂与发光物质的基态分子之间的相互作用引起
静态猝灭。
1.5 激发光谱和发射光谱
荧光(磷光):光致发光,照射光波长如何选择?
内转换 S2
内 光 T2
外转换
发 射 磷 振动弛豫 光
S0
l1
l2
l 2
l3
非辐射能量传递过程
振动弛豫:同一电子能级内以热能量交换形式由高振动能级 至低相邻振动能级间的跃迁。发生振动弛豫的时间10 -12 s。 内转换:同多重度电子能级中,等能级间的无辐射能级交换。 通过内转换和振动弛豫,高激发单重态的电子跃回第一 激发单重态的最低振动能级。 外转换:激发分子与溶剂或其他分子之间产生相互作用而转 移能量的非辐射跃迁;
S0 →激发→振动弛豫→内转移→系间跨越→振动弛豫→ T1
发光速度很慢: 10-4~100 s 。 光照停止后,可持续一段时间。
荧光、磷光的寿命和量子产率
荧光寿命:荧光分子处于S1激发态的平均寿命,表示为: τ f = 1 /(kf + ΣK) 磷光寿命(τ p)指的是磷光分子处于T1激发态的平均寿命,可由 类似的公式表示。
荧光量子产率:荧光物质吸光后所发射的荧光的光子数与所
吸收的激发光的光子数之比值。 由于激发态分子的衰变过程包含辐射跃迁和非辐射跃迁,故
荧光量子产率可表示为
ɸf = kf / (kf + ΣK) 磷光的量子产率(ɸp)定义为:
KP P ST KP Kj
1.2 荧光、磷光与分子结构的关系
分子发光分析法 Molecular luminescence
概论
(1)分子发光的类型
荧光和磷光。 分子由化学反应的化学能或由生物体(经由体内的化学反 应)释放出来的能量所激发,其发光分别称为化学发光或 按激发的模式分类: 分子吸收光能被激发,所产生的发光为光致发光,如分子
生物发光。
以分子发光为检测手段的分析方法称为分子发光分析法, 本章所介绍的包括荧光分析法、磷光分析法和化学发光分
B.电子激发态的多重度
电子激发态的多重度:M=2S+1 S为电子自旋量子数的代数和(0或1); 平行自旋比成对自旋稳定(洪特规则),三重态能级比相应 单重态能级低; 大多数有机分子的基态处于单重态; S0→T1 禁阻跃迁; 通过其他途径进入 ( 见能级图 ) ;进入的 几率小;
C.激发态→基态的能量传递途径