优化设计4约束优化方法
约束问题最优化方法
且 对 满 足 下 述 (9-7) 、(9-8) 、(9-9) 三 条 件 的 任 意 非 零 向 量 z 有 (9-10) 成 立 , 则 x* 是 问 题 (9-1) 的 严 格 局 部 极 小 点 .
第9章
约束问题最优化方法
9.1 约束优化问题的最优牲条件
约束条件下求极小值的非线性规划问题的数学模 型如下:
min f ( x) s.t hi ( x) 0(i 1, 2,, m) g j ( x) 0( j 1, 2,, l )
( 9-1 )
9. 1. 1 基 本 概 念 1. 起 作 用 约 束 设 非 线 性 规 划 问 题 ( 9.1.1 ) 的 可 行 域 为 H
*
9.1.4 二阶充分条件
1. 二 阶 充 分 条 件 对 非 线 性 规 划 问 题 ( 9-1 ) 而 言 , 若 f ( x) 、 gi ( x)( j 1, 2,, l ) 、
hi ( x)(i 1, 2,, m) 二 次 连 续 可 微 , x* 是 可 行 点 , 又 存 在 向 量
2 .正则点
对 于 非 线 性 规 划 问 题 (9-1) , 如 果 可 行 点 x (1) 处 , 各 起 作 用 约 束 的 梯 度 线 性 无 关 , 则 x (1) 是 约 束 条 件 的 一 个 正 则 点,特别地,严格内点也是约束条件的正则点.
3 .可行下降方向的判定条件 在 7.4 节,我们给出了可行下降方向的定义,在这里 我们推导可行下降方向的判定条件. 设x
(1)
第2章优化设计-4约束优化
到约束优化问题的最优解。
8
在可行域内构成
初始复合形 计算各顶点函数值,
X(R)
找出最坏点、最好
点 计算中心点和映射点 (找出目标函数下降的 方向及迭代点)
X(H) X(C) X(L)
4
通常迭代法是迭代点逐步向最优点逼近的过程在
设计空间形成一条轨迹;而复合形法虽然也是一个
逐步逼近的过程,但是它利用由若干个顶点所构成 的复合形,通过顶点的不断更迭而发生变形和位移, 最终趋向最优点。
15
(2)给定一个初始顶点,随机产生其它顶点
在高维且多约束情况下,一般是人为地确定一个初始可
行点X (1) ,其余 k 1 个顶点 X ( j ) ( j 2,3,, k ) 可用随机法产 生,即
X i( j ) ai ri( j ) (bi ai )
式中: j ——复合形顶点的标号 ; ( j 2,3,, k ) i ——设计变量的标号 (i 1, 2,, n) ,表示点 的坐标分量; ai , bi ——设计变量的解域或上下界; ri( j ) —— [0,1]区间内服从均匀分布伪随机数。
X ( R) X ( S ) ( X ( S ) X ( H ) )
24
新的区间如图中虚线所示: 其边界值若 X i( L) X i( S ) (即X ( L)点在X ( S )的左边), i 1, 2,, n, 则取
ai X i( L ) (S ) b X i i
22
(R)
复合形法的调优迭代
初始复合形生成后,其调优迭代计算按下述步骤进行: (1) 计算初始复合形各顶点的函数值, 选出好点、坏点、次坏点:
X ( L) : f ( X ( L ) ) min{ f ( X ( j ) ), j 1, 2, , k} X ( H ) : f ( X ( H ) ) max{ f ( X ( j ) ), j 1, 2, , k} X (G ) : f ( X ( G ) ) max{ f ( X ( j ) ), j 1, 2, , k; j H}
约束优化方法
约束优化方法
约束优化方法是一种常用的数学方法,用于解决在一定条件下优化问题的方法。
其核心思想是将优化问题中的约束条件纳入考虑范围,从而得出最优解。
这种方法在实际应用中具有广泛的适用性,如在工程设计、经济决策、物流规划等领域都有着重要的应用。
约束优化方法的具体实现包括线性规划、非线性规划、动态规划等多种方法。
其中,线性规划是最为常用的一种方法,其基本思想是在满足一定的约束条件下,最大化或最小化目标函数。
非线性规划则是在约束条件下,求解非线性目标函数的最优解。
动态规划则是一种递推算法,通过将大问题分解为小问题,逐步求解最优解。
约束优化方法的优点在于能够考虑到实际问题中的各种限制条件,从而得出更加符合实际的解决方案。
然而,这种方法也存在着一些局限性,如在求解复杂问题时,计算量较大,需要较高的计算能力和时间成本。
综上所述,约束优化方法是一种重要的数学方法,其应用范围广泛,能够解决各种实际问题。
在实际应用中,需要根据具体问题的特点选择合适的约束优化方法,并结合实际情况进行调整和优化,以得出更加符合实际的解决方案。
现代设计方法-优化设计5-约束优化课件PPT
20
21
22
4. 可行方向法
可行方向法是用梯度去求解约束非线性最优化问题的一种有 代表性的直接解法,是求解大型约束优化问题的主要方法之 一。其收敛速度快,效果好,但程序比较复杂,计算困难且 工作量大。
数学基础:梯度法、方向导数、K-T条件 线性规划,约束一维搜索
适用条件:目标函数和约束函数一阶连续可微, 只有不等式约束。
约束梯度法 31
序列线性规划法
(4)可行方向法的迭代步骤
1)给定初始内点X(0),收敛精度ε和约束允差δ,置
k=0;
2)确定点X(k)的起作用约束集合
Ik X (k) , u gu X (k) ,u 1,2,, m
➢ 当Ik为空集(表示约束都不起作用),且点X(k)在可
行域内时,如果 f X,(k)则令
现代设计方法
优化设计部分
黄正东,吴义忠
二0一三年二月
1
本章主要内容
➢ 优化设计概述 ➢ 优化设计的数学基础 ➢ 一维探索优化方法 ➢ 无约束优化方法 ➢ 约束问题优化方法 ➢ 优化设计若干问题
2
约束问题优化方法
➢ 优化设计概述 ➢ 优化设计的数学基础 ➢ 一维探索优化方法 ➢ 无约束优化方法 ➢ 约束问题优化方法 ➢ 优化设计若干问题
11
初始复合形法生成
1.随机测试找到一个可行点
2.随机生成其它点
3.计算可行点的中心点
4.中心点不可行时,不计最远点 重新计算中心
5.将不可行点向中心拉靠
6.初始复合1形2
(2) 算法 (反射、扩张、收缩、压缩)
Step 1: 反射
(1) 计算 (2) 计算
f ( X h ) max{ f ( X j ), j 1,2,..., k}
第四章约束问题的最优化方法
当limr(k) 0 k
则(x, r(k) ) f (x) , xk * x *
例: 用内点法求
min
f
(x)
x2 1
x2 2
s.t. g( x) 1 x1 0 的约束最优解。
解:
首先构造内点惩罚函数: (
x,
r)
x2 1
x2 2
rk
ln(x1
1)
用解析法求函数的极小值,运用极值条件:
二. 直接解法:
基本思想:合理选择初始点,确定搜索方向,以迭代公式 x(k+1)= x(k)+α(k)S(k)在可行域中寻优,经过若干次迭代,收敛至最优点。 适用范围:只能求解不等式约束优化问题的最优解。
基本要点:选取初始点、确定搜索方向及适当步长。
搜索原则:每次产生的迭代点必须满足可行性与适用性两个条件。 可行性:迭代点必须在约束条件所限制的可行域内,即满足
1
u1 gu (x)
② .(x, r(k) )
m
f (x) r(k)
1
u1 gu (x)
③ .(x, r (k) )
f (x)
m
r (k) u u 1
1 gu (x)
其中:gu (x) 0,u 1,2,...m
其中:gu (x) 0,u 1,2,...m
gu(x)0, u=1,2,…,p
适用性:当前迭代点的目标函数值较前一点是下降的,即满足 F(xk+1)<F(xk)
收敛条件:
• 边界点的收敛条件应该符合 K-T 条件;
• 内点的收敛条件为: xk1 xk 1
和
约束优化方法
约束优化方法概述 约束优化问题的最优解及其必要条件 约束坐标轮换法 约束随机方向法 复合形法 惩罚函数法
教学要求: 1、掌握约束优化局部最优解的必要条件。 2、掌握复合形法得原理及程序设计。 3、掌握内点法和外点法的惩罚函数的构造原理及 程序设计。
约束优化方法概述
可行性:迭代点必须在约束条件所限制的可行域内,即满足 gu(x)0, u=1,2,…,p 适用性:当前迭代点的目标函数值较前一点是下降的,即 满 F(xk+1)<F(xk)
2、间接法
该方法可以求解等式约束优化问题和一般约束优化问题。 其基本思想是将约束优化问题通过一定的方法进行改变,将 约束优化问题转化为无约束优化问题,再采用无约束优化方 法进行求解。如:惩罚函数法
5.2 约束优化问题极小点的条件
约束优化问题极小点的条件,是指在满足约束条 件下,目标函数局部极小点的存在条件。 约束问题最优解的存在条件有两种:一是极小点在 可行域内部,二是极小点在可行域的一个或几个边界交 汇处。 5.2.1 不等式约束问题解的必要条件 第一种情况:如图所示, g1(x*)=0, g2(x*)>0, g3(x*)>0。所以g1(x)为起作用约束, g2(x)、 g3(x)为不 起作用约束。 由于约束最优点是目标函数与约束g1(x)边界的切点, 故目标函数与约束函数的梯度必共线,而且方向一致。
λu μv称为拉格朗日乘子 上式也称为约束优化问题局部最优点的必要条件。
在迭代点 为
处展开式的形式
一般情况下,其作用约束数J不大于问题的维数 其中 是待定系数矢量
……
解上式,得一组λj(j=1,2……J),如果λj(j=1, 2……J)均为非负,标志 满足K-T条件。该条件 是 为极小点的必要条件。 如果点 是最优点,则必须满足K-T条件; 反之,满足K-T条件的点则不一定是约束最优点。 只有当目标函数是凸函数,约束构成的可行域是凸集 时,则满足K-T条件的点 是全局极小点的必要而充 分条件。
约束问题的优化方法
XR
变形的复合形
可行的新点,用新点代替最坏点, 构成新的复合形,复合形的形状 每改变一次,就向最优点移动一
XC
XL
初始复合形
步,直至逼近最优点。从复合形
法工作原理可看出,实现复合形 法最关键的是:构造复合形和复 合形变换等问题。
XH
0
x1
图4-4复合形法的算法原理
《车辆优化设计与实践》教学课件
4.3.2 方法实现的关键技术
初始点更优的新点,至此完成一
轮迭代。然后,以新点为新的初
始点,即令 X 0 X 。重复以
0
上过程,经过若干次迭代计算后,
最终取得约束最优解。
X X
X1 X0
x1 图4-1 随机方向法的原理
《车辆优化设计与实践》教学课件
4.2.2 方法实现的关键技术
实现随机方向法的关键包括初始点的选择,可行搜方 向的产生和搜索步长的选择等问题。 (1)初始点形成 随机方向法的初始点 X 0必须是一个可行点,即满足全 部不等式约束条件:g j (X 0 ) 0 ( j 1, 2, , m)。当约束条件 较为复杂,用人工不易选择可行初始点时,可用随机 选择的方法来产生。计算随机点的步骤如下: 1)输入设计变量的下限值和上限值,即
式计算随机单位向量 e j
ej
1
rr12jj
1
n
i 1
rij
22
rnj
( j 1, 2, , k)
(4-3)
《车辆优化设计与实践》教学课件
2)取一X 试j 验X步0 长0e0,j 按(4下-4式)计算K个随机点 显然,K个随机点分布在以初始点X 0为中心,以试验 步长 0为半径的超球面上。 3)检验K个随机点X j( j 1, 2, , k)是否为可行点,除 去非可行点,计算余下的可行随机点的目标函数值, 比较其大小,选出目标函数值最小的点 X L。 4)比较X L 和 X 0两点的目标函数值,若 f (X L ) f (X 0 ),则 取X L 和X 0的连线方向 f ( X L ) f ( X 0 ) 作为可行搜索方向 为止。如果缩小到很小(例如 0 106),仍然找不到 一个X L 使 f (X L ) f (X 0 )则说明 X 0 是一个局部极小点,此 时可更换初始点,转步骤1)。
约束最优化方法
约束最优化方法
约束最优化方法是指通过给定约束条件,寻找目标函数的最优解。
以下是一些常用的约束最优化方法:
1. 拉格朗日乘子法:将约束最优化问题转化为无约束最优化问题,通过求解无约束最优化问题得到原问题的最优解。
2. 罚函数法:将约束条件转化为罚函数项,通过不断增加罚函数的权重,使目标函数逐渐逼近最优解。
3. 梯度下降法:通过迭代计算目标函数的梯度,沿着梯度的负方向搜索目标函数的最优解。
4. 牛顿法:通过迭代计算目标函数的Hessian矩阵,使用Hessian矩阵的逆矩阵乘以梯度向量来逼近最优解。
5. 遗传算法:模拟自然界的遗传机制,通过种群迭代的方式搜索最优解。
6. 模拟退火算法:模拟物理退火过程,通过随机搜索的方式搜索最优解。
7. 蚁群算法:模拟蚂蚁觅食行为,通过模拟蚂蚁的信息素传递过程来搜索最优解。
8. 粒子群算法:模拟鸟群、鱼群等群集行为,通过模拟粒子间的相互作用来搜索最优解。
这些方法各有优缺点,应根据具体问题选择合适的方法进行求解。
约束优化方法共100页
3)间接解法存在的主要问题是,选取加权因子较为困难。 加权因子选取不当,不但影响收敛速度和计算精度,甚至 会导致计算失败。
第二节随机方向法
随机方向法的基本思路: 在可行域内选择一个初始点,利用随机数的概率特性,产 生若干个随机方向,并从中选择一个能使目标函数值下降 最快的随机方向作为搜索方向d。 从初始点x0出发,沿d 方向以一定步长进行搜索,得到新点 X,新点x应满足约束条件且f(x)<f(x0),至此完成一次迭代。 随机方向法程序设计简单,搜索速度快,是解决小型机械优 化问题的十分有效的算法。
j 1
k 1
新目标函数
加权因子
然后对新目标函数进行无约束极小化计算。
间接解法是目前在机械优化设计中得到广泛应 用的一种有效方法。其特点是:
1)由于无约束优化方法的研究日趋成熟, 已经研究出不少 有效的无约束最优化方法和程序,使得间接解法有了可靠 的基础。目前,这类算法的计算效率和数值计算的稳定性 也都有较大的提高。
则 q r / r1 (0,1)之间的随机数
在任意(a,b)区间内的随机数
xaq(ba)
二、初始点的选择
随机方向法的初始点x0必须是一个可行点,既满足全部不等 式约束条件。
初始点可以通过随机选择的方法产生。 1)输入设计变量的下限值和上限值,即
ai xi bi
2)在区间(0,1)内产生n个伪随机数 q i
3.惩罚因子的缩减系数c的选取
在构造序列惩罚函数时,惩罚因子r是一个逐次递 减到0的数列,相邻两次迭代的惩罚因子的关系为:
rk crk1
惩罚因子的缩减系数
通常的取值范围:0.1-0.7之间。
4.收敛条件
约束优化方法的讲解
2)按经验公式
r0 f x0 1 0 g x j 1 j
m
计算r0 值。这样选取的r0 ,可以是惩罚函数中的障 碍项和原目标函数的值大致相等,不会因障碍项的值 太大则其支配作用,也不会因障碍项的值太小而被忽 略掉。 3.惩罚因子的缩减系数c的选取 在构造序列惩罚函数时,惩罚因子r是一个逐次递 减到0的数列,相邻两次迭代的惩罚因子的关系为:
(k=0,1,2,…)
逐步趋向最优解,直到满足终止准则才停止迭代。
直接解法的原理简单,方法实用,其特点是:
1)由于整个过程在可行域内进行,因此,迭代计算不论 何时终止,都可以获得比初始点好的设计点。 2)若目标函数为凸函数,可行域为凸集,则可获得全域 最优解,否则,可能存在多个局部最优解,当选择的初始 点不同,而搜索到不同的局部最优解。 3)要求可行域有界的非空集。
a) 可行域是凸集;b)可行域是非凸集
间接解法的求解思路:
将约束函数进行特殊的加权处理后,和目标函数结合起来, 构成一个新的目标函数,即将原约束优化问题转化为一个 或一系列的无约束优化问题。
x, 1 , 2 f x 1G hk x g j x 2 H
当迭代点离约束边界越远时,惩罚项愈大,这可看 成是对迭代点不满足约束条件的一种惩罚。
例6-6 用外点法求问题
hk x 0
7- 优化设计-4多维优化之约束优化方法
4
基本思想:
依据原约束优化问题的约束条件构 建可限制其目标函数值脱离可行域之外的 约束函数,并将其与原目标函数共同组成 一个新目标函数,进而通过对新目标函数 的求解实现约束优化问题向无约束优化问 题的转化和求解.
5
2、惩罚函数法的内涵和本质
原目标函数f(X) 约束条件
+
构建 约束优化问题 转 约束函数
g2(X)=1/ (P· L/(4L2-B2)1/2-π3ET/8L2· (D2+T2))
200 ≤1/2· (4L2-B2)1/2 ≤ 1200
g3(X)=1/(200 - 1/2 · (4L2-B2)1/2 ) g4(X)=1/ (1/2· (4L2-B2)1/2 -1200)
u
2
24
性质3:当迭代次数足够大,惩罚函数
中各项违反约束的函数取值趋于0,惩罚 函数的极小点就是目标函数的最优点
max g x,0
u 1 u
m
2
1 k k x*, r f x * 0 r
25
6)外点法计算步骤
1:给定初始点x0 以及初始惩罚因子 r0、递 增系数a、收敛精度 ε1 ε2 ,令 k=0; 2: 构造惩罚函数; 3:用无约束优化方法求惩罚函数的最优解 xk* 和对应函数值 4:运用终止准则进行收敛判断,满足收敛 条件,计算结束,xk* 为最优点,否则 令X0=xk*;rk+1=a*rk*;k=k+1,返回步骤3 继 续计算
点在约束边 界值趋于∞
惩罚函数为:
1 ( x , r ) f ( x ) r u 1 gu ( x )
k k m
或: ( x, r ) f ( x ) r
k
优化设计 约束和无约束优化
无约束优化方法1.坐标轮换法2.鲍威尔法3.梯度法4.牛顿法5.变尺度法1.坐标轮换法坐标轮换发是一种不计算函数梯度,而是通过函数值本身,即可求出寻优方向,因而也称为直接寻优法.在以后提到的鲍威尔法(Powell)法也属于直接寻优法。
对于坐标轮换法,我们做个比喻:如果我们在北京的老城区找一个地方,我们可以沿着经纬线去找。
这个比喻为我们提供了一种思路,既可以取坐标的方向为寻优的方向,这就是坐标轮换法。
它在每次搜索中,只允许一个变量的变化,其余量保持不变,即沿着坐标方向轮流进行搜索的方法。
该方法把多变量的优化问题轮流转化成一系列单变量的优化问题。
对应于n 个变量的寻优函数,若在第轮沿第k 个坐标第i 个坐标方向ki i S e =进行搜索,则迭代公式为1(0,1,...,1,2,...,)k k k k i i i i X X S k i n α-=+==其中搜索方向取坐标方向,即k i i S e =(1,2,...,i n =)。
若0k k n X X -‖‖<ε,则*kn X X ←,否则10k kn X X +←,进行下一轮的搜索,一直到满足精度要求为止。
其搜索路径如图所示这种方法的收敛效果与目标函数等值线形有很大关系。
如果目标函数为二元二次函数,其等值线为圆或长轴平行于坐标轴的椭圆时,此方法很有效,经过两次搜索即可以达到最优点,如图所示。
如果等值线为长轴不平行于坐标轴的椭圆,则需多次迭代才能达到最优点,但因坐标轮换法是坐标方向搜索而不是沿脊线搜索,所以就终止到脊线上而不能找到最优解。
从上述分析可以看出,采用坐标轮换法只能轮流沿着坐标的方向搜索,尽管也能使函数值步步下降,但经过曲折迂回的路径才能达到极值点;尤其极值点附近步长很小,收敛很慢,所以坐标轮换法不是一种很好的搜索方法。
但是可以构造很好的搜索策略,下面讨论的鲍威尔法就是这种情况。
例题:已知22121212()10460f X x x x x x x =+---+,设初始点:(0)[0,0]T X=,精度0.1=ε,用最优步长法的坐标轮换法求目标函数的最优解。
约束优化问题的求解方法
约束优化问题的求解方法约束优化问题(Constrained Optimization Problem)是指在一个给定的约束条件下,在所有可行的解中找到最优解的问题。
这类问题在现实中广泛存在,包括物流配送、资源分配、工程设计等领域。
如何有效地求解约束优化问题是科学研究和工程实践中的一个重要问题。
求解约束优化问题的基本方法是利用数学模型和优化算法。
数学模型是对问题的抽象和表达,它将问题中的各种因素、变量、约束、目标函数都用数学符号和方程式来描述。
优化算法则是根据数学模型对解进行求解的方法和技术。
具体来说,一个典型的约束优化问题可以描述为:$$\min f(\mathbf{x})$$$$s.t. \quad g_j(\mathbf{x}) \leq 0, j=1,2,...,m$$$$h_k(\mathbf{x})=0, k=1,2,...,p$$其中,$f(\mathbf{x})$是目标函数,$\mathbf{x} = [x_1, x_2, ..., x_n]$是决策变量向量,$g_j(\mathbf{x})$是不等式约束,$h_k(\mathbf{x})$是等式约束,$m$和$p$分别是不等式约束和等式约束的数量。
对于约束优化问题,大致有以下几种求解方法。
1. 等式约束和不等式约束均为线性约束的约束优化问题可以使用线性规划方法求解。
线性规划是指目标函数和所有约束均为线性函数的优化问题。
线性规划具有较好的求解效率且有高度的理论成熟度。
目前已经有很多线性规划求解器可供使用。
例如OpenSolver、Gurobi等。
2. 不等式约束为凸函数的约束优化问题可以使用凸优化方法求解。
凸优化问题是指其目标函数和不等式约束均为凸函数的优化问题。
凸优化具有全局最优性和求解效率高的特点,其求解方法有许多,例如基于梯度的方法、基于内点的方法等。
凸优化库MATLAB Optimization Toolbox和Python库CVXPY都提供了凸优化的求解工具。
约束问题的最优化方法
3. 优化方法: 选用内点惩罚法,惩罚函数形式为: 6 1 T k k x,r f x r 取 x 0 1,30 , r 0 3 , c 0.7 u 1 g x u 调用 Powell 法求序列无约束优化极值,以逐渐逼近原问 题的极值点。
k 2 x r ( 1 x ) x 1时; x, r k x 1时。 x
4
min.
s.t
f (x) = x
x ∈ R1
g (x) = 1-x ≤ 0
§5.3 外点惩罚函数法
二. 惩罚函数的形式:
①
x, r ( k ) f x r k maxg u x ,0 I u g u x 0 u 1,2,...,m,
(k ) (k ) m
1 u 1 g ( x ) u
m
其中:gu ( x) 0, u 1,2,...m
1 u 1 g ( x ) u m 1 (k ) (k ) ③ . ( x, r ) f ( x) ru u 1 g u ( x) m 1 (k ) (k ) ④ .( x, r ) f ( x) r 2 u 1 [ g ( x )] u
§5.2 内点惩罚函数法
4. 求解过程分析:
§5.3 外点惩罚函数法 (衰减函数法)
一. 基本思想: 外点法将新目标函数
Φ( x , r )
构筑在可行域 D
外,随着惩罚因子 r(k) 的不断 递增,生成一系列新目标函数
Φ(xk ,r(k)),在可行域外逐步
迭代,产生的极值点 xk*(r(k)) 序列从可行域外部趋向原目标 函数的约束最优点 x* 。 例:求下述约束优化问题的最优点。 新目标函数:
第4章有约束优化(2)
i =1
(c)λi* ≥ 0
i∈I
一阶必要条件的说明
Page 14
称为互补松弛条件 (1)(b)称为互补松弛条件,当所有的有效约束 ) 称为互补松弛条件, 的乘子都不为零时,称为严格互补松弛条件. 的乘子都不为零时,称为严格互补松弛条件 (2)有效约束函数的梯度线性无关称为 )有效约束函数的梯度线性无关称为KuhnTucker约束规范 约束规范. 约束规范 如果该约束规范不满足,最优点不一定是 点 如果该约束规范不满足 最优点不一定是KT点. 最优点不一定是 乘子为 。 (3)非有效约束的 )非有效约束的Lagrange乘子为0。 乘子 (4)几何意义: 若 x* 是问题的最优解,则 )几何意义: 是问题的最优解,
s 有: s ∇ L( x , λ ) s > 0
T 2 xx * *
则 x* 是问题(2)的一个严格局部最优解. 是问题 的一个严格局部最优解. 的一个严格局部最优解
凸规划问题的充分条件
min
st. ci ( x) = 0 i ∈ E = {1,2,Ll}
Page 19
n
f ( x)
x∈R
( 2)
Page 9
定理2: 对等式约束问题, 定理 对等式约束问题,若: (2) ∃x* ∈ Rn 与 λ* ∈ Rl 使: L(x*, λ* ) = 0; ∇ (3) ∀s∈ Rn且 s ≠ 0,且 sT ∇ci (x* ) = 0, i =1,2,Ll 均有 sT ∇2 L(x*, λ* )s > 0 xx 是等式约束问题的严格局部极小点. 则 x* 是等式约束问题的严格局部极小点. (1) f ( x) 与 ci ( x)(1≤ i ≤ l ) 是二阶连续可微函数; 是二阶连续可微函数 可微函数;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22
由此,这种方法的关键是如何确定初始点、搜索方向和搜索步长,而这 些都涉及到随机数问题.因此下面如何产生随机数的方法
23
随机数的产生 产生在区间(0,1)内分布的随机数列rj的常用方法有两种
N=10; DIM R(N) FOR I=1 TO N R(I)=RND(1)
PRINT R(I) NEXT I
条件,就可再加倍增大步长,继续迭代,不断产生新的迭代点。
如果该点已违反了可行性条件,
此时取它的前一迭代点X
(1) 3
作为沿
e1方向搜索的终点转而沿x2坐标
轴正向进行搜索
X 4(已1) 经违犯
了可行性条件
正向的第一个迭代点的目标函数 值增加,即不满足适用性条件,
改取负步长 0 进行迭代
下面的迭代方式与前面相同,直到违反适用性或
21
随机方向法在某个迭代点可以按照足够多的m个方向进行搜索,一般事先
约定搜索方向数m=50~500,m过小会影响最优方向的选择,过大会使收
敛速度降低。因此,随机方向法处理约束优化问题要比约束坐标轮换法灵
活和有效。
以二维约束优化问题为例说明随 机方向法的基本原理。在可行域 内任意选择的一个初始点X(0)出发 给定的步长α=α0按照以某种方法 产生的随机方向S(1)进行搜索,得到 迭代点X=X(0)+αS(1),如果同时满足 可行性和适用性,则表示点X探索成 功。再将点X作为起始点
足约束条件 gu(X) 0(u=1,2,…,m),则应重新随机选择出可行
i=ai(ba)
26
均匀分布的随机数列 i
初始点的选择
27
选择初始点注意:
根据设计变量上限和下限随机产生的初始点, X(0)[x1 (0),x2 (0),xn (0)]T
虽然可以满足设计变量所有的边界条件,但是不一定能够满足所有的约 束条件。因此,还必须对初始点 X 0 进行可行性条件检验。如果不能满
为了消除这一弊病,可以输入多个初始点或给定 多个初始步长,以便从许多个输出的最优点中排除伪优点, 取得真正的最优点
11
坐标轮换法的讨论 “死点”的现象,从而导致输出伪最优点 以图为例
消除这一弊病的方法,可 以输入多个初始点或给定 多个初始步长和不断缩小 步长,以便从许多个输出 的最优点中排除伪最优点, 取得真正的最优点
12
例题 min f (X) x12 2x22 4x1 8x2 15 s.t. g1(X) 9x12 x22 0 g2(X) x1 0 g3(X) x2 0
1.取初始点 X (0) =[1,1]T , 0 0.5 2
0.1 (收敛指标)
2. gi(X(0))0,i=1,2,3, 为可行点,该点的目标函数为
方法的基本原理
我们以二维约束优化问题来描述这种方法.首先在可行域D内任 取一个初始点 X (0)
5
以 X(0) 为起点,取一个适
当的初始步长α0
取得沿x1坐标轴正向的第一个迭代点X
(1 1
)
检查该点是否满足下面二式:
适用性、可行性条件 如果两者均满足,则步长加倍
6
X
(1) 2
沿x1
轴向的第二个迭代点,只要迭代点满足适用性和可行性
现对常用的几种约束优化方法进行介绍:约束坐标轮换法、 约束随机方向搜索法、复合形法、内点惩罚因数法、外点 惩罚函数法。
4
约束坐标轮换法 约束坐标轮换法是在无约束坐标轮换法的基础上再加上由约束条件构 成的可行性逻辑判断,使搜索点保持在可行域内,以求得约束最优解。 这种方法沿坐标方向搜索的迭代步长不是采用最优步长,而是采用加 速步长。这是因为按最优步长所得到的迭代点往往超出了可行域而成 为非可行点,这是约束优化问题所不允许的。
它具有较好的概率统计特性
一种常用的产生随机数的方法
24
置 q 12 3 5,q 22 3 6,q 32 3 7 ,并且取一个小于 2 3 5 的正奇数作为
q 的初值,例如2657863,然后按照下面的分支结构生成在(0,1)内
分布的随机数:按以下步骤进行
25
ri为(0,1)区间内均匀分布的伪随机数。 利用ri很容易求得任意区间(a,b)内的 伪随机数,其计算公式为:
f(X(0))6.00
3. 沿第一坐标轴(即e1)的方向搜索
13
14
15
16
17
18
进行第六轮循环后
19
约束随机方向搜索法 在可行域内利用随机产生的可行方向进行搜索的一种直接方法 基本原理
20
随机方向法是在可行域内利用随机函数产生的可行方向进行搜索,是一 种典型的“瞎子爬山”式数值迭代解法。随机方向法对目标函数的形态 性态没有特殊要求,迭代过程简单易懂,使用方便,可以随机地改变搜 索步长,收敛速度较快,处理小型问题比较有效 这种算法中,搜索方向和步长因子都要根据目标函数的下降性和约束 条件的可行性进行随机调整,也就是说,每一次迭代所计算出来的新 点,其目标函数值必须是减小的,而且必须是可行的。这样才能随着 迭代过程的进行保证迭代点逐步向约束的最小点逼近,最终收敛于约 束最优解上。
可行性条件时,即取得了沿e2方向的迭代终点X (2)。
7
8
9
10
关于死点的问题:
给定的初始点 X (0) 和初始迭代步长 a 0 为某一组数据时,迭代 点到达靠近约束边界的点 X (k ) 由图可见,在 X (k ) 点处以步长
a 0 为邻域的四个迭代点 X(A)、X ( B ) 、 X (C ) 、 X ( D ) 都不能同时满足适用性和可行性的要求,而且即使再缩小 a 0 也不会有什么效果,于是 X (k ) 必将作为最终结果从计算机 上输出 X (k ) 就是一个“死点”,显然它是一个伪最优点。
约束优化方法
机械优化设计中的问题,大多数属于约束优化设计问题, 其数学模型为
求解上式的方法称为约束优化方法。根据求解方式的不同, 可以分为直接法和间接法
常用的直接法有约束坐标轮换法、网格法、随机方向搜索法、 随机试验法、复合形法等。
常用的间接法:惩罚函数法和容许方向法等。
惩罚函数法是将约束优化问题通过一定形式的变换转化为无约束优化问 题,然后利用无约束的方法来求解。这种方法又可分为内点惩罚函数法、 外点惩罚函数法和混合惩罚函数法三种。容许方向法是将无约束优化问 题中的梯度法推广应用到求解约束优化问题上来。