16.1二次根式第一课时教案

合集下载

人教版数学八年级下册16.1第1课时《 二次根式的概念》教学设计

人教版数学八年级下册16.1第1课时《 二次根式的概念》教学设计

人教版数学八年级下册16.1第1课时《二次根式的概念》教学设计一. 教材分析人教版数学八年级下册16.1第1课时《二次根式的概念》是初中数学的重要内容,主要让学生了解二次根式的概念,理解二次根式与有理数、实数之间的关系,为后续学习二次根式的运算和应用打下基础。

本节课的内容包括二次根式的定义、性质和运算方法,通过学习,让学生能够熟练掌握二次根式的相关知识,提高他们的数学素养。

二. 学情分析学生在学习本节课之前,已经掌握了实数、有理数等相关知识,具备一定的逻辑思维能力和运算能力。

但二次根式作为新的数学概念,对于部分学生来说可能较为抽象,难以理解。

因此,在教学过程中,要注重引导学生从实际问题中抽象出二次根式的概念,帮助他们建立直观的认识,从而更好地理解和掌握二次根式的相关知识。

三. 教学目标1.让学生了解二次根式的定义、性质和运算方法。

2.培养学生从实际问题中抽象出二次根式的能力。

3.提高学生的数学素养,培养他们的逻辑思维能力和运算能力。

四. 教学重难点1.二次根式的定义和性质。

2.二次根式的运算方法。

3.引导学生从实际问题中抽象出二次根式。

五. 教学方法1.情境教学法:通过创设实际问题情境,引导学生从实际问题中抽象出二次根式。

2.讲授法:讲解二次根式的定义、性质和运算方法。

3.实践操作法:让学生通过实际操作,掌握二次根式的运算方法。

4.小组讨论法:分组讨论,共同解决问题,提高学生的合作能力。

六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示二次根式的相关知识。

2.实际问题:准备一些与生活实际相关的问题,用于引导学生从实际问题中抽象出二次根式。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用实际问题情境,引导学生从实际问题中抽象出二次根式。

例如,讲解一个物体从地面上升到最高点再下降到地面的过程,上升和下降的距离分别是3米和4米,求物体的最大高度。

2.呈现(10分钟)讲解二次根式的定义、性质和运算方法。

二次根式第一课时教案[6篇]

二次根式第一课时教案[6篇]

二次根式第一课时教案[6篇]以下是网友分享的关于二次根式第一课时教案的资料6篇,希望对您有所帮助,就爱阅读感谢您的支持。

第一篇二次根式教学目标:(1) 了解二次根式的概念,初步理解二次根式有意义的条件.(2) 通过具体问题探求并掌握二次根式的基本性质:当a≥0时,a= a;能运用这个性质进行一些简单的计算。

(3) 通过观察一些特殊的情形,获得一般结论,使学生感受归纳的思想方法。

教学重点:二次根式的概念以及二次根式的基本性质教学难点:经历知识产生的过程,探索新知识.教学方法:讨论法教学过程:一.情景创设1.回顾:什么叫平方根? 什么叫算术平方根?2.计算:.(2)如图,在Rt∆ABC中,AB=50m,BC=am,则()2(3)圆的面积为S,则圆的半径是 .(4)正方形的面积为b-3,则边长为 .3.对上面(2)~(4)题的结果,你能发现它们有什么共同的特征吗?二、探索与实践1、二次根式的定义.__________________________________________________ ____ 说说对二次根式a 的认识,好吗?__________________________________________________ ______2、练习:说一说,下列各式是二次根式吗? (1)32 (2)6 (3)-12 (4)-m(m≤0) (5)xy(x、y异号) (6)a2+1 (7)53、例1: x是怎样的实数时,式子x-5在实数范围内有意义?4、二次根式性质的探索:22=4,即(4)2= 4;32=9,即(9)2= 9;…… 观察上述等式的两边,你得到什么启示?揭示:当a≥0时,5、例2。

计算:(1)(3)2;(2)((3)(a+b)2 (a+b≥0)6、练习.(1)(22)= (2)(-23)2 3a) = a。

222); 3 三、课堂练习P59页练习1、2.四、课堂小结引导学生总结1. 什么叫做二次根式?你们能举出几个例子吗?2. 二次根式有哪两个形式上的特点?3.当a≥0时,五、作业教后感:a) = ?2第二篇二次根式第一课时教学内容二次根式的概念及其运用教学目标1.a≥0)的意义解答具体题目.2.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1a≥0)的式子叫做二次根式;2a≥0)”解决具体问题.教学过程一、复习引入在第11章我们学习了平方根和算术平方根的意义,引进了一个符号a.这里的a表示什么?a应满足什么条件?当aa表示a的算术平方根,即正数a的正的平方根.当a是零时,a等于0,它表示零的平方根,也叫做零的算术平方根.当a是负数时,a没有意义.即:a(a≥0)表示非负数a的算术平方根.二、新知探究a≥0)•的式子叫做二次根式,注意:1. 其中的a可以是具体的数,也可以是含有字母的代数式.2.在二次根式a中,字母a必须满足a≥0,即被开方数必须是非负数.(这里可以让学生自己举几个二次根式的例子,有助于学生的理解)例1.下列式子,哪些是二次根式,11x>0)x≥0,y•≥0).xx+y分析二,被开方数是正数或0,即非负数.;第x>0)x≥0,y≥0)1x1.x+y例2.x是怎样的实数时,二次根式x-1在实数范围有意义?分析要使二次根式有意义,必须且只须被开方数是非负数.解被开方数x-1≥0,即x≥1.所以,当x≥1时,二次根式x-1有意义.例3.当x在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义.解:由3x-1≥0,得:x≥当x≥三、巩固练习1313教材P练习第2题.四、应用拓展例4.当x分析:要使+0和1在实数范围内有意义?x+11在实数范围内有意义,必须同时满足x+11中的x+1≠0.x+1解:依题意,得⎨由①得:x≥-由②得:x≠-1 32⎧2x+3≥0 ⎩x+1≠0当x≥-且x≠-1+321在实数范围内有意义.x+1例5. (1) 已知,求的值.(答案: )(2)=0,求a2004+b2004的值.(答案:2)五、归纳小结(学生活动,老师点评)本节课要掌握:1a≥0)的式子叫做二次根式,号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业xy251.教材习题中的对应题目.2.导学案中的对应习题. 教学反思:第三篇16.1 二次根式(一)骆诗龙学习目标:1、知道什么叫二次根式,理解被开方数是非负数;2、掌握二次根式在实数范围内有、无意义的条件。

16.1《二次根式》(第1-3课时)教案 新人教版

16.1《二次根式》(第1-3课时)教案 新人教版

16.1 二次根式教案第一课时二次根式的概念教学目标知识与技能 1 理解二次根式的概念2a≥0)的意义求被开方数中字母的取值范围.过程与方法从具体实例中建立二次根式模型,探索二次根式被开方数中字母的取植范围情感态度与价值观经历观察比较总结和应用等数学活动,体验发现的快乐教学重难点关键1a≥0)的式子叫做二次根式的概念;2.a≥0)的意义求被开方数中字母的取值范围教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.问题2:在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.老师点评:问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以,.问题2:由勾股定理得问题3:由方差的概念得.二、探索新知,都是一些正数的算术平方根.像这样一些正数的算术平a≥0)•的式子叫做二次根式,”称为二次根号.(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a<0老师点评:有意义的条件例1.下列式子,哪些是二次根式,、1xx>0)、、、1x y+x≥0,y•≥0).分析”;第二,被开方数是正数或0.x>0)、x≥0,y≥0);不是二、1x、1x y+.例2.当x是多少时,2-x在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以x-2≥0,2-x•才能有意义.解:由x-2≥0,得:x≥2当x≥2时,2-x在实数范围内有意义.三、巩固练习教材练习1、2、3.四、应用拓展例3.当x11x+在实数范围内有意义?分析11x+在实数范围内有意义,必须同时满足0和11x+中的x+1≠0.解:依题意,得23010xx+≥⎧⎨+≠⎩由①得:x≥-3 2由②得:x≠-1当x≥-32且x≠-111x+在实数范围内有意义.例4(1)已知,求xy的值.(答案:2)(2)+=0,求a2004+b2004的值.(答案:25)五、归纳小结(学生活动,老师点评)1a≥0)的式子叫做二次根式,2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.七板书设计一、选择题1.下列式子中,是二次根式的是()A. B C.x 2.下列式子中,不是二次根式的是()A B.1 x3.已知一个正方形的面积是5,那么它的边长是() A.5 B C.15D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x+x2在实数范围内有意义?3.4.x有()个.A.0 B.1 C.2 D.无数5.已知a、b为实数,且=b+4,求a、b的值.16..1 二次根式教案教学内容 1.a ≥0)是一个非负数;2.2=a (a ≥0). 教学目标知识与技能a ≥02=a (a ≥0),并利用它们进行计算和化简.过程与方法 经历探索二次根式的性质的过程,培养学生从简单到复杂从一般到特殊的思 维过程情感 态度与价值观 通过学生自主探索合作交流体会学习数学的乐趣 教学重难点关键1a ≥0)是一个非负数;2=a (a ≥0)及其运用.2a ≥0)是一个非负数;•用探究的方2=a (a ≥0). 教学过程一、复习引入 (学生活动)口答 1.什么叫二次根式?2.当a ≥0a<0老师点评(略). 二、探究新知 议一议:(学生分组讨论,提问解答)a ≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出做一做:根据算术平方根的意义填空:)2=_______;2=_______;2=______;2=_______;)2=______;)2=_______;)2=_______.是4的算术平方根,是一个平方等于4)2=4.同理可得:)2=2,2=9,)2=3,)2=13,)2=72,)2=0,所以例1计算1.(5.1)2 2.(2 3.24.(2)2分析:我们可以直接利用(2=a (a ≥0)的结论解题.解:(5.1)2 =1.5,(2 =22·2=22×5=20,2=56,(2)2=22724=.三、巩固练习计算下列各式的值:2)2 (4)2)2()2 22-四、应用拓展例2 计算1.2(x ≥0) 2.2 3.24. 2 分析:(1)因为x ≥0,所以x+1>0;(2)a 2≥0;(3)a 2+2a+1=(a+1)≥0; (4)4x 2-12x+9=(2x )2-2·2x ·3+32=(2x-3)2≥0.所以上面的4题都可以2=a(a≥0)的重要结论解题.解:(1)因为x≥0,所以x+1>02=x+1(2)∵a2≥02=a2(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥02+2a+1(4)∵4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2 又∵(2x-3)2≥0∴4x2-12x+9≥02=4x2-12x+9例3在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3 五、归纳小结本节课应掌握:1a≥0)是一个非负数;2.2=a(a≥0);反之:a=2(a≥0).六、布置作业1.教材P8复习巩固2.(1)、(2) P97.七板书设计第二课时作业设计一、选择题1个数是().A.4 B.3 C.2 D.12.数a没有算术平方根,则a的取值范围是(). A.a>0 B.a≥0 C.a<0 D.a=0二、填空题1.(2=________.2_______数.三、综合提高题1.计算(1)2(2)-)2(3)(12)2(4)()2(5)2.把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3)16(4)x(x≥0)3=0,求x y的值.4.在实数范围内分解下列因式:(1)x2-2 (2)x4-9 3x2-516.1 二次根式教案第三课时教学内容a(a≥0)教学目标知识与技能(a≥0),(a≥0)并利用它进行计算和化简.过程与方法经历探索二次根式的性质的过程,培养学生分类的数学思想情感态度与价值观通过学生自主探索合作交流体会学习数学的乐趣及发散思维能力教学重难点关键1a(a≥0).2.难点:探究结论.3.关键:讲清a≥0a才成立.教学过程一、复习引入老师口述并板收上两节课的重要内容;1a≥0)的式子叫做二次根式;2a≥0)是一个非负数;3.2=a(a≥0).那么,我们猜想当a≥0是否也成立呢?下面我们就来探究这个问题.二、探究新知(学生活动)填空:;=________=_______.(老师点评):根据算术平方根的意义,我们可以得到:110=23=37.例1化简(1(2(3(4分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32(a≥0)•去化简.解:(1(2(3(4三、巩固练习教材P7练习2.四、应用拓展例2 填空:当a≥0;当a<0,•并根据这一性质回答下列问题.(1,则a可以是什么数?(2,则a可以是什么数?(3,则a可以是什么数?(学生讨论)分析:(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“()2”中的数是正数,因为,当a≤0-a≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.解:(1,所以a≥0;(2,所以a≤0;(3)因为当a≥0时,,即使a>a所以a不存在;当a<0,,即使-a>a,a<0综上,a<0例3当x>2分析:(略) 五、归纳小结(a≥0)及其运用,同时理解当a<0a的应用拓展.六、布置作业板书设计第三课时作业设计一、选择题1的值是().A.0 B.23C.423D.以上都不对2.a≥0,比较它们的结果,下面四个选项中正确的是().AC.-二、填空题1.=________.2是一个正整数,则正整数m的最小值是________.三、综合提高题1.先化简再求值:当a=9时,求如下:甲的解答为:原式=a+(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│+。

《16.1 二次根式(第1课时)》教学设计

《16.1 二次根式(第1课时)》教学设计

《16.1 二次根式(第1课时)》教学设计一、内容和内容解析1.内容二次根式的概念.2.内容解析本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念.它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础.教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义. 再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解.本节课的教学重点是:了解二次根式的概念;二、目标和目标解析1.教学目标(1)体会研究二次根式是实际的需要.(2)了解二次根式的概念.2. 教学目标解析(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.三、教学问题诊断分析对于二次根式的定义,应侧重让学生理解“的双重非负性,”即被开方数≥0是非负数,的算术平方根≥0也是非负数.教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断.本节课的教学难点为:理解二次根式的双重非负性.四、教学过程设计1.创设情境,提出问题问题1你能用带有根号的的式子填空吗?(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.(2)一个长方形围栏,长是宽的2 倍,面积为130m?,则它的宽为______m.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h=5t?,如果用含有h的式子表示t,则t= _____.师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价.【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.问题2 上面得到的式子,,分别表示什么意义?它们有什么共同特征?师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.【设计意图】为概括二次根式的概念作铺垫.2.抽象概括,形成概念问题3你能用一个式子表示一个非负数的算术平方根吗?师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力.追问:在二次根式的概念中,为什么要强调“a≥0”?师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由.【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解.3.辨析概念,应用巩固例1当时怎样的实数时,在实数范围内有意义?师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解.例2当是怎样的实数时,在实数范围内有意义?呢?师生活动:先让学生独立思考,再追问.【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解.问题4 你能比较与0的大小吗?师生活动:通过分和这两种情况的讨论,比较与0的大小,引导学生得出≥0的结论,强化学生对二次根式本身为非负数的理解,【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力.4.综合运用,巩固提高练习1 完成教科书第3页的练习.练习2 当x是什么实数时,下列各式有意义.(1);(2);(3);(4).【设计意图】辨析二次根式的概念,确定二次根式有意义的条件.【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维.5.总结反思教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.(1)本节课你学到了哪一类新的式子?(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?(3)二次根式与算术平方根有什么关系?师生活动:教师引导,学生小结.【设计意图】:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法.6.布置作业:教科书习题16.1第1,3,5,7,10题.五、目标检测设计1.下列各式中,一定是二次根式的是()A.B.C.D.【设计意图】考查对二次根式概念的了解,要特别注意被开方数为非负数.2.当时,二次根式无意义.【设计意图】考查二次根式无意义的条件,即被开方数小于0,要注意审题.3.当时,二次根式有最小值,其最小值是.【设计意图】本题主要考查二次根式被开方数是非负数的灵活运用.4.对于,小红根据被开方数是非负数,得出的取值范围是≥.小慧认为还应考虑分母不为0的情况.你认为小慧的想法正确吗?试求出的取值范围.【设计意图】考查二次根式的被开方数为非负数和一个式子的分母不能为0,解题时需要综合考虑.。

人教版八年级数学下册第16章 二次根式 教案

人教版八年级数学下册第16章 二次根式 教案

第十六章 二次根式16.1 二次根式第1课时 二次根式的概念1.理解二次根式的概念.2.≥0)的意义解答具体题目.自学指导:阅读教材第2页至3页,完成下列的问题.知识探究平方根的性质:正数有2个平方根,它们互为相反数;0的平方根是0;负数没有平方根.思考:用带有根号的式子填空,看看写出的结果有什么特点:(1)面积为S 的正方形的边长为__________;(2)要修建一个面积为6.28 m 2的圆形喷水池,它的半径约为__________m ;(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时的高度h(单位:m)满足关系h=5t 2如果用含有h 的式子表示t ,则t=__________...开平方时,被开方数a 的取值范围是a ≥0(为什么?)自学反馈(1)下列式子,哪些是二次根式?哪些不是二次根式?1x 、、1x y +≥0,y ≥0).判断二次根式的依据是一个形式一个条件,二者缺一不可.(2)当a 是怎样的实数时,下列各式在实数范围内有意义?a≥1a≥-3 2a≤3a≥0a≤0任意实数a>3任意实数任意实数二次根式中求字母的取值范围的依据是:被开方数大于等于零.活动1 小组讨论例1 当x?解:x≥2.例2当x11x+在实数范围内有意义?解:x≥-32且x≠-1.有二次根式的要考虑二次根式的被开方数大于等于零,有分母的要考虑分母不为零.例3已知,求xy的值.解:2 5 .当被开方数互为相反数时被开方数只能为零.活动2 跟踪训练1.要画一个面积为18的长方形,使它的长宽之比为3∶2,它的长宽应取多长?解:长:2.用代数式表示:(1)面积为S的圆的半径.(2)面积为S且两条邻边的比为2∶3的长方形的长和宽.解:(2)3.教材第3页上框练习.活动3 课堂小结1.二次根式的概念.2.二次根式的判断方法.3.怎样求二次根式的被开方数中字母的取值范围.第2课时 二次根式的性质1.≥0)是一个非负数.2.理解二次根式的两个性质)2=a(a ≥0)≥0).3.会运用上述两个性质进行有关计算和化简.自学指导:阅读教材第3页至4页,完成下列的问题.知识探究(—)当a>0a ;当a=00概括:≥0)是一个非负数.知识探究(二)根据算术平方根的意义填空:)2=4;)2=2;2=13;)2=0.概括:一般地:2=a (a ≥0)知识探究(三)=2;=0.01;23=0.=a (a ≥0)二次根式的三个性质:≥0)是一个非负数;)2=a(a ≥0);≥0).自学反馈1.计算:2 )2 2 )2 解:(1)32;(2)45;(3)56;(4)74. 2.化简:解:(1)3;(2)4;(3)5;(4)3.3.代数式的概念:用基本运算符号(基本运算符号包括加、减、乘、除、开方等)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式.活动1 小组讨论例1 计算:(1) 2 (2)2解:(1)1.5;(2)20.例2 化简:( 2 (2解:(1)16;(2)5.一个非负数的算术平方根的平方等于它本身.一个负数的平方的算术平方根等于这个负数的相反数.例3 =0,求a2013+b2013的值.解:≥00,∴a=-1,b=1.∴a2013+b2013=0.二次根式本身具有非负性.活动2 跟踪训练1.计算:2)2解:(1)3;(2)18.2.说出下列各式的值:解:(1)0.3;(2)17;(3)-π;(4)-10.3.计算:22解:(1)5;(2)0.2;(3)0.6;(4)2 3 .4.教材第4页下框练习.活动3 课堂小结二次根式的性质:≥0)是一个非负数.2=a(a≥0)=a(a≥0)16.2 二次根式的乘除第1课时二次根式的乘法1.≥0,b≥0)并运用它进行计算.2.(a≥0,b≥0)并运用它进行解题和化简.自学指导:阅读教材第6页至7页,并完成预习内容.知识探究请同学们完成填空:=6,=6;=20,=20;=60,=60.参考上面的结果,用“>、<或=”填空.归纳:(a≥0,b≥0)反过来(a≥0,b≥0)自学反馈1.计算:解:.2.化简:解:(1)12;;(3)3|xy|;.活动1 小组讨论例1计算:×解:例2 化简:解:(2)36;;.(1)开方后可以移到根号外的因数或因式叫开得尽方的因数或因式.例3 计算:解:;;14写成7×2,同样(2)中写成10=5×2,方便开方.例4判断下列各式是否正确,不正确的请予以改正:=4.解:(1)不正确.(2)不正确..带分数的整数部分和分数部分是相加的关系,而不是相乘的关系.活动2 跟踪训练1.计算:解:(2)6;2.化简:解:(1)77;(2)15;3.和cm,则这个长方形的面积为4.教材第7页下框练习.活动3 课堂小结掌握二次根式的乘法规定和积的算术平方根的性质:≥0,b≥0)(a≥0,b≥0)及应用.第2课时 二次根式的除法1.≥0,b>0)(a ≥0,b>0)及利用它们进行计算和化简. 2.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.自学指导:阅读教材第8页至10页,并完成预习内容.知识探究请同学们完成填空:对二次根式的除法规定:两个二次根式相除,根指数不变,被开放数相除.自学反馈1.计算:解:(1)2;(2)2.下面利用这个规律来计算和化简一些题目.2.化简:解:(1)8;(2)83b a ;.活动1 小组讨论例1 计算:解:;(1)除了用除法公式外,还可进行分母有理化.例2 化简:解:. 例3 计算:(可以用两种方法计算)解:(1)5;(2)3(3)a.观察上面各小题的最后结果,比如等,这些二次根式有哪些特点: (1)被开方数的因数是整数,因式是整式;(2)被开方数不含能开得尽方的因数或因式.满足以上两点的二次根式,就叫做最简二次根式.在二次根式的运算中,一般要把最后结果化为最简,且结果的分母中不含二次根式.活动2 跟踪训练1.化简:解:(1)2;. 2.如图,在Rt △ABC 中,∠C=90°,AC=2.5cm ,BC=6cm ,求AB 的长.解:6.5cm.3.教材第10页的中框练习.活动3 课堂小结1.二次根式的除法规定.2.逆用法则.3.最简二次根式的概念.16.3 二次根式的加减第1课时二次根式的加减1.使学生知道怎样将根式化为最简二次根式.2.使学生通过合并被开方数相同的二次根式,会进行二次根式的加法与减法运算.自学指导:阅读教材第12页至13页的部分,完成以下问题.知识探究1.合并同类项:(1)2x+3x (2)2x2-3x2+5x2解:(1)5x;(2)4x2.这几道题你是运用什么知识做的?加减法则2.化简:(1(2(3解:(1;(2)(3)3.如何进行二次根式的加减计算?先化简,再合并.自学反馈计算:解:;;;活动1 小组讨论例1 计算:解:;.比较二次根式的加减与整式的加减,你能得出什么结论?例2计算:解:进行二次根式的加减运算时,必须先将其化简,是被开方数相同的二次根式才可合并. 活动2 跟踪训练1.下列计算是否正确?为什么?解:(1)不正确.此式结果为.(2)不正确.此式结果为5.(3)正确.2.计算:(6)a解:;;;(6)17a(7)0;. 3.教材第13页下框练习.计算结果中的二次根式必须是最简二次根式.活动3 课堂小结怎样进行二次根式的加减计算.第2课时 二次根式的混合运算1.含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.2.复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.自学指导:阅读教材第14页的部分,完成以下问题.知识探究1.计算:(1)(2x+y)·zx (2)(2x 2y+3xy 2)÷xy解:(1)2x 2z+xyz ;(2)2x+3y.2.计算:(1)(2x+3y)(2x-3y) (2)(2x+1)2+(2x-1)2解:(1)4x 2-9y 2;(2)8x 2+2.思考:如果把上面的x 、y 、z 改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立.整式运算中的x 、y 、z 是一种字母,它的意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以整式中的运算规律也适用于二次根式.3.计算:))·) 2解:(1)43;(3)-6;在二次根式的运算中,多项式乘法法则和乘法公式仍然适用.活动1 小组讨论例1 计算:)÷解:;(2)2-32例2 计算:-5) )解:;(2)2.活动2 跟踪训练1.计算:)2)2解:+;;(4)a-b;(5)9;(6)4;在进行二次根式加减混合运算时能用乘法公式的,运用公式会使计算简便.2.已知+1,,求下列各式的值:(1)x2+2xy+y2(2)x2-y2解:(1)12;这类计算的简便方法是先变形,再代入求值.3.教材第14页下框练习.活动3 课堂小结1.如何计算二次根式加减混合运算.2.计算结果中的二次根式必须是最简二次根式.。

二次根式的概念、性质(第1、2课时 教案)

二次根式的概念、性质(第1、2课时 教案)

第十六章二次根式16.1二次根式第1课时二次根式的概念【知识与技能】是一个非负数.【过程与方法】通过新旧知识的联系,培养学生观察、演绎能力,发展学生的归纳概括能力.【情感态度】通过观察一些特殊的情形,获得一般结论,使学生感受归纳的思想方法,进而体验成功的喜悦,并通过合作学习增进终身学习的信念.≥0的基本性质【教学难点】经历知识产生的过程,探索新知识.一、情境导入,初步认识问题(1)一个长方形的围栏,长是宽的3倍,面积为39m2,则它的宽为_______m;(2)面积为S的正方形的边长为_______;(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h=5t2,如果用含h的式子表示t,则t=.______【教学说明】设置上述问题的目的是让学生感受到研究二次根式是实际的需要,二次根式与实际生活联系紧密.教师提出问题后,让学生独立思考,然后相互交流,获得对二次根式的感性认识.二、思考探究,获取新知思考的式子,这些式子有什么特点?【教学说明】教师提出问题,同学生一道分析,体会这些式子的特征,从而引出二次根式的定义.a≥0)形式的式子称.针对上述定义,教师可强调以下几点:(1中,a必须是大于等于0的数或式子,否则它就没有意义了;(2=2,是一个整数,但4仍应称为一个二次根式;(3)当a≥0表示a的算术平方根,而一个非负数的算术平方根必≥0(a≥0)三、典例精析,掌握新知例1下列各式中,一定是二次根式的有_______分析:判断二次根式应关注两点:(1;(2)被开方数必须是非负数.因而在所给出四个式子中,只有②③中的式子同时符合两个要求,故应填②③.例2当x为何值时,下列各式在实数范围内有意义.解:(1)中,由x-2≥0,得x≥2;(2)中,由得2≤x≤3;(3)中,由2x-1>0,得x>1/2.【教学说明】对于例3,教师应引导学生分析题目特征,抓住解决问题的突a中a≥0及a≥0的双重非负性特征.四、运用新知,深化理解1.填空题:(1)形如_______的式子叫二次根式;(2)负数算术平方根________(填“有”或者“没有”)2.当a是怎样的实数时,下列各式在实数范围内有意义:【教学说明】学生自主探究,教师巡视,了解学生对本节课知识的掌握情况,及时予以指导,帮助学生巩固新知.五、师生互动,课堂小结通过这节课的学习,你掌握了哪些新知识,你获得哪些解决二次根式问题的方法?你还有哪些问题?请与同伴交流.【教学说明】学生相互交流,回顾知识,反思问题,共同发展提高.1.布置作业:从教材“习题16.1”中选取.2.完成练习册中本课时练习.1.教师创设情境,给出实例.学生积极主动探索,教师引导与启发,师生互动.体现教师的组织者、引导者与合作者地位.2.注意知识之间的衔接,在温故知新的过程中引导出新知,讲练结合旨在巩固学生对新知的理解.第十六章二次根式16.1二次根式第2课时二次根式的性质【知识与技能】理解并掌握二次根式的性质,正确区分=a(a≥0)与2a=a(a ≥0),并利用它们进行化简和计算.【过程与方法】在探索二次根式性质的学习活动中,进一步增强学生的参与意识,培养学生的计算能力和解决问题的能力.【情感态度】通过创设问题情境,激发学生学习兴趣,培养学生主动探究意识和创新精神,形成良好的心理品质,促进身心健康发展.【教学重点】2a=a(a≥0)2a(a≥0)及其应用.【教学难点】用探究的方法探索2a=a(a≥02a(a≥0)的结论.一、情境导入,初步认识试一试:请根据算术平方根填空,.猜一猜:通过对上述问题的思考,你能猜想出2a(a≥0)的结论是什么?说说你的理由.【教学说明】让学生通过具体实例所展示的特征,猜想出结果,然后再利用算术平方根的意义对所猜测结论进行分析,由感性认识到理性思考,培养学生利用代数语言进行推理的能力.二、思考探究,获取新知在学生相互交流的基础上可归纳出:2=a(a≥0).探究(1)填空:(2)通过(1)的思考,你能确定a≥0)的化简结果吗?说说你的理由.【教学说明】教师应尽力引导学生积极主动进行探究思考,让学生经历知识的发现与完善的过程,深化对所学知识的理解和记忆,最后师生共同完成对知识的归纳总结.(a≥0).最后,教师给出代数式的概念.代数式:用运算符号(加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子称为代数式.(代数式的定义只要求学生了解就行,不必深究.)三、典例精析,掌握新知例1计算:(1))2;(2)(2【教学说明】以上例1、例2可由学生自主完成,教师巡视,对有困难的学生及时予以指导,让每个学生都能得到发展.例3教师引导学生看懂数轴,结合数轴确定a、b的符号.四、运用新知,深化理解【教学说明】以上1~3题可试着让学生自主完成,第4题稍有难度,教师适时点拨.(22a进行化简.然后再根据x>2的这个范围,来判断x-2与1-2x的正负,最后化简掉绝对值符号.∵x>2,∴x-2>0,1-2x<0.3.(1)原式=5-5+1=1(2)原式=7+49×2/7=7+14=21(2)首先利用a2=|a|化简掉二次根号,再根据x的取值范围来判断绝对值中的代数式的正负,化掉绝对值的符号.五、师生互动,课堂小结1.本节知识可这样归纳:2.通过这节课的学习,你有哪些收获和体会?与同伴交流.1.布置作业:从教材“习题16.1”中选取.2.完成练习册中本课时练习.1.注意前后知识的联系,在复习旧知的过程中导入本节课的数学内容,按照由特殊到一般的规律,降低学生理解的难度.2.在总结二次根式的性质过程中,由学生经过观察、分析的过程,让学生在交流中体会成功.3.几个例题,旨在帮助学生对二次根式的性质的理解,在练习和作业中都增加了难度,主要给能力较好的学生提供更大的发展空间.。

二次根式教案(第一课时)

二次根式教案(第一课时)
2.一个长方形的围栏,长是宽的2倍,面积为130 ,则它的宽为_____ .
长是宽的2倍,面积为130 ,则它的宽为_____ .
3.一个物体从高处自由下落,落到地面所用的时间为t,(单位:s)与开始下落的高度h(单位:m) 满足关系 .如果用含有h的式子表示t, 则t=_________.
给学生充分的时间思考和讨论,让他们发现这个式子也是一种运算.
教学重点
二次根式中被开方数的取值范围.
教学难点
二次根式中被开方数的取值范围的产生过程.
教学方法
通过解决实际问题,引出二次根式的概念,再通过解题实践,总结归纳二次根式的被开方数的取值范围要大于等于零.
教学手段
多媒体课件等
课型
新课
教学环节
教学内容
教师活动
学生活动
一、创设情境,提出问题
羊村和狼堡都新建了电视塔.电视塔越高,从塔顶发射出的电磁波传播得越远,从而能收看到的电视节目的区域就越广.电视塔高h(单位:km)与电视节目信号的传播半径r(单位:km)之间存在近似关系r= ,其中,R是地球半径,R≈6400km.如果羊村和狼堡两个电视塔的高分别是 km, km,那么它们的传播半径之比是 .你能帮羊羊将这个式子化简吗?
五、课堂小结,知识梳理
(1)本节课你学习了哪些知识?
(2)利用本节课知识,你能解决什么问题?
(3)你还有什么困惑?还想继续探究什么?
在学生总结后,进行补充,帮助学生形成知识网络.
归纳、总结发言,体会、反思.
六、布置作业
必做题:教材第3页练习—1,2题. 教材第5页习题--1题.
选做题:当x是怎样的实数时,下列各式在实数范围内有意义?
巩固所学知识,分层作业的布置面向全体,有助于每一位学生的进步.

人教版八年级数学下《二次根式 第1课时:二次根式的概念和有意义的条件》精品教学课件

人教版八年级数学下《二次根式 第1课时:二次根式的概念和有意义的条件》精品教学课件

1 5;
2
3
2
x

2

3
x


A. 1
B. 2
D. 4
解:(1)∵−5<0,∴ 5 不是二次根式;
(2)∵x2+2>0,∴
课堂小结
C. 3
4 3 5;
5 是二次根式;
(3)∵当x≥0时,x3≥0,∴
3
x不一定是二次根式;
(4)∵ 3 5 的根指数是3,∴ 3 5 不是二次根式.
3
(2)由2x+3≥0,得x≥ .
2
二次根式有意义的条件
被开方数大于或等于0,即a≥0.
布置作业
创设情境
思考
当x是怎样的实数时, x 2 在实数范围内有意义? x3 呢?
探究新知
解:由x2≥0,得x是任意实数,
应用新知
巩固新知
课堂小结
布置作业
∴当x为任意实数时, x 2 都有意义.
由x3≥0,得x≥0,
探究新知
应用新知
与开始落下时离地面的高度h(单位:m)满足关系h=5t2.
如果用含有h的式子表示t,那么t该怎么表示?
巩固新知
课堂小结
布置作业
h=5t2
h
t=
5
创设情境
探究新知
应用新知
归纳
h
上面问题中,得到的结果分别是: 3、 S、 65、
5
它们都是表示正数的算术平方根.
.
观察上面的式子,
你能写出二次
可得, x 2 1 在实数范围内有意义.
创设情境
定义
探究新知
应用新知
巩固新知
课堂小结

《二次根式(第1课时)》教案 人教数学八年级下册

《二次根式(第1课时)》教案 人教数学八年级下册

16.1 二次根式第1课时一、教学目标【知识与技能】1.了解二次根式的概念,理解二次根式有意义的条件.2.掌握二次根式的性质,并能将二次根式的性质运用于化简.3.了解最简二次根式的概念,会判断一个二次根式是不是最简二次根式.【过程与方法】经历观察、比较,总结二次根式概念和被开方数取值范围的过程,发展学生的归纳概括能力.【情感态度与价值观】经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识.二、课型新授课三、课时第1课时共2课时四、教学重难点【教学重点】会求二次根式中字母的取值范围,理解和掌握二次根式的性质,熟练化简二次根式.【教学难点】运用二次根式的双重非负性解决问题,二次根式性质的综合运用.五、课前准备教师:课件、三角尺、直尺、平方根、立方根知识等.学生:三角尺、铅笔、立方根、平方根知识.六、教学过程(一)导入新课(出示课件2)电视塔越高,从塔顶发射的电磁波传播得越远,从而能收看到电视节目的区域越广,电视塔高h(单位:km)与电视节目信号的传播半径r(单位:km)之间存在近似关系r=√2Rh,其中地球半径R≈6 400 km.如果两个电视塔的高分别是h1 km、h2 km,那么它们的传播.半径之比是√2Rh1√2Rh2教师问:式子√2Rh1表示什么?公式r=√2Rh中的√2Rh表示什么意√2Rh2义?(二)探索新知1.师生共同探究二次根式的定义和有意义的条件(出示课件4-6)用带根号的式子填空,看一看写出的结果有何特点:(教师依次出示问题)(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.(2)一个长方形围栏,长是宽的2 倍,面积为130m2,则它的宽为______m.(3)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下时离地面的高度h(单位:m)满足关系 h =5t2,如果用含有h 的式子表示 t ,则t 为_____.教师问:上边问题的答案是什么呢?学生1答:(1),.学生2答:(2) .学生3答:(3).教师问:这些式子分别表示什么意义?学生讨论后并回答.的算术平方根.学生1答:分别表示3,S,65,h5教师问:这些式子有什么共同特征?师生总结:①根指数都为2; ②被开方数为非负数.教师问:你能用语言描述一下它们的特征吗?师生共同讨论后解答如下:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.教师问:根据你的理解,猜想一下二次根式的定义应该有哪些条件?师生共同讨论如下:一个正数有两个平方根;0的平方根为0;在实数范围内,负数没有平方根. 在实数范围内开平方的时候,被开方数只能是正数或0.(出示课件7)定义:一般地,我们把形如的式子叫做二次根式. “”称为二次根号.教师强调:(1)a可以是数,也可以是式.(2)两个必备特征:①外貌特征:含有“”;②内在特征:被开方数a≥0考点1:利用二次根式的定义识别二次根式例:下列各式中,哪些是二次根式?哪些不是?(出示课件8)(1);(2)81;(3);(4)(5) ;(6);(7) .师生共同分析过程见课件:解答如下:解: (1)(4)(6)均是二次根式,其中x2+4属于“非负数+正数”的形式一定大于零.(3)(5)(7)均不是二次根式.出示课件9,学生自主练习,教师订正。

八年级数学二次根式第一课时教学设计

八年级数学二次根式第一课时教学设计
A.U= B. U= C. U= D. U=
3.使 有意义的正整数nБайду номын сангаас。
4.求当二次根式 的值等于4时x的值。
考查二次根式有意义的条件。
考查二次根式概念及其与开平方的关系。
一方面锻炼由具体-抽象的思维方式,另一方面加深对二次根式意义的认识,同时强化对二次根式双重非负性的理解。
应用展示
活动一 完成课本3页的练习。
活动二 “统筹兼顾”
当x是什么实数时,下列各式有意义?
(1) (2)
(3) (视情况而定)
点拨:(1)(2)引导同学们分析问题要顾全,一是看局部,二次根式有意义;二是看整体,分母不能为0.(3)形式特殊,满足条件的实数x只取一个数0,且结果也是0.
重点:从算术平方根的意义出发理解二次根式的概念。
难点:二次根式有意义的条件。
教学方法
研讨法、学习迁移法
课前准备
教师
Ppt
学生
教学活动过程设计(第1课时)
教 学
环 节
教学活动
设计意图
(或复备建议)
教师活动
预设学生活动
知识回顾,提出问题
我问你答:
(1)平方根:25的平方根是?3的平方根是? 0的平方根是? -5的平方根?
x●2x=130,x2=65,x=
(3)t= .
学生动笔思考并进行简单运算,写出表达式。可交流。
师生活动:适当引导和评价,关键是帮助学生实现从数的算术平方根到用含有字母的式子表示算术平方根。
学生根据结果特点归纳二次根式的概念,从形式、内容两方面(类比分式概念等)
(1)有二次根号;
(2)被开方数不能小于0。
学校教师备课笔记
年级

沪科版数学八年级下册16.1《二次根式》教学设计1

沪科版数学八年级下册16.1《二次根式》教学设计1

沪科版数学八年级下册16.1《二次根式》教学设计1一. 教材分析《二次根式》是沪科版数学八年级下册第16章的第一节内容。

本节内容主要介绍二次根式的概念、性质和运算。

二次根式在数学中占有重要的地位,它是学习更高阶数学的基础。

本节内容的教学目标是使学生理解二次根式的概念,掌握二次根式的性质,能进行二次根式的运算。

二. 学情分析学生在学习本节内容前,已经学习了实数、有理数、无理数等基础知识,对数学中的运算有一定的理解。

但二次根式作为一个新的概念,对学生来说还是较为抽象,需要通过实例和练习来理解和掌握。

三. 教学目标1.了解二次根式的概念,能正确识别二次根式。

2.掌握二次根式的性质,能进行二次根式的运算。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.二次根式的概念和性质。

2.二次根式的运算方法。

五. 教学方法1.采用实例教学法,通过具体的例子来引导学生理解和掌握二次根式的概念和性质。

2.采用归纳法,让学生通过自主探究和合作交流,总结出二次根式的性质和运算方法。

3.采用练习法,通过大量的练习来巩固学生的知识和提高解题能力。

六. 教学准备1.准备相关的教学材料,如PPT、教案、练习题等。

2.准备教学工具,如黑板、粉笔、投影仪等。

七. 教学过程1.导入(5分钟)通过一个实际问题引入二次根式的概念,如“一个正方形的对角线长为8,求正方形的面积。

”让学生思考如何解决这个问题,从而引出二次根式。

2.呈现(10分钟)讲解二次根式的概念和性质,通过PPT展示相关的例子和性质,让学生理解和掌握二次根式。

3.操练(10分钟)让学生进行二次根式的运算练习,如化简二次根式、求二次根式的值等。

教师及时批改和讲解,帮助学生掌握二次根式的运算方法。

4.巩固(10分钟)通过一些综合性的练习题,让学生运用所学的知识和方法解决问题,巩固二次根式的理解和运用。

5.拓展(10分钟)讲解二次根式的一些应用,如在几何、物理等学科中的应用,让学生了解二次根式的实际意义和价值。

人教版《16.1二次根式》课件第一课时

人教版《16.1二次根式》课件第一课时

已知
1 a
有意义,那么A(a,
a)
在第 二 象限.
∵由题意知a<0 ∴点A在第二象限
结束语
谢谢大家聆听!!!
23
定义:式子 a(a 0) 叫做二次根式.
其中a叫做被开方式。
不要忽略
掌握二次根式有意义的条件
二次根式 a 有意义的条件: ____a__≥_0_____
例1.x是怎样的实数时,下列式子在实数范 围内有意义?
(1) x 1
(2) x2 2
(3) x2
(4) 1 3 2x
①被开方数大于或等于零;
②分母中有字母时,要保证分母不为零。
第十六章二次根式
16.1 二次根式
二次根式
(a≥0)表示非负数a的算术平方根,
形如(a≥0)的式子叫做二次根式.
它必须具备如下特点: 1、根指数为2; 2、被开方数必须是非负数.
例1.下列各式是二次根式吗?
(1)32, (2)6, (3)9,
(4)12, (5)m m0 ,
(6) xyx,y异号 , (7)a2,(8)3 5.
切入点:从字母的取值范围入手。 l2.已知 x 2y 9与 x y 3互为相反数,
求 x 、y 的值.
切入点:从代数式的非负性入手。
l3.已知 x 1 ,你能求出 x的取值范围吗?
3 x
切入点:分类讨论思想。
l4.若 1 0 a为一个非负整数,求非负整数 a 的值
若a.b为实数,且| 2a| b20 求 a2 b2 2b1的值。
又 ∵ a+2 +|3b-9|+(4-c) 2=0, ∴ a+2=0 , 3b-9=0 ,4-c=0 。 ∴ a= -2 , b= 3 ,c= 4。 ∴ 2a-b+c=2× (-2) -3+4 = -3。

(完整版)八年级数学下册电子版教案

(完整版)八年级数学下册电子版教案

老师结合学生的回答 , 强调二次根式的非负性.
当 a> 0 时, a表示 a 的算术平方根 ,因此 a> 0;
当 a= 0 时, a表示 0 的算术平方根 , 因此 a= 0.
也就是说 ,当 a≥ 0 时 , a≥ 0.
三、例题讲解
【例】 当 x 是怎样的实数时 , x- 2在实数范围内有意义? 解:由 x-2≥ 0, 得 x≥ 2.
8= 2a
2 a
a;
(4)
xx23y=
xy y.
教师点评:上面这些式子的结果具有如下两个特点:
1. 被开方数不含分母.
2. 被开方数中不含能开得尽方的因数或因式.
师:我们把满足上述两个条件的二次根式 , 叫做最简二次根式. (教师板书 )
教师强调:在二次根式的运算中 , 一般要把最后结果化为最简二次根式.
重点 最简二次根式的运用. 难点 会判断这个二次根式是否是最简二次根式.
一、复习导入
( 学习活动 )请同学们完成下列各题. ( 请四位同学上台板书 )
计算: (1)
2; (2)2 6;(3)
3
18
8 ; (4) 2a
x3
x2
. y
教师点评:
(1)
2= 3
36;
2 (2)
6= 18
2
3 3; (3)
二、新课教授
所以当 x≥2 时 , x- 2在实数范围内有意义.
四、巩固练习
1. 已知 a- 2+
b+
1= 2
0,
求-
a2b
的值.
【答案】 a- 2≥ 0, b+21≥0, 又∵它们的和为 1
2, b=- 2. ∴- a2b=- 22× (-12)=2.

16,1 二次根式 第一课时八年级数学下册课件(人教版)

16,1 二次根式 第一课时八年级数学下册课件(人教版)

例2 当x 是怎样的实数时, x 2 在实数范围内有意义? 解:由x-2≥0,得x ≥2.
当x ≥2时, x 2 在实数范围内有意义.
1 当a 是怎样的实数时,下列各式在实数范围内有意义?
(1) a 1; (2) 2a 3;
(3) a;
(4) 5 a .
解:(1)由a-1≥0,得a≥1,所以当a≥1时, a 1 在实数范围内有意义.
当a>0时,-5a<0,则 -5a 不是二次根式.
∴ -5a 不一定是二次根式.
(4) a+1(a≥0)只能称为含有二次根式的式子,不能称为二次根式.
1
1
(5)当x=-3时,(x 3)2 无意义,∴ (x 3)2 也无意义;
1
1
当x≠-3时,(x 3)2 >0,∴ (x 3)2 是二次根式.
3 式子 a+1 有意义,则实数a 的取值范围是( C )
a-2
A.a≥-1
B.a≠2
C.a≥-1且a≠2
D.a>2
知识点 3 二次根式的“双重”非负性(a≥0, a≥0)
同时 a (a≥0)也是一个非负数,我们把这个性质叫做二次根
式的双重非负性.
例3 若 x y 1 (y 3)2 0,则x-y 的值为 ( C )
长的等腰三角形的周长是( B )
A.20或16
B.20
C.16
D.以上答案均不对
若式子
x1 ( x 3)2
有意义,则实数x 的取值范围是( B
)
A.x≥-1
B.x≥-1且x≠3
C.x >-1
D.x >-1且x≠3
本题易错在漏掉分母不为0这个条件,由题意
知x+1≥0且(x-3)2≠0,解得x ≥-1且x≠3.

人教初中数学八下 16.1 二次根式(第1课时)教案 【经典教学设计合编】

人教初中数学八下 16.1 二次根式(第1课时)教案 【经典教学设计合编】

16.1 二次根式(第1课时)教学内容本节课主要学习二次根式的概念及其运用教学目标一、知识技能理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围。

二、数学思考理解二次根式被开方数的取值范围的重要性。

三、解决问题培养根据条件处理问题的能力及分类讨论问题。

四、情感态度经历观察比较总结和应用等数学活动,感受数学活动充满了探索性与创造性,体验发现的快乐,并提高应用的意识。

重难点、关键重点:会求二次根式中,被开方数所含字母的取值范围。

难点:理解二次根式的概念。

关键:利用“a(a ≥0)”解决具体问题教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容教学过程情境引入【问题情境】1、面积为3的正方形的边长为,面积为S的正方形的边长为;2、要修建一个面积为6.28 m2的圆形喷水池,它的半径为 m(π取3.14);3、一个长方形的围栏,长是宽的2倍,面积为130m2,则它的宽为;4、一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时的高度h(单位:m)满足关系h=5t2 .如果用含有h的式子表示t,则t = 。

【活动方略】学生根据所学知识回答问题。

【设计意图】由实际问题入手,设置情境问题,激发学生的兴趣,让学生从不同的式子中探寻规律,为二次根式的引入作好铺垫。

一、探索新知【提出问题】1、所填的结果有什么特点?2、平方根的性质是什么?3、如果把上面所填式子叫做二次根式,那么你能用数学符号表示二次根式吗?教师提出问题。

学生总结出二次根式的概念。

【设计意图】使学生有一个由浅入深的学习过程,并体会到学习的内容是融会贯通的。

二、范例点击例1当x 是怎样的实数时,2x -在实数范围内有意义?例2当x 是怎样的实数时,2x 在实数范围内有意义?3x 呢?学生活动:合作交流,讨论解答。

【设计意图】通过题目的练习,使学生加深对所学知识的理解,掌握解答二次根式取值范围的习题,避免一些常见错误。

沪科版数学八年级下册16.1二次根式教学设计

沪科版数学八年级下册16.1二次根式教学设计
难点:如何引导学生从具体实例中抽象出二次根式的概念,以及如何激发学生的创新意识。
(二)教学设想
1.创设情境,激发兴趣:通过生活中的实例,如勾股定理的应用、面积计算等,引入二次根式的概念,使学生感受到数学的实用性和趣味性。
2.分层次教学,因材施教:针对学生的个体差异,设计不同难度的教学活动,使每个学生都能在原有基础上得到提高。
此外,学生在解决实际问题时,可能会对二次根式的应用感到陌生,难以将理论知识与实际问题相结合。因此,在教学过程中,教师应关注学生的个体差异,充分调动学生的学习积极性,通过生动的实例和丰富的教学活动,帮助学生克服恐惧心理,提高解决问题的能力。
同时,八年级学生的思维逐渐由具体形象思维向抽象逻辑思维转变,教师应抓住这一特点,引导学生运用二次根式解决实际问题,培养学生的抽象思维能力和创新意识。在这个过程中,教师要关注学生的情感态度,鼓励学生积极参与,使他们在探索中获得成就感,从而提高学习兴趣和自信心。
4.利用数形结合的方法,帮助学生理解二次根式的性质和运算法则,培养学生的直观想象能力。
5.引导学生运用二次根式解决实际问题,培养学生的应用意识和实践能力。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,激发学生的学习热情,使学生在二次根式的学习中感受到数学的魅力。
2.培养学生勇于探索、善于思考的精神,鼓励学生在面对困难时保持积极的态度,增强克服困难的信心。
2.应用题:结合实际情境,设计一些需要运用二次根式解决问题的题目。这些题目旨在培养学生将数学知识应用于解决实际问题的能力,增强学生对数学实用性的认识。
例题:小华家的花园是一个矩形,长比宽多2米,如果花园的面积为48平方米,求花园的长和宽。
3.提高题:设置一些具有一定难度的题目,要求学生运用所学的二次根式性质和运算法则,进行混合运算。这类题目能够锻炼学生的逻辑思维能力和解题技巧。

16.1 二次根式第1课时教案

16.1 二次根式第1课时教案
例1X为怎样的实数时, 在实数范围内有意义?
分析:二次根式有意义的条件就是被开方数是非负数.即:x-2≥0.x≥2.
思考:(教材第3页)
【问题2】
教材第3页探究.思考:
(1)这组题目有什么特点?
(2)你能得到什么结论?
(3)条件a≥0有什么作用?
例2计算:
(2)
解: =1.5
(2) =4×5=20
教师提出问题(1),注意学生是否能深入地观察、发现和总结这组式子的特点.
16.1二次根式(第1课时)
虎门五中邓杰英
【教学任务分析】




知识
技能
1.使学生理解并掌握二次根式的概念.
2.掌握二次根式中被开方数的取值范围.
3.使学生初步掌握利用( )2= ( ≥0)进行计算.
过程
方法
1.经历观察、比较、总结二次根式的基本性质的过程,发展学生的归纳概括能力.
2.通过对二次根式的概念和性质的探究,提高数学探究能力和归纳表达能力.
2.出示章前图,创设情境,引入新课.
教师出示问题,复习平方根,为学习新课打基础.
创设问题情境,激起学生学习的兴趣.








【问题1】
题目见教材第2页“思考”栏目
(1)所填的结果有什么特点?
(2)平方根的性质是什么?
(3)什么叫做二次根式?在式子 中,为什么强调a≥0?
结论:一个正数有两个平方根,它们是互为相反数;0的平方根是0;负数没有平方根.
情感
态度
经历观察、比较、总结和应用等数学活动,感受数学活动中的探索性和创造性,体验发现的快乐,并提高应用的意识.

(word完整版)16.1 二次根式教案(公开课)

(word完整版)16.1 二次根式教案(公开课)

第16章 二次根式 16.1 二次根式(1)【教学目标】1.根据算术平方根的意义了解二次根式的概念;知道被开方数必须是非负数的理由;2.能用二次根式表示实际问题中的数量和数量关系.【教学重点】从算术平方根的意义出发理解二次根式的概念.【教学过程】一.创设情境 提出问题1.电视塔越高,从塔顶发射的电磁波传得越远,从而能收看到电视节目的区域越广,电视塔高h (单位:km )与电视节目信号的传播半径 r (单位:km )之间存在近似关系 ,其中地球半径R ≈6 400 km .如果两个电视塔的高分别是h 1 km 、h 2 km你能化简这个式子吗?式子表示什么?公式中 中的表示什么意义?2.问题:(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.(1)中式子你是怎么得到?得到的两个式子有什么不同?(2)一个长方形围栏,长是宽的2 倍,面积为130m 2,则它的宽为______m . (2)中得到的式子有什么意义?(3)一个物体从高处自由落下,落到地面所用的时间 t (单位:s )与开始落下的高度h (单位:m )满足关系 h =5t 2,如果用含有h 的式子表示 t ,则.(3)中当h 的值分别为0,10,15,20,25时,得到的结果分别是什么?r =r =表示的数怎样变化?二.合作探究形成知识(1)这些式子分别表示什么意义? (2)这些式子有什么共同特征?分别表示3,S ,65, 的算术平方根这些式子的共同特征是:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根. (3)根据你的理解,请写出二次根式的定义.用来表示一个非负数的算术平方根的式子,叫做二次根式.a≥0)•的式子叫做二次根式,“”称为二次根号.三.初步应用 巩固知识练习2 二次根式和算术平方根有什么关系?二次根式都是非负数的算术平方根;带有根号的算术平方根是二次根式.5h例2 当x 是怎样的实数时,在实数范围内有意义?呢?答案:(1) a 为任何实数; (2) a =1.总结:被开方数不小于零. 四.比较辨别 探索性质五.综合应用 深化提高六.课堂小结七.回顾总结反思提升我们以前学习过的整式、分式都能像数一样进行运算,你认为对于二次根式应该进一步研究哪些问题?八.作业:教科书第5页第1,3,5,6,7,10题.九.教学反思本节课是二次根式第一节课,内容较简单,学生刚开始接收新知识的状态很好,但是在授课后期,由于时间关系,学生用来思考和板书的时间较少,导致学生落实不好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
活动二接触新知
1.二次根式的定义:一般
的,我们把形如 ( ≥0)的式子叫做二次根式,“ ” 称为二次根号.
2.例题与练习
例1.下列各式是否为二次根式?
(1) ;(2) ;
(3) ;(4) ;
(5) .
解:(1)∵m2≥0, ∴m2+1>0
∴ 是二次根式.
(2)∵ 2≥0,
∴ 是二次根式;
(3)∵n2≥0,∴-n2≤0,
2、下列式子中,不是二次根式的是( )A. B. C. D.
3、已知一个正方形的面积是5,那么它的边长是( )A.5;B. ;C. ;D.以上皆不对;
4、形如________的式子叫做二次根式.5、面积为a的正方形的边长为________.
6、负数________平方根.7、面积为S的圆的半径为;
8、某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要, 底面应做成正方形,试问底面边长应是;
活动一回顾与思考
1、思考:用带根号的式子填空,看看写出的结果有什么特点:
(1)面积为S的正方形的边长为;
(2)要修建一个面积为6.28cm2的圆形喷水池,他的半径为m(∏取3.14)
(3)物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时
.
学生思考并回答
学生发现所填结果都表示一个数的算术平方根,教师引导学生用一
八年级数学教案序号:1
课题:16.1 二次根式(第一课时)课型:新授课执笔:亓桂琴
备课时间:月 日授课时间:授课班级:




知识

技能
1、了解二次根式的概念.
2、理解 (a≥0)是一个非负数,( )2=a(a≥0), =a(a≥0).
过程

方法
先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.
板书设计16.1二次根式
二次根式定义: 例题:
课后反思:
精品文档word文档可以编辑!谢谢下载!
∴当n=0时 才是二次根式;
(4)当 -2≥0时是二次
根式,当 -2<0时不是二次根式;即当 ≥2是二次根式,当-y<0时不是二次根式;即当x≥y是二次根式,当x<y时不是二次根式.
个式子表示这些有共同特点的式子。
学生观察所得结果的特点
请同学们思考:为什么一定要加上 ≥0这一条件?引导学生说出只有正数和零才有平方根,负数没有平方根
3题是灵活应用二次根式的取值范围才能解的题目,需要学生认真思考.
使学生进一步掌握二次根式取值范围的习题.
对第四小题试着讨论.
1、2两小题检查中等及以下学生对基础知识的掌握情况.
3题检查中等以上学生是否对二次根式的取值范围有更深刻的理解.
活动三.总结收获
1.二次根式的定义及被开方数的取值范围;
2.被开方数的取值范围在计算中经常作为隐含条件给出,注意合理应用.
学生总结有何收获和经验教训,教师补充.
有助于培养学生的总结能力,并让学生总结经验教训有助于学生大胆的说出自己的错误避免今后再出现同样的失误.
布置作业:
A类:教材P5---习题16.1第一题
B类:
1、当 是怎样的实数时,下列各式在实数范围内有意义?
(1) ;(2) ;(3) .
分层作业
课堂检测
1、下列式子中,是二次根式的是( )A.- B. C. D.x
(1)小题与学生一起分析;
(2)小题请学生分析;
(3)小题请学生认真思考后回答;
(4)(5)两小题需要分情况讨论,请学生考虑清楚在回答.
利用开方开不进的式子引出二次根式的定义.
进一步巩固被开方数一定要大于等于零这一条件.
渗透整体思想
例2.当x为何值时,下列各式在实数范围内有意义?
(1)
(2)
(3)
(4)
练习:
1. 一个矩形的面积是18cm2,它的边长之比为2:3,它的边长应为多少?
2.当 是怎样的实数时,下列各式在实数范围内有意义?
(1) (2)
3.已知y= - ,求x+y的值.
(1)(2)小题学生自己能够解决.
(3)小题注意符号问题;
(4)小题请学生思考后解答.
学生练习1、2两小题是基础题,学生自己能够完成.
学情分析
本节课是在数的开方的有关知识的基础上展开的,有了一定知识基础,他们并不陌生,所以只要我们连接好新旧知识,学生很容易接受,加强新旧知识的联系,化为知为已知。
重点
形如 (a≥0)的式子叫做二次根式的概念;
难点
利用“ (a≥0)”解决具体问题
教法
启发式和引导探究式
教 学 过 程
问题与情境
师生行为
设计意图
使学生回忆平方根和算术平方根的内容
的高度h(单位:m)满足关系h=5t2。如果用含有h的式子表示t,则;
在上面的问题中,结果分别是,,,它们都是表示一些正数的算数平方根。
2、思考下列问题①—1有算术平方根吗?②0的算术平方根是多少?③当a<0, 有意义吗?
3、二次根式是怎样定义的?
4自学例1知道如何求一个字母的取值范围?
情感
态度
培养学生辩证唯物主义观点.发展学生观察、分析、发现问题的能力.
课标要求
1、了解二次根式的概念
2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题;
教材分析
本节课是人教版八年级上册第16章二次根式第一节二次根式第一课时的内容,它是前面学习的数的开方的后继学习,也是学习二次根式的运算的基础,他在整个初中阶段起着重要的作用,贯穿始终,为后继学习打下夯实的基础。它是学习本章的关键,它也是学习二次根式的化简和运算的依据。
相关文档
最新文档