模式识别ppt
合集下载
哈工大模式识别课件.pptx
《模式分类》,机械工业出版社,Richard O.
Duda
《模式识别》(第二版),清华大学出版社,边
肇祺,张学工;
模式识别 – 绪论
期刊
IEEE Transaction on Pattern Analysis and Machine Intelligence,PAMI;
Pattern Recognition; Pattern Recognition Letter; 模式识别与人工智能;
x
2
1
2
n
exp
1 2
n n
2
d
f , n
2 n
exp
1 2
x
n 2
2
2 n
f ,n
exp
1 2
2
2 n
2 2 n
2 n
x
2
n
2
2 n
2
du
模式识别 – 绪论
3.3期望最大化算法(EM算法)
EM算法的应用可以分为两个方面:
1. 训练样本中某些特征丢失情况下,分布参数的最大 似然估计;
特征提取与选 择
识别结果 模式分类
分类 训练
分类器设计
模式识别 – 绪论
六、模式识别问题的描述
给定一个训练样本的特征矢量集合:
D x1, x2, , xn, xi Rd
分别属于c个类别:
1,2, ,c
设计出一个分类器,能够对未知类别样本x进行分类
y g x, Rd 1, ,c
模式识别 – 绪论
率满足正态分布,即:
px N , 2
p
N
0
,
2 0
模式识别 – 绪论
Duda
《模式识别》(第二版),清华大学出版社,边
肇祺,张学工;
模式识别 – 绪论
期刊
IEEE Transaction on Pattern Analysis and Machine Intelligence,PAMI;
Pattern Recognition; Pattern Recognition Letter; 模式识别与人工智能;
x
2
1
2
n
exp
1 2
n n
2
d
f , n
2 n
exp
1 2
x
n 2
2
2 n
f ,n
exp
1 2
2
2 n
2 2 n
2 n
x
2
n
2
2 n
2
du
模式识别 – 绪论
3.3期望最大化算法(EM算法)
EM算法的应用可以分为两个方面:
1. 训练样本中某些特征丢失情况下,分布参数的最大 似然估计;
特征提取与选 择
识别结果 模式分类
分类 训练
分类器设计
模式识别 – 绪论
六、模式识别问题的描述
给定一个训练样本的特征矢量集合:
D x1, x2, , xn, xi Rd
分别属于c个类别:
1,2, ,c
设计出一个分类器,能够对未知类别样本x进行分类
y g x, Rd 1, ,c
模式识别 – 绪论
率满足正态分布,即:
px N , 2
p
N
0
,
2 0
模式识别 – 绪论
模式识别(国家级精品课程讲义).ppt
模式判定: 是一种集合运算。用隶属度将模糊集合划分
为若干子集, m类就有m个子集,然后根据择近原 则分类。
29
1.1 概述-模式识别的基本方法
理论基础:模糊数学 主要方法:模糊统计法、二元对比排序法、推理法、
模糊集运算规则、模糊矩阵 主要优点:
由于隶属度函数作为样本与模板间相似程度的度量, 故往往能反映整体的与主体的特征,从而允许样本有 相当程度的干扰与畸变。 主要缺点: 准确合理的隶属度函数往往难以建立,故限制了它的 应用。
式中,p(xi )是 X 的第 i 个分量的 边缘
密度。随机矢量 X 的均值矢量 的各
分量是相应的各随机分量的均值。
47
1.3 随机矢量的描述
(二)随机矢量的数字特征:
⑵ 条件期望
在模式识别中,经常 以类别 i 作为条件,在这
种情况下随机矢量 X 的条件期望矢量定义为
i E[ X | i ] X n xp(x | i )dx
34
1.1 概述-模式识别的发展简史
1929年 G. Tauschek发明阅读机 ,能够阅 读0-9的数字。
30年代 Fisher提出统计分类理论,奠定了 统计模式识别的基础。
50年代 Noam Chemsky 提出形式语言理论— —傅京荪提出句法/结构模式识别。
60年代 L.A.Zadeh提出了模糊集理论,模糊 模式识别方法得以发展和应用。
模式(Pattern):对客体(研究对象)特征的描 述(定量的或结构的描述),是取自客观世界 的某一样本的测量值的集合(或综合)。
概念
特征(Features):能描述模式特性的量(测
量值)。在统计模式识别方法中,通常用一
个矢量
x
为若干子集, m类就有m个子集,然后根据择近原 则分类。
29
1.1 概述-模式识别的基本方法
理论基础:模糊数学 主要方法:模糊统计法、二元对比排序法、推理法、
模糊集运算规则、模糊矩阵 主要优点:
由于隶属度函数作为样本与模板间相似程度的度量, 故往往能反映整体的与主体的特征,从而允许样本有 相当程度的干扰与畸变。 主要缺点: 准确合理的隶属度函数往往难以建立,故限制了它的 应用。
式中,p(xi )是 X 的第 i 个分量的 边缘
密度。随机矢量 X 的均值矢量 的各
分量是相应的各随机分量的均值。
47
1.3 随机矢量的描述
(二)随机矢量的数字特征:
⑵ 条件期望
在模式识别中,经常 以类别 i 作为条件,在这
种情况下随机矢量 X 的条件期望矢量定义为
i E[ X | i ] X n xp(x | i )dx
34
1.1 概述-模式识别的发展简史
1929年 G. Tauschek发明阅读机 ,能够阅 读0-9的数字。
30年代 Fisher提出统计分类理论,奠定了 统计模式识别的基础。
50年代 Noam Chemsky 提出形式语言理论— —傅京荪提出句法/结构模式识别。
60年代 L.A.Zadeh提出了模糊集理论,模糊 模式识别方法得以发展和应用。
模式(Pattern):对客体(研究对象)特征的描 述(定量的或结构的描述),是取自客观世界 的某一样本的测量值的集合(或综合)。
概念
特征(Features):能描述模式特性的量(测
量值)。在统计模式识别方法中,通常用一
个矢量
x
模式识别第二章ppt课件
2.2.2 聚类准则
• 试探方法
凭直观感觉或经验,针对实际问题定义一种 相似性测度的阈值,然后按最近邻规则指定 某些模式样本属于某一个聚类类别。
– 例如对欧氏距离,它反映了样本间的近邻性,但 将一个样本分到不同类别中的哪一个时,还必须 规定一个距离测度的阈值作为聚类的判别准则。
精选ppt课件2021
• 特征选择的维数
在特征选择中往往会选择一些多余的特征,它增加了 维数,从而增加了聚类分析的复杂度,但对模式分类 却没有提供多少有用的信息。在这种情况下,需要去 掉相关程度过高的特征(进行降维处理)。
• 降维方法
– 结论:若rij->1,则表明第i维特征与第j维特征所反 映的特征规律接近,因此可以略去其中的一个特
– 距离阈值T对聚类结果的影响
精选ppt课件2021
17
2.3 基于试探的聚类搜索算法
2.3.2 最大最小距离算法
• 基本思想:以试探类间欧氏距离为最大 作为预选出聚类中心的条件。
• 病人的病程
– 名义尺度:指定性的指标,即特征度量时没有数量
关系,也没有明显的次序关系,如黑色和白色的关
系,男性和女性的关系等,都可将它们分别用“0”
和“1”来表示。
• 超过2个状态时,可精选用pp多t课个件2数021值表示。
8
2.2 模式相似性的测度和
聚类准则
2.2.1 相似Βιβλιοθήκη 测度• 目的:为了能将模式集划分成不同的类别,必须定义 一种相似性的测度,来度量同一类样本间的类似性和 不属于同一类样本间的差异性。
12
2.2 模式相似性的测度和
聚类准则
2.2.2 聚类准则
• 聚类准则函数法
– 依据:由于聚类是将样本进行分类以使类别间可 分离性为最大,因此聚类准则应是反映类别间相 似性或分离性的函数;
• 试探方法
凭直观感觉或经验,针对实际问题定义一种 相似性测度的阈值,然后按最近邻规则指定 某些模式样本属于某一个聚类类别。
– 例如对欧氏距离,它反映了样本间的近邻性,但 将一个样本分到不同类别中的哪一个时,还必须 规定一个距离测度的阈值作为聚类的判别准则。
精选ppt课件2021
• 特征选择的维数
在特征选择中往往会选择一些多余的特征,它增加了 维数,从而增加了聚类分析的复杂度,但对模式分类 却没有提供多少有用的信息。在这种情况下,需要去 掉相关程度过高的特征(进行降维处理)。
• 降维方法
– 结论:若rij->1,则表明第i维特征与第j维特征所反 映的特征规律接近,因此可以略去其中的一个特
– 距离阈值T对聚类结果的影响
精选ppt课件2021
17
2.3 基于试探的聚类搜索算法
2.3.2 最大最小距离算法
• 基本思想:以试探类间欧氏距离为最大 作为预选出聚类中心的条件。
• 病人的病程
– 名义尺度:指定性的指标,即特征度量时没有数量
关系,也没有明显的次序关系,如黑色和白色的关
系,男性和女性的关系等,都可将它们分别用“0”
和“1”来表示。
• 超过2个状态时,可精选用pp多t课个件2数021值表示。
8
2.2 模式相似性的测度和
聚类准则
2.2.1 相似Βιβλιοθήκη 测度• 目的:为了能将模式集划分成不同的类别,必须定义 一种相似性的测度,来度量同一类样本间的类似性和 不属于同一类样本间的差异性。
12
2.2 模式相似性的测度和
聚类准则
2.2.2 聚类准则
• 聚类准则函数法
– 依据:由于聚类是将样本进行分类以使类别间可 分离性为最大,因此聚类准则应是反映类别间相 似性或分离性的函数;
模式识别详细PPT
迁移学习在模式识别中广泛应用于目标检测、图像分类等任务,通过将预训练模 型(如ResNet、VGG等)应用于新数据集,可以快速获得较好的分类效果。
无监督学习在模式识别中的应用
无监督学习是一种从无标签数据中提取有用信息的机器学习方法,在模式识别中主要用于聚类和降维 等任务。
无监督学习在模式识别中可以帮助发现数据中的内在结构和规律,例如在图像识别中可以通过聚类算 法将相似的图像分组,或者通过降维算法将高维图像数据降维到低维空间,便于后续的分类和识别。
通过专家知识和经验,手 动选择与目标任务相关的 特征。
自动特征选择
利用算法自动筛选出对目 标任务最相关的特征,提 高模型的泛化能力。
交互式特征选择
结合手动和自动特征选择 的优势,先通过自动方法 筛选出一组候选特征,再 由专家进行筛选和优化。
特征提取算法
主成分分析(PCA)
通过线性变换将原始特征转换为新的特征, 保留主要方差,降低数据维度。
将分类或离散型特征进行编码 ,如独热编码、标签编码等。
特征选择与降维
通过特征选择算法或矩阵分解 等技术,降低特征维度,提高 模型效率和泛化能力。
特征生成与转换
通过生成新的特征或对现有特 征进行组合、转换,丰富特征
表达,提高模型性能。
04
分类器设计
分类器选择
线性分类器
基于线性判别分析,适用于特征线性可 分的情况,如感知器、逻辑回归等。
结构模式识别
总结词
基于结构分析和语法理论的模式识别方法,通过分析输入数据的结构和语法进行分类和 识别。
详细描述
结构模式识别主要关注输入数据的结构和语法,通过分析数据中的结构和语法规则,将 输入数据归类到相应的类别中。这种方法在自然语言处理、化学分子结构解析等领域有
无监督学习在模式识别中的应用
无监督学习是一种从无标签数据中提取有用信息的机器学习方法,在模式识别中主要用于聚类和降维 等任务。
无监督学习在模式识别中可以帮助发现数据中的内在结构和规律,例如在图像识别中可以通过聚类算 法将相似的图像分组,或者通过降维算法将高维图像数据降维到低维空间,便于后续的分类和识别。
通过专家知识和经验,手 动选择与目标任务相关的 特征。
自动特征选择
利用算法自动筛选出对目 标任务最相关的特征,提 高模型的泛化能力。
交互式特征选择
结合手动和自动特征选择 的优势,先通过自动方法 筛选出一组候选特征,再 由专家进行筛选和优化。
特征提取算法
主成分分析(PCA)
通过线性变换将原始特征转换为新的特征, 保留主要方差,降低数据维度。
将分类或离散型特征进行编码 ,如独热编码、标签编码等。
特征选择与降维
通过特征选择算法或矩阵分解 等技术,降低特征维度,提高 模型效率和泛化能力。
特征生成与转换
通过生成新的特征或对现有特 征进行组合、转换,丰富特征
表达,提高模型性能。
04
分类器设计
分类器选择
线性分类器
基于线性判别分析,适用于特征线性可 分的情况,如感知器、逻辑回归等。
结构模式识别
总结词
基于结构分析和语法理论的模式识别方法,通过分析输入数据的结构和语法进行分类和 识别。
详细描述
结构模式识别主要关注输入数据的结构和语法,通过分析数据中的结构和语法规则,将 输入数据归类到相应的类别中。这种方法在自然语言处理、化学分子结构解析等领域有
《模式识别课件》课件
率和用户体验。
医学诊断
要点一
总结词
医学诊断是利用医学知识和技术对疾病进行诊断的过程, 模式识别技术在医学诊断中发挥着重要作用。
要点二
详细描述
模式识别技术可以辅助医生进行影像学分析、病理学分析 等,提高诊断准确性和效率,为患者提供更好的医疗服务 和治疗效果。
05
模式识别的挑战与未来发 展
数据不平衡问题
《模式识别课件》 ppt课件
xx年xx月xx日
• 模式识别概述 • 模式识别的基本原理 • 常见模式识别方法 • 模式识别的应用实例 • 模式识别的挑战与未来发展
目录
01
模式识别概述
定义与分类
定义
模式识别是对各种信息进行分类和辨 识的科学,通过模式识别技术,计算 机可以识别、分类和解释图像、声音 、文本等数据。
深度学习在模式识别中的应用
总结词
深度学习在模式识别中具有广泛的应用,能够自动提取特征并实现高效分类。
详细描述
深度学习通过构建多层神经网络来学习数据的内在特征。在模式识别中,卷积神经网络和循环神经网络等方法已 被广泛应用于图像识别、语音识别和自然语言处理等领域。
THANKS
感谢观看
人脸识别
总结词
人脸识别是一种基于人脸特征的生物识 别技术,通过采集和比对人脸图像信息 进行身份验证和识别。
VS
详细描述
人脸识别技术广泛应用于安全、门禁、考 勤、移动支付等领域,通过摄像头捕捉人 脸图像,并与数据库中存储的图像信息进 行比对,实现快速的身份验证和识别。
手写数字识别
总结词
手写数字识别是一种利用计算机技术自动识 别手写数字的技术,通过对手写数字图像进 行预处理、特征提取和分类实现识别。
医学诊断
要点一
总结词
医学诊断是利用医学知识和技术对疾病进行诊断的过程, 模式识别技术在医学诊断中发挥着重要作用。
要点二
详细描述
模式识别技术可以辅助医生进行影像学分析、病理学分析 等,提高诊断准确性和效率,为患者提供更好的医疗服务 和治疗效果。
05
模式识别的挑战与未来发 展
数据不平衡问题
《模式识别课件》 ppt课件
xx年xx月xx日
• 模式识别概述 • 模式识别的基本原理 • 常见模式识别方法 • 模式识别的应用实例 • 模式识别的挑战与未来发展
目录
01
模式识别概述
定义与分类
定义
模式识别是对各种信息进行分类和辨 识的科学,通过模式识别技术,计算 机可以识别、分类和解释图像、声音 、文本等数据。
深度学习在模式识别中的应用
总结词
深度学习在模式识别中具有广泛的应用,能够自动提取特征并实现高效分类。
详细描述
深度学习通过构建多层神经网络来学习数据的内在特征。在模式识别中,卷积神经网络和循环神经网络等方法已 被广泛应用于图像识别、语音识别和自然语言处理等领域。
THANKS
感谢观看
人脸识别
总结词
人脸识别是一种基于人脸特征的生物识 别技术,通过采集和比对人脸图像信息 进行身份验证和识别。
VS
详细描述
人脸识别技术广泛应用于安全、门禁、考 勤、移动支付等领域,通过摄像头捕捉人 脸图像,并与数据库中存储的图像信息进 行比对,实现快速的身份验证和识别。
手写数字识别
总结词
手写数字识别是一种利用计算机技术自动识 别手写数字的技术,通过对手写数字图像进 行预处理、特征提取和分类实现识别。
模式识别培训教程PPT(94张)
线条透视
结构密度
遮盖关系
(二)建构性知觉理论 (Constructive perception)
知觉是一个积极的和建构的过程
知觉并不是由刺激输入直接引起的,而 是所呈现刺激与内部假设、期望、知识以 及动机和情绪因素交互作用的产物
知觉有时可受到不正确的假设和期望影 响,因而也会发生错误
邻近物 体大小 对大小 知觉的 影响
现代观点则认为,知觉是主动 和富有选择性的构造过程。
黄希庭:“知觉是直接作用于感觉器 官的事物的整体在脑中的反映,是人对感 觉信息的组织和解释的过程。”
梁宁建:“知觉是人脑对客观事物的 各种属性、各个部分及其相互关系的综合 的整体的反映,它通过感觉器官,把从环 境中得到的各种信息,如光、声音、味道 等转化为对物体、事件等的经验的过程。”
2. “泛魔堂”模型(“魔城”模型)
通过特征分析识别一个字母R
3.特征分析的生理学依据
1981年诺贝尔医学奖获得者:Hubel & Wiesel
4.特征分析的行为学证据
Neisser(1964)英文字母扫描实验 固定影像与静止影像的实验
5.特征分析说的评论 优点:避开预加工、减轻记忆负担、带有学习
由有关知觉对象的一般知识开始的加工, 由此可以形成期望或对知觉对象形成假 设,这种期望或假设制约着加工的所有 阶段或水平。又称之为概念驱动加工 (Concept-Driven Processing)
•Tulving, Mandler & Baumal的实验
自变量
上下文情况:无上下文、4字上下文、8字上下文 (考察自上而下加工)
1982年他在《科学》杂志上原创性地提出 了“拓扑性质初期知觉”的理论,向半个世纪 以来占统治地位的理论提出了挑战。随后20多 年的时间里,在与国际上持不同学术观点的学 者的争论与交流中,他以令人信服的系列科学 实验不断地完善和论证着这一假说,使之成为 被越来越多的国际同行所接受的学说,进而成 为有国际影响力的理论,他的成果也被《科 学》、《美国科学院院报》等著名学术刊物多 次刊登。2004年,著名知觉杂志《Visual Cognition》以专辑的形式刊载了陈霖教授的 成果并配发了大量国际著名学者的评论性文章。
模式识别讲座PPT课件
Harbin Engineering University Nanyang Technological University
11
Distance-Based Classification
Overview
Distance based classification is the most common type of pattern recognition technique
Module 4 Neural Networks for P.R.
Module 5 Clustering Module 6 Feature Selection
10
Pattern Recognition
Module 1 Distance-Based Classification
Dr. Shi, Daming
Introduction
What is Pattern Recognition
Classify raw data into the ‘category’ of the pattern.
A branch of artificial intelligence concerned with the identification of visual or audio patterns by computers. For example character recognition, speech recognition, face recognition, etc.
7
Introduction
Syntactic Pattern Recognition
Any problem is described with formal language, and the solution is obtained through grammatical parsing
11
Distance-Based Classification
Overview
Distance based classification is the most common type of pattern recognition technique
Module 4 Neural Networks for P.R.
Module 5 Clustering Module 6 Feature Selection
10
Pattern Recognition
Module 1 Distance-Based Classification
Dr. Shi, Daming
Introduction
What is Pattern Recognition
Classify raw data into the ‘category’ of the pattern.
A branch of artificial intelligence concerned with the identification of visual or audio patterns by computers. For example character recognition, speech recognition, face recognition, etc.
7
Introduction
Syntactic Pattern Recognition
Any problem is described with formal language, and the solution is obtained through grammatical parsing
模式识别及其分类PPT课件
-1.192 -0.170
1.269
-0.248 0.383 0.121
一列11个主
物 的
1因 纯
数 据
-0.219 -2.227
1.074 0.174
-0.329 -0.071
1子 光 1谱
LT
0.385 0.473 0.484 0.662 -0.309 -0.211 -0.628 -0.192 0.218
3
7.2
0.32 2750 65.3 3.4
4
10.2 0.36 1500 3.4
5.3
5
10.1 0.50 1040 39.2 1.9
6
6.5
0.20 2490 90.0 4.6
7
5.6
0.29 2940 88.0 5.6
8
11.8 0.42 867 43.1 1.5
9
8.5
0.25 1620 5.2
0.440 0.447 0.455 -0.464 0.699 -0.181
模式识别与分类 FA实例TTFA
HPLC-DAD
多 环 芳 烃
Known
L 245
B[k]F B[b]F 111.2 112.6
2苝 8*2.1
265 38.2 87.2 76.4
286 52.5 69.4 12.2
305 110.6 33.2 5.1
模式识别与分类 FA实例TTFA
多
-1.476 -1.307 -1.295 -1.285 -1.174
环 芳 烃
-0.640
X* 0.205 0.334
1.442
0.088 1.447 0.823 0.416
-0.017 1.250 0.980 0.614
模式识别概论ppt
是q趋向无穷大时明氏距离的极限情况
⑤ 马哈拉诺比斯(Mahalanobis)距离
d ij
(M
)
d
(
X
i
,
X
j
)
X i X j T 1 X i X j
其中Xi ,Xj为特征向量, 为协方差矩阵。
使用于N个样本的集合中两个样本之间求M氏距离:
1 N 1
N i1
(
X
i
X
)(
X
i
X )T , X
.
4
• 50年代 Noam Chemsky 提出形式语言理论
美籍华人付京荪 提出句法结构模式识别。
• 60年代 L.A.Zadeh提出了模糊集理论,模糊 模式识别理论得到了较广泛的应用。
• 80年代 Hopfield提出神经元网络模型理论。 近些年人工神经元网络在模式识别和人工智 能上得到较广泛的应用。
② 集合内的任意两点的连线,在线上的点属 于同一集合
③ 集合内的每一个点都有足够大的邻域,在 邻域内只包含同一集合的点
4. 模式识别的要求:满足紧致集,才能很好的分 类;如果不满足紧致集,就要采取变换的方法, 满足紧致集.
.
15
三、相似与分类
1下.两要个求样:本Xi ,Xj之间的相似度量满足以
① 应为非负值 ② 样本本身相似性度量应最大 ③ 度量应满足对称性 ④ 在满足紧致性的条件下,相似性应 该是点间距离的单调函数
3. 遥感:资源卫星照片,气象卫星照片处理, 数字化地球,图象分辨率可以达到1米。
.
9
Байду номын сангаас
4. 指纹识别、脸形识别
5. 检测污染分析:大气,水源,环境监 测。
模式识别基础教程PPT课件
8
典型应用
语音识别(例如:IBM ViaVoice系统) 表情分析、年龄、种族、性别分类 OCR: 车牌照、集装箱号码… 手写体识别:汉王 手势识别:基于视觉的,基于数据手套 人脸识别、指纹识别、虹膜识别… 军事目标识别 生物信息、医学图像 遥感、气象
9
模式识别方法
模板匹配 结构模式识别 句法模式识别 统计模式识别 模糊模式识别
机特征向量,用概率统计理论对其进行建模, 用统计决策理论划分特征空间来进行分类。
12
统计模式识别的一般过程
测试模式 预处理
分类
训练 预处理
训练模式
特征提 取/选择
分类
特征提 取/选择
学习分类规则 错误率检测
13
模糊模式识别
1965年Zadeh提出模糊集理论
是对传统集合理论的一种推广
传统:属于或者不属于 模糊:以一定的程度属于
这种技术具有实时性的特点,而且有可能扩展到多个姿 态的人脸检测。
18
人脸的特征表示方法
矩形特征(Harr-like特征)
矩形特征的值是所有白色矩形中点的亮度值的和减 去所有灰色矩形中点的亮度值的和,所得到的差
有4种类型的矩形特征
19
输入图像
积分图像
基于积分图像的 Haar-like特征计
7
模式分类 vs. 模式聚类
Classification Clustering
Category “A”
Categ
(Supervised Classification)
Clustering
(Unsupervised Classification)
“Good” features
“Bad” features
模式识别讲义精品PPT课件
最大最小距离法
该算法以欧氏距离为基础,首 先辨识最远的聚类中心,然后确 定其他的聚类中心,直到无新的 聚类中心产生。最后将样本按最 小距离原则归入最近的类。
几个算法的简单对比:
k均值和最大最小距离是聚类型算法 而K近邻和感知器属于分类,聚类和 分类
K-means算法缺点主要是: 1. 对异常值敏感 2. 需要提前确定k值
11
11
11 11
11
00
模式识别
-------几种聚类和分类算法的比较
1 11 01 11
110101110101
01
01
10
01
11
01
10
01
K均值算法
k均值算法是什么?
k均值算法也称为C-均值算法,是根据函数准则进行分类 的聚类算法,基于使聚类准则最小化。
依据课本的介绍,它是聚类集中每一个样本点到该聚类 中心的距离平方和。
MATLAB
运行结果
感知器算法
What:
感知器算法通过赏罚原则依据每次对训练集的训练不断修正 判别函数的权向量,当分类器发生错误分类的时候对分类器 进行“罚”,即对权向量进行修改,当感知器正确分类的时 候对分类器进行“赏”,对全向量不进行修改。这样经过迭 代计算后,通过训练集的训练得到最优的判别函数的权向量。
1 11 01 11
110101110101
01
01
10
01
11
01
10
01
代码实现 C语言:
参考数据:
1 11 01 11
110101110101
01
01
10
01
11
01
10
01
模式识别Pattern Recognition课件-新版.ppt
模式识别 Pattern Recognition
许建华 xujianhua@
南京师范大学计算机科学系
2007年3月- 6月
精品
第1章 绪论
1.1 模式识别与模式的概念 1.2 模式识别系统 1.3 关于模式识别的若干基本问题
精品
1.1 模式识别与模式的概念
1.1.1 基本概念 两个例子:
根据内容或者外观聚成相应的类
物以类聚,人以群分 精品
人的模式识别能力
人通过视觉、嗅觉、听觉、味觉、触觉接 收外界信息、再经过人脑根据已有知识 进行适当的处理后作出的判别事物或者 划分事物性质(类别)的能力
精品
模式识别 (Pattern Recognition)
用计算机来实现人的模式识别能力,即用计算机 实现人对各种事物或现象的分析、描述、判断、 识别
1k n k
k
精品
马哈拉诺比斯(Mahalanobis)距离
d(x, y) (x y)Σ1(x y)
其中协方差矩阵和均值为
Σ
l
1 1
l i 1
(xi
x)(xi
x)T
x
1 l
l i 1
xi
精品
1.3.4 数据的标准化
目的:消除各个分量之间数值范围大小对 算法的影响
幼儿认动物 图书归类
精品
幼儿认动物
老师教幼儿学(学习) 幼儿自己认(决策) 错分现象
精品
图书归类
归类 1 : 精美印刷的书 普通印刷的书
归类 2: 大开本的书 小开本的书 微型开本的书
归类 3:
数学类图书 物理学图书 化学类图书 计算机类图书 小说类图书 法律类图书
许建华 xujianhua@
南京师范大学计算机科学系
2007年3月- 6月
精品
第1章 绪论
1.1 模式识别与模式的概念 1.2 模式识别系统 1.3 关于模式识别的若干基本问题
精品
1.1 模式识别与模式的概念
1.1.1 基本概念 两个例子:
根据内容或者外观聚成相应的类
物以类聚,人以群分 精品
人的模式识别能力
人通过视觉、嗅觉、听觉、味觉、触觉接 收外界信息、再经过人脑根据已有知识 进行适当的处理后作出的判别事物或者 划分事物性质(类别)的能力
精品
模式识别 (Pattern Recognition)
用计算机来实现人的模式识别能力,即用计算机 实现人对各种事物或现象的分析、描述、判断、 识别
1k n k
k
精品
马哈拉诺比斯(Mahalanobis)距离
d(x, y) (x y)Σ1(x y)
其中协方差矩阵和均值为
Σ
l
1 1
l i 1
(xi
x)(xi
x)T
x
1 l
l i 1
xi
精品
1.3.4 数据的标准化
目的:消除各个分量之间数值范围大小对 算法的影响
幼儿认动物 图书归类
精品
幼儿认动物
老师教幼儿学(学习) 幼儿自己认(决策) 错分现象
精品
图书归类
归类 1 : 精美印刷的书 普通印刷的书
归类 2: 大开本的书 小开本的书 微型开本的书
归类 3:
数学类图书 物理学图书 化学类图书 计算机类图书 小说类图书 法律类图书
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
教材与教学参考书
模式识别(第二版 ,边肇祺,张学工等,清华大学出版社, 模式识别 第二版),边肇祺,张学工等,清华大学出版社, 2000 第二版 模式识别原理、方法及应用, . . 模式识别原理、方法及应用,J.P.Marques de sa,清华大学出版社,2002。 ,清华大学出版社, 。 模式识别,杨光正等,中国科学科技大学出版社, 模式识别,杨光正等,中国科学科技大学出版社,2003。 。 Neural Network Design,Martin T.Hagan,机械工业出版社,2002。 , ,机械工业出版社, 。 神经网络模式识别及其实现,潘蒂( ),电子工业出版社, 神经网络模式识别及其实现,潘蒂(美),电子工业出版社,1999。 电子工业出版社 。 林学訚,清华大学网络课程“模式识别” 林学訚,清华大学网络课程“模式识别”:/gjpxw/thujsj/016/ Sergios Theodoridis, Konstantinos Koutroumbas,2009,Introduction to Pattern Recognition: A Matlab Approach (Academic Press) Sergios Theodoridis, Konstantinos Koutroumbas,2008,Pattern Recognition, 4th Edition (Academic Press) Christopher M. Bishop,2007,Pattern Recognition and Machine Learning(Springer) William Gibson, 2005, Pattern Recognition (Berkley )
课堂实验演示内容: 课堂实验演示内容:
•
统计模式识别与神经网络模式识别设计(Matlab程序) 程序) 统计模式识别与神经网络模式识别设计( 与神经网络模式识别设计 程序 编程实验
•
两次课堂练习( 两次课堂练习(15%x2,基础知识部分) ,基础知识部分) 作业及自学( 作业及自学(10%) ) 期末考试( 期末考试(60%) )
8
课程内容目录
1.模式识别概述 . 2.Bayes决策理论 . 决策理论 3.概率密度函数的估计 . 4.线性判别函数 . 5.邻近法则 . 6.特征的选择与提取 . 7.非监督学习与聚类方法 . 8.神经网络 . 9 .应用举例
9
教学方式
讲课+课堂实验演示 讨论 讲课 课堂实验演示+讨论 课堂实验演示
7
主要会议
系列性国际会议 ICPR:2年一次,1000人规模 年一次, : 年一次 人规模 ICCV: 2年一次,1000人规模 年一次, : 年一次 人规模 CVPR:每年一次在美国,1000人规模 :每年一次在美国, 人规模 ICDAR: 2年一次,300-400人规模 年一次, : 年一次 人规模 其他 ICASSP, ICIP ICML
模式识别是研究用计算机自动识别事物的一门科学, 模式识别是研究用计算机自动识别事物的一门科学,其目的是用机器完成类似于人类智 是研究用计算机自动识别事物的一门科学 能通过视觉、听觉等感官去识别外界环境所进行的工作,它包括语音识别、图像识别等 能通过视觉、听觉等感官去识别外界环境所进行的工作, 它包括语音识别、 典型应用。人工神经网络是一种基于大量神经元广泛互联的数学模型,具有自学习、 典型应用。人工神经网络是一种基于大量神经元广泛互联的数学模型,具有自学习、自 是一种基于大量神经元广泛互联的数学模型 组织、自适应的特点,与模式识别有密切的关系,在优化计算,信号处理, 组织、自适应的特点,与模式识别有密切的关系,在优化计算,信号处理,智能控制等 众多领域也得到广泛的应用。 众多领域也得到广泛的应用。
6
主要期刊
IEEE Trans. on PAMI,1978-,IEEE Computer Society Pattern Recognition,1968-,PR Society, Elsevier Pattern Recognition Letter,1980-,IAPR, Elsevier Machine Learning,Neural Computation,IEEE Trans. On NN Int. Journal of PR and AI, 1988- (World Scientific) Pattern Analysis and Applications, 1997- (Springer) Int. J. Document Analysis & Recognition, 1998模式识别与人工智能 中国图像与图形学学报
10
模式识别
Pattern Recognition
武汉大学国际软件学院 Email: slwang2别
维基百科 /wiki/模式识别 模式识别
模式识别,就是通过计算机用数学技术方法来研究模式的自动处理和判读。我们把环境与客体统称为“模式” 模式识别,就是通过计算机用数学技术方法来研究模式的自动处理和判读。我们把环境与客体统称为“模式”。随着计算 机技术的发展,人类有可能研究复杂的信息处理过程。信息处理过程的一个重要形式是生命体对环境及客体的识别。 机技术的发展,人类有可能研究复杂的信息处理过程。信息处理过程的一个重要形式是生命体对环境及客体的识别。对人 类来说,特别重要的是对光学信息(通过视觉器官来获得)和声学信息(通过听觉器官来获得)的识别。 类来说,特别重要的是对光学信息(通过视觉器官来获得)和声学信息(通过听觉器官来获得)的识别。这是模式识别的 两个重要方面。市场上可见到的代表性产品有光学字符识别( )、语音识别系统 两个重要方面。市场上可见到的代表性产品有光学字符识别(Optical Character Recognition, OCR)、语音识别系统 )、 。 计算机识别的显著特点是速度快,准确性高,效率高。在将来完全可以取代人工录入。 计算机识别的显著特点是速度快,准确性高,效率高。在将来完全可以取代人工录入。 识别过程与人类的学习过程相似。 识别过程与人类的学习过程相似。以“汉字识别”为例:首先将汉字图象进行处理,抽取主要表达特征并将特征与汉字的 汉字识别”为例:首先将汉字图象进行处理, 代码存在计算机中。就象老师教我们“这个字叫什么、如何写”记在大脑中。这一过程叫做“训练” 代码存在计算机中。就象老师教我们“这个字叫什么、如何写”记在大脑中。这一过程叫做“训练”。识别过程就是将输 入的汉字图象经处理后与计算机中的所有字进行比较,找出最相近的字就是识别结果。这一过程叫做“匹配” 入的汉字图象经处理后与计算机中的所有字进行比较,找出最相近的字就是识别结果。这一过程叫做“匹配”。
3
应用领域和参考学科
应用领域
计算机视觉
医学图像分析 光学文字识别
参考学科
人工智能 数据挖掘 模糊逻辑 信息捕获 机器学习 统计学
语音识别 手写识别 生物特征识别
人脸识别 指纹识别 虹膜识别
文件分类 互联网搜索引擎 信用评分
4
课程简介
本课程是信息与通信工程和计算机科学与技术等学科专业高年级本科 生的专业选修课。 生的专业选修课。 专业选修课 统计模式识别 本课程主要介绍统计模式识别,神经网络的理论与方法及其相关应用。 课程主要介绍统计模式识别,神经网络的理论与方法及其相关应用。 要求学生了解模式识别的基本概念,掌握基本原理和基本方法;了解 要求学生了解模式识别的基本概念,掌握基本原理和基本方法; 计算机分类识别事物和计算机分析数据的概念及基本方法,了解神经 计算机分类识别事物和计算机分析数据的概念及基本方法,了解神经 网络的原理及其在模式识别中的应用。 网络的原理及其在模式识别中的应用。 原理及其在模式识别中的应用 先修课程 :线性代数,概率论与数理统计,程序设计基础 线性代数,概率论与数理统计,