高等数学(定积分的应用)习题及解答

合集下载

定积分典型例题20例答案

定积分典型例题20例答案

定积分典型例题20例答案定积分典型例题20例答案例1 求33322321lim(2)n n n n n →∞+++.分析将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n=?的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即33322321lim(2)n n n n n →∞+++=333112lim ()n n n n nn →∞+++=13034xdx =?.例2 2202x x dx -?=_________.解法1 由定积分的几何意义知,2202x x dx -?等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故2202x x dx -?=2π.解法2 本题也可直接用换元法求解.令1x -=sin t (2 2t ππ-≤≤),则222x x dx -?=2221sin cos t tdt ππ--?=2221sin cos t tdt π-?=2202cos tdt π=2π 例3 (1)若22()x t xf x e dt -=?,则()f x '=___;(2)若0()()xf x xf t dt =?,求()f x '=___.分析这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?.解(1)()f x '=422x x xe e ---;(2)由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =?,则可得()f x '=0()()xf t dt xf x +?.例4 设()f x 连续,且31()x f t dt x -=?,则(26)f =_________.解对等式310()x f t dt x -=?两边关于x 求导得32(1)31f x x -?=,故321(1)3f x x -=,令3126x -=得3x =,所以1(26)27f =.例5 函数11()(3)(0)x F x dt x t =->?的单调递减开区间为_________.解 1()3F x x'=-,令()0F x '<得13x >,解之得109x <<,即1(0,)9为所求.例6 求0()(1)arctan xf x t tdt =-?的极值点.解由题意先求驻点.于是()f x '=(1)arctan x x -.令()f x '=0,得1x =,0x =.列表如下:故1x =为()f x 的极大值点,0x =为极小值点.例7 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中2arcsin 0()xt g x e dt -=?,[1,1]x ∈-,试求该切线的方程并求极限3lim ()n nf n→∞.分析两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ''=.解由已知条件得2(0)(0)0t f g e dt -===?,且由两曲线在(0,0)处切线斜率相同知2(arcsin )2(0)(0)11x x e f g x -=''===-.故所求切线方程为y x =.而()(0)3lim ()lim33(0)330n n f f n nf f n n→∞→∞-'=?==-.例8 求 22000sin lim(sin )x x xtdtt t t dt→-??;分析该极限属于型未定式,可用洛必达法则.解 22000sin lim (sin )x x xtdtt t t dt→-?=2202(sin )lim (1)(sin )x x x x x x →-??-=220()(2)lim sin x x x x →-?-=304(2)lim 1cos x x x→-?-x(,0)-∞0 (0,1)1 (1,)+∞()f x '+-=2012(2)lim sin x x x→-?=0.注此处利用等价无穷小替换和多次应用洛必达法则.例9 试求正数a 与b ,使等式2201lim1sin x x t dt x b x a t→=-+?成立.分析易见该极限属于型的未定式,可用洛必达法则.解 20201lim sin x x t dt x b x a t →-+?=220lim 1cos x x a x b x →+-=22001lim lim 1cos x x x b x a x →→?-+201lim 11cos x x b x a →==-,由此可知必有0li m(1cos )0x b x →-=,得1b =.又由2012lim 11cos x x x a a→==-,得4a =.即4a =,1b =为所求.例10 设sin 20()sin x f x t dt =?,34()g x x x =+,则当0x →时,()f x 是()g x 的().A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小.解法1 由于 22300()sin(sin )cos lim lim()34x x f x x xg x x x →→?=+ 2200cos sin(sin )lim lim34x x x x x x →→=?+ 22011lim 33x x x →==.故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到sin 223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f x g x x x x→→→-+-+===++.例11 计算21||x dx -?.分析被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -?=0210()x dx xdx --+??=220210[][]22x x --+=52.注在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 33222111[]6dx x x --=-=?,则是错误的.错误的原因则是由于被积函数21 x 在0x =处间断且在被积区间内无界.例12 设()f x 是连续函数,且10()3()f x x f t dt =+?,则()________f x =.分析本题只需要注意到定积分()baf x dx ?是常数(,a b 为常数).解因()f x 连续,()f x 必可积,从而10()f t dt ?是常数,记1()f t dt a =?,则()3f x x a =+,且11(3)()x a dx f t dt a +==??.所以2101[3]2x ax a+=,即132a a +=,从而14a =-,所以 3()4f x x =-.例13 计算2112211x x dx x-++-?.分析由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性.解 2112211x x dx x-++-?=211112221111x x dx dx x x--++-+-?.由于22211x x+-是偶函数,而211x x+-是奇函数,有112011xdx x-=+-?, 于是2112211x x dx x -++-?=2102411x dx x +-?=22120(11)4x x dx x--?=11200441dx x dx --?? 由定积分的几何意义可知12014x dx π-=, 故211122444411x x dx dx xππ-+=-?=-+-?.例14 计算220()xd tf x t dt dx -?,其中()f x 连续.分析要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.解由于220()xtf x t dt -?=2221()2x f x t dt-?.故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以220()x tf x t dt -?=201()()2x f u du -?=201()2x f u du ?,故220()x d tf x t dt dx -?=201[()]2x d f u du dx ?=21()22f x x=2()xf x .错误解答220()x d tf x t dt dx -?22()(0)xf x x xf =-=.错解分析这里错误地使用了变限函数的求导公式,公式()()()xad x f t dt f x dx 'Φ==?中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.例15 计算30sin x xdx π.分析被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.解30s i n x x d x π30(c o s )x d x π=-?33[(c o s )](c o s )x x x d x ππ=?---? 30cos 6xdx ππ=-+?326π=-.例16 计算120ln(1)(3)x dx x +-?.分析被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-?=101ln(1)()3x d x +-?=1100111[ln(1)]3(3)(1)x dx x x x +-?--+? =101111ln 2()2413dx x x-++-?11ln 2ln324=-.例17 计算20sin x e xdx π.分析被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.解由于2sin xe xdx π20sin xxde π=?220[sin ]cos xx e x e xdx ππ=-?220cos x e e xdx ππ=-?,(1)而20cos xe xdx π20cos xxde π=?220[cos ](sin )xx e x e x dx ππ20sin 1x e xdx π=-?,(2)将(2)式代入(1)式可得20sin xe xdx π220[sin 1]x e e xdx ππ=--?,故20sin xe xdx π21(1)2e π=+.例18 计算1arcsin x xdx ?.分析被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解 10arcsin x xdx ?210arcsin ()2x xd =?221100[arcsin ](arcsin )22x x x d x =?-?21021421x dx x π.(1)令sin x t =,则2121x dx x-?222sin sin 1sin td t tπ=-?220sin cos cos ttdt t π=??220sin tdt π=?201cos22t dt π-==?20sin 2[]24t t π-4π=.(2)将(2)式代入(1)式中得1arcsin x xdx =8π.例19设()f x [0,]π上具有二阶连续导数,()3f π'=且0[()()]cos 2f x f x xdx π''+=?,求(0)f '.分析被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解.解由于0[()()]cos f x f x xdx π''+?00()sin cos ()f x d x xdf x ππ'=+??{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππππ'''=-++??()(0)2f f π''=--=.故(0)f '=2()235f π'--=--=-.例20 计算243dxx x +∞++?.分析该积分是无穷限的的反常积分,用定义来计算.解2043dx x x +∞++?=20lim 43t t dx x x →+∞++?=0111lim ()213t t dx x x →+∞-++? =011lim [ln ]23t t x x →+∞++=111lim (ln ln )233t t t →+∞+-+ =ln 32.。

高等数学第05章 定积分及其应用习题详解

高等数学第05章 定积分及其应用习题详解
x

0

x 1 sin tdt 0dt 1 , 2

b a
f ( x)dx 在 几 何 上 表 示 由 曲 线 y f ( x) , 直 线
x a, x b 及 x 轴所围成平面图形的面积. 若 x a, b时,f ( x) 0, 则 b f ( x)dx 在几何 a
上表示由曲线 y f ( x) ,直线 x a, x b 及 x 轴所围平面图形面积的负值. (1)由下图(1)所示, 1 xdx ( A1 ) A1 0 .
n
2
i
i 1
n
2
1 1 1 1 1 n(n 1)(2n 1) = (1 )(2 ) 3 n 6 6 n n 1 1 2 当 0时 (即 n 时 ) ,由定积分的定义得: x d x = . 0 3
= 5. 利用定积分的估值公式,估计定积分
4 3

1 1
(4 x 4 2 x 3 5) dx 的值.
上任取一点 i 作乘积 f ( i ) xi 的和式:
n
f ( i ) xi c ( xi xi1 ) c(b a) ,
i 1 i 1
n
n
记 max{xi } , 则
1i n

b a
cdx lim f ( i ) xi lim c(b a) c(b a) .

x
0
(t 1)dt ,求 y 的极小值
解: 当 y x 1 0 ,得驻点 x 1 , y '' 1 0. x 1 为极小值点, 极小值 y (1)
( x 1)dx - 2

高等数学(同济大学第五版)第六章 定积分的应用

高等数学(同济大学第五版)第六章 定积分的应用

习题6−21. 求图6−21 中各画斜线部分的面积:(1)解 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为61]12[)(12231=−=−=x x dx x x A . 2300∫ 解法一x 轴上的投影区间为[0, 1]. 所求的面积为0 画斜线部分在y 轴上的区间为[1, e ]. 所求的面积为(2)画斜线部分在 1|)()(11=−=−=∫x x e ex dx e e A ,0 解法二投影 1)1(|ln ln =−−=−==∫∫e e dy y y ydy A e e e . 111(3)解 画斜线部分在x 轴上的投影区间为[−3, 1]. 所求的面积为332]2)3[(132=−−=∫−dx x x A . (4)解 [−1, 3]. 所求的面积为画斜线部分在x 轴上的投影区间为 332|)313()32(3132312=−+=−+=−−∫x x x dx x x A . 2. 求由下列各曲线所围成的图形的面积:(1) 221x y =与x 2+y 2=8(两部分都要计算); 解:388282)21222228(2020020221−−=−−=−−=∫∫∫∫dx x dx x dx x dx x x A 323cos 16402+=−=∫πtdt . 48π346)212−=−ππS . 2(2=A (2)xy =1与直线y =x 及x =2; 解:所求的面积为∫=A −=−202ln 23)1(dx x x . e x , y =e −x 与直线x =1;解:所求的 (3) y =面积为∫−+=−=−1021)(e e dx e e A x x . (4)y =ln x , y 轴与直线y =ln a , y =ln b (b >a >0).解所求的面积为a b e dy e A ba yb a y −===∫ln ln ln ln3. 求抛物线y =−x 2+4x −3及其在点(0, −3)和(3, 0)处的切线所围成的图形的面积. 解: 过点(0, −3)处的切线的斜率为4, 切线方程为y =4(x −3)., 切线方程为y =−2x +6.y ′=−2 x +4.过点(3, 0)处的切线的斜率为−2两切线的交点为)3 ,23(, 所求的面积为 49]34(62[)]34(34[2302332=−+−−+−+−+−−−=∫∫dx x x x x x x A . 4. 求抛物线y 2=2px 及其在点),2(p p 处的法线所围成的图形的面积. 解2y ⋅y ′=2p .在点处, 1),2(==′p p y p y ,),2(p p 法线的斜率k =−1, 法线的方程为)2(p x p y −−=−, 即y p x −=23.),2(p p 求得法线与抛物线的两个交点为和)3,29(p p −. 法线与抛物线所围成的图形的面积为233232316)612123()223(p y p y y p dy p y y p A p p pp =−−=−−=−−∫. 5. 求由下列各曲线 所围成的图形的面积;(1)ρ=2a cos θ ;解:所求的面积为∫∫==2221πθθ −202cos 4)cos 2(2ππθθd a d a A =πa 2. a cos 3t , y =a sin 3t ;解2(2)x =所求的面积为∫∫∫===204220330sin cos 34)cos ()sin (44ππtdt t a t a d t a ydx A a 2206204283]sin sin [12a tdt tdt a πππ=−=∫∫.(3)ρ=2 解所求的面积为a (2+cos θ ) 2202220218)cos cos 44(2)]cos 2(221a d a d a A πθθθθθππ=++=+=∫∫. 6. 求由摆线x =a (t −sin t ), y =a (1−cos t )的一拱(0≤t ≤2π)与横轴 所围成的图形的面积. 解:所求的面积为∫∫∫−=−−==a a a dt t a dt t a t a ydx A 20222020)cos 1()cos 1()cos 1(ππ22023)2cos 1cos 21(a dt t t a a =++−=∫. 7. 求对数螺线ρ=ae θ(−π≤θ≤π)及射线θ=π所围成的图形面积.解所求的面积为)(42)(2ππ−−∫∫e d e a d ae 11222222πππθπθθθ−−===e a . 8. 求下列各曲线所围成图形的公共部分的面积.(1)ρ=3cos θ 及ρ=1+cos θ解曲线ρ=3cos θ 与ρ=1+cos θ 交点的极坐标为A)3,23(πA , )3,23(π−B . 由对称性, 所求的面积为 πθθθθπππ45])cos 3(21)cos 1(21[2232302=++=∫∫d d A . (2)θρsin 2=及解θρ2cos 2=.6,22(π.曲线θρsin 2=与θρ2cos 2=的交点M 的极坐标为M 所求的面积为 2316]2cos 21)sin 2(21[24602−+=+=∫∫πθθθθπππd d A .于曲线e x 下方, 9. 求位y =该曲线过原点的切线的左方以及x 轴上方之间的图形的面积. 解 设直线y =kx 与曲线y =e x 相切于A (x 0, y 0)点, 则有x y e y kx y x x 00)(0000, , y 0=e , k =e .所求面 ⎪⎩⎪⎨⎧==′==ke 求得x 0=1积为21ln 21)ln 1(00020e dy y y y y y e dy y y e e e e e=⋅+−=−∫∫. 10. 求由抛物线y 2=4ax 与过焦点的弦所围成的图形的面积的最小值. 解 设弦的倾角为α. 由图可以看出, 抛物线与过焦点的弦所围成的图形的面积为10A A A +=. 显然当2πα=时1=0; 当, A 2πα1因此, 抛物线与过焦点的弦所围成的图形的面积的最小值为 <时, A >0. 20300383822a x a dx ax A a a ===∫. 1. 把抛物线y 2=4ax 及直线x =x 0(x 0>0)所围成的图形绕x 轴旋转, 计算得旋转体的体积.1所 解 所得旋转体的体积为20022224000x a axdx dx y V xx x πππ====∫ 00x a π∫. 12. 由y =x 3, x =2, y =0所围成的图形, 分别绕x 轴及y 轴旋转, 计算所得转所得旋转体的体积为两个旋转体的体积.解 绕x 轴旋πππ712871207206202====∫∫x dx x dx y V x . 绕y 轴旋转所得旋转体的体积为∫∫−=−⋅⋅=803280223282dy y dy x V y ππππ ππ56453328035=−=y . 所围成的图形, 绕x 轴旋, 计算所得旋转体的体积. 解 由对称性, 所求旋转体的体积为13. 把星形线转3/23/23/2a y x =+ dx x a dx y V a a ∫=2222π∫−=0333)(2π 0 3024224210532)33(2a dx x x a x a a a π=−+−=∫.14. 用积分方法证明图中球缺的体积为)(2H R H V −=π.3证明 ∫∫−−−==R H R RH R dy y R dy y x V )()(222ππ)3()1(32y y R R H R =−=−ππ 32H R H −.15. 求下列已知曲线所围成的图形, 按指定的轴旋转所产生的体积:(1的旋转体)2x y =,2y x =, 绕y 轴; πππ)(22=−=∫∫dy y ydy V 解 103)5121(10521010=−y y . (2)ax a y ch =, x =0, x =a , y =0, 绕x 轴; 解 ∫∫∫===102ch udu 302202 ch )(a x dx a x a dx x y V a aπππ令 au1022)()2(u u u du e e −=++=∫2231032122144u e u e a a −−+ππ )2sh 2(43+a π= . (3)216)5(2=−y , 绕x 轴.解 +x ∫∫−−−−−−+=44224422)165()165(dx x dx x Vππ 24021601640π∫=−=dx x .x =(t −sin t ),=a (1−cos t )的一拱, y =0, 绕直线y =2a . 解 a dy y a dx a V02202)2()2( 23237)8πππa t a a =+−=. 16. 求圆盘 (4)摆线a y a 2∫∫−−=ππππ∫−+−=πππ202223)sin (])cos 1([8t t da t a a 0sin cos 1(tdt a ∫232222a y x ≤+绕x =−b (b >a >0)旋转所成旋转体 解 的体积.∫∫−−−−−−+=a a a a dy y a b dy y a b V222222)()(ππ 2202228ππb a dy y a b a=−=∫.17. 设有一截锥体, 其高为h , 上、下底均为椭圆, 椭圆的轴2a 、2b 和2A 、求这截锥体的体积.解 建立坐标系如图. 过y 轴上y 点作垂直于y 轴的平面, 则 易得其长分别为2B , 平面与截锥体的截面为椭圆,长短半轴分别为y h a A A −−, y hb B B −−. 积为π)()(y 截面的面h h B B y a A A −⋅b −−−.于是截锥体的体积为])(2[61)()(b V h=∫0AB a h dy y h b B B y h a A A +++=−−⋅−−π.计算底面是半径为R 的圆, 而垂直于底面上一条固定直径的所有截面都是等边三角.x 且垂直于x () 件知, 它是边长为bA aB 18. 形的立体体积 解 设过点轴的截面面积为A x ,由已知条xR −2的等边三角形的面积, 其值为)(3)(22x R x A −=, 322334)(3R dx x R VR=−=∫R所以 − a.如图, 在x 处取一宽为dx 的边梯形, 小曲边梯形绕y 积近似为2πx ⋅f (x )dx , 这就是体积元素, 即 dV =2πx ⋅f (x )dx ,y 轴旋转所成的旋转体的体积为==bab dx x xf dx x xf V)(2)(2ππ.用题19和结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转体的体积. 解.19. 证明 由平面图形0≤a ≤x ≤b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为=bdx x xf V )(2π∫ 证明 小曲轴旋转所得的旋转体的体于是平面图形绕 ∫a∫ 20. 利2002)sin cos (2cos 2sin 2πππππππ=+−=−==∫∫x x x x xd xdx x V .y =ln x 上相应于83≤≤ 21. 计算曲线x 的一段弧的长度.解 ∫∫∫+=+=′+=82838x32321)1(1)(1dx x x dx dx x y s ,t 12−=t x ,x +21=, 即 则令23ln 211111113223232222322+=−+=t s −=−⋅−=∫∫∫∫dt t dt d t t dt t tt t .)3(x − 22. 计算曲线3弧的长度. x y =上相应于1≤x ≤3的一段 解x x x y 3−=, 1x y 2−=′,x 121x x y 4112+−=′, 214)(12x y +=′+,121x为所求弧长3432)232(21)1(213131−=+=+=∫x x x dx xx s .23. 计算半立方抛物线被抛物线32x y =32)1(32−=x y 截得的一段弧的长度.解 由⎪⎩⎪⎨⎧=−=3)1( 32232x y x y 得两曲线的交点的坐标为36 ,2(, )36 ,2(−. 所求弧长为∫′+=21212dx y s .因为2y x y 2)1(−=′,)1(23)1()134−=−2)1(2−=′y y x ,32()1(242−−==′y x y 所以 x x x . ]1)25[(98)1)1−x 3(13232(231232121−=−=−+=∫∫d x dx x s . 抛物线y 2=2px 从顶点到这曲线上的一点M (x , y )的弧长.24. 计算∫∫∫+=+=′+=y yydy sy p p dy p y dy y x 02202021)(1)(1 解y y p y p p 2222])2[+++=y p y 02ln(21+p 2y p y py p py 2222ln2++++=.25. 计算星形线t a x 3cos =, 的全长.解 用参数方程的弧长公式.t a y 3sin = dt t y t x s =∫′+′2022)()(4π∫⋅+−⋅=202222]cos sin 3[)]sin (cos 3[4πdt t t a t t aa tdt t 6cos sin 1220==∫π.26. 将绕在圆(半径为a )上的细线放开拉直, 使细线与圆周始终相切, 细线端点画出的轨迹叫做圆的渐伸线, 它的方程为 )sin (cos t t t a x +=, )cos (sin t t t a y −=.计算这曲线上相应于t 从0变到π的一段弧的长度. 解 由参数方程弧长公式∫∫+=′+′=ππ022022)sin ()cos ()]([)]([dtt at t at dt t y t x s 0∫22ππa tdt a ==.cos t )上求分摆线第一拱成1: 3 解 设t 从0变化到t 0时摆线第一拱上对应的弧长为s (t 0), 则 27. 在摆线x =a (t −sin t ), y =a (1−的点的坐标.∫∫+−=′+′=0220220]sin [)]cos 1([)]t ([)]([)(t t dt t a t a dt y t x t s)2cos 1(42sin 2000ta dt t a t −==∫.当t 0=2π时, 得第一拱弧长s (2π)=8a . 为求分摆线第一拱为1: 3的点为A (x , y ), 令a ta 22cos 1(40=−,32解得0π=t , 因而分点的坐标为:a a x )32()2sin 2(−=−=πππ, 横坐标23 纵坐标33a a y 23)32cos1(=−=π,故所求分点的坐标为)23 ,)2332((a a −π. ρθa e =相应于自θ=0到的一段弧长 28. 求对数螺线θ=ϕ. 解 用极坐标的弧长公式. θθθρθρϕθθϕd ae e d a a ∫∫+=′+=22022)()()()(s )1−θ(11202+=+=∫ϕθθa a e aa d e a .29线1相应于自 . 求曲ρθ=43=θ至34=θ.的一段弧长 极坐标公式可得所求的弧长 解 按∫∫−+=′+=344322234322)1()1()()(θθθθθρθρd d s23ln 1251134322+=+=∫θθθd .30. 求心形线ρ=a (1+cos θ )的全长. 解 用极坐标的弧长公式. θθθθθρθρππd a a d s ==2 ∫∫−++′+0222022)sin ()cos 1()()(2a d a 82∫cos 4==πθθ.习题6−31. 由实验知道, 弹簧在拉伸过程中, 需要的力F (单位: N )与伸长量s (单位: cm)成正比, 即F =ks (k 为比例常数). 如果把弹簧由原长拉伸6cm , 计算所作的功.解 将弹簧一端固定于A , 另一端在自由长度时的点O 为坐标原点, 建立坐标系. 功元素为dW =ksds , 所求功为18216260===∫s k ksds W k(牛⋅厘米).2. 直径为20cm 、高80cm 的圆柱体内充满压强为10N/cm 2的蒸汽. 设温度保持不变, 要使蒸汽体积缩小一半, 问需要作多少功? 解 由玻−马定律知:ππ80000)8010(102=⋅⋅==k PV .设蒸气在圆柱体内变化时底面积不变, 高度减小x 厘米时压强 为P (x )牛/厘米2, 则ππ80000)]80)(10[()(2=−⋅x x P , π−=80800)(x P .功元素为dx x P dW )()10(2⋅=π,所求功为 2ln 8008018000080800)10(400402πππππ=−=−⋅⋅=∫∫dx dx W(J).3. (1)证明: 把质量为m 的物体从地球表面升高到h 处所作的功是 hR mgRhW +=,其中g 是地面上的重力加速度, R 是地球的半径;(2)一颗人造地球卫星的质量为173kg , 在高于地面630km 处进入轨道. 问把这颗卫星从地面送到630的高空处, 克服地球引力要作多少功?已知g =9.8m/s 2, 地球半径R =6370km .证明 (1)取地球中心为坐标原点, 把质量为m 的物体升高的功元素为dy ykMm dW 2=, 所求的功为 )(2h R R mMh k dy y kMm W hR R+⋅==∫+.(2)533324111075.910)6306370(106370106301098.51731067.6×=×+×××××⋅×=−W (kJ).4. 一物体按规律3ct x =作直线运动, 媒质的阻力与速度的平方成正比. 计算物体由x =0移至x =a 时, 克服媒质阻力所作的功. 解 因为3ct x =, 所以23)(cxt x v =′=, 阻力4229t kc kv f −=−=. 而32)(cx t =, 所以34323429)(9)(x kc cx kc x f −=−=. 功元素dW =−f (x )dx , 所求之功为 37320343203432072799)]([a kc dx x kcdx x kc dx x f Wa aa ===−=∫∫∫. 5. 用铁锤将一铁钉击入木板, 设木板对铁钉的阻力与铁钉击入木板的深度成正比, 在击第一次时, 将铁钉击入木板1cm . 如果铁锤每次打击铁钉所做的功相等, 问锤击第二次时, 铁钉又击入多少?解 设锤击第二次时铁钉又击入h cm , 因木板对铁钉的阻力f 与铁钉击入木板的深度x (cm)成正比, 即f =kx , 功元素dW =f dx =kxdx , 击第一次作功为 k kxdx W 21101==∫,击第二次作功为 )2(212112h h k kxdx W h+==∫+.因为, 所以有 21W W =)2(21212h h k k +=, 解得12−=h (cm).6. 设一锥形贮水池, 深15m , 口径20m , 盛满水, 今以唧筒将水吸尽, 问要作多少功?解 在水深x 处, 水平截面半径为x r 3210−=, 功元素为dx x x dx r x dW 22)3210(−=⋅=ππ,所求功为 ∫−=1502)3210(dx x x Wπ∫+−=15032)9440100(dx x x x π =1875(吨米)=57785.7(kJ).7. 有一闸门, 它的形状和尺寸如图, 水面超过门顶2m . 求闸门上所受的水压力. 解 建立x 轴, 方向向下, 原点在水面. 水压力元素为xdx dx x dP 221=⋅⋅=, 闸门上所受的水压力为21252252===∫x xdx P (吨)=205. 8(kN).8. 洒水车上的水箱是一个横放的椭圆柱体, 尺寸如图所示. 当水箱装满水时, 计算水箱的一个端面所受的压力.解 建立坐标系如图, 则椭圆的方程为11)43()43(2222=+−y x .压力元素为dx x x dx x y x dP 22)43()43(38)(21−−⋅=⋅⋅=,所求压力为∫∫−⋅⋅+=−−⋅=222322cos 43cos 43)sin 1(4338)43()43(38ππtdx t t dx x x Pππ169cos 49202==∫tdx (吨)=17.3(kN). (提示: 积分中所作的变换为t x sin 4343=−)9. 有一等腰梯形闸门, 它的两条底边各长10m 和6m , 高为20m . 较长的底边与水面相齐. 计算闸门的一侧所受的水压力.解 建立坐标系如图. 直线AB 的方程为x y 1015−=,压力元素为dx x x dx x y x dP )5110()(21−⋅=⋅⋅=,所求压力为1467)5110(200=−⋅=∫dx x x P (吨)=14388(千牛).10. 一底为8cm 、高为6cm 的等腰三角形片, 铅直地沉没在水中, 顶在上, 底在下且与水面平行, 而顶离水面3cm , 试求它每面所受的压力. 解 建立坐标系如图.腰AC 的方程为x y 32=, 压力元素为dx x x dx x x dP )3(34322)3(+=⋅⋅⋅+=,所求压力为168)2331(34)3(34602360=+=+=∫x x dx x x P (克)=1.65(牛).11. 设有一长度为l 、线密度为μ的均匀细直棒, 在与棒的一端垂直距离为a 单位处有一质量为m 的质点M , 试求这细棒对质点M 的引力.解 建立坐标系如图. 在细直棒上取一小段dy , 引力元素为dy ya Gm y a dy m G dF 2222+=+⋅=μμ, dF 在x 轴方向和y 轴方向上的分力分别为dF r a dF x −=, dF rydF y =.2202222022)(1)(l a a l Gm dy y a y a aGm dy y a Gm r a F l lx +−=++−=+⋅−=∫∫μμμ,)11()(12202222022l a a Gm dy y a y a Gm dy y a Gm r y F l ly +−=++=+⋅=∫∫μμμ. 12. 设有一半径为R 、中心角为 ϕ 的圆弧形细棒, 其线密度为常数 μ . 在圆心处有一质量为m 的质点F . 试求这细棒对质点M 的引力. 解 根据对称性, F y =0.θμcos 2⋅⋅⋅=Rdsm G dF xθθμθθμd R Gm R Rd Gm cos cos )(2=⋅=,θθμϕϕd R Gm F x ∫−=2cos2sin 2cos 220ϕμθθμϕR Gm d R Gm ==∫. 引力的大小为2sin 2ϕμR Gm , 方向自M 点起指向圆弧中点.总 习 题 六1. 一金属棒长3m , 离棒左端xm 处的线密度为11)(+=x x ρ (kg/m ). 问x 为何值时, [0, x ]一段的质量为全棒质量的一半? 解 x 应满足∫∫+=+300112111dt t dt t x.因为212]12[110−+=+=+∫x t dt t x x, 112[2111213030=+=+∫t dt t ,所以1212=−+x ,45=x (m).2. 求由曲线ρ=a sin θ, ρ=a (cos θ+sin θ)(a >0)所围图形公共部分的面积. 解∫++⋅=43222)sin (cos 21)2(21ππθθθπd a a S24322241)2sin 1(28a d a a −=++=∫πθθπππ.3. 设抛物线c bx ax y ++=2通过点(0, 0), 且当x ∈[0, 1]时, y ≥0. 试确定a 、b 、c 的值, 使得抛物线与直线x =1, y =0所围图形的面积为c bx ax y ++=294,且使该图形绕x 轴旋转而成的旋转体的体积最小.y c bx ax +=+ 解 因为抛物线2y 通过点(0, 0), 所以c =0, 从而 bx ax +=2.bx ax y +=2与直线x =1, y =0所围图形的面积为抛物线23)(102b a dx bx ax S +=+=∫. 令9423=+b a , 得968a b −=. 该图形绕x 轴旋转而成的旋转体的体积为 )235()(221022ab b a dx bx ax V ++=+=∫ππ)]968(2)968(315[22a a a a −+−+=π. 令0)]128(181********[=−+−⋅+2=a a a ddV π, 得35−=a , 于是b =2. 4. 求由曲线23x y =与直线x =4, x 轴所围图形绕y 轴旋转而成的旋转体的体积.解 所求旋转体的体积为πππ751272224027403=⋅=⋅=∫x dx x x V . 5. 求圆盘1)2(22≤+−y x 绕y 轴旋转而成的旋转体的体积.解 )2(122312∫−−⋅⋅=dx x x Vπ 2224cos )sin 2(4 sin 2ππππ=+=−∫−tdt t t x 令.6. 抛物线221x y =被圆322=+y x 所需截下的有限部分的弧长. 解 由⎪⎩⎪⎨⎧==+222213x y y x 解得抛物线与圆的两个交点为)1 ,2(−, )1 ,2(, 于是所求的弧长为2022202])1ln(2112[212x x x x dx x s ++++=+=∫ )32ln(6++=.,解 建立坐标系如图. 将球从水中取出时, 球的各点上升的高度均为2r . 在x 处取一厚度为dx 的薄片, 在将球从水中取出的过程中, 薄片在水下上升的高度为r +x ,在水上上升的高度为r −x . 在水下对薄片所做的功为零,在水上对薄片所做的功为dx x r x r g dW ))((22−−=π,对球所做的功为g r x d x r x r g W rr 22234))((ππ=−−=∫−. 8. 边长为a 和b 的矩形薄板, 与液面成α 角斜沉于液体内,长边平行于液面而位于深h 处, 设a >b , 液体的比重为ρ, 试求薄板每面所受的压力.解 在水面上建立x 轴, 使长边与x 轴在同一垂面上, 长边的在x 轴上的投影区间为[0, b cos α], 在x 处x 轴到薄板的距离为h +x tan α. 压力元素为 上端点与原点对应. 长边dx x h ga dx a x h g dP )tan (cos cos )tan (ααρααρ+=⋅⋅+⋅=, 薄板各面所受到的压力为)sin 2(21)tan (cos cos 0αρααραb h gab dx x h ga P b +=+=∫. 9. 设星形线t a x 3cos =,t a y 3sin =上每一点处的线密度的大小等于该点到原点距离的立方, 在原点O 处有一单位质点, 求星形线在第一象限的弧段对这质点的引力. 解 取弧微分ds 为质点, 则其质量为ds y x ds y x 322322)()(+=+, 其中tdt t a dt t a t a ds cos sin 3])sin [(])cos [(2323=′+′=.设所求的引力在x 轴、y 轴上的投影分别为F x 、F y , 则有∫+⋅++⋅⋅=202222322)()(1πds y x x y x y x G F x 2204253sin cos 3Ga tdt t Ga ==∫π, ∫+⋅++⋅⋅=22222322)()(1πds y x y y x y x G F x 2204253sin cos 3Ga tdt t Ga ==∫π, 所以)53 ,53(22Ga Ga =F .。

定积分典型例题20例解答

定积分典型例题20例解答

定积分典型例题20例答案例1求33322321lim(2)n n n n n®¥+++.分析将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解将区间[0,1]n 等分,则每个小区间长为1i x n D =,然后把2111n n n =×的一个因子1n乘入和式中各项.于是将所求极限转化为求定积分.即33322321lim (2)n n n n n®¥+++=333112lim ()n n n n n n ®¥+++=13034xdx =ò.例2222x x dx -ò=_________.解法1由定积分的几何意义知,222x x dx -ò等于上半圆周22(1)1x y -+= (0y ³)与x 轴所围成的图形的面积.故222x x dx -ò=2p .解法2本题也可直接用换元法求解.令1x -=sin t (22t pp-££),则222x x dx -ò=2221sin cos t tdt pp --ò=2221sin cos t tdt p -ò=222cos tdt p ò=2p例3(1)若22()xtxf x e dt -=ò,则()f x ¢=___;(2)若0()()xf x xf t dt=ò,求()f x ¢=___.分析这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ¢¢=-ò.解(1)()f x ¢=422x x xee---;(2)由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =ò,则可得()f x ¢=()()xf t dt xf x +ò.例4 设()f x 连续,且310()x f t dt x -=ò,则(26)f =_________.解对等式31()x f t dt x -=ò两边关于x 求导得32(1)31f x x -×=,故321(1)3f x x -=,令3126x -=得3x =,所以1(26)27f =. 例5 函数11()(3)(0)x F x dt x t =->ò的单调递减开区间为_________. 解 1()3F x x¢=-,令()0F x ¢<得13x >,解之得109x <<,即1(0,)9为所求.为所求.例6 求0()(1)arctan xf x ttdt =-ò的极值点.的极值点. 解 由题意先求驻点.于是()f x ¢=(1)arctan x x -.令()f x ¢=0,得1x =,0x =.列表如下:如下:故1x =为()f x 的极大值点,0x =为极小值点.为极小值点.例7 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中处的切线相同,其中 2arcsin0()x tg x e dt -=ò,[1,1]x Î-,试求该切线的方程并求极限3lim()n nf n®¥. 分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ¢¢=.解 由已知条件得由已知条件得2(0)(0)0t f g e dt-===ò,且由两曲线在(0,0)处切线斜率相同知处切线斜率相同知2(arcsin )2(0)(0)11x x ef g x-=¢¢===-.故所求切线方程为y x =.而.而3()(0)3lim ()lim33(0)330n n f f n nf f nn®¥®¥-¢=×==-. 例8 求 22sin lim (sin )xx xtdtt t t dt®-òò;分析 该极限属于00型未定式,可用洛必达法则.型未定式,可用洛必达法则.解 2200sin lim (sin )xx x tdtt t t dt®-òò=2202(sin )lim (1)(sin )x x x x x x ®-××-=220()(2)lim sin x x x x ®-×-=304(2)lim 1cos x xx ®-×- x(,0)-¥0 (0,1)1 (1,)+¥()f x ¢- 0 + 0 -=2012(2)lim sin x x x®-×=0. 注 此处利用等价无穷小替换和多次应用洛必达法则.此处利用等价无穷小替换和多次应用洛必达法则.例9 试求正数a 与b ,使等式221lim 1sin x x tdt x b x a t®=-+ò成立.成立.分析 易见该极限属于型的未定式,可用洛必达法则. 解 221lim sin x x tdt x b xa t®-+ò=22lim 1cos x xa xb x ®+-=221lim lim 1cos x x xb xa x ®®×-+201lim 11cos x x b xa ®==-, 由此可知必有0lim(1cos )0x b x ®-=,得1b =.又由.又由 2012lim 11cosx xx a a ®==-, 得4a =.即4a =,1b =为所求.为所求.例10 设sin 20()sin x f x t dt=ò,34()g x x x =+,则当0x ®时,()f x 是()g x 的(的( ). A .等价无穷小..等价无穷小. B .同阶但非等价的无穷小..同阶但非等价的无穷小. C .高阶无穷小..高阶无穷小. D .低阶无穷小.解法1 由于由于 22300()sin(sin )cos lim lim ()34x x f x x x g x x x ®®×=+ 2200cos sin(sin )lim lim 34x x x x xx ®®=×+ 22011lim 33x xx ®==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到的幂级数,再逐项积分,得到sin 223370111()[()]sin sin 3!342xf x t t dt x x =-+=-+ò,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f x g x x xx®®®®-+-+===++.例11 计算21||x dx -ò.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -ò=0210()x dx xdx--+òò=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时在使用牛顿-莱布尼兹公式时,,应保证被积函数在积分区间上满足可积条件.如应保证被积函数在积分区间上满足可积条件.如 33222111[]6dx x x --=-=ò,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界积区间内无界. .例12 设()f x 是连续函数,且1()3()f x x f t dt=+ò,则()________f x =.分析 本题只需要注意到定积分()baf x dx ò是常数(,a b 为常数).解 因()f x 连续,()f x 必可积,从而1()f t dt ò是常数,记1()f t dt a =ò,则,则()3f x x a =+,且110(3)()x a dx f t dt a+==òò.所以所以211[3]2x ax a +=,即132a a +=,从而14a =-,所以,所以 3()4f x x =-.例13 计算2112211x xdx x-++-ò.分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性.解 2112211x x dx x -++-ò=211112221111xx dx dx x x --++-+-òò.由于22211x x +-是偶函数,而211xx+-是奇函数,有112011xdx x-=+-ò, 于是于是2112211x xdx x -++-ò=2102411x dx x +-ò=22120(11)4x x dx x --ò=11200441dx x dx --òò 由定积分的几何意义可知12014x dx p -=ò, 故2111022444411x x dx dx xp p -+=-×=-+-òò. 例14 计算220()xdtf x t dt dx -ò,其中()f x 连续.连续. 分析 要求积分上限函数的导数,要求积分上限函数的导数,但被积函数中含有但被积函数中含有x ,因此不能直接求导,因此不能直接求导,必须先换必须先换元使被积函数中不含x ,然后再求导.,然后再求导.解 由于由于220()xtf x t dt -ò=22201()2xf x t dt -ò. 故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以,所以22()xtf x t dt -ò=201()()2x f u du -ò=201()2xf u du ò,故22()xd tf x t dt dx -ò=21[()]2x d f u du dx ò=21()22f x x ×=2()xf x .错误解答 220()xd tf x t dt dx -ò22()(0)xf x x xf =-=. 错解分析 这里错误地使用了变限函数的求导公式,公式这里错误地使用了变限函数的求导公式,公式()()()xa d x f t dtf x dx ¢F ==ò中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.导,而应先换元.例15 计算3sin x xdx pò.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法. 解3s i n x x d xpò3(c o s )x d x p=-ò3300[(c o s )](co s )x x x d x p p=×---ò3cos 6xdx pp=-+ò326p=-. 例16 计算12ln(1)(3)x dx x +-ò.分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-ò=101ln(1)()3x d x +-ò=1100111[ln(1)]3(3)(1)x dx x x x +-×--+ò =101111ln 2()2413dx x x-++-ò 11ln 2ln324=-. 例17 计算2sin xe xdx pò.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.解 由于2sin xe xdx pò2sin x xde p=ò22[sin ]cos xxe x e xdx p p=-ò220cos xe e xdx pp=-ò, ((1)而2cos xe xdx pò2cos xxdep=ò22[cos ](sin )xx e x e x dx pp=-×-ò2sin 1x e xdx p =-ò, ((2)将(将(22)式代入()式代入(11)式可得)式可得2sin xe xdx pò220[sin 1]xe e xdx pp=--ò,故2sin xe xdx pò21(1)2e p=+.例18 计算1arcsin x xdx ò.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法. 解 10arcsin x xdxò210arcsin ()2x xd =ò221100[arcsin ](arcsin )22x x x d x =×-ò 21021421xdx xp=--ò. (1) 令sin x t =,则,则2121xdx x-ò2202sin sin 1sin t d ttp =-ò220sin cos cos t tdt t p=×ò220sin tdt p=ò201cos 22tdt p -==ò20sin 2[]24t t p-4p =. (2)将(将(22)式代入()式代入(11)式中得)式中得10arcsin x xdx =ò8p. 例19设()f x [0,]p 上具有二阶连续导数,()3f p ¢=且[()()]cos 2f x f x xdx p¢¢+=ò,求(0)f ¢.分析分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解.被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解.解 由于0[()()]cos f x f x xdx p¢¢+ò00()sin cos ()f x d x xdf x p p¢=+òò[]000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx pppp¢¢¢=-++òò()(0)2f f p ¢¢=--=.故 (0)f ¢=2()235f p ¢--=--=-.例20 计算2043dxx x +¥++ò.分析 该积分是无穷限的的反常积分,用定义来计算. 解 2043dx x x +¥++ò=20lim 43t t dx x x ®+¥++ò=0111lim ()213t t dx x x ®+¥-++ò =011lim [ln ]23t t x x ®+¥++=111lim (ln ln )233t t t ®+¥+-+ =ln 32.。

定积分典型例题20例标准答案

定积分典型例题20例标准答案

定积分典型例题20例答案例1 求33322321lim(2)n n n n n®¥+++.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x nD =,然后把2111n n n =×的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即入和式中各项.于是将所求极限转化为求定积分.即33322321lim (2)n n n n n ®¥+++=333112lim ()n n n n nn ®¥+++=13034xdx =ò.例2 2202x x dx -ò=_________.解法1 由定积分的几何意义知,2202x x dx -ò等于上半圆周22(1)1x y -+= (0y ³) 与x 轴所围成的图形的面积.故2202x x dx -ò=2p. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t pp-££),则,则222x x dx -ò=2221sin cos t tdt pp --ò=22021sin cos t tdt p-ò=2202cos tdt pò=2p例3 (1)若22()x t x f x e dt -=ò,则()f x ¢=___;(2)若0()()xf x xf t dt =ò,求()f x ¢=___.分析 这是求变限函数导数的问题,利用下面的公式即可这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ¢¢=-ò.解 (1)()f x ¢=422x x xee---;(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =ò,则可得可得()f x ¢=()()xf t dt xf x +ò.例4 设()f x 连续,且31()x f t dt x -=ò,则(26)f =_________.解 对等式310()x f t dt x -=ò两边关于x 求导得求导得32(1)31f x x -×=,故321(1)3f x x-=,令3126x -=得3x =,所以1(26)27f =.例5 函数11()(3)(0)xF x dt x t =->ò的单调递减开区间为_________.解 1()3F x x ¢=-,令()0F x ¢<得13x>,解之得109x <<,即1(0,)9为所求.为所求. 例6 求0()(1)arctan xf x t tdt =-ò的极值点.的极值点. 解 由题意先求驻点.于是()f x ¢=(1)arctan x x -.令()f x ¢=0,得1x =,0x =.列表如下:如下: 故1x =为()f x 的极大值点,0x =为极小值点.为极小值点. 例7 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中处的切线相同,其中2arcsin 0()xt g x e dt -=ò,[1,1]x Î-,试求该切线的方程并求极限3lim ()n nf n ®¥.分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ¢¢=.解 由已知条件得由已知条件得2(0)(0)0tf g e dt -===ò,且由两曲线在(0,0)处切线斜率相同知处切线斜率相同知2(arcsin )2(0)(0)11x x e f g x-=¢¢===-.故所求切线方程为y x =.而.而3()(0)3lim ()lim33(0)330n n f f n nf f n n®¥®¥-¢=×==-.例8 求 22sin lim(sin )x x x tdt t t t dt®-òò;分析 该极限属于型未定式,可用洛必达法则.型未定式,可用洛必达法则. 解 22000sin lim (sin )x x xtdtt t t dt ®-òò=2202(sin )lim(1)(sin )x x x x x x ®-××-=220()(2)lim sin x x x x ®-×-=304(2)lim 1cos x x x ®-×- =2012(2)lim sin x x x®-×=0.注 此处利用等价无穷小替换和多次应用洛必达法则.此处利用等价无穷小替换和多次应用洛必达法则.x (,0)-¥(0,1)1 (1,)+¥()f x ¢-+-例9 试求正数a 与b ,使等式2021lim1sin xx t dt x b x a t®=-+ò成立.成立.分析 易见该极限属于型的未定式,可用洛必达法则. 解 20201lim sin x x t dt x b x a t ®-+ò=220lim 1cos x x a x b x ®+-=22001lim lim 1cos x x x b x a x ®®×-+201lim 11cos x x b xa ®==-,由此可知必有0lim(1cos )0x b x ®-=,得1b =.又由.又由 2012lim11cos x x xaa®==-,得4a =.即4a =,1b =为所求.为所求. 例10 设sin 20()sin xf x t dt =ò,34()g x x x =+,则当0x ®时,()f x 是()g x 的(的(). A .等价无穷小..等价无穷小. B .同阶但非等价的无穷小..同阶但非等价的无穷小. C .高阶无穷小..高阶无穷小.D .低阶无穷小. 解法1 由于由于 22300()sin(sin )cos lim lim ()34x x f x x x g x x x ®®×=+ 2200cos sin(sin )lim lim 34x x x x x x ®®=×+ 22011lim 33x x x ®==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到的幂级数,再逐项积分,得到sin223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+ò,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f xg x x x x ®®®-+-+===++.例11 计算21||x dx -ò.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -ò=0210()x dx xdx --+òò=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时在使用牛顿-莱布尼兹公式时,,应保证被积函数在积分区间上满足可积条件.如应保证被积函数在积分区间上满足可积条件.如 33222111[]6dx x x --=-=ò,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界积区间内无界. .例12 设()f x 是连续函数,且1()3()f x x f t dt =+ò,则()________f x =.分析 本题只需要注意到定积分()baf x dx ò是常数(,a b 为常数).解 因()f x 连续,()f x 必可积,从而1()f t dt ò是常数,记1()f t dt a =ò,则,则()3f x x a =+,且11(3)()x a dx f t dt a +==òò.所以所以2101[3]2x ax a +=,即132a a +=,从而14a =-,所以,所以 3()4f x x =-.例13 计算2112211x xdx x-++-ò. 分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解2112211x x dx x -++-ò=211112221111xxdx dx x x--++-+-òò.由于22211x x +-是偶函数,而211xx +-是奇函数,有112011x dx x-=+-ò, 于是于是 2112211x xdx x-++-ò=212411x dx x+-ò=2212(11)4x x dx x--ò=11200441dx x dx --òò由定积分的几何意义可知12014x dx p-=ò, 故2111022444411x xdx dx x p p -+=-×=-+-òò.例14 计算22()x d tf x t dt dx -ò,其中()f x 连续.连续. 分析 要求积分上限函数的导数,要求积分上限函数的导数,但被积函数中含有但被积函数中含有x ,因此不能直接求导,因此不能直接求导,必须先换必须先换元使被积函数中不含x ,然后再求导.,然后再求导.解 由于由于220()xtf x t dt -ò=22201()2xf x t dt -ò.故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以,所以22()x tf x t dt -ò=201()()2xf u du -ò=21()2x f u du ò,故220()x d tf x t dt dx -ò=201[()]2x d f u du dx ò=21()22f x x ×=2()xf x . 错误解答 22()x d tf x t dt dx -ò22()(0)xf x x xf =-=.错解分析 这里错误地使用了变限函数的求导公式,公式这里错误地使用了变限函数的求导公式,公式()()()xa d x f t dt f x dx¢F ==ò中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.导,而应先换元. 例15 计算3sin x xdx pò.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法. 解 3s i n x x d x pò3(c o s )x d x p=-ò330[(c o s )](co s )x x x d x pp=×---ò 30cos 6xdx pp=-+ò326p=-. 例16 计算1200ln(1)(3)x dx x +-ò. 分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-ò=101ln(1)()3x d x +-ò=1100111[ln(1)]3(3)(1)x dx x x x +-×--+ò =101111ln 2()2413dx x x-++-ò 11ln 2ln324=-.例17 计算20sin x e xdx pò.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法. 解 由于2sin xe xdx pò20sin xxde p=ò220[sin ]cos xxe x e xdx p p=-ò220cos xe e xdx p p=-ò,(1) 而2cos xe xdx pò20cos xxde p=ò2200[cos ](sin )xxe x e x dx p p=-×-ò 2sin 1xe xdx p=-ò, (2)将(将(22)式代入()式代入(11)式可得)式可得2sin xe xdx pò220[sin 1]xe e xdx p p=--ò,故20sin xe xdx pò21(1)2e p=+.例18 计算10arcsin x xdx ò.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解10arcsin x xdx ò210arcsin ()2x xd =ò221100[arcsin ](arcsin )22x x x d x =×-ò 21021421x dx x p=--ò. (1) 令sin x t =,则,则2121x dx x-ò2202sin sin 1sin t d t tp =-ò220sin cos cos t tdt tp=×ò220sin tdt p=ò 201cos 22t dt p-==ò20sin 2[]24t t p-4p =. (2) 将(将(22)式代入()式代入(11)式中得)式中得1arcsin x xdx =ò8p .例19设()f x [0,]p 上具有二阶连续导数,()3f p ¢=且0[()()]cos 2f x f x xdx p¢¢+=ò,求(0)f ¢.分析分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解.被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于0[()()]cos f x f x xdx p ¢¢+ò00()sin cos ()f x d x xdf x p p¢=+òò[]0000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx pppp¢¢¢=-++òò()(0)2f f p ¢¢=--=. 故 (0)f ¢=2()235f p ¢--=--=-.例20 计算2043dx x x +¥++ò. 分析 该积分是无穷限的的反常积分,用定义来计算.解 2043dx x x +¥++ò=20lim 43t t dx x x ®+¥++ò=0111lim ()213t t dx x x ®+¥-++ò =011lim [ln ]23t t x x ®+¥++=111lim (ln ln )233t t t ®+¥+-+ =ln 32.。

定积分典型例题20例答案

定积分典型例题20例答案

定积分典型例题20例答案例1求lim 丄(循2丁2『L Vn 3) •n n分析将这类问题转化为定积分主要是确定被积函数和积分上下限. 若对题目中被积函数难以想到,可采取如下方法:先对区间 [0, 1] n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0, 1] n 等分,则每个小区间长为 % -,然后把1丄的一个因子-乘nn n nn入和式中各项•于是将所求极限转化为求定积分•即lim A (习n 2 ^2n 2 LVn 3) = lim -(^—L ^—) = VXdx - • n nnnn,n ,n ° 42 -- ------ r例 2o (2x x dx = ___________• 2 . ________解法1由定积分的几何意义知, °. 2x x 2dx 等于上半圆周(x 1)2 y 2 1 ( y 0)与x 轴所围成的图形的面积.故2,2x x 2dx = _ • 0 2'1 sin 2tcostdt = 2。

2J sin 2t costdt =2 : cos 2 tdt^22x 2 2x例 3 (1)若 f (x) x e 七 dt ,则 f (x) = ________; (2)若 f (x) 0 xf (t)dt ,求 f (x)=分析这是求变限函数导数的问题,利用下面的公式即可(1) f (x) =2xe x e x可得xf (x) = 0 f (t)dt xf (x) •x 1例 4 设 f(x)连续,且。

f(t)dt x ,贝U f (26) = _________________O Ax 1解 对等式0 f(t)dtx 两边关于x 求导得3 2f(x 1) 3x 1,解法2本题也可直接用换元法求解.令x 1= Sint (2 t 2),则d v(x)dx u(x)f(t)dt f[v(x)]v(x) f[u(x)]u (x) • (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即xf (x) x 0 f (t)dt ,则x 2dx =3 1 令x 1 26得x 3,所以f (26)27故f(x 3 1) 丄3x 例5函数F(x)F (x)1 1,令F (x) 0得r 3,解之得xx1 10 x -,即(0,-)为所求.9 9f (x)x0 (1 t)arctan tdt 的极值点.f (x) = (1 x)arctan x .令 f (x) = 0,得 x 1 , x 0.列表如下:x(,0)0 (0,1) 1(1,)f (x)-0 +f (x)的极大值例7已知两曲线y f (x)与y g(x)在点(0,0)处的切线相同,其中arcs inxg(x) 0t 2e dt , x [ 1,1],试求该切线的方程并求极限 lim nf (?).n n分析两曲线y f (x)与y g(x)在点(0,0)处的切线相同,隐含条件f(0) g(0),f (0)g (0) •解由已知条件得f(0)g(0)°e " dt且由两曲线在(0,0)处切线斜率相同知f (0)g(0)(arcsin x)2e1 x 2故所求切线方程为 y x .而lim nf (-) n nIim3nf(-) n3 0 nf(0) 一 3f (0) 3 •x 22sin tdtlim 0;x 0分析 该极限属于型未定式,可用洛必达法则. 0X 22sin tdt lim ------------------ = lim = ( 2) lim= ( 2)x 0:t (t sin t)dt x 0( 1) x (x sinx) 、7 x 0x sinx ' 丿2x(sin x 2)22 2(x ) 34x(x 0)的单调递减开区间为x 1(3点,x 0为极小值点.由题意先求驻点.于是12x=(2) lim =0 . x 0sinx注此处利用等价无穷小替换和多次应用洛必达法则.1 x t 2例9 试求正数a 与b ,使等式lim -------------------- dt 1成立.x 0x bsin x 0 ‘ ―t 2分析 易见该极限属于 0型的未定式,可用洛必达法则.1 x 2lim.a x 01 bcosx21 x lim3x 0x 2故f(x)是g(x)同阶但非等价的无穷小.2例11计算1|x|dx .分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.2 220 2x 0 x 251|x|dx = 1( x)dx 0xdx = [ y] 1 [y]0 =-.在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如[-]32丄,则是错误的.错误的原因则是由于被积函数 」2在x 0处间断且在被x 6 x 2lim__ x 0x bsin x 0 . a 2x_ _t 「dt = lim _— =lim 1f 2 x 01 bcosx x op x 2x 2limx 01 bcosx由此可知必有 lim(1 bcosx) 0,得 b 1 .又由得a 4 .即a 4 , si nx1xlim a x 01 cosxb 1为所求. 例10设f (x)sin t 2dt , g(x) x 3 x 4,则当0 时,f (x)是 g(x)的( ). A .等价无穷小.B .同阶但非等价的无穷小.解法1由于lim 型 lim si 门伽浪)cosxx 0g(x) x 0C .高阶无穷小.D .低阶无穷小.mo Hx3x 2 4x 3cosx3 4xmo Hxsin (sin x)x解法2 将sin t 2展成t 的幕级数, 1 2 3 3!(t)f (x) 0 sin x 2 [t 2 再逐项积分,得到1 si n 42L ]dt 1 . 3 一 sin xlim 少 x 0g(x).31sin x(- lim -1 . 4sin x 4234x x1 lim -x 01 ■ 4 . sin x L 42 1 xUdx x积区间内无界 例12设f(x)是连续函数,且f(x) 1x 3 0 f(t)dt ,则 f (x)所以 分析本题只需要注意到定积分因f (x)连续,f (x)必可积,从而a 1—,所以 4例13 计算12x21 分析 bf (x)dx 是常数(a, b 为常数).从而f (x) x 3a ,且f(x) x1 21[―X 2 3ax]0 23 2 .10 f (t)dt 是常数,记 10 f (t)dt a ,则1 o(x3a)dx3a a ,x dx. 1 1 x 2由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. I 2x 2 x ------ dx = II 1 x 2 I 2x 2----- dxII .1 x 2 ___ dx .由于 11 1 x 2一是偶函数,而 1 1 x 2 旦古函数, 是奇 2 x 111=dx 2 x0,I2x 2 xII1 x 2dx = 4 由定积分的几何意义可知 例14计算肿(x 2 011 x 20 1x 2dx 1 2x 2 1 dx = 4 1x 2 (11x 2) 0x _= dx 1 1 x 2t 2)dt ,其中 分析 要求积分上限函数的导数, 元使被积函数中不含 ,然后再求导. 由于 x 2 otf(xx 2dx = 4 dx 4;FVdx故令x 2xdx 01 4 dx 0 f(x)连续. 但被积函数中含有 x ,因此不能直接求导,必须先换2 1 x2 2 2t )dt = 2 0f(x t )dt .2 20时u x ;当t x 时u 0,而dtx2 2 1tf(x t)dt=;222d 1 x tf(x t)dt= dx [2 0x 2f (U)( du)=idu ,所以x 2f (u)du ,f (u)du] =£ f(x 2) 2x = xf (x 2).错误解答 — tf(x 2 t 2)dtxf(x 2 x 2) xf(O).dx 0错解分析这里错误地使用了变限函数的求导公式,公式d x(x) a f (t)dt f (x)dx a中要求被积函数f(t)中不含有变限函数的自变量 x ,而f (x 2 t 2)含有x ,因此不能直接求导,而应先换元. 15 计算 3 xsinxdx .分析 被积函数中出现幕函数与三角函数乘积的情形,通常采用分部积分法.=1ln21 In3 .417计算2e si nxdx .分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法. 解 由于 02e x sin xdx;sin xde x [e x sinx]〕2e x cosxdxe^2e x cos xdx ,(1)而02 *cosxdx2cos xde x[e x cosx](?o2e x ( sin x)dx2e x sin xdx 01 , (2)将(2)式代入(1)式可得?e x s in xdx e 2[2 e x sin xdx 1],故2 e xsin xdx1 ~2-(e 2 1). 21例 18 计算 xarcsinxdx .解 3 xs in xdx 3 xd(0 0 '3cosx) [x ( COSX )]oo3( cos x) dx616计算0兽dx .3cosxdx¥ 6分析被积函数中出现对数函数的情形,可考虑采用分部积分法.1x)d(-3 xJdx= 1ln(1 0(3 x)2'1Fln(1x)】1(3 x) (1 x)dx1 In2 21 xarcsin xdx分析被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于 0 [ f (x) f (x)]cos xdx 0 f (x)d sinxcosxdf (x){ f (x)sin x 00 f (x)sin xd" {[ f (x)cosx]° 0f (x)sin xd 冷f ( ) f (0) 2 .故 f (0) 2 f ( )2 3分析 该积分是无穷限的的反常积分,用定义来计算.解 dxtdx1 t 11 解2= lim 2= lim ()dxx 4x 3 t 0 x 4x 3 t 2 0 x 1 x 31 x 1 t 1 t 1 1 =lim [In ]0= lim (In In ) t2 x3 t 2 t 3 3分析 被积函数中出现反三角函数与幕函数乘积的情形,通常用分部积分法.1解xarcs in xdx1x20arcsinxd (一2x1[ arcsinx]。

济南大学高等数学C(一)5定积分及其应用-疑难解答

济南大学高等数学C(一)5定积分及其应用-疑难解答

第六章 定积分及其应用习题6-1 定积分的概念下列定积分:利用定积分的定义计算.1⎰21;)1(-dx x[]等分个分点,把区间中插入在闭区间解:n n 12,1.10-- ,211210=<<<<<=--n n x x x x x.3)1(2Δn n x i =--= ).,,2,1(31n i i nx i =+-=[],所以因为中取右端点为在每个区间x x f i nx ξx x i i i i =+-==-)(.31,.210.3)31(ΔΔ)(111∑∑∑===⋅+-==ni i n i i i n i i ni n x ξx ξf .2)1(939393Δ)(212121+⋅+-=+-=+-=∑∑∑===n n n i n i n x ξf n i ni i ni i 即{})Δ(232)1(93lim Δ)(lim .31210210n i i n i ni i λx max λn n n x ξf xdx ≤≤∞→=→-==⎥⎦⎤⎢⎣⎡+⋅+-==∑⎰其中⎰10.)2(dx e x[]等分个分点,把区间中插入在闭区间解:n n 11,0.10-,101210=<<<<<=-n n x x x x x.1Δn x i = ).,,2,1(0n i ni n i x i ==+=[],所以因为中取右端点为在每个区间x i i i i e x f ni x ξx x ===-)(.,.210.1ΔΔ)(111∑∑∑===⋅==ni ni i n i ξi n i i ne x e x ξf i.1)1(1)(1Δ)(111211--⋅=++++=-=∑n nnn nn nni ni i e e e ne e e e nx ξf 即{})Δ(11)1(1lim Δ)(lim .311110100n i i n nn i ni i λxx max λe e e e n x ξf dx e ≤≤∞→=→=-=--⋅==∑⎰其中,说明下列等式:利用定积分的几何意义.2;12110⎰=x xd )( ;412102⎰=-πx d x )(⎰-=ππx sinxd ;)(03 ⎰⎰-=2022.24πππx cosxd x cosxd )(角形的面积,故表示如图所示的直角三)解:(⎰1021x xd.x xd 12121210=⋅⋅=⎰ ⎰-1024112圆的面积,故表示如图所示)(x d x.414111022⎰=⋅⋅=-ππx d x ⎰-ππx x sinxd 轴上方为正面积,的面积,其中表示如图所示阴影部分)(3轴下方为负面积,故x ⎰-=ππx sinxd .0⎰-2224ππx cosxd 倍,面积的的面积,它是第一象限表示如图所示阴影部分)(⎰⎰-=2022.2πππx cosxd x cosxd 故习题6-2 定积分的性质积分的大小:比较下列各题中的两个.2;,110421021dx x I dx x I ⎰⎰==)( ;,221422121dx x I dx x I ⎰⎰==)(;)(ln ,ln 34332431dx x I dx x I ⎰⎰==)( ;)1ln(,4102101dx x I dx x I ⎰⎰+==)(.)1(,5102101dx x I dx e I x ⎰⎰+==)( ,只有有限个成立的解:)"(",10)1(42x x x x =≥∴≤≤ ,,42是连续函数又x x .,21104102I I dx x dx x >>⎰⎰即故是连续函数,,又只有有限个成立的4242,)"(",21)2(x x x x x x =≤∴≤≤ .,21214212I I dx x dx x <<⎰⎰即故是连续函数,,又33)(ln ,ln )(ln ln ,1ln ,43)3(x x x x x x <∴>∴≤≤ .,)(ln ln 2143343I I dx x dx x <<⎰⎰即故.,)1ln(),10()1ln(,0)0()()(10),10(111)(,)1ln()()4(211010I I dx x dx x x x x f x f x f x x xx f x x x f ><+∴≤<<+=<≤≤<<-+='-+=⎰⎰即即单调递减,故时,故当则设.,1,)1(,0)5(21I I e x x x n l x x >∴<+∴<+>时[],证明:上连续在及设)(,)()(3b a b a x g x f .< [].0)(,0)(,0)(,)1(>≡/≥⎰ba dx x f x f x fb a 则且上,若在[][].0)(,,0)(,0)(,)2(≡=≥⎰x f b a dx x f x f b a ba 上,则在且上,若在[][]).()(,,)()(),()(,)3(x g x f b a dx x g dx x f x g x f b a ba ba ≡=≤⎰⎰上,在则且上,若在[]⎰≥∴≥ba dx x f x fb a ,0)(,0)(,)1(上,在证明:,假设⎰=ba dx x f 0)(上,知在由],[)2(b a ,0)(≡x f 矛盾,这与0)(≡/x f .0)(⎰>∴ba dx x f ,假设反证法0)())(2(≡/x f ,则至少存在一点],[b a ξ∈,使得0)(≠ξf ,0)(≥x f ,0)(>∴ξf []上连续,在b a x f ,)( 的区间包含ξ∴,],[],[21b a c c ⊆ ,可设0)(>x f ],[21c c x ∈,易知:⎰>210)(c c dx x f , ,,而⎰⎰≥≥120)(0)(c abc dx x f dx x f ⎰⎰⎰⎰>++=∴ba c a c c bc dx x f dx x f dx x f dx x f 1212.0)()()()(矛盾,这与⎰=ba dx x f 0)([].0)(,≡∴x f b a 上,假设不成立,即在,令)()()()3(x f x g x F -=,],[)()(b a x x g x f ∈≤ .0)(≥∴x F,且⎰⎰⎰=-=b a b a ba dx x f dx x g dx x F 0)()()( ,0)()2(≡x F 知由).()(x f x g ≡即习题6-3 微积分的基本公式计算下列各导数:.1;11302dt t dx d x ⎰+)( ;112422dt t dx d x x ⎰+)( ⎰x x dt t πdx d cos sin 2)cos()3( ;1331162223x x x x +=⋅+=)()原式解:(⎥⎦⎤⎢⎣⎡+-+=⎰⎰420022112x x t dt t dt dx d )原式( ⎰⎰+-+=24020211x x t dt dx d t dt dx d x x x x 2)(114)(1122324⋅+-⋅+= ;1214483xx x x +-+= []⎰⎰-=x x dt t πdt t πdxd cos 0sin 022)cos()cos()3(原式 ⎰⎰-=x x dt t πdxd dt t πdx d sin 02cos 02)cos()cos( [][]x x πx x πcos )(sin cos )sin ()(cos cos 22--= [][].cos )(sin cos sin )(cos cos 22x x πx x π--= 计算下列各积分:.2a ax x dx x x 02302|)21()3(1-=-⎰)(2321a a -=821|)3131()1(221334212=-=+-⎰x x dx x x )( 67|)2132()()1(30122301211-=+=+=+⎰⎰x x dx x x dx x x )(⎰⎰⎰-+=ππππdx x nxdx si dx x 2020)sin (sin 11)(4|cos |cos 20=+-=πππx x 617|31|)21()(122131022010212=+=+=⎰⎰⎰x x dx x xdx dx x f )( :3求下列极限.;lim )1(02x dt e x t x ⎰→ .sin )sin (lim )2(0320220⎰⎰→x x x dtt t dt t;11lim )1(002===→e ex x 原式解: 320220320220sin 2lim sin sin sin 2lim )2(xx x dt t xx x dt t xx xx ⋅⋅=⋅=⎰⎰→→原式3020sin 2lim xdtt xx ⎰→=.323sin 2lim 22==→x x x .)(0cos 500dxdyx y y dt t dt e .xyt的导数所确定的隐函数求由方程==+⎰⎰求导,得对解:原方程左、右两边x0cos =+x dx dy e y .1sin cos cos -=-=∴x x e x dx dy y.)(602的极值求函数⎰-=xt dt te x f .2)(x xex f -='解: ,令02=-x xe0=x 得极值点 01)0(>=''f .f x f x 0)0()(0==∴有极小值时函数[](),证明函数内可导且上连续,在在设0)(,,)(.7<'x f b a b a x f ().0)(,)(1)(<'-=⎰x F b a dt t f ax x F xa内的一阶导数在 2)()())(()(a x dtt f a x x f x F xa ---='⎰证明:)()())(())((2x ξa a x a x ξf a x x f ≤≤----= )())(()()(x ηξax ξx ηf a x ξf x f <<--'=--=,0,0,0)(>->-<'a x ξx ηf .0)(<'∴x F习题6-4 定积分的换元积分法计算下列定积分:.1;02121)3cos()3sin()1(33=-=+-=+⎰πππππx dx πx 解:;16921)49(81)49()49(41)49()2(122123123=+-=++=+-----⎰⎰x x d x x dx ;31cos 31cos cos cos sin )3(203202202=-=-=⎰⎰πππφφd φφd φφ;2)2sin 4121(22cos 1sin )cos 1()4(000202πθθθd θθd θθd θππππ=-=-==-⎰⎰⎰;232)2(31)2(2212)5(202322202202=--=---=-⎰⎰x x d x dx x x;1)6(2102dx x x -⎰,cos ),20(sin tdt dx πt t x =≤≤=令.164sin 41812141241cos cos cos 20202202202202πt t dtt os4c dt t sin tdt t sin tdt t t sin πππππ=-=-===⋅⋅=⎰⎰⎰⎰)()(原式;45)7(11⎰--xxdx;2,45,452dt tdx t x t x -=-==-则令;61)53(8185)2(45133131322=-=-=--=⎰⎰t t dt t dt t tt 原式;1)8(41⎰+xdx,2,,2tdt dx t x t x ===则令;23ln 22)1ln (2)111(212212121-=+-=+-=+=⎰⎰t t dt t t tdt 原式;2121)]21([)(21)9(11021010222---=-=--=⎰⎰--e e t d e dt te tt t;212ln 2)ln 1(2)ln 1()ln 1(ln 1ln ln 1)10(212121212121-+=+=++=+=+⎰⎰⎰-x x d x xxd x x dx .41arctan )2arctan(1)2(54)11(12122122πx x dx x x dx ==+=++=++------⎰⎰ ;32)31(31)sin 3sin 31(21)cos 3(cos 212cos cos )12(222222=--=+=+=---⎰⎰ππππππx x dx x x xdx x .34)(cos 32)(cos 32cos cos cos cos sin cos )sin (cos sin cos )cos 1(cos cos cos )13(202302232002200222222223=-=-=⋅+-==-⋅=-------⎰⎰⎰⎰⎰⎰⎰ππππππππππππx x xd x x d x xdx x dx x x dxx x dx x x dx x x .22sin 2sin 2cos 2cos 2cos 2cos 22cos 1)14(2202200020=-=-===+⎰⎰⎰⎰⎰πππππππππx x dx x dx x dxx dx x dx x 列定积分:利用函数奇偶性计算下.2;1arcsin 1212122dx xx ⎰--)()(.12sin )2(552432dx x x x x ⎰-++ 为偶函数,故)(解:221arcsin )()1(xx x f -=;324arcsin 32arcsin 21arcsin 232103210221022πx x arcsin d x dx xx ===-=⎰⎰)()()(原式.012sin )()2(2432=++=为奇函数,故原式x x x x x f 证明下列各题:.3;)0(11)1(11212⎰⎰>+=+xx x xdx x dx ;)1()1()2(1010dx x x dx x x mnnm⎰⎰-=-.cos 2cos )3(2010010dx x dx x ππ⎰⎰=右边;左边令证明:=+=+=+-=-==⎰⎰⎰xx x x dx t dt t dt t dt t dx t x 1121121122211111,1,1)1( 右边;左边,则令=-=-=--=-=-==-⎰⎰⎰dx x x dt t t dt t t dt dx t x t x nmnmnm101001)1()1()()1(,,11)2(,cos cos cos )3(2102010010xdx xdx xdx ππππ⎰⎰⎰+=则令,,dt dx t πx -=-=,cos cos )(cos cos 201020100210210xdx tdt dt t xdx πππππ⎰⎰⎰⎰==-= .cos 2cos cos cos 201020102010010xdx xdx xdx xdx ππππ⎰⎰⎰⎰=+=故习题6-5 定积分的分部积分法计算下列定积分:.1);1(414121121ln 21)21(ln ln )2(21221212121+=-=⋅-==⎰⎰⎰e xe dx x x x x x xd xdx x e e e ee;2sin 2)cos (cos )cos (sin )3(2020202020πx πdx x x x x xd xdx x πππππ-=+-=---=-=⎰⎰⎰;2ln 33cos ln 33cos cos 133cos sin 33tan tan tan sec cos )4(303030303030302302-=+=+=-=-===⎰⎰⎰⎰⎰⎰πx πx d x πdx x x πdx x x x x d x dx x x dx xx ππππππππ;ln )5(41dx xx ⎰,2,2tdt dx t x t x ===,则令;42ln 8)22ln 4(2)214ln 2(2)ln ln (2ln 22ln 212221212212212-=-=⋅⋅-=-===⎰⎰⎰⎰dt t tt t d t t t dt t tdt t t 原式.214)arctan (218)111(2181121arctan 21)21()6(10102102210210210-=--=+--=+⋅-==⎰⎰⎰⎰πx x πdx x πdx x x x x x arctamxd xarctamxdx ).2(51cos ,2cos 5cos 42)2cos cos (2)cos (22sin sin sin cos )7(202202202202202202202202202202-=∴-=--=⋅-+=--=⋅-==⎰⎰⎰⎰⎰⎰⎰⎰ππx ππxπx ππx πxππxππx πxπxπxe xdx e e xdx e xdxe e dx e x x e e x d e e dxe x x e x d e xdx e 故;)sin(ln )8(1⎰edx x,,dt e dx e x t x ln t t ===,则令,sin 11cos 1sin )sin cos (1sin cos 1sin cos sin sin sin )sin(ln 101010101110101dt e t e e dt e t t e e tde e dt e t t e tde dt e t dx x t tt t tttte⎰⎰⎰⎰⎰⎰⎰⋅-+-=⋅+-=-=⋅-==⋅=.21)1cos 1(sin sin )sin(ln ,1)1cos 1(sin sin 210110+-=⋅=+-=⋅∴⎰⎰⎰e dt e t dx x e dt e t tet 故.12ln 23ln 31ln ln )1ln()9(32323221--=⋅-==+⎰⎰⎰dt t t t t tdt dx x ;sin )10(20dx x π⎰,2,2tdt dx t x t x ===,则令.2sin 22cos 2cos 2)cos (22sin 00000πtπdt t t t t d t dt t t πππππ=+=+-=-=⋅=⎰⎰⎰原式.22)1(111ln ln ln )ln (ln )11(1111111111e e e e e dxx x dx x x dx x dx x dx x eeeee e e e -=--+-+-=-++-=+-=⎰⎰⎰⎰⎰利用递推公式计算:.2.)1()2(;sin )1(299102990100100dx x J xdx x J π⎰⎰-==.212,)12(2)12()12(sin )12(sin )12(sin cos ]cos )12([sin cos sincos )cos (sin sin ,sin )1()1(22)1(222)1(2020220120120120120122022----------=∴-=---=---+=-++-=-===⎰⎰⎰⎰⎰⎰⎰m m m m mm πmπm πm 2-2m πm πm πm πm m πm m J mm J J m mJ J m J m xdxx m xdx x m xdx x dxx x sin m x x x x x x x xd x xdx sin x x J xdx x J 故则设解:.2196959897100999897100991009910011000482492492502100J J J J J J ⋅⋅⋅⋅==⋅==-==⨯⨯⨯⨯ 故.224969810013959799,22100200πJ πxdx J π⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===⎰ 故而.224969810013959799sin )sin ()(sin ,sin ]2,0[,cos )2(10020990299πdt t dt t t J tdt dx πt t x ππ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅==-=-=∈=⎰⎰ ,则令习题6-6 广义积分算广义积分的值:收敛性,如果收敛,计判别下列各广义积分的.1;4141)4(41)3(040404=-=--=∞+-∞+-∞+-⎰⎰xx xex d e dx e.21sin ,1sin 2,sin 1]sin sin [1sin 1cos 1cos cos )cos (sin )4(00000000000==∴-=+-=-=-=-+-=-=⎰⎰⎰⎰⎰⎰⎰⎰⎰∞+-∞+-∞+-∞+-∞+-∞+-∞+-+∞-+∞-+∞-+∞-dx x e dx x e dx x e dx x e x e x d e dx x e dxx e xe x d e dx x e xxxx xxxx xxx 故.)2(2)2arctan(1)2(54)5(22πππx x dx x x dx =--=+=++=++∞+∞-∞+∞-∞+∞-⎰⎰ .1]1)1([lim 1)1(21lim 1)6(21210221102=+--=---=---→→⎰⎰b x x d dx x x b b b ;1()7(203⎰-)x dx .1(1,1,1111,,11203103013103013113113发散)都发散,原式,则令⎰⎰⎰⎰⎰⎰⎰-∴+==-=-=-==-----x dx dt t dt t dt tdt t dt t dt t dt dx t x t x.1)8(21⎰-x xdx.38)3(2)1(22)1(,2,1,1110310210222=+=+=+==+==-=-⎰⎰t t dt t dt t t t tdt dx t x t x t x 原式,则令 )1()(ln 111ln ln )(ln )(ln 212≠+⋅-==-∞+⎰⎰⎰k C x k x x d x x dx k k x x dxk .k k k k 解:取得最小值?为何值时,这广义积分当发散?为何值时,这广义积分收敛?当为何值时,广义积分当时,当1=k ⎰x x dx ln C x xxd +==⎰ln ln ln ln⎪⎩⎪⎨⎧≠⋅-==∴∞+-+∞∞+⎰1|)(ln 1111|ln ln )(ln 2122k x k k x x x dx k k时,当1)1(=k .,原广义积分发散原式+∞= 时,当1)2(<k .,|)(ln 1121发散原式+∞=-=∞+-k x k=>时,原式当1)3(k .,)2(ln 111|)(ln 111121收敛-∞+--=⋅-k k k x k 时,当1>k 则记,)2ln 1(11)(1--=k k k f12)2(ln 1)1(1)(---='k k k f )2ln 1ln()2ln 1(111--+k k ).2ln ln 11()2(ln 1)1(11+---=-k k k ,令0)(='k f ,1>k 从而,0)2ln 1(111≠-∴-k k,02ln ln 11=+-k ,2ln ln 11-=k 即.值为唯一驻点此k时,当2ln ln 11->k 时,即02ln ln 11<+-k .0)(>'k f时,当2ln ln 11-<k .0)(该驻点是极小值点,∴<'k f时,即当1>k .)(),1(处的极小值就是最小值故唯一驻点没有边界值进行比较,时,在此区间上k f k ∞+∈习题6-7 定积分的几何应用形的面积:求由下列各曲线所围图.1 ).0(ln ,ln ,0,ln )7(;1,,)6(;2,1)5(;(8,2)4(;2,3)3(;,0,)2(;,)1(2222>>===========+==-======-a b b y a y x x y x e y e y x x y xy x y x y x y x y e y x e y x y x y x x x 与两部分都要计算).61)()1(10⎰=-=dx x x S 面积解:.1)()2(10⎰=-=dx e e S x 面积 .332)23(),6,3(),2,1(32)3(1322⎰-=--=--⇒⎩⎨⎧-==dx x x S B A x y x y 面积.342)218()4(22221⎰+=--=-πdx x x S 阴影部分的面积 .346)34282-=+-=πππS (另一部分的面积.2ln 23)1()5(21⎰-=-=dx x x S 面积.21)()6(10⎰-+=-=-ee dx e e S xx 面积.)0(,ln )7(ln ln ⎰-=-==⇒=ba yy a b dy e S e x x y 面积转的旋转体的体积:围平面图形绕指定轴旋求下列各题中的曲线所.2轴;轴绕y x x y x y ,,2,0,)1(3=== 轴;绕y y x x y ,,)2(22== 轴;绕x y x ,16)5()3(22=-+ ).0(,)4(222>>==+a b b x a y x 绕,7128)()1(2203πdx x πV x ==⎰解:,33y x x y =⇒=dy y πdy πV y ⎰⎰⋅-⋅=8023802)(2.56459632πππ=-=,)2(2y x x y =⇒=.10352)()(1022102πππdy y πdy y πV y =-=⋅-⋅=⎰⎰,165,165:16)5()3(222122x y x y y x --=-+==-+得由dx y y πdx y πdx y πV x )(22442144224421-=⋅-⋅=⎰⎰⎰---.160162102442πdx x π=-⋅=⎰-,,,:)4(22222122222y a b R y a b R y a x a y x --=-+=-±==+设得由dy R πdy R πV aa aa b ⎰⎰---=2221dy R R πaa )(2221-=⎰-dy y a b πaa 2222-⋅⋅=⎰-b a π222=.3列各题中立体的体积的立体体积公式计算下用平行截面面积为已知..)1(的正劈锥体为高底圆直径的线段为顶,的圆为底,平行且等于以半径为H R .)()2(的球缺的球体中高为半径为R H H R <.)20(1)3(2222的平面所截的劈形立体轴且与底面夹角的椭圆柱体被通过底面为椭圆πααx b y a x <<≤+ 截面的面积为:解:)1( [],,,221)(2222R R x x R h h x R x A -∈-=-⋅=:故此正劈锥体的体积为.21)(222h R πdx x R h dx x A V R R R R ⎰⎰--=-==截面的面积为:)2( [],,),()(22R H R y y R πy A -∈-=故球缺的体积为:).31()(222H R H πy d y R πV RH R -=-=⎰- 截面的面积为:)3( [],,,tan 1121)(2222ααx αax b a x b x A -∈-⋅-=故劈形立体的体积为: .tan 32tan )1(21)(2222αab dx αa x b dx x A V a a a a ⎰⎰--=-==习题6-8 定积分的经济应用.1000257)(1,求总成本函数,固定成本为已知边际成本为xx C .+=' .5071000)257(1000)()0()(00⎰⎰++=++='+=x x x x dx xdx x C C x C 解:.30202100)(.3应追加的成本数时,增加到,求当产量由已知边际成本==-='x x x x C:解:应追加的成本数为.500)2100()(30203020=-='⎰⎰dx x dx x C.0260)(430)(.4)(设固定成本为,求最大利润,边际收益为已知边际成本x x R x x C -='+=').0(230230)430()(22固定成本为解:x x C x x dx x x C +=++=+=⎰.60)260()(2C x x dx x x R +-=-=⎰,60)(,0,0)0(2x x x R C R -=∴=∴=,33023060)()()(222x x x x x x x C x R x L -=---=-=∴ ,06)(,5,0630)(<-=''==-='x L x x x L .75)5(5=-=L x 利润为时,有最大利润,最大故当 支出增加多少?费亿元时,购买冰箱的消亿元增加至,当居民收入由的函数,的变化率是居民总收入消费支出某地区居民购买冰箱的942001)()(.5xx W x x W =').(10012001)(9494亿解:=='⎰⎰dx xdx x W .1001亿增加故购买冰箱的消费支出.20)3(20)2()1(.10100106价值万元时,求收益的资本当应满足的方程);万元时,求内部利率(当本?为何值时,公司不会亏元收入年后报废,公司每年可备使用万元购买某设备,该设(连续复利)贷款某公司按利率==b b b b %.年后的总收益::年后这笔贷款的本利和解:10,10010010)1(101.0e e =⨯),1(101001)10(1.0⎰---=e eb dt e b t ),1(101001--=e eb e 若公司不亏本,则.1101--=eb 则 ,则设内部利率为ρ)2(),1(202010010100ρtρe ρdt e ---==⎰.1510ρe ρ--=即投入资金的现值收益流现值资本价值-=)3( 100201001.0-=⎰-dt e t.20010010020020011---=--=e e总习题六计算下列极限:.1.1lim 11lim )1(11111e edt e x xx x t x ==-→→⎰ .111)(1lim 21121)(lim .1)(lim )(,1)(lim )2(2220=⋅=+=⋅+==++∞→+∞→+∞→+∞→⎰x f xx xx x f t f t f x dt t f x x t xx 原式连续且其中计算下列积分:.2.22ln 2ln 2cos 1sin ,2ln )cos 1ln(cos 1)cos 1(cos 1sin ,2ln 22tan 2tan 2tan 22sec 2sec 22cos 2cos 1,cos 1sin cos 1cos 1sin )1(2020202020202020220220220202020ππdx x x x x x x d dx x x πdx x x x x d x x dx x dx x x dx x x dx x x dx x x dx x x dx x x x ππππππππππππππ=+-=++=+-=++-=+-=-=====++++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰故而而 ;42)2(22⎰-+xdx.122tan 22sec 2122cos 212)cos 111(cos 1cos cos 22cos 2,cos 2]2,0[,sin 220202202202020-=-=-=-=+-=+=+==∈=⎰⎰⎰⎰⎰πt πdt t πdtt πdt t t tdt t tdt tdt dx πt t x ππππππ原式,则令).12(2)sin cos ()cos (sin )cos (sin )sin (cos cos sin )cos (sin cos sin 2cos sin 2sin 1)3(2440244020202202220-=--++=-+-=-=-=-+=-⎰⎰⎰⎰⎰⎰ππππππππππx x x x dx x x dx x x dx x x dxx x dx x x x x dx x .22)tan 2arctan(211)tan 2(tan 2211tan 2tan 1tan 2sec 1tan 21tan sin 2cos cos sin sin 1)4(202022022022222202222202πx x x d x x d dx x x dx x x x x xdx x x dx πππππππ==+=+=+=++=++=+⎰⎰⎰⎰⎰⎰ 且说明理由:指出下列计算中的错误4..01lim 1)3(;01,11)2(;2]1[arctan )1(1)1(1)1(4343112112111211112112=+=+=+∴+-=+-=-=+-=+⎰⎰⎰⎰⎰⎰⎰-+∞→∞∞---=----b bb tx xdx x x dx x x dx t dt x dx πx x x d x dx.0)1(2x x 以,故不能分子分母同除可以取为第一步到第二步错,因解:.2)4(4arctan 111112πππx x dx =--==+⎰--正确的做法: .x tx 0,1)2(就取不到因为这样不能令=.)3(是没有关系的限设法错误,因为它们第二步中定积分的上下解下列几何问题:.5;轴旋转的旋转体的体积所围图形绕求由y y x x y 0,4,)1(23===;轴旋转的旋转体的体积绕求圆盘y y x 1)2()2(22≤+- .940,1,,.0]1,0[)0,0()3(22积最小轴旋转而成的旋转体体,且使图形绕为所围图形的面积与直线的值,使抛物线试确定时,,且当过原点设抛物线x y x c bx ax y c b a y x c bx ax y ==++=≥∈++=应取何值?所围图形面积最小时,与抛物线)点,当直线过(已知直线b a x y b ax y b ax y ,1,0)4(2=+=+=.7512128)(4)1(80348023280212πdy y ππdy y πdy πV V V =-=⋅-⋅=-=⎰⎰⎰解:故旋转体的体积为,得由],1,1[121)2()2(222-∈-±==+-y y x y x.418124)12()12(211211221122112πdy y πdyy πdy y πdy y πV =-=-⋅=----+=⎰⎰⎰⎰----,896,94)(,0)3(1022=+=++==⎰b a dx bx ax bx ax y c 故,故由已知轴旋转体的体积绕x ),235()(22102abb a πdx bx ax πV ++=+=⎰)],98(12131)98(1801[),98(61222b b b b πV b a -++-=∴-=.0,35,2,0151,2,0]152151[22满足条件时,故当故=-==>⋅===-=c a b πdb V d b b πdb dV )(即由已知11)4(=+=b ax y ,即它所围面积,则两交点的横坐标为与抛物线设直线⎰-+=<=+=21)1()(,1221212x x dx x ax A x x x x x y ax y ),(31)()(23132122122x x x x x x a A ---+-=,01122=--⇒⎩⎨⎧=+=ax x xy ax y 是此方程的两根,有设21,x x ,1,2121-==+x x a x x ,44)(2)(221212212122212+=-+=-+=-a x x x x x x x x x x ,4))(()(,4212122122212+=-+=-+=-a a x x x x x x a x x 又 .)4(64)1(314421),1(4]))[((232222222221212123132+=++-+++=++=-+-=-a a a a a a A a a x x x x x x x x 故.1,0480,0,0)4(18212=====+=b a A a a a a dadA ,故有最小值时,故当则令解下列经济应用问题:.6?台的平均利润各为多少台与后台时,前售出台电视机的总利润售出试求的边际利润为已知某商场销售电视机需求出满足的方程)万元,求内部利率(只年,每年收益厂投产期万元扩建一个工厂,该某企业投资少?单位时,总成本减少多单位减少到由问当产量成本已知生产某产品的边际303060.2.401),20(10250)()3(.2020232)2(312,30183)()1(2.x xx L x x x x C ≥-='+-='.11120232)2(.756)30183()()1(202001232123ρtρeρ.6dt e ρdx x x dx x C C --⎰⎰⎰-===+-='=,解得:,则设内部利润为减少的成本解:,20250)10250()(.1)3(2C x x dx x x L +-=-=⎰,20250)(,0,0)0(2x x x L C L -=∴=∴=.9920)40(40=L 台电视机的总利润为:售出,5.24830745530)30(,7455)30(.2===L L ,5.24530)30()60(,7365)30()60(,14820)60(=-=-=L L L L L.5..5245302483060台的平均利润为,后台的平均利润为台时,前故售出(注:本资料素材和资料部分来自网络,仅供参考。

(完整版)定积分应用题附答案

(完整版)定积分应用题附答案

《定积分的应用》复习题一.填空:1.曲线ln ,ln ,ln (0)y x y a y b a b y ===<<及轴所围成的平面图形的面积为A =ln ln by ae dy ⎰=b-a______2.2y x y ==曲线和 ____13____二.计算题:1.求由抛物线 y 2 = 2x 与直线 2x + y – 2 = 0 所围成的图形的面积。

解:(1)确定积分变量为y ,解方程组2222y x y x ⎧=⎨=-+⎩ 得12121/22,12x x y y ==⎧⎧⎨⎨==-⎩⎩ 即抛物线与直线的交点为(21,1)和( 2 , - 2 ).故所求图形在直线y = 1和y = - 2 之间,即积分区间为[-2,1 ]。

(2)在区间[-2,1]上,任取一小区间为[ y , y + dy ],对应的窄条面积近似于高为[(1-21y )-21y 2 ],底为dy 的矩形面积,从而得到面积元素 dA = [(1-21y)- 21y 2 ]dy (3)所求图形面积 A =⎰-12[(1- 21y )-21y 2 ]dy = [y - 41y 2 – 61y 3]12-= 942.求抛物线 y = - x 2 + 4x - 3 及其在点(0,- 3)和(3,0)处的切线所围成的图形的面积。

解:由y = - x 2 + 4x – 3 得 '24,'(0)4,'(3)2y x y y =-+==-。

抛物线在点(0,- 3)处的切线方程为 y = 4x – 3 ;在点(3,0)处的切线方程为 y = - 2x + 6 ; 两切线的交点坐标为 ( 32,3 )。

故 面积A =332223029[(43)(43)][(26)(43)]4x x x dx x x x dx --+-+-+-+-=⎰⎰3.求由摆线 x = a (t – sint) , y = a( 1- cost) 的一拱(02t π≤≤)与横轴所围成的图形的面积。

(完整版)高等数学定积分应用习题答案

(完整版)高等数学定积分应用习题答案

第六章 定积分的应用习题 6-2 (A)1. 求下列函数与 x 轴所围部分的面积:]3,0[,86)1(2+-=x x y ]3,0[,2)2(2x x y -=2. 求下列各图中阴影部分的面积: 1.图 6-13.求由下列各曲线围成的图形的面积:;1,)1(===-x e y e y x x 与;)0(ln ,ln ,0ln )2(>>====a b b y a y x x y 与;0,2)3(2==-=y x y x x y 与;)1(,2)4(22--==x y x y;0,2)1(4)5(2=-=-=y x y x y 与;2,)6(2x y x y x y ===与;)0(2sin ,sin 2)7(π≤≤==x x y x y;8,2)8(222(两部分都要计算)=+=y x x y4.的图形的面积。

所围成与直线求由曲线e x e x y x y ====-,,0ln 15.的面积。

处的切线所围成的图形和及其在点求抛物线)0,3()3,0(342--+-=x x y6.的面积。

处的法线所围成的图形及其在点求抛物线),2(22p ppx y = 7.形的面积。

与两坐标轴所围成的图求曲线a y x =+8.所围图形的面积。

求椭圆12222=+by a x9.。

与横轴所围图形的面积(的一拱求由摆线)20)cos 1(),sin (π≤≤-=-=t t a y t t a x10.轴之间的图形的面积。

的切线的左方及下方与由该曲线过原点求位于曲线x e y x =11.求由下列各方程表示的曲线围成的图形的面积: ;)0(sin 2)1(>=a a θρ;)0()cos 2(2)2(>+=a a θρ ;2cos 2)3(2(双纽线)θρ=抛物体的体积。

轴旋转,计算所得旋转所围成的图形绕及直线把抛物线x x x x ax y )0(4.12002>==体的体积。

旋转轴旋转,计算所得两个轴及所围成的图形,分别绕由y x y x x y 0,2,.133===14.求下列已知曲线所围成的图形,按指定的轴旋转所产生的旋转体的体积: ;,0,,0)1(轴绕与x y a x x axcha y ====;,2sin )2(轴绕与x xy x y π== ;,)20(cos sin )3(轴绕与x x x y x y π≤≤==;0,2,ln )4(轴绕与y y x x y === ;0,2)5(2轴绕与y y x y x x y ==-=;,16)5()6(22轴绕y y x =+-。

定积分试题及答案大学

定积分试题及答案大学

定积分试题及答案大学试题一:设函数\( f(x) = 2x - 1 \),求在区间[1, 3]上的定积分,并求出该定积分的几何意义。

解:首先,我们需要找到函数\( f(x) \)的原函数,即不定积分。

对于\( f(x) = 2x - 1 \),其不定积分为:\[ F(x) = \int (2x - 1)dx = x^2 - x + C \]其中\( C \)为积分常数。

接下来,我们计算区间[1, 3]上的定积分:\[ \int_{1}^{3} (2x - 1)dx = F(3) - F(1) = (3^2 - 3) - (1^2 - 1) = 9 - 3 - 1 + 1 = 6 \]几何意义:定积分\( \int_{1}^{3} (2x - 1)dx \)表示的是函数\( y = 2x - 1 \)与x轴在区间[1, 3]之间所围成的曲边梯形的面积,其面积为6平方单位。

试题二:计算定积分\( \int_{0}^{2} \frac{1}{1 + x^2} dx \)。

解:该定积分可以通过反正切函数的积分公式来解决:\[ \int \frac{1}{1 + x^2} dx = \arctan(x) + C \]其中\( C \)为积分常数。

计算定积分:\[ \int_{0}^{2} \frac{1}{1 + x^2} dx = \left[ \arctan(x)\right]_{0}^{2} = \arctan(2) - \arctan(0) \]由于\( \arctan(0) = 0 \),我们有:\[ \int_{0}^{2} \frac{1}{1 + x^2} dx = \arctan(2) \]试题三:设\( y = x^3 \),求在区间[-1, 1]上的定积分,并解释其几何意义。

解:首先,我们计算不定积分:\[ \int x^3 dx = \frac{x^4}{4} + C \]其中\( C \)为积分常数。

定积分典型例题20例标准答案

定积分典型例题20例标准答案

定积分典型例题20例答案例1求lim —(召帚十丁2『+|||十诉3).n厂n分析将这类问题转化为定积分主要是确定被积函数和积分上下限. 数难以想到,可采取如下方法:先对区间 [0, 1] n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.1 1 11 1 解 将区间[0, 1] n 等分,则每个小区间长为 厨=丄,然后把 冷二丄丄的一个因子-乘nnn nn入和式中各项.于是将所求极限转化为求定积分.即lim 12(V n r +^2^ +H|+阳) = lim 丄品+常?+川+芒)=佼dx=3.n -;•: n 2n;:n n .n " n 04例 2 f J‘2x — x 2dx = _____ .解法1由定积分的几何意义知,J2x -x 2dx 等于上半圆周(x-1)2+y 2=1 ( y 兰0)x 2,2x例 3 (1)若 f(x) = [ e^dt ,贝U f (x) =—; (2)若 f(x) = [ xf (t)dt ,求「(x)=这是求变限函数导数的问题,禾U 用下面的公式即可d v(x)£ u(x )f (t)dt = f[v(x)]v(x) -f[u(x)]u (x).可得xf (x) = 0 f (t)dt xf (x).例 4 设 f(x)连续,且[f(t)dt=x ,贝U f (26)=f(t)dt =x 两边关于 x 求导得32f(x -1) 3x =1,31若对题目中被积函解法2本题也可直接用换元法求解.令TTTTx_1 = si nt (一二兰 t 兰二),贝 V7Tdx = 2_.. 1 -sin 21 costdt= 2/"22=2 02cos tdt分析 (2) 4(1) f(x)=2xe 」 _x2—e ;由于在被积函数中 x 不是积分变量,故可提到积分号外即xf (x) =x 0 fx 3 _L与x 轴所围成的图形的面积.故x 2dx =—2「sin t令x ^=26得“3,所以f(26^-x1例5函数F(x) = [ (3 —丄)dt (x >0)的单调递减开区间为 __________ .1 1 11 解 F(x)=3 _,令F (x) ::: 0得_ 3,解之得0叮x 叮,即(0,)为所求.i :?xx 9 9x例 6 求 f (x) = ] (1 _t)arctan tdt 的极值点.解 由题意先求驻点.于是 f (x) = (1 _x)arctanx .令f(x) = 0,得x =1 , x =0 .列表 如下:与y =g(x)在点(0,0)处的切线相同,其中arcs inx十2g(x) = 0 e~ dt , x [-1,1],3试求该切线的方程并求极限lim nf (-). y n分析 两曲线y =f(x)与y =g(x)在点(0,0)处的切线相同,隐含条件f (0) =g (0).解由已知条件得故x =1为f (x)的极大值 点,X = 0为极小值点. 例7已知两曲线y = f (x)f(°)=g(0),f(°) =g(°)二Jdt =0 ,212x 小=(-2) lim = 0 .t si nx注此处利用等价无穷小替换和多次应用洛必达法则.且由两曲线在(0,0)处切线斜率相同知-(arcsi nx)2ef (0)二g (0) —2⑷一X=1.x =0故所求切线方程为 y =x .而护33f( ) -f(0) ―n ------ =3f (0) 3-0 n2、 0 sin 2tdt例8 求nm ---- -------------- ;分析该极限属于唁型未定式,可用洛必达法则.X?! sin tdt解x 叫=[t(t —si2x(sin x 2)2(x 2)24x 3=忸百==(一2)x m 占;=(一2)恢一沁分析 易见该极限属于 -型的未定式,可用洛必达法则.1「 x 2-^lima x —01 -cosx即a = 4 , b =1为所求.Sinx234例 10 设 f (x) = 0 sint dt , g(x) =x x ,则当 x —: 0 时,f (x)是 g(x)的(A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小.2解法 1 由于 lim 竺=lim sin (sin2X)c osxT g(x) x-° 3x +4x2cosx sin (sin x)= lim lim 2 ----- x 03 4x x_Q x1 x 21 lim2 3x 0x 23故f (x)是g(x)同阶但非等价的无穷小.选B .解法2将sint 2展成t 的幕级数,再逐项积分,得到sinx21 2 3 1 3 1 7f(x)=[ [t --(t ) +HOd^-sin x —42Sin x+||| ,3! 3 42则2例11 计算.」x|dx .被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如fgdx=[-丄]32= 一,则是错误的.错误的原因则是由于被积函数在x=0处间断且在被试求正数a 与b ,使等式lim1 x t 2、[d\ -1成立.x -bsinx 0. t 21 x -bsinx 2由此可知必有 |im(1 -bcosx) = 0 , lim a x 01 - bcosx得 b =1 . 又由•"a",得a =4 ).lim f(x)x 0g(x) .3, 1 sin x(- = lim 3 sin 4x ll|分析 解2.」x|dx = 解xlimx)01 - b cosxt 2dt =「一 sin x11) 42 3 4 x x420 2二(-x)dx 0 xdx =[2x x 6 x积区间内无界•例12 设f(x)是连续函数,且f (x) =x+3.0 f(t)dt,贝U f (x) = _______ .b分析 本题只需要注意到定积分af(x)dx 是常数(a, b 为常数).1 1解 因f (x)连续,f(x)必可积,从而0 f (t)dt 是常数,记0f(t)dt=a ,则1 1f(x)=x+3a ,且[(x+3a)dx = ] f (t)dt =a .所以1 2 1 1[x 3ax]0 =a ,即卩 3a = a , 2 21 3 从而a ,所以 f (x) =x 一44212x 2x』1%1-x 2分析由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性.由定积分的几何意义可知 fj 1 —x 2dx=昱,故4d x c c例14 计算 一 tf (x 2-t 2)dt ,其中f(x)连续. dx 0分析要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换 元使被积函数中不含 x ,然后再求导.解由于tf(x 2-t 2)dt = l 0f(x 2-t 2)dt 2.故令 x 2 -t 2 = u ,当 t = 0 时 u = x 2 ;当 t = x 时 u = 0,而 dt 2- -du ,所以x221 0 1 x 2[tf(x —t )dt =? [2 f(u)(-du)=? J 0 f (u)du ,故d x22 d 1 x1 2 2—0 tf (x -t )dt = —[- f (u)du] =- f(x ) 2x= xf(x ).dx 0dx 2 0错误解答 —tf (x 2-t 2)dt 二xf(x 2-x 2) =xf(0).例13 计算2 212x 2x12x2 1xdx =dx dx由于2x 21 . 1 -是偶函数,而1 . 1_x 2是奇函数,有T .1-x 2dx =0, 于是dx = 4x 21 1 -x 2dx = 41X (1-J-X)dx = 4 1dx_4 11 一 x 2dxi o J o -12x 2丄1 1x 2-x1dx =4 0JIdx - 44= 4— 7:1 2x 2xdx 0错解分析这里错误地使用了变限函数的求导公式,公式d xG(X) a f(t)dt = f(X)dx曷中要求被积函数f(t)中不含有变限函数的自变量X,而f(X2—t2)含有X,因此不能直接求导,而应先换元.分析被积函数中出现幕函数与三角函数乘积的情形,通常采用分部积分法.n n nj x d( _ co sx :)[x ( -co)s 03) ] 03-( codSx=_—+616计算1ln』dx.0 (3-x)2分析被积函数中出现对数函数的情形,可考虑采用分部积分法.-ln(1 +x) “/ 丄 1 r 1 I “ 丄r1 1rdx= |n(1 x)d( ) = [ ln(1 x)]° -(3-x) 03-x,3-x 0(3-x)=-l n2 —1 1(二—)dX2 4 01 X3 — x」ln 2 -丄1 n3 .2 4JE17计算? e x sin xdx •分析被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法._J[ _JT _JE解由于02e x sinxdx = 02sin xde X=[e x sinx]o - 02e X cosxdxn TL=e2-『e x cos xdx , (1)而2 x 2 x x 2 2 x0 e cosxdx = 0 cosxde [e cosx]o —0 e (-sin x)dx2e x sin xdx T , (2)将(2)式代入(1)式可得Tl H2 x 2 ,- 2 x0 e sin xdx = e [ 0 e sin xdx -1],故窶1厘02e x sin xdx ^[(e 21).15计算Tt[3 xsin jr解03xs in x df cOSXdX 撐在1例18 计算o xarcsinxdx .分析被积函数中出现反三角函数与幕函数乘积的情形,通常用分部积分法.xarcs in xdx1 2 2 =0 arcsinxd (才)=[乡 arcsinx]0 i x 2-0 — d (arcsinx) 令 x 二sint ,贝U1 x 20 F 2x----- dx .—件 丁 '“si nt 0 1 _si n 2t 也 costdt 0 cost 2sin2tdt 扌1「cos2t 0 2 将(2)式代入(1)式中得d ^[2- 4 sin 2t 2]04 (2)fx arcsi nxdx=2L 0 8 例19设f (x ) [0,二]上具有二阶连续导数, f 5)=3 且 貞 f (x) + f Ir (x)]cos xdx = 2,求 f r (C). 分析被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解.由于 [[f (x) + f '(x)]cos xdx = [ f (x)d sin x +[cosxdf (x)={ [f (x)sin x ”一 f (x)sin xdx} +{[ f (x)cos x]石 +「f "(x)sin xdx} --f (二)-f(0) =2 . f (0) = -2 _ f (二)=_2 _3 = -5 . dx计算 =0 x 2 +4x +3分析 该积分是无穷限的的反常积分,用定义来计算. 1 t 1 2 °(x 1 t 1 例20 t dx 1 2 = lim 0 x 4x 3 — ;2 =lim 1[l t r ::2l n3 2 n2Ll]0=lim l(ln x 3 t 」‘2 t 3 1 )dx x 31 -In )3。

高考定积分应用常见题型大全(含答案)

高考定积分应用常见题型大全(含答案)

高考定积分应用常见题型大全(含答案)一.选择题(共21小题)1.(2012•福建)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A.B.C.D.2.(2010•山东)由曲线y=x2,y=x3围成的封闭图形面积为()A.B.C.D.3.设f(x)=,函数图象与x轴围成封闭区域的面积为()A.B.C.D.4.定积分的值为()A.B.3+ln2 C.3﹣ln2 D.6+ln25.如图所示,曲线y=x2和曲线y=围成一个叶形图(阴影部分),其面积是()A.1B.C.D.6.=()A.πB.2C.﹣πD.47.已知函数f(x)的定义域为[﹣2,4],且f(4)=f(﹣2)=1,f′(x)为f(x)的导函数,函数y=f′(x)的图象如图所示,则平面区域f(2a+b)<1(a≥0,b≥0)所围成的面积是()A.2B.4C.5D.8 8.∫01e x dx与∫01e x dx相比有关系式()A.∫01e x dx<∫01e x dx B.∫01e x dx>∫01e x dxC.(∫01e x dx)2=∫01e x dx D.∫01e x dx=∫01e x dx9.若a=,b=,则a与b的关系是()A.a<b B.a>b C.a=b D.a+b=0 10.的值是()A.B.C.D.11.若f(x)=(e为自然对数的底数),则=()A.+e2﹣e B.+eC.﹣e2+eD.﹣+e2﹣e12.已知f(x)=2﹣|x|,则()A.3B.4C.3.5 D.4.513.设f(x)=3﹣|x﹣1|,则∫﹣22f(x)dx=()A.7B.8C.7.5 D.6.5 14.积分=()A.B.C.πa2D.2πa215.已知函数的图象与x轴所围成图形的面积为()A.1/2 B.1C.2D.3/2A.4B.C.D.2π17.曲线y=x3在点(1,1)处的切线与x轴及直线x=1所围成的三角形的面积为()A.B.C.D.18.图中,阴影部分的面积是()A.16 B.18 C.20 D.2219.如图中阴影部分的面积是()A.B.C.D.20.曲线与坐标轴围成的面积是()A.B.C.D.21.如图,点P(3a,a)是反比例函y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=高考定积分应用常见题型大全(含答案)参考答案与试题解析一.选择题(共21小题)1.(2012•福建)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A.B.C.D.考点:定积分在求面积中的应用;几何概型.专题:计算题.分析:根据题意,易得正方形OABC的面积,观察图形可得,阴影部分由函数y=x与y=围成,由定积分公式,计算可得阴影部分的面积,进而由几何概型公式计算可得答案.解答:解:根据题意,正方形OABC的面积为1×1=1,而阴影部分由函数y=x与y=围成,其面积为∫01(﹣x)dx=(﹣)|01=,则正方形OABC中任取一点P,点P取自阴影部分的概率为=;故选C.点评:本题考查几何概型的计算,涉及定积分在求面积中的应用,关键是正确计算出阴影部分的面积.2.(2010•山东)由曲线y=x2,y=x3围成的封闭图形面积为()A.B.C.D.考点:定积分在求面积中的应用.专题:计算题.分析:要求曲线y=x2,y=x3围成的封闭图形面积,根据定积分的几何意义,只要求∫01(x2﹣x3)dx即可.解答:解:由题意得,两曲线的交点坐标是(1,1),(0,0)故积分区间是[0,1]所求封闭图形的面积为∫01(x2﹣x3)dx═,故选A.点评:本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积.3.设f(x)=,函数图象与x轴围成封闭区域的面积为()考点:分段函数的解析式求法及其图象的作法;函数的图象;定积分在求面积中的应用.专题:计算题;数形结合.分析:利用坐标系中作出函数图象的形状,通过定积分的公式,分别对两部分用定积分求出其面积,再把它们相加,即可求出围成的封闭区域曲边图形的面积.解答:解:根据题意作出函数的图象:根据定积分,得所围成的封闭区域的面积S=故选C点评:本题考查分段函数的图象和定积分的运用,考查积分与曲边图形面积的关系,属于中档题.解题关键是找出被积函数的原函数,注意运算的准确性.4.定积分的值为()A.B.3+ln2 C.3﹣ln2 D.6+ln2考点:定积分;微积分基本定理;定积分的简单应用.专题:计算题.分析:由题设条件,求出被积函数的原函数,然后根据微积分基本定理求出定积分的值即可.解答:解:=(x2+lnx)|12=(22+ln2)﹣(12+ln1)=3+ln2故选B.点评:本题考查求定积分,求解的关键是掌握住定积分的定义及相关函数的导数的求法,属于基础题.5.如图所示,曲线y=x2和曲线y=围成一个叶形图(阴影部分),其面积是()考点:定积分;定积分的简单应用.专题:计算题.分析:联立由曲线y=x2和曲线y=两个解析式求出交点坐标,然后在x∈(0,1)区间上利用定积分的方法求出围成的面积即可.解答:解:联立得,解得或,设曲线与直线围成的面积为S,则S=∫01(﹣x2)dx=故选:C点评:考查学生求函数交点求法的能力,利用定积分求图形面积的能力.6.=()A.πB.2C.﹣πD.4考点:微积分基本定理;定积分的简单应用.专题:计算题.分析:由于F(x)=x2+sinx为f(x)=x+cosx的一个原函数即F′(x)=f(x),根据∫a b f(x)dx=F(x)|a b公式即可求出值.解答:解:∵(x2++sinx)′=x+cosx,∴(x+cosx)dx=(x2+sinx)=2.故答案为:2.点评:此题考查学生掌握函数的求导法则,会求函数的定积分运算,是一道基础题.7.已知函数f(x)的定义域为[﹣2,4],且f(4)=f(﹣2)=1,f′(x)为f(x)的导函数,函数y=f′(x)的图象如图所示,则平面区域f(2a+b)<1(a≥0,b≥0)所围成的面积是()考点:定积分的简单应用.分析:根据导函数的图象,分析原函数的性质或作出原函数的草图,找出a、b满足的条件,画出平面区域,即可求解.解答:解:由图可知[﹣2,0)上f′(x)<0,∴函数f(x)在[﹣2,0)上单调递减,(0,4]上f′(x)>0,∴函数f(x)在(0,4]上单调递增,故在[﹣2,4]上,f(x)的最大值为f(4)=f(﹣2)=1,∴f(2a+b)<1(a≥0,b≥0)⇒表示的平面区域如图所示:故选B.点评:本题考查了导数与函数单调性的关系,以及线性规划问题的综合应用,属于高档题.解决时要注意数形结合思想应用.8.∫01e x dx与∫01e x dx相比有关系式()A.∫01e x dx<∫01e x dx B.∫01e x dx>∫01e x dxC.(∫01e x dx)2=∫01e x dx D.∫01e x dx=∫01e x dx考点:定积分的简单应用;定积分.专题:计算题.分析:根据积分所表示的几何意义是以直线x=0,x=1及函数y=e x或y=e x在图象第一象限内圆弧与坐标轴围成的面积,只需画出函数图象观察面积大小即可.解答:解:∫01e x dx表示的几何意义是以直线x=0,x=1及函数y=e x在图象第一象限内圆弧与坐标轴围成的面积,∫01e x dx表示的几何意义是以直线x=0,x=1及函数y=e x在图象第一象限内圆弧与坐标轴围成的面积,如图∵当0<x<1时,e x x>e x,故有:∫01e x dx>∫01e x dx点评:本题主要考查了定积分,定积分运算是求导的逆运算,解题的关键是求原函数,也可利用几何意义进行求解,属于基础题.9.若a=,b=,则a与b的关系是()A.a<b B.a>b C.a=b D.a+b=0考点:定积分的简单应用.专题:计算题.分析:a==(﹣cosx)=(﹣cos2)﹣(﹣cos)=﹣cos2≈sin24.6°,b==sinx=sin1﹣sin0=sin1≈sin57.3°.解答:解:∵a==(﹣cosx)=(﹣cos2)﹣(﹣cos)=﹣cos2≈﹣cos114.6°=sin24.6°,b==sinx=sin1﹣sin0=sin1≈sin57.3°,∴b>a.故选A.点评:本题考查定积分的应用,是基础题.解题时要认真审题,仔细解答.10.的值是()A.B.C.D.考点:定积分的简单应用.专题:计算题.分析:根据积分所表示的几何意义是以(1,0)为圆心,1为半径第一象限内圆弧与抛物线y=x2在第一象限的部分坐标轴围成的面积,只需求出圆的面积乘以四分之一与抛物线在第一象限的部分与x轴和直线x=1围成的图形的面积即可.解答:解;积分所表示的几何意义是以(1,0)为圆心,1为半径第一象限内圆弧与抛物线y=x2在第一象限的部分坐标轴围成的面积,故只需求出圆的面积乘以四分之一与抛物线在第一象限的部分与x轴和直线x=1围成的图形的面积之差.故答案选A点评:本题主要考查了定积分,定积分运算是求导的逆运算,解题的关键是求原函数,也可利用几何意义进行求解,属于基础题11.若f(x)=(e为自然对数的底数),则=()A.+e2﹣e B.+eC.﹣e2+eD.﹣+e2﹣e考点:定积分的简单应用.专题:计算题.分析:由于函数为分段函数,故将积分区间分为两部分,进而分别求出相应的积分,即可得到结论.解答:解:===故选C.点评:本题重点考查定积分,解题的关键是将积分区间分为两部分,再分别求出相应的积分.12.已知f(x)=2﹣|x|,则()A.3B.4C.3.5 D.4.5考点:定积分的简单应用.专题:计算题.分析:由题意,,由此可求定积分的值.解答:解:由题意,=+=2﹣+4﹣2=3.5故选C.点评:本题考查定积分的计算,解题的关键是利用定积分的性质化为两个定积分的和.13.设f(x)=3﹣|x﹣1|,则∫﹣22f(x)dx=()A.7B.8C.7.5 D.6.5考点:定积分的简单应用.专题:计算题.分析:∫﹣22f(x)dx=∫﹣22(3﹣|x﹣1|)dx,将∫﹣22(3﹣|x﹣1|)dx转化成∫﹣21(2+x)dx+∫12(4﹣x)dx,然后根据定积分的定义先求出被积函数的原函数,然后求解即可.解答:解:∫﹣22f(x)dx=∫﹣22(3﹣|x﹣1|)dx=∫﹣21(2+x)dx+∫12(4﹣x)dx=(2x+x2)|﹣21+(4x﹣x2)|12=7 故选A.点评:本题主要考查了定积分,定积分运算是求导的逆运算,同时考查了转化与划归的思想,属于基础题.14.积分=()考点:定积分的简单应用;定积分.专题:计算题.分析:本题利用定积分的几何意义计算定积分,即求被积函数y=与x轴所围成的图形的面积,围成的图象是半个圆.解答:解:根据定积分的几何意义,则表示圆心在原点,半径为3的圆的上半圆的面积,故==.故选B.点评:本小题主要考查定积分、定积分的几何意义、圆的面积等基础知识,考查考查数形结合思想.属于基础题.15.已知函数的图象与x轴所围成图形的面积为()A.1/2 B.1C.2D.3/2考点:定积分在求面积中的应用.专题:计算题.分析:根据几何图形用定积分表示出所围成的封闭图形的面积,求出函数f(x)的积分,求出所求即可.解答:解:由题意图象与x轴所围成图形的面积为=(﹣)|01+sinx=+1=故选D.点评:本题考查定积分在求面积中的应用,求解的关键是正确利用定积分的运算规则求出定积分的值,本题易因为对两个知识点不熟悉公式用错而导致错误,牢固掌握好基础知识很重要.16.由函数y=cosx(0≤x≤2π)的图象与直线及y=1所围成的一个封闭图形的面积是()考点:定积分在求面积中的应用.专题:计算题.分析:由题意可知函数y=cosx(0≤x≤2π)的图象与直线及y=1所围成的一个封闭图形可利用定积分进行计算,只要求∫0(1﹣cosx)dx即可.然后根据积分的运算公式进行求解即可.解答:解:由函数y=cosx(0≤x≤2π)的图象与直线及y=1所围成的一个封闭图形的面积,就是:∫0(1﹣cosx)dx=(x﹣sinx)|0=.故选B.点评:本题考查余弦函数的图象,定积分,考查计算能力,解题的关键是两块封闭图形的面积之和就是上部直接积分减去下部积分.17.曲线y=x3在点(1,1)处的切线与x轴及直线x=1所围成的三角形的面积为()A.B.C.D.考点:定积分在求面积中的应用.专题:计算题.分析:欲求所围成的三角形的面积,先求出在点(1,1)处的切线方程,只须求出其斜率的值即可,故要利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率,从而问题解决.解答:解:∵y=x3,∴y'=3x2,当x=1时,y'=3得切线的斜率为3,所以k=3;所以曲线在点(1,1)处的切线方程为:y﹣1=3×(x﹣1),即3x﹣y﹣2=0.令y=o得:x=,∴切线与x轴、直线x=1所围成的三角形的面积为:S=×(1﹣)×1=故选B.点评:本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,属于基础题.18.图中,阴影部分的面积是()A.16 B.18 C.20 D.22考点:定积分在求面积中的应用.专题:计算题.分析:从图象中知抛物线与直线的交点坐标分别为(2,﹣2),(8,4).过(2,﹣2)作x轴的垂线把阴影部分分为S1,S2两部分,利用定积分的方法分别求出它们的面积并相加即可得到阴影部分的面积.解答:解:从图象中知抛物线与直线的交点坐标分别为(2,﹣2),(8,4).过(2,﹣2)作x轴的垂线把阴影部分分为S1,S2两部分,分别求出它们的面积A1,A2:A1=∫02[]dx=2 dx=,A2=∫28[]dx=所以阴影部分的面积A=A1+A2==18故选B.点评:本题考查定积分在求面积中的应用,解题是要注意分割,关键是要注意在x轴下方的部分积分为负(积分的几何意义强调代数和),属于基础题.考查学生利用定积分求阴影面积的方法的能力.19.如图中阴影部分的面积是()A.B.C.D.考点:定积分在求面积中的应用.专题:计算题.分析:求阴影部分的面积,先要对阴影部分进行分割到三个象限内,分别对三部分进行积分求和即可.解答:解:直线y=2x与抛物线y=3﹣x2解得交点为(﹣3,﹣6)和(1,2)抛物线y=3﹣x2与x轴负半轴交点(﹣,0)设阴影部分面积为s,则==所以阴影部分的面积为,故选C.点评:本题考查定积分在求面积中的应用,解题是要注意分割,关键是要注意在x轴下方的部分积分为负(积分的几何意义强调代数和),属于基础题.20.曲线与坐标轴围成的面积是()A.B.C.D.考点:定积分在求面积中的应用.专题:计算题.分析:先根据题意画出区域,然后依据图形得到积分下限为0,积分上限为,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.解答:解:先根据题意画出图形,得到积分上限为,积分下限为0曲线与坐标轴围成的面积是:S=∫0(﹣)dx+∫dx=∴围成的面积是故选D.点评:本题主要考查了学生会求出原函数的能力,以及考查了数形结合的思想,同时会利用定积分求图形面积的能力,解题的关键就是求原函数.21.如图,点P(3a,a)是反比例函y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=考点:定积分在求面积中的应用.专题:计算题;数形结合.分析:根据圆的对称性以及反比例函数的对称性可得,阴影部分的面积等于圆的面积的,即可求得圆的半径,再根据P在反比例函数的图象上,以及在圆上,即可求得k的值.解答:解:设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:πr2=10π解得:r=2.∵点P(3a,a)是反比例函y=(k>0)与⊙O的一个交点.∴3a2=k且=r∴a2=×(2)2=4.∴k=3×4=12,则反比例函数的解析式是:y=.故选C.点评:本题主要考查反比例函数图象的对称性的知识点,解决本题的关键是利用反比例函数的对称性得到阴影部分与圆之间的关系.。

同济大学数学系《高等数学》第7版上册课后习题(定积分的应用)【圣才出品】

同济大学数学系《高等数学》第7版上册课后习题(定积分的应用)【圣才出品】

同济大学数学系《高等数学》第7版上册课后习题第六章定积分的应用习题6-1定积分的元素法本部分无课后习题.习题6-2定积分在几何学上的应用1.求图6-1中各阴影部分的面积:图6-1解:(1)解方程组,得到交点坐标为(0,0)和(1,1).如果取x为积分变量,则x的变化范围为[0,1],相应于[0,1]上的任一小区间[x,x+dx]的窄条面积近似于高为、底为dx的窄矩形的面积,因此有如果取y为积分变量,则y的变化范围为[0,1],相应于[0,1]上的任一小区间[y,y +dy]的窄条面积近似于高为dy、底为y-y2的窄矩形的面积,因此有(2)取x为积分变量,则易知x的变化范围为[0,1],相应于[0,1]上的任一小区间[x,x+dx]的窄条面积近似于高为e-e x、底为dx的窄矩形的面积,因此有如果取y为积分变量,则易知y的变化范围为[1,e],相应于[1,e]上的任一小区间[y,y+dy]的窄条面积近似于高为dy、底为lny的窄矩形的面积,因此有(3)解方程组,得到交点坐标为(-3,-6)和(1,2).如果取x为积分变量,则x的变化范围为[-3,1],相应于[-3,1]上的任一小区间[x,x+dx]的窄条面积近似于高为、底为dx的窄矩形的面积,因此有如果用y为积分变量,则y的变化范围为[-6,3],但是在[-6,2]上的任一小区间[y,y+dy]的窄条面积近似于高为dy、底为的窄矩形的面积,在[2,3]上的任一小区间[y,y+dy]的窄条面积近似于高为dy、宽为的窄矩形的面积,因此有由此可知以x为积分变量较易,因为图形边界曲线若分为上下两段,分别为y=2x和y=3-x2;若分为左右两段,分别为和,其中右段曲线的表示相对比较复杂,也就会导致计算形式复杂.(4)解方程组,得到交点坐标为(-1,1)和(3,9),同上,以x为积分变量计算较易.取x为积分变量,则x的变化范围为[-1,3],相应于[-1,3]上的任一小区间[x,x+dx]的窄条面积近似于高为2x+3-x2、底为dx的窄矩形的面积,则有2.求由下列各曲线所围成的图形的面积:(1)与(两部分都要计算);(2)与直线y=x及x=2;(3)与直线x=1;(4)y=lnx,y轴与直线y=lna,y=lnb(b>a>0).解:(1)图6-2中,可先计算图形D1(阴影部分)的面积,易求得与x2+y2=8的交点为(-2,2)和(2,2).取x为积分变量,则x的变化范围为[-2,2],相应于[-2,2]上的任一小区间[x,x+dx]的窄条面积近似于高为、底为dx的窄矩形的面积,因此有图形D2的面积为图6-2(2)图6-3中,取x为积分变量,则x的变化范围为[1,2],相应于[1,2]上的任一小区间[x,x+dx]的窄条面积近似于高为、底为dx的窄矩形的面积,因此有图6-3(3)图6-4中,取x为积分变量,则x的变化范围为[0,1],相应于[0,1]上的任一小区间[x,x+dx]的窄条面积近似于高为、底为dx的窄矩形的面积,因此有图6-4(4)图6-5中,取y为积分变量,则y的变化范围为[lna,lnb],相应于[lna,lnb]上的任一小区间[y,y+dy]的窄条面积近似于高为dy、底为e y的窄矩形的面积,因此有图6-53.求抛物线y=-x2+4x-3及其在点(0,-3)和(3,0)处的切线所围成的图形的面积.解:首先求得导数,因此抛物线在点(0,-3),(3,0)处的切线分别为y=4x-3,y=-2x+6,容易求得这两条切线交点为(见图6-6).因此所求面积为图6-64.求抛物线y2=2px及其在点处的法线所围成的图形的面积.解:利用隐函数求导方法,抛物线方程y2=2px两端分别对x求导,2yy′=2p.即得,因此法线斜率为k=-1,从而得到法线方程为(如图6-7),因此所求面积为图6-75.求由下列各曲线所围成的图形的面积:(1)ρ=2acosθ;(2)x=acos3t,y=asin3t;(3)ρ=2a(2+cosθ).解:(1)(2)由对称性可知,所求面积为第一象限部分面积的4倍,记曲线上的点为(x,y),因此(3)。

(完整版)§定积分的应用习题与答案

(完整版)§定积分的应用习题与答案

第六章 定积分的应用(A )1、求由下列各曲线所围成的图形的面积 1)221x y =与822=+y x (两部分都要计算)2)xy 1=与直线x y =及2=x3)xe y =,xe y -=与直线1=x4)θρcos 2a =5)t a x 3cos =,t a y 3sin =1、求由摆线()t t a x sin -=,()t a y cos 1-=的一拱()π20≤≤t 与横轴所围成的图形的面积2、求对数螺线θρae=()πθπ≤≤-及射线πθ=所围成的图形的面积3、求由曲线x y sin =和它在2π=x 处的切线以及直线π=x 所围成的图形的面积和它绕x 轴旋转而成的旋转体的体积4、由3x y =,2=x ,0=y 所围成的图形,分别绕x 轴及y 轴旋转,计算所得两旋转体的体积5、计算底面是半径为R 的圆,而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积6、计算曲线()x y -=333上对应于31≤≤x 的一段弧的长度7、计算星形线t a x 3cos =,t a y 3sin =的全长8、由实验知道,弹簧在拉伸过程中,需要的力→F (单位:N )与伸长量S (单位:cm )成正比,即:kS =→F (k 是比例常数),如果把弹簧内原长拉伸6cm , 计算所作的功9、一物体按规律3ct x =作直线运动,介质的阻力与速度的平方成正比,计算物体由0=x 移到a x =时,克服介质阻力所作的功10、 设一锥形储水池,深15m ,口径20m ,盛满水,将水吸尽,问要作多少功?11、 有一等腰梯形闸门,它的两条底边各长10cm 和6cm ,高为20cm ,较长的底边与水面相齐,计算闸门的一侧所受的水压力12、 设有一长度为λ,线密度为u 的均匀的直棒,在与棒的一端垂直距离为a 单位处有一质量为m 的质点M ,试求这细棒对质点M 的引力(B)1、设由抛物线()022>=p px y 与直线p y x 23=+ 所围成的平面图形为D 1) 求D 的面积S ;2)将D 绕y 轴旋转一周所得旋转体的体积2、求由抛物线2x y =及x y =2所围成图形的面积,并求该图形绕x 轴旋转所成旋转体的体积3、求由x y sin =,x y cos =,0=x ,2π=x 所围成的图形的面积,并求该图形绕x 轴旋转所成旋转体的体积4、求抛物线px y 22=及其在点⎪⎭⎫⎝⎛p p ,2处的法线所围成的图形的面积5、求曲线422+-=x x y 在点()4,0M 处的切线MT 与曲线()122-=x y 所围成图形的面积6、求由抛物线ax y 42=与过焦点的弦所围成的图形面积的最小值7、求由下列曲线所围成图形的公共部分的面积 1)θρcos 3=,θρcos 1+=2)θρsin a =,()θθρsin cos +=a ,0>a8、由曲线()16522=-+y x 所围成图形绕x 轴旋转所成旋转体的体积9、求圆心在()b ,0半径为a ,()0>>a b 的圆,绕x 轴旋转而成的环状体的体积10、计算半立方抛物线()32132-=x y 被抛物线32x y =截得的一段弧的长度(C)1、用积分方法证明半径为R 的球的高为H 的球缺的的体积为⎪⎭⎫ ⎝⎛-=32H R H V π2、分别讨论函数x y sin =⎪⎭⎫⎝⎛≤≤20πx 在取何值时,阴影部分的面积1S ,2S 的和21S S S +=取最大值和最小值3、求曲线x y =()40≤≤x 上的一条切线,使此切线与直线0=x , 4=x 以及曲线x y =所围成的平面图形的面积最小4、半径为r 的球沉入水中,球的上部与水面相切,球的密度与水相同,现将球从水中取出,需作多少功?第六章 定积分应用 习 题 答 案(A )1、1)342+π,346-π 2)2ln 23- 3)21-+ee 4)2a π 5)283a π2、23a π 3、()ππ2224--e e a 4、12-π,42π 5、7128π,564π 6、3334R 7、3432- 8、a 6 9、kJ 18.0 10、3732727a kc (其中k 为比例常数)11、()kJ 5.57697 12、()kN 14373 13、取y 轴经过细直棒⎪⎪⎭⎫⎝⎛+-=2211t a aGmu F y 22t a a Gmu F x +-=λ(B)1、1)⎰-=⎪⎪⎭⎫ ⎝⎛--=pp p dy p y y p S 322316223 或()⎰⎰=⎪⎭⎫⎝⎛+-++=20229231622322pp p p dx px x p dx px px S2)⎰⎰--=⎪⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛-=pp p p p dy p y dy y p V 33322215272223πππ 2、()⎰=-=10231dx x x A ()()ππ⎰=⎪⎭⎫⎝⎛-=10222103dx x x V3、()()⎰⎰-=-+-=244222cos sin sin cos πππdx x x dx x x A()()()()()()⎰⎰=-+-=24224022cos sin sin cos πππππdx x x dx x x V4、抛物线在点⎪⎭⎫⎝⎛p p ,2处的法线方程为: p y x 23=+,以下解法同第一题2316p A = 5、MT :x y 24-=,切线MT 与曲线()122-=x y 的交点坐标为⎪⎭⎫⎝⎛1,23,()2,3- ⎰-=⎪⎪⎭⎫ ⎝⎛---=122491224dy y y A 6、提示:设过焦点()0,a 的弦的倾角为α则弦所在直线的方程为()a x y -=αtan由()a x y -=αtan ,ax y 42=得两交点纵坐标为()()21csc 2csc 2y ctg a ctg a y =+<-=αααα所以()()dy a y yctg a A y y ⎰⎥⎦⎤⎢⎣⎡-+=2142αα ()()32222csc 34csc 4csc 4ααααa ctg a a -+=()()3232csc 34csc 4ααa a -=()32csc 38αa =因为πα<<0 当2πα=时 ()3csc α取得最小值为1所以 当2πα=时 过焦点的弦与抛物线ax y 42=所围成的图形面积()32csc 382απa A =⎪⎭⎫ ⎝⎛最小7、1)()()πθθθθπππ45cos 321cos 1212232302=⎥⎦⎤⎢⎣⎡++=⎰⎰d d A2)()()[]⎰⎰-=++=ππππθθθθθ22220241cos sin 21sin 21a d a d a A 8、()()⎰⎰------+=44442222165165dx xdx xV ππ()()⎰-=⎭⎬⎫⎩⎨⎧----+=4422222160165165ππdx xx9、解法同题810、提示:()32132-=x y ,32x y = 联立得交点⎪⎪⎭⎫ ⎝⎛36,2,⎪⎪⎭⎫ ⎝⎛-36,2 所求弧长()⎰+=212'12dx y s由()32132-=x y 得()yx y 2'1-=于是()()()()()1231321134222'-=--=⎪⎪⎭⎫ ⎝⎛-=x x x y x y于是得()⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡-+=⎰12598123122321221dx x S(C)1、证明:此处球缺可看作由如图阴影(图222R y x =+的一部分)绕y 轴旋转而成所以()⎰⎰---==RHR RHR dy y R dy x V 222ππR HR R HR y yR ---=332ππ()[]()[]3323H R R H R R R -----=ππ⎪⎭⎫ ⎝⎛-=32H R H π2、解:()⎰-=tdx x t S 11sin sin ()⎰-=22sin sin πtdx t x S()()⎰-=tdx x t t S 1sin sin +()⎰-2sin sin πtdx t x=⎪⎭⎫ ⎝⎛≤≤-⎪⎭⎫⎝⎛-+201sin 22cos 2ππt t t t ()0cos 22'=⎪⎭⎫⎝⎛-=t t t S π,得驻点2421ππ==t t易知()()002''1''<>t S t S122max -=⎪⎭⎫ ⎝⎛=∴ππS S ,124min -=⎪⎭⎫⎝⎛=πS S3、解:设()00,y x 为曲线x y =()40≤≤x 上任一点,易得曲线于该点处的切线方程为:()00021x x x y y -=- 即0022x x y y +=得其与0=x , 4=x 的交点分别为⎪⎭⎫ ⎝⎛2,00y ,⎪⎪⎭⎫⎝⎛+0022,4y y 于是由此切线与直线0=x , 4=x 以及曲线x y =所围的平面图形面积为:3164222004000-+=⎪⎪⎭⎫ ⎝⎛-+=⎰x y dx x x x y S3164200-+=x x 问题即求31642-+=xx S ()40≤≤x 的最小值 令022321=+=--xxS 得唯一驻点2=x 且为唯一极小值所以 当2=x 时,S 最小 即所求切线即为:2222+=x y 4、如图:以水中的球心为原点,上提方向作为坐标轴建立坐标系易知任意[]dx x x +,段薄片在提升过程中在水中行程为r -x ,而在水上的行程为2r -(r -x )=r +x因为求的密度与水相同,所以在水中提升过程中浮力与重力的合力为零,不做功,而在水面上提升时,做功微元为()()dx x r x r g dW +-=22π()()g r dx x r x r g dW W r r r r 42234ππ⎰⎰--=+-==。

定积分及其应用练习 带详细答案

定积分及其应用练习 带详细答案

定积分及其应用题一 题面:求由曲线2(2)y x =+与x 轴,直线4y x =-所围成的平面图形的面积. 答案:323.变式训练一题面:函数f (x )=⎩⎪⎨⎪⎧x +2(-2≤x <0),2cos x ⎝ ⎛⎭⎪⎫0≤x ≤π2的图象与x 轴所围成的封闭图形的面积为( )A.52 B .2 C .3D .4答案:D. 详解:画出分段函数的图象,如图所示,则该图象与x 轴所围成的封闭图形的面积为12×2×2+∫π202cos x d x =2+2sin x |π20=4.变式训练二 题面:由直线y =2x 及曲线y =3-x 2围成的封闭图形的面积为( ) A .2 3 B .9-2 3 C.353D.323答案: 详解:注意到直线y =2x 与曲线y =3-x 2的交点A ,B 的坐标分别是(-3,-6),(1,2),因此结合图形可知,由直线y =2x 与曲线y =3-x 2围成的封闭图形的面积为⎠⎛-31(3-x 2-2x )d x =⎝ ⎛⎭⎪⎫3x -13x 3-x 2⎪⎪⎪1-3=3×1-13×13-12-⎣⎢⎡3×-3-13×-33]--32=323,选D.题二 题面:如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( ).A .14B .15C .16D .17变式训练一题面:函数f (x )=sin(ωx +φ)的导函数y =f ′(x )的部分图象如图所示,其中,P 为图象与y 轴的交点,A ,C 为图象与x 轴的两个交点,B 为图象的最低点.若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为________. 答案:π4.详解:设A (x 0,0),则ωx 0+φ=π2,∴x 0=π2ω-φω. 又y =ωcos(ωx +φ)的周期为2πω, ∴|AC |=πω,C ⎝ ⎛⎭⎪⎫π2ω-φω+πω,0.依题意曲线段ABC 与x 轴围成的面积为 S =-∫π2ω-φω+πωπ2ω-φωωcos(ωx +φ)d x =2. ∵|AC |=πω,|y B |=ω,∴S △ABC =π2. ∴满足条件的概率为π4.变式训练二 题面:(2012•福建)如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( )A .B .C .D .答案:C. 详解:根据题意,正方形OABC 的面积为1×1=1, 而阴影部分由函数y=x 与y=围成,其面积为∫01(﹣x )dx=(﹣)|01=,则正方形OABC 中任取一点P ,点P 取自阴影部分的概率为=; 故选C .金题精讲 题一 题面:(识图求积分,二星)已知二次函数y =f (x )的图象如图所示,则它与x 轴所围图形的面积为( ).A .2π5B .43C .32D .π2答案:变式训练一题面:如图求由两条曲线y =-x 2,y =-14x 2及直线y =-1所围成的图形的面积.答案:43. 详解:由⎩⎪⎨⎪⎧y =-x 2,y =-1,得交点A (-1,-1),B (1,-1).由⎩⎨⎧y =-14x2,y =-1,得交点C (-2,-1),D (2,-1).∴所求面积S =2⎣⎢⎡⎦⎥⎤∫10⎝ ⎛⎭⎪⎫-14x 2+x 2d x +⎠⎛12⎝ ⎛⎭⎪⎫-14x 2+1d x =43.变式训练二 题面:例1求在[0,2]π上,由x 轴及正弦曲线sin y x =围成的图形的面积. 答案:4. 详解:作出sin y x =在[0,2]π上的图象如右 sin y x =与x 轴交于0、π、2π,所 求积2200sin |sin |(cos )|(cos )|4s xdx xdx x x ππππππ=+=---=⎰⎰题二 题面:(作图求积分,四星)求曲线36y x x =-与曲线2y x =所围成的图形的面积. 交点的横坐标分别为2,0,3-,12112S =.变式训练一题面:求曲线2y x =,y x =及2y x =所围成的平面图形的面积. 答案:76. 详解:作出2y x =,y x =及2y x =的图如右 解方程组22y x y x=⎧⎨=⎩ 得24x y =⎧⎨=⎩0x y =⎧⎨=⎩ 解方程组2y x y x =⎧⎨=⎩得11x y =⎧⎨=⎩ 00x y =⎧⎨=⎩∴所求面积12201(2)(2)s x x dx x x dx =-+-⎰⎰ 12201(2)xdx x x dx =+-⎰⎰212320111|()|23x x x =+- 76=答:此平面图形的面积为76变式训练二 题面:求由抛物线28(0)y x y =>与直线6x y +=及0y =所围成图形的面积. 答案:403. 详解:作出28(0)y x y =>及6x y +=的图形如右:解方程组2860y x x y ⎧=⎨+-=⎩得24x y =⎧⎨=⎩解方程组600x y y +-=⎧⎨=⎩ 得60x y =⎧⎨=⎩∴所求图形的面积62(6)s x dx =+-⎰⎰32262022140|(6)|323x x x +-= 题三x题面: (1)由曲线y x =,直线2y x =-及y 轴所围成的图形的面积为_______.(2)由曲线2y x =与直线2y x =-所围成的封闭图形的面积为_______. 答案:(1)163;(2)92.变式训练一题面: 设f (x )=,函数图象与x 轴围成封闭区域的面积为( )A .B .C .D .答案:C.详解:根据题意作出函数的图象:根据定积分,得所围成的封闭区域的面积S=故选C变式训练二 题面:已知函数的图象与x 轴所围成图形的面积为( )A.1/2 B.1C.2D.3/2答案:D.详解:由题意图象与x轴所围成图形的面积为102(1)cosx dx xdxπ--++⎰⎰21021()|sin|2x x xπ-=-++112=+32=.故选D.题四题面:(导数与积分结合,二星)设函数()mf x x ax=+的导函数为()21f x x'=+,则21()f x dx-⎰的值等于______.答案:56.变式训练一题面:设函数f(x)=x m+ax的导函数f′(x)=2x+1,则⎠⎛12f(-x)d x的值等于()A.56B.12C.23D.16答案:A. 详解:由于f (x )=x m +ax 的导函数f ′(x )=2x +1,所以f (x )=x 2+x ,于是∫21f (-x )d x=∫21(x 2-x )d x =⎝ ⎛⎭⎪⎫13x 3-12x 2⎪⎪⎪21=56.变式训练二 题面:设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则⎠⎛12f (-x )d x 的值等于( )A.56B.12C.23D.16答案:A. 详解:由于f (x )=x m +ax 的导函数为f ′(x )=2x +1,所以f (x )=x 2+x ,于是⎠⎛12f (-x )d x =⎠⎛12 (x 2-x )d x =⎪⎪⎪⎝ ⎛⎭⎪⎫13x 3-12x 221=56.题五 题面:(化简后求积分,四星)(1)求21sin 2xdx π-20sin cos x x dxπ=-⎰原式4204(cos sin )(sin cos )x x dx x x dx πππ=-+-⎰⎰22 2.=(2)440(sin cos )22x xdx π+⎰变式训练一题面:与定积分∫3π01-cos x d x 相等的是( ) A.2∫3π0sin x 2d x B.2∫3π0⎪⎪⎪⎪⎪⎪sin x 2d x C.⎪⎪⎪⎪⎪⎪2∫3π0sin x 2d x D .以上结论都不对答案:B. 详解:∵1-cos x =2sin 2x2,∴∫3π01-cos x d x =∫3π02 ⎪⎪⎪⎪⎪⎪sin x 2d x =2∫3π0⎪⎪⎪⎪⎪⎪sin x 2d x .变式训练二题面:40cos xdx π=⎰________.答案:22.详解:因为40cos xdx π=⎰sin x ⎪⎪⎪⎪π40=sin π4=22,所以∫π40cos x d x =22. 题六 题面:(定积分的运用,三星)函数f (x )=sin(ωx +φ)的导函数y =f ′(x )的部分图象如图所示,其中,P 为图象与y 轴的交点,A ,C 为图象与x 轴的两个交点,B 为图象的最低点.(1)若φ=π6,点P 的坐标为⎝⎛⎭⎫0,332,则ω=________;(2)若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为________.[解析] (1)函数f (x )=sin(ωx +φ)求导得,f ′(x )=ωcos(ωx +φ),把φ=π6和点⎝⎛⎭⎫0,332代入得ωcos ⎝⎛⎭⎫0+π6=332解得ω=3.(2)取特殊情况,在(1)的条件下,导函数f ′(x )=3cos ⎝⎛⎭⎫3x +π6,求得A ⎝⎛⎭⎫π9,0, B ⎝⎛⎭⎫5π18,-3,C ⎝⎛⎭⎫4π9,0,故△ABC 的面积为S △ABC =12×3π9×3=π2,曲线段与x 轴所围成的区域的面积S =-⎪⎪⎪f (x ) 4π9π9=-sin ⎝⎛⎭⎫4π3+π6+sin ⎝⎛⎭⎫3π9+π6=2,所以该点在△ABC 内的概率为P =S △ABC S =π4. 同类题一题面:设y =f (x )是二次函数,方程f (x )=0有两个相等的实根,且f ′(x )=2x -2.(1)求y =f (x )的表达式;(2)求y =f (x )的图象与两坐标轴所围成图形的面积.答案:(1) f (x )=x 2-2x +1.(2) 13.详解:(1)设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b .又f ′(x )=2x -2,所以a =1,b =-2,即f (x )=x 2-2x +c .又方程f (x )=0有两个相等实根,所以Δ=4-4c =0,即c =1.故f (x )=x 2-2x +1.(2)依题意,所求面积为S =⎠⎛01(x 2-2x +1)d x =(13x 3-x 2+x )|10=13.同类题二题面:设y =f (x )是二次函数,方程f (x )=0有两个相等的实根,且f ′(x )=2x +2.(1)求y =f (x )的表达式;(2)求y =f (x )的图象与两坐标轴所围成图形的面积.(2)若直线x =-t (0<t <1=把y =f (x )的图象与两坐标轴所围成图形的面积二等分,求t 的值.答案:(1)f (x )=x 2+2x +1.(2)13. (3)t =1-321. 详解: (1)设f (x )=ax 2+bx +c ,则f ′(x )=2ax +b ,又已知f ′(x )=2x +2∴a =1,b =2.∴f (x )=x 2+2x +c又方程f (x )=0有两个相等实根,∴判别式Δ=4-4c =0,即c =1.故f (x )=x 2+2x +1.(2)依题意,有所求面积=31|)31()12(0123201=++=++--⎰x x x dx x x . (3)依题意,有x x x x x x t t d )12(d )12(2021++=++⎰⎰---, ∴023123|)31(|)31(t t x x x x x x ---++=++,-31t 3+t 2-t +31=31t 3-t 2+t ,2t 3-6t 2+6t -1=0,∴2(t -1)3=-1,于是t =1-321.思维拓展题一题面:(几何法求积分,四星)(1)计算0⎰,121sin x xdx -⎰;(2)求椭圆22221x y a b +=的面积.0044b S a ==⎰⎰,转化为圆的面积.同类题一题面:求定积分11dx -⎰的值. 答案:2π. 详解:11dx -⎰表示圆x 2+y 2=1在第一、二象限的上半圆的面积. 因为2S π=半圆,又在x 轴上方.所以11dx -⎰=2π.同类题二题面:20)ax dx -⎰的值是( ) A. 143π- B. 143π+ C. 123π- D. 12π- 答案:A.详解:积分所表示的几何意义是以(1,0)为圆心,1为半径第一象限内圆弧与抛物线y=x 2在第一象限的部分坐标轴围成的面积,故只需求出圆的面积乘以四分之一与抛物线在第一象限的部分与x 轴和直线x=1围成的图形的面积之差.即20)ax dx-⎰ 1231001|443x dx x ππ=-=-⎰ 143π=-.故答案选A。

(完整版)高等数学定积分应用习题答案

(完整版)高等数学定积分应用习题答案

第六章 定积分的应用习题 6-2 (A)1. 求下列函数与 x 轴所围部分的面积:]3,0[,86)1(2+-=x x y ]3,0[,2)2(2x x y -=2. 求下列各图中阴影部分的面积: 1.图 6-13.求由下列各曲线围成的图形的面积:;1,)1(===-x e y e y x x 与;)0(ln ,ln ,0ln )2(>>====a b b y a y x x y 与;0,2)3(2==-=y x y x x y 与;)1(,2)4(22--==x y x y;0,2)1(4)5(2=-=-=y x y x y 与;2,)6(2x y x y x y ===与;)0(2sin ,sin 2)7(π≤≤==x x y x y;8,2)8(222(两部分都要计算)=+=y x x y4.的图形的面积。

所围成与直线求由曲线e x e x y x y ====-,,0ln 15.的面积。

处的切线所围成的图形和及其在点求抛物线)0,3()3,0(342--+-=x x y6.的面积。

处的法线所围成的图形及其在点求抛物线),2(22p ppx y = 7.形的面积。

与两坐标轴所围成的图求曲线a y x =+8.所围图形的面积。

求椭圆12222=+by a x9.。

与横轴所围图形的面积(的一拱求由摆线)20)cos 1(),sin (π≤≤-=-=t t a y t t a x10.轴之间的图形的面积。

的切线的左方及下方与由该曲线过原点求位于曲线x e y x =11.求由下列各方程表示的曲线围成的图形的面积: ;)0(sin 2)1(>=a a θρ;)0()cos 2(2)2(>+=a a θρ ;2cos 2)3(2(双纽线)θρ=抛物体的体积。

轴旋转,计算所得旋转所围成的图形绕及直线把抛物线x x x x ax y )0(4.12002>==体的体积。

旋转轴旋转,计算所得两个轴及所围成的图形,分别绕由y x y x x y 0,2,.133===14.求下列已知曲线所围成的图形,按指定的轴旋转所产生的旋转体的体积: ;,0,,0)1(轴绕与x y a x x axcha y ====;,2sin )2(轴绕与x xy x y π== ;,)20(cos sin )3(轴绕与x x x y x y π≤≤==;0,2,ln )4(轴绕与y y x x y === ;0,2)5(2轴绕与y y x y x x y ==-=;,16)5()6(22轴绕y y x =+-。

高等数学定积分在物理中的应用

高等数学定积分在物理中的应用

2010.12
D6_all
21
二、典型例题
例1
y
1.已知星形线
x y
a cos3 t (a
a sin 3 t
0)
求 10 它所围成的面积 ;
a
o
ax
20 它的弧长;
30 它绕轴旋转而成的旋转 体体积.
2010.12
D6_all
22
解 10 设面积为 A. 由对称性,有
a
A 4 ydx 0
P y 4x x2 du
1 5
(x2
2x)2
5d x
o dx 2
故所求旋转体体积为
2010.12
V
2 0
15( x 2
2x)2 5d
D6_all
x
16 75
5
du 2dx d x33
a x xdx b x
因此变力F(x) 在区间 上所作的功为
b
W a F (x) dx
2010.12
D6_all
2
例1. 在一个带 +q 电荷所产生的电场作用下, 一个单
位正电荷沿直线从距离点电荷 a 处移动到 b 处 (a < b) ,
求电场力所作的功 . 解: 当单位正电荷距离原点 r 时,由库仑定律电场力为
k m a
x
l 2
a2 a2 x2 0
2k m l 1
l 2
a
4a2 l 2
y a M d Fx d Fay
dF
xdx O x lx
2
利用对称性
棒对质点引力的水平分力 Fx 0 .
故棒对质点的引力大小为
F
2k m
a

定积分典型例题20例答案

定积分典型例题20例答案

定积分典型例题20例答案例1 求3321lim)n n n →∞+.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x n∆=,然后把2111n n n =⋅的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即3321lim)n n n →∞+=31lim )n n n n →∞+=34=⎰.例2 0⎰=_________.解法1 由定积分的几何意义知,0⎰等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故0⎰=2π. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t ππ-≤≤),则⎰=22tdt ππ-⎰=2tdt =2202cos tdt π⎰=2π 例3 (1)若22()x t xf x e dt -=⎰,则()f x '=___;(2)若0()()xf x xf t dt =⎰,求()f x '=___.分析 这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-⎰.解 (1)()f x '=422x x xe e ---;(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =⎰,则可得()f x '=0()()xf t dt xf x +⎰.例4 设()f x 连续,且31()x f t dt x -=⎰,则(26)f =_________.解 对等式310()x f t dt x -=⎰两边关于x 求导得32(1)31f x x -⋅=,故321(1)3f x x-=,令3126x -=得3x =,所以1(26)27f =. 例5函数1()(3(0)x F x dt x =>⎰的单调递减开区间为_________.解()3F x '=令()0F x '<3>,解之得109x <<,即1(0,)9为所求.例6 求0()(1)arctan xf x t tdt =-⎰的极值点.解 由题意先求驻点.于是()f x '=(1)arctan x x -.令()f x '=0,得1x =,0x =.列表如下:故1x =为()f x 的极大值点,0x =为极小值点.例7 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中2arcsin 0()xt g x e dt -=⎰,[1,1]x ∈-,试求该切线的方程并求极限3lim ()n nf n→∞.分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ''=.解 由已知条件得2(0)(0)0t f g e dt -===⎰,且由两曲线在(0,0)处切线斜率相同知(0)(0)1f g =''===.故所求切线方程为y x =.而3()(0)3lim ()lim33(0)330n n f f n nf f n n→∞→∞-'=⋅==-. 例8 求 22000sin lim(sin )x x xtdtt t t dt→-⎰⎰;分析 该极限属于型未定式,可用洛必达法则. 解 22000sin lim (sin )x x xtdtt t t dt→-⎰⎰=2202(sin )lim (1)(sin )x x x x x x →-⋅⋅-=220()(2)lim sin x x x x→-⋅-=304(2)lim 1cos x x x →-⋅-=2012(2)lim sin x x x→-⋅=0.注 此处利用等价无穷小替换和多次应用洛必达法则.例9 试求正数a 与b ,使等式201lim1sin x x x b x →=-⎰成立. 分析 易见该极限属于型的未定式,可用洛必达法则. 解2001lim sin x x x b x →-⎰=20x →=20lim 1cos x x x b x →→-2011cos x x b x →==-,由此可知必有0lim(1cos )0x b x →-=,得1b =.又由2011cos x x x →=-, 得4a =.即4a =,1b =为所求. 例10 设sin 20()sin x f x t dt =⎰,34()g x x x =+,则当0x →时,()f x 是()g x 的( ).A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小.解法1 由于 22300()sin(sin )cos lim lim()34x x f x x xg x x x →→⋅=+ 2200cos sin(sin )lim lim34x x x x x x →→=⋅+ 22011lim 33x x x →==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到sin 223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+⎰,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f x g x x x x→→→-+-+===++. 例11 计算21||x dx -⎰.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -⎰=0210()x dx xdx --+⎰⎰=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如33222111[]6dx x x --=-=⎰,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档