HFSS_半波偶极子天线设计
半波偶极子天线的HFSS仿真设计
![半波偶极子天线的HFSS仿真设计](https://img.taocdn.com/s3/m/aa815d21dcccda38376baf1ffc4ffe473368fdb5.png)
半波偶极子天线的HFSS仿真设计在开始仿真设计之前,首先需要进行天线的三维建模。
打开HFSS软件,并选择新建工程,设定仿真频率范围和单位。
然后点击导航栏的“模型创建”按钮,选择“3D模型”。
在新建的3D模型中,选择“导入”按钮,导入天线的CAD模型,或者手动绘制天线的几何结构。
根据具体的设计要求,设置天线的尺寸和材料等参数。
接下来,需要定义天线的材料特性。
点击导航栏的“材料”按钮,选择“创建材料”。
根据具体的天线材料属性,设置材料的介电常数、磁导率等参数。
点击“应用”按钮,完成材料属性的定义。
然后,进行边界条件的设置。
点击导航栏的“边界条件”按钮,选择“终止条件”。
选择边界条件的类型,如正常边界条件、电磁边界条件等。
根据具体的设计要求,设置边界条件的参数。
点击“应用”按钮,完成边界条件的设置。
接下来,需要设定仿真的激励模式。
点击导航栏的“激励”按钮,选择“微带激励端口”。
设置仿真的频率、激励电压等参数。
根据具体的设计要求,设置激励的位置和方向等参数。
然后,进行网格划分。
点击导航栏的“网格划分”按钮,选择“全局网格划分”。
根据具体的仿真要求,设置网格划分的密度、精度等参数。
点击“划分”按钮,生成网格。
完成网格划分后,需要进行仿真求解。
点击导航栏的“求解器设置”按钮,选择合适的求解器,如频域求解器或时域求解器等。
根据具体的仿真要求,设置求解器的参数。
然后点击“求解”按钮,进行仿真求解。
仿真求解完成后,可以进行结果的分析和优化。
点击导航栏的“结果”按钮,选择合适的结果显示方式,如3D图像、功率图等。
根据具体的设计要求,分析天线的辐射图案、增益等性能指标。
根据需要,进行参数的优化,如改变天线的尺寸、位置等。
再次进行仿真求解,直至达到预期的性能指标。
本文介绍了使用HFSS软件进行半波偶极子天线的仿真设计的步骤和方法。
通过三维建模、材料定义、边界条件设置、激励模式设定、网格划分、仿真求解和结果分析等步骤,可以实现对半波偶极子天线性能的仿真和优化。
天线技术hfss实验
![天线技术hfss实验](https://img.taocdn.com/s3/m/91dad3e849649b6648d74792.png)
格式规范(20)理论分析(20)规定设计(40)自选设计(20)总分天线技术课程设计报告课程名称天线技术学院软件与物联网工程学生姓名万秦浩学号0154310 专业通信工程班级通信152二O 一八年十二月摘要本文分析了半波偶极子天线的电流分布、辐射场方向、方向性系数、辐射电阻、输入阻抗,设计了半波偶极子天线,印刷偶极子天线,并在HFSS上进行了仿真,画出了回波损耗、驻波比、Smith圆图、输入阻抗和方向图等相关参数图像。
【关键词】天线半波偶极子印刷偶极子 HFSS1 理论分析半波偶极子天线是一种结构简单的基本线天线,也是一种经典的、迄今为止使用最广泛的天线之一。
半波偶极子天线由两根直径和长度都相等的直导线组成,每根导线的长度为1 /4个工作波长。
导线的直径远小于工作波长,在中间的两个端点上由等幅反相的电压激励,中间端点之间的距离远小于工作波长,可以忽略不计。
1.电流分布对于从中心馈电的偶极子天线,其两端为开路,故电流为零。
工程上通常将其电流分布近似为正弦分布。
假设将偶极子天线沿z轴方向放置,其中心位于坐标原点,则长度为l的偶极子天线的电流分布可以表示为(1-1-1) 是波腹电流;k是波数,且k=2T/λ;l是偶极子天线的长度。
式中,I对于半波偶极子天线而言,其长度l=λ/4。
则半波偶极子天线的电流分布可以改写为:(1-1-2)2.辐射场和方向图已知半波偶极子天线上的电流分布,可以利用叠加原理来计算半波偶极子天线的辐射场。
半波偶极子天线可以看成是由长度为dz的电基本振子天线连接而成的,dz这一小段天线上的电流等幅同相,但沿着z轴的电流幅度是正弦分布的。
半波偶极子天线的辐射场具体表示为:(1-1-3)整理得:(1-1-4)加上方向特性,半波偶极子天线的远区辐射电场为:(1-1-5)式中,(1-1-6)称为半波偶极子天线的方向性函数。
再根据远区场的性质,可以求得半波偶极子天线的磁场为:(1-1-7)3.方向性系数给出的半波偶极子天线的方向性函数,可以计算出半波偶极子天线的功率方向性系数为:(1-1-8)若以分贝表示,则为:(1-1-9)4.辐射电阻天线的平均功率密度可以用平均坡印廷矢量来表示,即:(1-1-10)把半波偶极子天线的辐射电场和辐射磁场可得:(1-1-11)半波偶极子天线的辐射功率则为:(1-1-12)这里使用Rr来表示辐射电阻,有:(1-1-13)5.输入阻抗根据基本的传输线理论,输入阻抗一般同时包含实部和虚部两部分,即为:Z in =Rin+jXin(1-1-14)对于良导体而言,导体电阻可以忽略,此时实部电阻仅包含辐射电阻,即为:R in =Rr(1-1-14)2 规定设计:半波偶极子天下按设计2.1 HFSS设计概述设计一个中心频率为3GHZ的半波偶极子天线,天线沿z轴方向放置,中心位于坐标原点,材质使用理想导体,总长度为0.48λ,半径为λ/200天线馈电采用集中端口激励,端口距离为0.24,辐射便捷和天线距离为λ/4。
HFSS_半波偶极子天线设计解析
![HFSS_半波偶极子天线设计解析](https://img.taocdn.com/s3/m/590f14d7ba0d4a7303763a05.png)
在主菜单栏中选择HFSS----Solution Type,选中 Driven Model单选按钮,然后单击ok按钮,完 成设置。
(3)设置模型长度单位
在主菜单栏中选择Modeler----units,选择mm。
2.添加和定义设计变量 在HFSS中定义和添加如图1所示的变量。 在HFSS主菜单栏中选择HFSS----Design
▪ 对于半波偶极子天线而言,输入阻抗近似看为辐射电阻 73.2欧姆。
▪ 可见,半波偶极子天线的输入阻抗是纯电阻,易于和馈 线匹配,这也是它被较多采用的原因之一。
3.2 半波偶极子天线设计 变量定义
▪ 这里要求设计一个中心频 率为3GHz的半波偶极子 天线,天线沿z轴放置, 中心位于坐标原点,天线 材质使用理想导体,总长 度为0.48λ,半径为 λ/200.天线的馈电采用 集总端口激励方式,端口 距离为0.24mm,辐射边 界和天线的距离为λ/4。
2.添加和定义设计变量 在HFSS中定义和添加如图1所示的变量。 在HFSS主菜单栏中选择HFSS----Design
Properties命令,打开设计属性对话框,单击 ADD按钮,打开add property对话框,在add property对话框中的name输入lambda,初始值 100mm,然后单击ok。 依次定义变量length,初始值0.48*lambda;定义 变量gap,初始值0.24mm;定义变量 dip_length,初始值length/2-gap/2;定义变量 dip_radius,初始值lambda/200;定义变量 rad_radius,初始值dip_radius+lambda/4;定 义变量rad_height,初始值 dip_length+gap/2+lambda/10。 最后点确定按钮。
HFSS_半波偶极子天线设计
![HFSS_半波偶极子天线设计](https://img.taocdn.com/s3/m/96e41fde26fff705cc170ad0.png)
双击操作历史树中的Dipole下的 createcylinder节点,打开新建圆柱体属性 对话框的command选项卡,在该选项卡中 设置圆柱体的底面圆心坐标、半径和长度。 在center Position文本框中输入底面圆心坐 标(0,0,gap /2),在Radius文本框中 输入半径值dip_radius,在height文本框中 输入长度值dip_length,如下图所示。然后 单击确定按钮,完成圆柱体Dipole的创建。 到此为止创建好了名称为Dipole的理想导体细 圆柱体模型,按快捷键ctrl+D全屏显示。
辐射边界 圆柱体高 度
3.3 HFSS天线设计流程
设置求解类型:模式驱动(driven model)、 终端驱动(driven Terminal) 创建天线的结构模型:根据天线的初始尺寸和结构, 在HFSS窗口中创建出天线的HFSS参数化设计模型。 设置边界条件:在HFSS 中,与背景接触的表面都被 默认设置为理想导体边界(Perfect E);为了模拟 无限大的自由空间,必须把与背景相接触的表面设 置为辐射边界条件或者理想匹配层(PML),这样 才能计算出远区辐射场。
cos cos 2 2 15I 2 r 2 sin dd 36.6 I 2 m Pr Pav dS m 2 2 0 0 r sin 这里使用R r 来表示辐射电阻,有:
2
1 2 Pr 36.6 I I m Rr 2 所以:Rr 73.2
3.4天线的HFSS仿真设计
1.新建设计工程 (1)运行HFSS并新建工程 启动HFSS软件,新建一个工程文件,把工程文件 另存为dipole.hfss。 (2)设置求解类型 在主菜单栏中选择HFSS----Solution Type,选中 Driven Model单选按钮,然后单击ok按钮,完 成设置。
HFSS天线仿真实验报告
![HFSS天线仿真实验报告](https://img.taocdn.com/s3/m/34387eed240c844769eaee99.png)
HFSS天线仿真实验报告半波偶极子天线设计通信0905杨巨U2009138922012-3-7半波偶极子天线仿真实验报告一、实验目的1、学会简单搭建天线仿真环境的方法,主要是熟悉HFSS软件的使用方法2、了解利用HFSS仿真软件设计和仿真天线的原理、过程和方法3、通过天线的仿真,了解天线的主要性能参数,如驻波比特性、smith圆图特性、方向图特性等4、通过对半波偶极子天线的仿真,学会对其他类型天线仿真的方法二、实验仪器1、装有windows系统的PC一台2、HFSS13.0软件3、截图软件三、实验原理1、首先明白一点:半波偶极子天线就是对称阵子天线。
2、对称振子是中间馈电,其两臂由两段等长导线构成的振子天线。
一臂的导线半径为a,长度为l。
两臂之间的间隙很小,理论上可以忽略不计,所以振子的总长度L=2l。
对称振子的长度与波长相比拟,本身已可以构成实用天线。
3、在计算天线的辐射场时,经过实践证实天线上的电流可以近似认为是按正弦律分布。
取图1的坐标,并忽略振子损耗,则其电流分布可以表示为:式中,Im为天线上波腹点的电流;k=w/c为相移常数、根据正弦分布的特点,对称振子的末端为电流的波节点;电流分布关于振子的中心店对称;超过半波长就会出现反相电流。
4、在分析计算对称振子的辐射场时,可以把对称振子看成是由无数个电流I(z)、长度为dz的电流元件串联而成。
利用线性媒介中电磁场的叠加原理,对称振子的辐射场是这些电流元辐射场之矢量和。
电流元I(z)dz所产生的辐射场为图2 对称振子辐射场的计算如图2 所示,电流元I(z)所产生的辐射场为其中5、方向函数四、实验步骤1、设计变量设置求解类型为Driven Model 类型,并设置长度单位为毫米。
提前定义对称阵子天线的基本参数并初始化2、创建偶极子天线模型,即圆柱形的天线模型。
其中偶极子天线的另外一个臂是通过坐标轴复制来实现的。
3、设置端口激励半波偶极子天线由中心位置馈电,在偶极子天线中心位置创建一个平行于YZ面的矩形面作为激励端口平面。
dipole1偶极子
![dipole1偶极子](https://img.taocdn.com/s3/m/0f257e46e518964bcf847cd7.png)
偶极子天线仿真姓名:李彦成 学号:07106029用HFSS 创建模型,设计一个中心频率为30GHz 的半波偶极子天线。
天线沿着Z 轴放置,中心位于坐标原点,天线材质使用PEC ,总长度为0.48λ,半径为λ/200。
天线馈电采用集总端口激励方式,端口距离为0.0625mm ,辐射边界和天线的距离为λ/4。
首先添加和定义设计变量,创建偶极子天线模型。
然后设置端口激励,需要创建一个面。
接下来设置辐射边界条件,采用辐射边界和天线的距离为1/4个工作波长。
设置求解:中心频率在30GHz 左右,所以把求解频率设置为30GHz 。
同时添加25~35GHz 的扫频设置,扫频类型选择快速扫频,分析天线在25~35GHz 频段内的S 参数和电压驻波比。
然后仿真计算并查看分析结果。
S 参数:25.0027.5030.0032.5035.00Freq [GHz]-15.00-12.50-10.00-7.50-5.00-2.50d B (S (1,1))HFSSDesign1XY Plot 1ANSOFTCurve InfodB(S(1,1))Setup1 : Sw eep电压驻波比:25.0027.5030.0032.5035.00Freq [GHz]1.001.502.002.503.003.504.004.505.005.50V S W R (1)HFSSDesign1XY Plot 2ANSOFTCurve InfoVSWR(1)Setup1 : Sw eep三维结果:H 面:-63.20-60.40-57.60-54.80906030-30-60-90-120-150-180150120HFSSDesign1Radiation Pattern 2ANSOFTCurve InfodB(GainTotal)Setup1 : LastAdaptive Freq='30GHz' Theta='0deg'E 面:-54.00-38.00-22.00-6.00906030-30-60-90-120-150-180150120HFSSDesign1Radiation Pattern 3ANSOFTCurve InfodB(GainTotal)Setup1 : LastAdaptive Freq='30GHz' P hi='70deg'dB(GainTotal)Setup1 : LastAdaptive Freq='30GHz' P hi='80deg'dB(GainTotal)Setup1 : LastAdaptive Freq='30GHz' P hi='90deg'方向图:增益图:从以上结果分析得到:G D η=⨯,其中为η天线的辐射效率。
半波偶极子天线设计
![半波偶极子天线设计](https://img.taocdn.com/s3/m/4b03c0f89e31433239689384.png)
微波技术与天线实验报告
3.创建天线的一个臂
将天线的臂命名为yuanzhu,并设置天线的材料为pec,透明度为0.6,位置用La
4.创建天线的另一个臂
将第一个臂进行复制,即可生成第二个臂。
Edit--Duplicate--Around Axis,Axis选
6.设置端口激励
将长方形贴片设置为激励端口,半波偶极子的输入阻抗为73.2Ω。
设置完成后进行辐射边界的设置,选中圆柱体后右键选择Assign Boundary--Radiation。
三:求解设置
检查设计的正确性,正确无误后进行下一项。
从图中可以看出,当频率为3.0GHz时,S11的值最小,为-24.07dB。
从圆图中可以看出,在3.0GHz时,天线的归一化阻值为0.8905+0.0449i 2.查看天线的电压驻波比。
从图中可以看出,当频率为2.7GHz-3.3GHz之间,电压驻波比小于2.
3.查看E场的增益图。
在Radiation节点设置E平面。
此图为电场的切面图。
从此图可以看出增益最大为z轴方向,值为2.44dB。
1半波偶极子
![1半波偶极子](https://img.taocdn.com/s3/m/32a6f6d358f5f61fb7366665.png)
附录:\3D模型回波损耗(S11)电压驻波比(VSWR)Smith圆图输入阻抗增益方向图三维增益方向图半波偶极子天线一、实验目的1.熟练使用HFSS软件。
2.掌握半波偶极子天线的原理。
二、实验原理此次设计为一个中心频率为3GHz的半波偶极子天线,天线沿z轴放置,天线材质使用理想导体,总长度为0.48λ,半径为λ/200.天线馈电采用集总端口激励方式,端口距离为0.24mm,辐射边界和天线的距离为λ/4.模型图如下:1.电流分布对于从中心馈电的偶极子天线,其两端为开路,故电流为零。
假设将偶极子天线沿z轴放置,其中心位于坐标原点,则长度为l的偶极子天线的电流分布可以表示为:I0是波腹电流;k是波数,且k=2π/λ;l是偶极子天线一个臂的长度。
对于半波偶极子天线而言,长度l=λ/4。
将参数代入上式可得半波偶极子天线的电流分布为:下图为分析模型图:2.辐射场和方向图已知半波偶极子天线上的电流分布,可以利用叠加原理来计算半波偶极子天线的辐射场。
经计算得半波偶极子天线的辐射场为:加上方向特性,半波偶极天线的远区辐射电场为:式中:称为半波偶极子天线的方向性函数。
根据远区场的性质,可以求得半波偶极子天线的磁场为:根据方向性函数可以绘出半波偶极子天线的归一化场强方向图,在H平面(θ=90°)极坐标方向图是一个圆。
在E平面(ψ为常数)中,辐射场强会随着角度θ的变化而变化,θ=±90°方向上场强最大,θ=0°和θ=180°方向上场强为零。
3.方向性系数从半波偶极子天线的方向性函数可以计算出半波偶极子天线的功率方向性系数为:以分贝表示为:4.辐射电阻天线的平均功率密度可以用平均坡印廷矢量表示:半波偶极子天线的辐射功率则为:R r表示辐射电阻,计算可得辐射电阻为:R r=73.2Ω。
三、实验步骤1、新建设计工程a.运行HFSS并新建工程b.设置求解类型c.设置模型长度单位2、添加和定义设计变量3、设计建模a.创建偶极子天线模型b.设置端口激励c.设置辐射边界条件4、求解设置分析的半波偶极子天线的中心频率在3GHz附近,因此,求解频率设置为3GH;同时添加2.5GHz~3.5GHz的扫频设置,扫频类型选择快速扫频(Fast),分析天线在2.5GHz~3. 5GHz频段内的回波损耗和电压驻波比。
半波偶极子天线
![半波偶极子天线](https://img.taocdn.com/s3/m/5d34abd7763231126fdb11dc.png)
半波偶极子天线仿真、原理二、步骤:1、新建设计工程(1)新建工程文件(2)设置求解类型【Solution Type】为"Driven Modal”(3)设置模型长度单位【Un its】为"mm ”2、添加和定义设计变量选择【Design Properties】,打开设计属性对话框,打开Add Property对话框,添加变量3、设计建模(1)创建偶极子天线模型选择【Draw】T【Cylinder】,在三维模型窗口中创建一个任意大小的圆柱体,新建的圆柱体会添加到操作历史树的Solids节点下,其默认的名称为Cylinder1设置Cylinder1的属性,名称设置为"Dipole ”,材质设置为"pec ” 双击"CreateCylinder ”节点,打开"Comman d选项卡,设置圆柱体的底面圆心坐标、半径和长度。
通过沿着坐标轴复制操作,生成偶极子天线的另一个臂。
Around Axis 】,设置如图对话框(2) 设置端口激励把当前工作平面设置为 yz 平面:在工具栏上的“XY'下拉列表框中选择“ YZ ”。
在三维模型窗口的 yz 面上创建一个任意大小的矩形面。
把矩形面的名称设置为“ Port ”。
设置矩形面的顶点坐标和大小,如图:设置该矩形面的激励方式为集总端口激励:选中该矩形面,单击右键,选择 【Assign Excitation 】f 【Lumped Port 】【Edit 】T 【Duplicate 】Lcnpcd Port : GeneralLumped Fort : lodes :Us A DafAulti£ I;—齿 下T 爼)》|全屏显示矩形面 Port ,在矩形面的下边缘处移动鼠标指针, 当指针变成三角形时,单击确定下边缘的中点位置(即积分线的起点) ,沿z 轴向上移动鼠标指 针,当指针变成三角形时,单击确定上边缘的中点位置(即积分线的终点)。
基于HFSS的偶极子天线设计与仿真
![基于HFSS的偶极子天线设计与仿真](https://img.taocdn.com/s3/m/d2bd3799453610661fd9f452.png)
实验三:基于HFSS勺偶极子天线设计与仿真、实验目的1、熟悉HFSS仿真环境及仿真过程;2、掌握天线相关参数,相关概念;3、掌握偶极子天线结构,建模方法;4、根据仿真结果,进行相关分析研究。
、实验内容设计一个中心频率为3GH的半波偶极子天线,其HFSS设计模型如图所示。
天线沿Z轴方向放置,中心位于坐标原点,天线材质使用理想导体,总长度为0∙48 λ半径为”200。
天线馈电采用集总端口激励方式,端口距离为0∙24mm ,辐射边界和天线的距离为λ4.根据仿真结果求天线的回波损耗、驻波比、Smith圆图、输入阻抗和方向图。
变量含义变量名变量初值(mm)工作波长Iambda100天线总长度Ien gth0.48XIambda端口距离gap0.24单个极子长度dip_le ngth Ien gth/2—gap/2天线半径dip radius Iambda/200辐射边界圆柱体半径rad radius dip radius+lambda/ 4辐射边界圆柱体高度/2rad height dip le ngth+gap/ 2+Iambda/10学号:201524124228 姓名:陈文观、实验步骤新建工程设计建模,按上表数据进行建模求解设置设计检查和运行仿真计算看运行结果进行截图ArrSoft HF* dipolt * HFSSD⅞⅞igπ1 — 3D MOdder ^ [dipole — HFSSDeSjgnI — Modeler]〈,File Edit VJeW Projeet DraW Modelelr HFSS TOOIS WindoW HelP⅛¾⅛回“苗I ⅛国I區⅛h?? ∣eee∆θ^s^i⅛i j© o jχγ Zl l≡—^3 ∣ ¾ E ⅛ E□ Q U!倉⅛s !妝巒气也&1解PrOieCt Manager 丄X E IflZl dipole*申融HFSSMsignI+s —! I DefinitiOnS did§DiPOle CJ CrtatKyE ;■““[J f JDUPliCatle lI— LJ DUPIiC^eIPrOigr t JName Val,.。
实验三_半波偶极子
![实验三_半波偶极子](https://img.taocdn.com/s3/m/df1970651711cc7931b7162e.png)
实验三 半波偶极子一、【实验目的】1. 以一个简单的半波偶极子天线设计为例,熟悉HFSS 软件分析和设计天线的基本方法及具体操作;2. 利用HFSS 软件仿真设计了解半波振子天线的结构和工作原理;3. 通过仿真设计掌握天线的重要指标:回波损耗S11、3D 方向图二、【实验仪器】计算机一台、HFSS 软件三、【实验内容】1、对半波偶极子进行HFSS 建模2、仿真计算其特性参数四、【实验原理】半波偶极子是工程中常用的一种经典天线,其全长为半个波长。
五、【实验步骤】本次实验设计一个中心频率为915 MHz 的半波偶极子天线。
根据f c /=λ可以计算出915MHz 在真空中对应的波长是328mm ,所以真空中放置的半波偶极子天线的长度为半个波长即164mm 。
故天线的初始尺寸设置如下图所示,两侧82mm 长的矩形条为半波偶极子的两个臂,中间3mm*3mm 的矩形面用于模拟RFID 芯片。
1、初始步骤(1)打开HFSS ,新建一个项目,将project 重命名为较规则的名字,如dipole 。
(2)设置求解类型:点击菜单栏HFSS/SolutionType ,在跳出窗口中选择Driven Modal ,再点击OK 按钮。
(3)为建立的模型设置单位:点击菜单栏3D Modeler/Units,在跳出窗口中选择mm,再点击OK按钮。
2、设计建模1)创建偶极子天线模型首先创建一个沿Y轴方向放置的矩形条作为偶极子天线的一个臂,矩形条线宽为3mm,长度为82mm。
并将其改为铜黄色。
画好后,使用(视图旋转功能)、(放缩到合适大小)和(拖曳放缩)等功能按钮,将矩形面调整到合适的视图。
然后选中刚才画好的上臂,并利用(绕着坐标轴复制)操作生成偶极子天线的另一个臂。
由于天线是金属材质,需将矩形条设置为理想导体,选中两个矩形条,右键→assign boundary→Perfect E。
2)、设置端口激励半波偶极子天线由中心位置馈电,在偶极子天线中心位置创建一个平行于XY平面的矩形面作为激励端口平面,并设置端口平面的激励方式为集总端口激励。
实验四 半波偶极子天线设计
![实验四 半波偶极子天线设计](https://img.taocdn.com/s3/m/a35811392af90242a895e56e.png)
实验四半波偶极子天线设计
(一)实验目的
1.对半波偶极子天线有个大概的了解
2.对HFSS软件的参数设计认识。
(二)实验内容
1.通过学习HFSS软件以及天线PPT的课件知识,对半波偶极子天线有了初步的了解,建立的半波偶极子天线模型如下:
SH的扫频分析图如下:
该天线的回波损耗SH<=-10dB时BW=(3.25-2.775)/3=0.15833
电压驻波比VSWR
Smith圆图
输入阻抗
半波偶极子天线XZ面增益方向图
XY面增益方向图
三维增益方向图
三.实验总结
1.根据天线的课件以及老师学教的知识,我学会了对半波偶极子天线的设计。
2.其实HFSS软件很有用,以后多学习一下。
半波偶极子天线设计毕业设计(论文)任务书
![半波偶极子天线设计毕业设计(论文)任务书](https://img.taocdn.com/s3/m/b302ed0816fc700abb68fc46.png)
2毕业设计论文1份
3在HFSSv10上完成半波偶极子天线的设计及仿真
4完成半波偶极子天线的制作及调试
2.毕业设计(论文)工作进度计划:
周次
工作内容
早进入阶段
第一周
第二周
第三、四周
第五、七周
第八、九周
第十、十一周
第十二、十四周
第十五、十六周
搜集课题信息及相关资料,学习相关知识。
深入掌握相关知识,对整个研究过程有பைடு நூலகம்一定计划。
半径:0.5mm
天线馈电采用集总激励方式
端口距离:0.24mm
辐射边界和天线距离:25.5mm
三、技术要求及工作要求:
1使用HFSSv10软件仿真并优化半波偶极子天线,使其满足设计要求。
2通过对半波偶极子天线的设计,掌握其组成和工作原理。
3设计出符合要求的半波偶极子天线,并完成毕业设计论文。
四、实物要求:
工作内容工作内容工作内容早进入阶段早进入阶段早进入阶段第一周第一周第一周第二周第二周第二周第三四周第三四周第三四周第五七周第五七周第五七周第八九周第八九周第八九周第十十一周第十十一周第十十一周第十二十四周第十二十四周第十二十四周第十五十六周第十五十六周第十五十六周搜集课题信息及相关资料学习相关知识
天津职业技术师范大学
完成初步设计。
进行毕业设计,确定设计方案。
软件的学习和仿真设计。
逐步完善设计方案。
按照仿真结果制作实物,并调试。
将以上工作编制成论文形式。
设计总结,完成论文,答辩准备。
教研室(学科组)主任签字:
毕业设计(论文)任务书
题目
(包括副标题)
半波偶极子天线设计
教师姓名
基于HFSS的偶极子天线设计与仿真
![基于HFSS的偶极子天线设计与仿真](https://img.taocdn.com/s3/m/ba2b185cc381e53a580216fc700abb68a982aded.png)
基于HFSS的偶极子天线设计与仿真偶极子天线是一种常见的无线通信天线,具有简单的结构和较高的工作频率范围。
在HFSS(High Frequency Structure Simulator)软件中,可以进行偶极子天线的设计和仿真,以评估其性能和优化设计。
首先,设计偶极子天线需要确定工作频率范围和天线结构。
根据通信系统的需求,可以选择工作频率范围,例如2.4GHz或5.8GHz,以及天线结构,例如半波长偶极子天线、全波长偶极子天线等。
这些参数决定了天线的尺寸和形状。
其次,使用HFSS软件创建一个新项目,并绘制天线的几何结构。
可以使用绘制工具(例如直线、圆弧)绘制偶极子天线的导线元件,以及其他必要的辅助结构(例如基板、地面平面)。
确保导线元件合适地分布在基板上,并具有所需的长度和间距。
在绘制完成后,为偶极子天线和辅助结构分配材料属性。
可以选择适当的材料,例如导电性能好的金属材料作为导线元件,介电常数合适的绝缘材料作为基板。
通过指定材料的属性,可以准确地模拟天线的电磁特性。
接下来,设置仿真参数,例如频率范围、网格分辨率等。
确保仿真参数能够覆盖所需的工作频率范围,并设置适当的网格分辨率以获得更准确的结果。
然后,进行天线的仿真分析。
使用HFSS软件的求解器进行电磁场的求解,并得到天线的电磁特性,例如S参数、辐射图案、增益等。
通过观察仿真结果,可以评估天线的性能,并进行设计优化。
根据仿真结果,可以进行天线的优化设计。
例如,可以调整导线长度和间距以改变天线的共振频率和阻抗匹配。
也可以通过修改基板尺寸和形状,进一步改善天线性能。
在进行优化设计时,可以使用HFSS软件的参数化设计功能,通过自动改变参数值进行批量仿真分析,以便更高效地寻找最优解。
最后,根据优化设计的结果,可以制作并测试实际的偶极子天线样品,以验证仿真结果的准确性。
根据测试结果,可以对天线进行细微调整,以进一步优化性能。
总之,HFSS是一款强大的工具,可用于设计和仿真偶极子天线。
半波偶极子天线的HFSS
![半波偶极子天线的HFSS](https://img.taocdn.com/s3/m/cb25530afe00bed5b9f3f90f76c66137ef064f5f.png)
半波偶极子天线的HFSS仿真设计【1 】Xxxxxxxxxxxxxxxxxxx一.试验目标:1.以一个简略的半波偶极子天线设计为例,加深对对称阵子天线的懂得;2.熟习HFSS软件剖析和设计天线的根本办法及具体操纵;3.应用HFSS软件仿真设计以懂得半波振子天线的构造和工作道理;4.经由过程仿真设计控制天线的根本参数:频率.偏向图.增益等.二.试验步调:λ,半径为λ/200.天线馈电采取集总端口鼓励方法,端口距离为0.24mm,辐射鸿沟和天线的距离为λ/4.1.添加和界说设计变量参考指点书,在Add Property对话框中界说和添加如下变量:2、设计建模1).创建偶极子天线模子起首创建一个沿Z轴偏向放置的细圆柱体模子作为偶极子天线的一个臂,其底面圆心坐标为(0,0,gap/2),半径为dip_radius,长度为dip_length,材质为幻想导体,模子定名为Dipole,如下:然后经由过程沿着坐标轴复制操纵生成偶极子天线的另一个臂.此时就创建出了偶极子的模子如下:2).设置端口鼓励半波偶极子天线由中间地位馈电,在偶极子天线中间地位创建一个平行于YZ面的矩形面作为鼓励端口平面,并设置端口平面的鼓励方法为集总端口鼓励.该矩形面须要把偶极子天线的两个臂衔接起来,是以极点坐标为(0,-dip_radius,-gap/2),长度和宽度分离为2*dip_radius和gap.如下:Ω Ω.随落后行端口积分线的设置.此处积分线为矩形下边沿中点到矩形上边沿中点.3).设置辐射鸿沟前提要在仿真软件中盘算剖析天线的辐射场,必须先设置辐射鸿沟前提.本次设计中采取辐射鸿沟和天线的距离为1/4个工作波长.这里,我们先创建一个沿着Z轴放置的圆柱体模子,其材质为空气,底面圆心坐标为(0,0,-rad_height),半径为rad_radius,高度为2*rad_height.具体参数如下:然后将圆柱体概况设置为辐射鸿沟前提:3.求解设置剖析的半波偶极子天线的中间频率在3GHz阁下,所以把求解频率设置为3GHz.同时添加2.5~3.5GHz的扫频设置,扫频类型选择快速扫频,剖析天线在2.5~3.5GHz频段内的回波损耗和电压驻波比.1).求解频率和收集剖分设置设置求解频率为3GHz,自顺应网格剖分的最大迭代次数为20,收敛误差为0.02.如下:2).扫频设置扫频类型选择快速扫频,扫频规模为2.5~3.5GHz,扫频步进为0.001GHz.如下:4.设计检讨和运行仿真盘算经由过程前面的操纵,我已经根本完成了偶极子天线模子的创建求解设置等HFSS设计的前期工作,如今开端运行仿真盘算并检讨剖析成果.检讨设计的完全性和准确性:随后开端剖析.5.HFSS天线问题的数据后处理在完成了模子的创建和检讨后,如今开端对天线的各项机能参数进行仿真剖析,重要有回波损耗.驻波比.Smith圆图.输入阻抗和偏向图等.1).回波损耗的剖析成果:11从成果可以看出,设计的偶极子天线中间频率为3GHz阁下,S11 <-10dB的相对带宽为BW=(3.24-2.789)/3=15.3%.2).电压驻波比VSWR如图所示:3).Smith圆图在天线的相干问题的剖析中Smith圆图是一个异常有效的对象,借助它可以便利的进行阻抗匹配,给出驻波比,归一化输入阻抗等各类信息.在HFSS中得到的Smith圆图如下:从Smith圆图中可以看出,在中间频率为3GHz的归一化阻抗约为1,解释天线的端口阻抗匹配优越.VSWR<2(即反射系数的模小于三分之一)的频率规模约为2.78GHz~3.27GHz. 4).输入阻抗输入阻抗是天线的一个重要机能参数,我们可以经由过程HFSS直接检讨天线的输入阻抗值.从成果陈述中可以看出,设计的半波偶极子天线在中间频率3GHz上,输入阻抗为(72.8-j0.4)Ω,与理论剖析比较接近.5).偏向图天线偏向图是偏向性函数的图形暗示,它可以形象的描写天线的辐射特征跟着空间偏向坐标的变更.起首界说辐射概况如下:E面偏向图参数设置:H面偏向图参数设置:3D偏向图参数设置:随后可以检讨xz,xy和三围增益偏向图.xz增益偏向图 xy增益偏向图3D增益偏向6).其他参数除了上述参数外,HFSS还可以给出天线在辐射面上的最大辐射强度.偏向性系数.最大场强及其地点偏向等参数.如下:。
半波偶极子天线的HFSS仿真设计
![半波偶极子天线的HFSS仿真设计](https://img.taocdn.com/s3/m/240bb9c3c8d376eeaeaa3179.png)
半波偶极子天线的HFSS仿真设计一、实验目的1、学会简单搭建天线仿真环境的方法,主要是熟悉HFSS软件的使用方法;2、了解利用HFSS仿真软件设计和仿真天线的原理、过程和方法;3、通过天线的仿真,了解天线的主要性能参数,如驻波比特性、smith圆图特性、方向图特性等;4、通过对半波偶极子天线的仿真,学会对其他类型天线仿真的方法;二、实验仪器1、装有windows系统的PC一台2、HFSS13.0软件3、截图软件三、实验原理1、首先明白一点:半波偶极子天线就是对称阵子天线。
图1 对称振子对称结构及坐标2、对称振子是中间馈电,其两臂由两段等长导线构成的振子天线。
一臂的导线半径为a,长度为l。
两臂之间的间隙很小,理论上可以忽略不计,所以振子的总长度L=2l。
对称振子的长度与波长相比拟,本身已可以构成实用天线。
3、在计算天线的辐射场时,经过实践证实天线上的电流可以近似认为是按正弦律分布。
取图1的坐标,并忽略振子损耗,则其电流分布可以表示为:式中,Im为天线上波腹点的电流;k=w/c为相移常数、根据正弦分布的特点,对称振子的末端为电流的波节点;电流分布关于振子的中心点对称;超过半波长就会出现反相电流。
4、在分析计算对称振子的辐射场时,可以把对称振子看成是由无数个电流I(z)、长度为dz的电流元件串联而成。
利用线性媒介中电磁场的叠加原理,对称振子的辐射场是这些电流元辐射场之矢量和。
图2 对称振子辐射场的计算如图2 所示,电流元I(z)所产生的辐射场为其中5、方向函数四、实验步骤1、设计变量设置求解类型为Driven Model 类型,并设置长度单位为毫米。
提前定义对称阵子天线的基本参数并初始化2、创建偶极子天线模型,即圆柱形的天线模型。
其中偶极子天线的另外一个臂是通过坐标轴复制来实现的。
3、设置端口激励半波偶极子天线由中心位置馈电,在偶极子天线中心位置创建一个平行于YZ面的矩形面作为激励端口平面。
4、设置辐射边界条件要在HFSS中计算分析天线的辐射场,则必须设置辐射边界条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.设计建模
(1)创建偶极子天线模型 在主菜单栏中选择draw----cylinder或单击工 具栏上的圆柱体按钮,进入创建圆柱体的 状态。新建的圆柱体会添加到操作历史树 的solids节点下,默认名cylinder。 双击操作历史树中的solids下的cylinder节 点,打开如下对话框。把圆柱体名称设置 为Dipole,其材质为pec。如图所示。
B。设置辐射边界条件 在操作历史树下单击rad_air节点,选中该 圆柱体模型。 然后在其上单击鼠标右键,在弹出的快捷 菜单中选择assign boundary----radiation, 打开辐射边界条件设置对话框,如下图所 示。 在改对话框中保留默认设置,直接单击ok 按钮,把圆柱体模型rad_air的表面设置为 辐射边界条件。
双击操作历史树中的Dipole下的 createcylinder节点,打开新建圆柱体属性 对话框的command选项卡,在该选项卡中 设置圆柱体的底面圆心坐标、半径和长度。 在center Position文本框中输入底面圆心坐 标(0,0,gap /2),在Radius文本框中 输入半径值dip_radius,在height文本框中 输入长度值dip_length,如下图所示。然后 单击确定按钮,完成圆柱体Dipole的创建。 到此为止创建好了名称为Dipole的理想导体细 圆柱体模型,按快捷键ctrl+D全屏显示。
设置激励方式。天线必须通过传输线或波导传输 信号,天线与传输线或者波导连接处即为馈电面 或激励端口。有两种激励方式:波端口激励 (wave port)和集总端口激励(Lumped port)。通常 在与背景相接触的馈电面的激励方式使用波端口 激励,在模型内部的馈电面的激励方式使用集总 端口激励。 设置参数求解,包括设定求解频率和扫频次数, 求解频率通常设定为天线的工作频率。 运行求解分析。 查看求解结果。 Optimertrics优化设计。
2 m
5.输入阻抗
根据基本的传输线理论,输入阻抗一般同时包含实部和 虚部两部分,即为: Zin=Rin+jXin 实部电阻包含辐射电阻和导体损耗所产生的导体电阻, 对于良导体而言,导体电阻可以忽略,此时实部仅包含 辐射电阻Rin=Rr。 虚部电抗为零。 对于半波偶极子天线而言,输入阻抗近似看为辐射电阻 73.2欧姆。 可见,半波偶极子天线的输入阻抗是纯电阻,易于和馈 线匹配,这也是它被较多采用的原因之一。
(3)设置辐射边界条件
要在HFSS中计算分析天线的辐射场,则必须设 置辐射边界条件或PML边界条件。 当前设计中我们使用辐射边界条件,辐射边界和 天线之间的距离为1/4个工作波长。 这里,我们要先创建一个沿着z轴放置的圆柱体 模型,其材质为空气(air),底面圆心坐标为 (0,0,-rad_height),半径为rad_radius, 高度为2*rad_height,然后把该圆柱体的表面 设置为辐射边界条件。
I(z)=Imsin(π/2-kz)=Imcos(kz)
2.辐射场和方向图 已知半波偶极子天线上的电流分布,可以利用叠 加原理来计算半波偶极子天线的辐射场。上次课 已经求解得:
cos cos 60I m 2 e jkr j 60I m f , E j r sin r 加上方向特性,半波偶 极子天线的远区辐射电 场为: 60I m jkr ˆ E j e f , e r 式中, cos cos 2 f , f sin 称为半波偶极子天线的 方向性函数。
接下来生成偶极子天线的另一个臂。
选中创建的圆柱体模型Dipole,然后从主菜单栏中选 择edit----duplicate----around axis,执行沿坐标轴 的复制。会打开一个对话框。 在所打开的对话框中 将Axis设置为x轴, 将Angle选项设置 为180deg, 并在total number 数值框中输入2, 单击ok按钮。
在操作历史树中的sheets节点下选中该矩形面。然 后在其上单击鼠标右键,在弹出的快捷菜单中选择 assign excitation----lumped port,在打开的集总 参数设置对话框中,将resistance设为73.2欧姆, 将reactance设为0ohm,然后单击下一步;
打开modes对话框,在对话框中单击Integration Line列下的none,从下拉菜单中选择new line选 项,此时会进入三维模型窗口进行端口积分线的设 置。
一 半波偶极子天线设计 与仿真分析
半波偶极子天线
1.电流分布
对于从中心馈电的偶极子,其两端开路,故电流为零。 工程上通常将其电流分布近似为正弦分布。 假设天线沿z轴放置,其中心坐标位于坐标原点,如图 所示,则长度为l的偶极子天线的电流分布为: I 对半波偶极子而言l=λ/4. 则半波偶极子的电流分布 可以写成:
双击操作历史树中的rad_air下的 createcylinder节点,打开属性对话框, 在该选项卡中设置圆柱体的底面圆心坐标、 半径和长度。 Center position设为(0,0,rad_height) Radius输入半径值rad_radius; Height文本框中输入长度值2*rad_height。 最后单击确定按钮。 完成圆柱体rad_air的创建。如下如所示。
双击操作历史树中port下的 creatrectangle节点,打开新建矩形面属 性对话框的command选项卡,在该选项 卡中设置矩形面的顶点坐标和大小。 在position文本框中输入顶点坐标(0,dip_radius,-gap/2),在Ysize和Zsize 文本框中分别输入矩形面的长和宽为 2*dip_radius和gap,如下图所示。 最后按ok按钮。 接下来要设置该矩形面的激励方式为集总 端口激励,具体操作方法如下:
A。创建辐射边界的圆柱体 单击工具栏上的YZ下拉列表框,从其下拉列 表中选择XY项,把当前工作平面设置为xy平 面; Draw----cylinder创建圆柱体,新建的圆柱 体添加在操作历史树的solids节点下,默认 为cylinder1; 双击操作历史树下cylinder1,打开属性对话 框,把圆柱体名称改为Rad_air,设置材质 为air,其透明度为0.8.如下图所示。 最后单击确定按钮。
3.2 半波偶极子天线设计 变量定义
工作波长 这里要求设计一个中心频 率为3GHz的半波偶极子 天线,天线沿z轴放置, 中心位于坐标原点,天线 材质使用理想导体,总长 度为0.48λ,半径为 λ/200.天线的馈电采用 集总端口激励方式,端口 距离为0.24mm,辐射边 界和天线的距离为λ/4。 天线总长 度
辐射边界 圆柱体高 度
3.3 HFSS天线设计流程
设置求解类型:模式驱动(driven model)、 终端驱动(driven Terminal) 创建天线的结构模型:根据天线的初始尺寸和结构, 在HFSS窗口中创建出天线的HFSS参数化设计模型。 设置边界条件:在HFSS 中,与背景接触的表面都被 默认设置为理想导体边界(Perfect E);为了模拟 无限大的自由空间,必须把与背景相接触的表面设 置为辐射边界条件或者理想匹配层(PML),这样 才能计算出远区辐射场。
cos cos 2 2 15I 2 r 2 sin dd 36.6 I 2 m Pr Pav dS m 2 2 0 0 r sin 这里使用R r 来表示辐射电阻,有:
2
1 2 Pr 36.6 I I m Rr 2 所以:Rr 73.2
2.添加和定义设计变量 在HFSS中定义和添加如图1所示的变量。 在HFSS主菜单栏中选择HFSS----Design Properties命令,打开设计属性对话框,单击 ADD按钮,打开add property对话框,在add property对话框中的name输入lambda,初始值 100mm,然后单击ok。 依次定义变量length,初始值0.48*lambda;定义 变量gap,初始值0.24mm;定义变量 dip_length,初始值length/2-gap/2;定义变量 dip_radius,初始值lambda/200;定义变量 rad_radius,初始值dip_radius+lambda/4;定 义变量rad_height,初始值 dip_length+gap/2+lambda/10。 最后点确定按钮。
3.4天线的HFSS仿真设计
1.新建设计工程 (1)运行HFSS并新建工程 启动HFSS软件,新建一个工程文件,把工程文件 另存为dipole.hfss。 (2)设置求解类型 在主菜单栏中选择HFSS----Solution Type,选中 Driven Model单选按钮,然后单击ok按钮,完 成设置。
(3)设置模型长度单位 在主菜单栏中选择Modeler----units,选择mm。 2.添加和定义设计变量 在HFSS中定义和添加如图1所示的变量。 在HFSS主菜单栏中选择HFSS----Design Properties命令,打开设计属性对话框,单击 ADD按钮,打开add property对话框,在add property对话框中的name输入lambda,初始值 100mm,然后单击ok。 依次定义变量length,初始值0.48*lambda;定义 变量gap,初始值0.24mm;定义变量 dip_length,初始值length/2-gap/2;定义变量 dip_radius,初始值lambda/200;定义变量 rad_radius,初始值dip_radius+lambda/4;定 义变量rad_height,初始值 dip_length+gap/2+lambda/10。 最后点确定按钮。
3.方向性系数
根据公式可计算出半波偶极子天线的方向性系数为:
1 D 1.64 2 cos cos 1 2 2 sin dd 4 0 0 sin 2