热质交换原理与设备-第三章 对流传质分析与计算
热质交换原理与设备习题答案第版
热质交换原理与设备习题答案第版Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第一章绪论1、答:分为三类。
动量传递:流场中的速度分布不均匀(或速度梯度的存在);热量传递:温度梯度的存在(或温度分布不均匀);质量传递:物体的浓度分布不均匀(或浓度梯度的存在)。
2、解:热质交换设备按照工作原理分为:间壁式,直接接触式,蓄热式和热管式等类型。
●间壁式又称表面式,在此类换热器中,热、冷介质在各自的流道中连续流动完成热量传递任务,彼此不接触,不掺混。
●直接接触式又称混合式,在此类换热器中,两种流体直接接触并且相互掺混,传递热量和质量后,在理论上变成同温同压的混合介质流出,传热传质效率高。
●蓄热式又称回热式或再生式换热器,它借助由固体构件(填充物)组成的蓄热体传递热量,此类换热器,热、冷流体依时间先后交替流过蓄热体组成的流道,热流体先对其加热,使蓄热体壁温升高,把热量储存于固体蓄热体中,随即冷流体流过,吸收蓄热体通道壁放出的热量。
●热管换热器是以热管为换热元件的换热器,由若干热管组成的换热管束通过中隔板置于壳体中,中隔板与热管加热段,冷却段及相应的壳体内穷腔分别形成热、冷流体通道,热、冷流体在通道内横掠管束连续流动实现传热。
3、解:顺流式又称并流式,其内冷、热两种流体平行地向着同方向流动,即冷、热两种流体由同一端进入换热器。
●逆流式,两种流体也是平行流体,但它们的流动方向相反,即冷、热两种流体逆向流动,由相对得到两端进入换热器,向着相反的方向流动,并由相对的两端离开换热器。
● 叉流式又称错流式,两种流体的流动方向互相垂直交叉。
● 混流式又称错流式,两种流体的流体过程中既有顺流部分,又有逆流部分。
● 顺流和逆流分析比较:在进出口温度相同的条件下,逆流的平均温差最大,顺流的平均温差最小,顺流时,冷流体的出口温度总是低于热流体的出口温度,而逆流时冷流体的出口温度却可能超过热流体的出口温度,以此来看,热质交换器应当尽量布置成逆流,而尽可能避免布置成顺流,但逆流也有一定的缺点,即冷流体和热流体的最高温度发生在换热器的同一端,使得此处的壁温较高,为了降低这里的壁温,有时有意改为顺流。
热质交换原理与设备
质量通量用绝对速度表示A A A u m ρ=用扩散速度表示()u uA A JA -=ρ摩尔通量用绝对速度表示A A A u C N =用扩散速度表示)(M A A A u u C J -=传质通量是单位时间通过垂直于传质方向上单位面积的物质的量,传质通量等于传质速度与浓度的乘积。
)(/1B B A A u u u ρρρ+=质量传质:分子传质又称为分子扩散,它是由于分子的无规则热运动而形成的物质传递现象。
对流传质:指避免和运动流体之间或两个有限互溶的运动流体之间的质量传递。
分子扩散和对流扩散的总作用成为对流传质交换斐克定律(扩散基本定律)—在浓度场不随时间变化的情况下,组分A 向组分B 的扩散通量与组分A 的浓度梯度成正比,表达式:质量扩散通量dzB d D BA jB dz A d D AB ja ρρ-=-=,摩尔扩散通量dZdCB D BA JB dZ dCA D AB JA -=-=,两组分扩散系统有:JB JA jb jA -=-=,所以扩散系数D D BA D AB ==注:菲克定律只适用于由于分子无规则热运动引起的扩散过程,其传递的速度为扩散速度,一般表达式:)(B A A z A A m m a d d D m ++-=ρ M M a A A = )(B A A Z CA A N N x d d D N ++-= nn x A A =组分的实际传质通量=分子扩散通量+主题流动通量。
扩散系数:物质的分子扩散系数表示它的扩散能力,是物质的物理性质之一,定义:扩散系数是沿扩散方向,在单位时间浓度降得条件下,垂直通过单位面积所扩散某物质的质量或摩尔数,单位㎡/s 。
浓度边界层决定了对流传质,如果在表面处流体中的某种组分A 的浓度S A C ,和自由流体的∞,A C 不同,就将产生浓度边界层,它是存在浓的梯度的流体区域,并且它的厚度c δ被定义为[][]99.0/,=--∞AS A S A C C C C 时的y 值,在表面和自由流的流体之间的对流造成的组分的传递是由这个边界层中的条件决定的。
热质交换原理与设备-第3章
传热传质的分析和计算2015/3/31环设、内容80-2动量、热量和质量传递类比3.1对流传质的准则关联式3.2热量和质量同时进行时的热质传递3.32015/3/31环设、3.1.1 三种传递现象的速率描述及其之间的雷同关系流体系统中:速度梯度动量传递温度梯度热量传递浓度梯度质量传递3.1动量、热量和质量传递类比80-32015/3/31环设、环设、两个作直线运动的流体层之间的切应力正比于垂直于运动方向的速度变化率,即:在均匀的各向同性材料内的一维温度场中,通过导热方式传递的热量通量密度为:对于恒定热容量的流体,上式可改写为:环设、在无总体流动或静止的双组分混合物中,若组分A 的分布为一维的,则通过的质量通量密度为:中的扩散系数,m 2/s;环设、环设、dyud tt μτ-=湍流切应力dytd q tt λ-=湍流热流密度dyd D m A ABtAt ρ-=湍流质量通量密度2015/3/31环设、有效动力粘度系数:eff 有效导热系数:eff 有效质量扩散系数:ABeff 环设、•分子传递系数ν, a , DAB :是物性,与温度、压力有关;通常各项同性。
•湍流传递系数νt, a t, DABt :不是物性,主要与流体流动有关; 通常各项异性。
80-102015/3/31环设、节能12级环设、0=ww u u 1=ww u u 1,=--∞∞wwt t t t 环设、三个传递方程的扩散系数和边界条件数学表达式完全相同时,它们的解也应当是一致的。
即边界层中的无因次速度、温度和浓度分布曲线完全重合,因而其相应的无量纲准则数相等。
这是类比原理的基础。
Dv =速度分布与浓度分布曲线相重合,或速度边界层和浓度边界层厚度相等。
D=α温度分布与浓度分布曲线相重合,或温度边界层和浓度边界层厚度相等。
环设、三个性质类似的传递系数中,任意两个表示速度分布和温度分布的相互关系,体现流动和传热之间的相互联系表示速度分布和浓度分布的相互关系,体现流体的动量与传质间的联系环设、类似的,对流体沿平面流动或管内流动时质交换的准)Pr (Re,⎪⎭⎫D ul νν,基于热交换和质交换过Nu 环设、动量与热交换类比在质交换中的应用PrRe 2⋅f 环设、以上关系也可推广到质量传输,建立动量传输与质ReC 环设、类比(考虑了层流底层)类比(考虑了层流底层、过渡层)环设、和柯尔本发表了如下的类似的表达式:0.6Pr 60≤≤0.62500Sc ≤≤它与雷诺的不同之处是引入了一个包括了流体重要物性的Sc的气体和液体。
热质交换原理与设备教学大纲
“热质交换原理与设备”课程教学大纲课程名称:热质交换原理与设备英文名称:Principle and Equipment Heat-Mass Exchanging课程编码:CJX0540学时:48 学分:3适用对象:建筑环境与设备工程专业本科生先修课程:传热学,工程热力学,流体力学使用教材:《热质交换原理与设备》,连之伟编著,中国建筑工业出版社,2011主要参考书:[1]《建筑环境传质学》,张寅平、张立志、刘晓华编,中国建筑工业出版社,2006[2]《热质交换原理与设备》,许为全编,清华大学出版社,1999一、课程介绍本课程为建筑环境与设备工程专业主要的专业基础课之一。
主要用于增强学生的专业理论水平,开阔学生的科学视野,从动量、热量和质量传递的统一的传递过程理论的高度上学习和研究本专业工程实践中遇到的诸如:热质交换设备的设计、加工、运行管理方面遇到的一些问题。
起到联系本专业基础课与技术课的桥梁作用,培养学生理论联系实际的能力。
掌握传输过程的基本理论及三种传输过程的类比;掌握空气热质交换理论方法和常用热质交换设备的热工计算方法,具备初步的优化设计和性能评价能力。
二、教学基本要求掌握质传递的基本规律和热质传递的类比,了解制冷剂为主的沸腾、凝结的基本规律;掌握强迫流的相变传热及固液相变热质交换基本原理,熟悉空气处理的各种途径;掌握空气与水/固表面之间的热质交换,熟悉用吸收剂的吸附材料处理空气的机理,熟悉被处理空气与室内空气发生的热质交换,了解常用热质交换设备的形式与结构、基本性能参数;掌握间壁式、混合式,有相变热质交换设备的热工计算,了解热质交换设备的评价的优化设计。
三、课程内容第一章绪论:建筑环境与设备专业涉及的热质交换现象及其设备分类,本门课程在专业中的地位与作用,本门课程的主要研究内容与方法。
第二章传质的理论基础:传质概论,扩散传质,对流传质,相际间的对流传质模型。
基本要求:理解浓度,扩散通量等基本概念,传质的两大基本方式和常见的8种形式,掌握Fick定律,Stefan定律,扩散系数概念,薄膜理论,三传的传递方程,传热传质同时传递模型的建立,雷诺类似律;了解柯尔本类似律,动量交换与热交换的类比在质交换中的应用;掌握对流传质的准则关联式,刘易斯关系式。
热质交换原理与设备课后习题答案
7.04 10 5 m / s
1)(第 3 版 P25)用水吸收氨的过程,气相中的 NH3 (组分 A)通过不扩散的空气
(组分 B),扩散至气液相界面,然后溶于水中,所以
D 为 NH3 在空气中的扩散。
2)刘易斯关系式只对空气 —— 水系统成立, 本题为氨 —— 空气系统, 计算时类比关 系不能简化。
Re uod v
4 0.08 15.53 10 6
20605
v 15.53 10 6 Sc D 0.25 10 4 0.62
用式子( 2-153)进行计算
shm
0.023
R 0.83 e
S 0.44 c
0.023 206050.83 0.620.44
4
hm shmD 70.95 0.25 10 0.0222m / s
热,使蓄热体壁温升高, 把热量储存于固体蓄热体中,随即冷流体流过,吸收蓄热体通
道壁放出的热量。
热管换热器是以热管为换热元件的换热器, 由若干热管组成的换热管束通过中隔板置于 壳体中,中隔板与热管加热段,冷却段及相应的壳体内穷腔分别形成热、冷流体通道,
热、冷流体在通道内横掠管束连续流动实现传热。
第二章 传质的理论基础
3
D DO P0 T 2 0.2 10 4 P T0
3
350 2
273
0.29 10 4m2 / s
氢— 空气
DO 0.511 10 4m2 / s
3
D DO P0 T 2 0.511 10 4 P T0
3
350 2
273
0.742 10 4m2 / s
2-14 溶解度 s 需先转化成摩尔浓度:
CA1 sPA1 5 10 3 0.03 1.5 10 4 kmol / m3
第三章传热传质问题的分析与计算
y , t tw 1 t tw
扩散方程
y 0, CA CA,w 0 y , CA CA,w 1
CA, CA,w
CA, CA,w
这三个性质类似的物性系数中,任意两个系数 的比值均为无量纲量,即
普朗特准则 Pr
v
2u y 2
能量方程
u
t x
t y
a
2t y 2
扩散方程
u
C A x
C A y
D
2C A y 2
边界条件为:
动量方程 y 0, u 0
或
u
能量方程
y , u 1 或 u
y 0, t tw 0 t tw
u uw 0 u uw
h
dy
定义,阿克曼修正系数
C0
= (N AM Ac P,A+N B M h
BcP,B )
C0与假定传质方向(壁面向流体)一致为正
δ0
d 2t dy2
- C0
dt dy
=0
边界条件
y =0
y =δ0
t =t1
t =t2
得到流体在薄膜层内的温度分别为
exp(C0 y ) -1
t( y) =t1 +(t2 - t1)
dy
• 动量传递公式表明:动量通量密度正比 于动量浓度的变化率。
• 能量传递公式表明:能量通量密度正比 于能量浓度的变化率。
• 质量传递公式表明:组分A的质量通量密 度正比于组分A的质量浓度的变化率。
3.1.2 三传方程
连续性方程 u 0
《热质交换原理与设备》习题答案(第3版)
第二章 传质的理论基础3、从分子运动论的观点可知:D ∽312p T -两种气体A 与B 之间的分子扩散系数可用吉利兰提出的半经验公式估算:410D -=若在压强5001.01310,273PPa T K =⨯=时各种气体在空气中的扩散系数0D ,在其他P 、T 状态下的扩散系数可用该式计算32000P T D D P T ⎛⎫= ⎪⎝⎭(1)氧气和氮气:2233025.610/()32o V m kg kmol μ-=⨯⋅=223331.110/()28N N V m kg kmol μ-=⨯⋅=52115233 1.5410/1.013210(25.6)D m s -==⨯⨯⨯+(2)氨气和空气:51.013210P Pa =⨯ 25273298T K =+=50 1.013210P Pa =⨯ 0273T K =3221.0132980.2()0.228/1.0132273D cm s=⨯⨯=2-4、解:气体等摩尔互扩散问题124230.610(160005300)()0.0259/()8.3142981010A A A D N P P kmol m s RT z --⨯⨯-=-==⋅∆⨯⨯⨯错误!未找到引用源。
m 2sR 0通用气体常数单位:J/kmol ﹒K5、解:250C 时空气的物性:351.185/, 1.83510,kg m Pa s ρμ-==⨯⋅6242015.5310/,0.2210/m s D m s υ--=⨯=⨯32420006640.2510/40.08Re 2060515.531015.53100.620.2510o c P T D D m s P T u d v v S D ----⎛⎫==⨯ ⎪⎝⎭⨯===⨯⨯===⨯用式子(2-153)进行计算0.830.440.830.4440.0230.023206050.6270.9570.950.25100.0222/0.08m e c m m sh R S sh D h m sd -==⨯⨯=⨯⨯===设传质速率为A G ,则211220000()()()44ln4A A A m A s A A lA m A s AA s A m A s A dG d dx h d u d du d dx h du l h ρρππρρρρρρρρρρ⋅⋅⋅⋅=-==--=-⎰⎰2-6、解:20℃时的空气的物性:(注:状态不同,D 需修正)353352244200505541.205/, 1.8110,1.013102930.22100.2410/1.0132102730.053 1.205Re 99901.81101.81100.6261.2050.2410o c kg m Pa s P T D D m s P T u dv S D ρμρμρ------==⨯⋅⎛⎫⨯⎛⎫==⨯⨯⨯=⨯ ⎪ ⎪⨯⎝⎭⎝⎭⨯⨯===⨯⨯===⨯⨯(1)用式0.830.440.023m e c sh R S =计算m h0.830.4440.02399900.6260.24100.018750.05m m sh D h d -⨯⨯⨯⨯===(2)用式13340.0395e c sh R S =计算m h134340.0395(9990)(0.626)0.24100.01621/0.05m sh D h m sd -⨯⨯===第3章传热传质问题的分析和计算5、解:040,C 时空气的物性ρυ⨯23-6=1.128kg/m ,=16.9610m /s60e 210R 1.1810u lυ⨯===⨯⨯-616.9610转折点出现在56e 510101.1810e R , 4.24R c x l m μν⨯⨯⨯=== 因此,对此层流---湍流混合问题,应用式(2-157)30.8(0.037870)e c LR S Sh γ=-查表2—4得,定性温度为350C 时,324000.26410O D P T D P T -⎛⎫==⨯ ⎪⎝⎭2m /s40.264100.64c DS υ-⨯⨯===-616.9610360.8[0.037(1.1810)870]0.641548.9LSh γ=⨯⨯-⨯=430.288101548.9 4.4610/10mLL D h Sh m sL --⨯⎛⎫==⨯=⨯ ⎪⎝⎭每2m 池水的蒸发速率为()m A A S A n h ρρ⋅∞=-300C 时,3030.03037/;40,0.05116/A S A S kg m C kg m ρρ⋅⋅'==时()354.4610(0.030370.50.05116) 2.1410m A A S A S n h ρϕρ--⋅⋅'=-=⨯⨯-⨯=⨯6、解:在稳定状态下,湿球表面上水蒸发所需的热量来自于空气对湿球表面的对流换热,即可得以下能量守衡方程式2()s fg H O h T T h n ∞-=其中fg h 为水的蒸发潜热222()H O H O H O m S n h ρρ⋅⋅∞=-22()H O H O ms fgS h T T h h ρρ∞⋅⋅∞=+-又23r P 1m p c h h c S ρ⎛⎫= ⎪⋅⎝⎭ 查附录2—1,当s T =035C 时,水蒸汽的饱和蒸汽压力5808S P=于是 325808180.0408/8314308H OS S sP M kg mRT ρ⨯===⨯0ρ∞=第四章 空气的热湿处理1、(1)大气是由干空气和一定量的水蒸汽混合而成的。
热质交换原理与设备要点总结
<热质交换原理与设备>第一章绪论1.分子传递的三定律3个传递系数、公式、结构上的类似性。
2.紊流传递,分子传递的基本概念基于流态划分的传递现象的两种基本形式。
3.设备的分类以及它们各自的传热机理第二章热质交换过程1.传质定义:分子扩散和对流扩散的概念基于质交换的构因划分的质交换的基本方式对流传质量概念2.5种扩散通量的定义之间的关系扩散通量质扩散通量、摩尔扩散通量、扩散通量向量、绝对扩散通量、相对扩散通量3.斐克定律的其它表示形式质量平均速度与扩散速度4.斯蒂芬定律应用情况;积分形式、微分形式,转化条件(转化为斐克定律)5.扩散系数定义,o D的定义(公式不记),随压强和温度的变化情况6.对流传质的基本公式7.边界层的概念?意义?对流传质简化模型的中心思想。
8.薄膜渗透理论的基本论点、结论(公式、推导不计)9.各准则数的物理意义普朗特,施密特,刘伊斯10.类似律的本质:阐述三传之间的类似关系(建立了…和之间的关系)11.同一表面上传质对传热的影响,对壁面热传导和总传热量影响相反由(2-90)和图2-16来分析影响12.刘伊斯关系式的表达式和意义第三章相变热量交换原理1.什么是沸腾放热的临界热流密度?有何意义?2.汽化核心分析3.影响沸腾换热的因素4.影响凝结现象的因素第四章空气热质处理方法1.麦凯尔方程的意义,热质交换设备的图解方法。
2.空气与水直接接触时热湿交换的原理,显热,潜热推动力,空气状态变化过程,实际过程3.吸收吸附法较之表冷器除湿的优点。
4.干燥循环的3个环节5.吸附剂传质速度的影响因素。
6.吸附原理:表面自由焓7.动态吸附除湿的再生方式8.吸附除湿空调系统9.吸收原理:气液平衡关系第五章 其它形式的热质交换1.空气射流的种类、特点等温自由射流的速度衰减。
非等温射流温度边界层,速度边界层,浓度边界层的特性。
起始段,主体段2.回风口空气衰减规律3.送风温差第六章 热质交换设备1.表冷器的热工计算(1)传热系数与哪些因素有关 迎面风速,析湿系数,水流速(2) 效能—传热单元法 主要原则,几个参量的意义2.喷淋室的热工计算(1)影响喷淋室热交换效果的因素。
《热质交换原理与设备》课件:第3章 传热传质问题的分析和计算
3.1.1 三种传递各自的速率描述及其之间的雷同关系
当物系中存在速度、温度和浓度的梯度时,则分别 发生动量、热量和质量的传递现象。动量、热量和质量 的传递,既可以是由分子的微观运动引起的分子扩散, 也可以是由旋涡混合造成的流体微团的宏观运动引起的 湍流传递。
3.1.1.1 分子传递(传输)性质
流体的粘性、热传导性和质量扩散性统称为流体的分 子传递性质。因为从微观上来考察,这些性质分别是非均 匀流场中分子不规则运动时同一个过程所引起的动量、热 量和质量传递的结果。
3.2.1 流体在管内受迫流动时的质交换
管内流动着的气体和管道湿内壁之间,当气体中某 组分能被管壁的液膜所吸收,或液膜能向气体作蒸发, 均属质交换过程,它和管内受迫流动换热相类似。由传 热学可知,在温差较小的条件下,管内紊流换热可不计 物性修正项,并有如下准则关联式
通过大量被不同液体润湿的管壁和空气之间的质交换 实验,吉利兰(Gilliand)把实验结果整理成相似准则并表示 在下图中,并得到相应的准则关联式为:
1)分子传递系数只取决于流体的热力学状态,而不受流体宏观 运动的影响,因此分子传递系数μ、λ、DAB 均是与温度、压力有 关的流体的固有属性,是物性。然而湍流传递系数主要取决于流 体的运动,取决于边界条件及其影响下的速度分布,故不是物性。
2)分子传递性质可以由逐点局部平衡的定律来确定;然而对于 湍流传递性质来说,应该考虑其松弛效应,即历史和周围流场对 某时刻、某空间点湍流传递性质的影响。
如热空气流经湿表面的热质交换过程、表冷器冷 却除湿、喷水室、冷却塔、湿球温度计工作过程。
当流体流过一物体表面,并与表面之间既有质量又有 热量交换时,同样可用类比关系由传热系数h计算传质系 数hm
已知Pr和Sc准则数,它们分别表示物性对对流传热和 对流传质的影响。
(完整word版)热质交换原理与设备整理版
一当物系中存在速度、温度和浓度的梯度时,则分别发生动量、热量、和质量的传递现象。
二单位体积混合物中某成分的质量称为该组分的质量浓度,以符号ρ表示。
组分的实际速度,称为绝对速度。
相对主体流动速度的移动速度,称为扩散速度。
绝对速度=主体流动速度+扩散速度与热量传递中的导热和对流传热类似,质量传递的方式亦分为分子传质和对流传质。
分子传质又称为分子扩散,简称为扩散,它是由于分子的无规则热运动而形成的物质传递现象。
对流传质是指壁面和运动流体之间,或两个有限互溶的运动流体之间的质量传递。
凭借流体质点的湍流和漩涡来传递物质的现象,称为紊流扩散。
斐克定律:在浓度场不随时间而变化的稳态扩散条件下,当无整体流动时,组成二元混合物中组分A 和组分B 将发生扩散。
其中组分A 向组分B 的扩散通量与组分A 的浓度梯度成正比,这就是扩散基本定律——斐克定律:斐克定律只适用于由于分子无规则热运动引起的扩散过程,其传递的速度即为扩散速度u A -u (或u A -u m )在气体扩散过程中,分子扩散有两种形式,即双向扩散(反方向扩散)和单项扩散(一组分通过另一停滞组分的扩散)。
等分子反方向扩散:设由A 、B 两组分组成的二元混合物中,组分A 、B 进行反方向扩散,若二者扩散的通量相等,则成为等分子反方向扩散。
液体中的稳态扩散过程:液体中的分子扩散速率远远低于气体中的分子扩散速率,其原因是由于液体分子之间的距离较近,扩散物质A 的分子运动容易与邻近液体B 的分子相碰撞,使本身的扩散速率减慢。
常见有两种情况:即组分A 与组分B 的等分子反方向扩散 及 组分A 通过停滞组分B 的扩散。
固体中的稳态扩散过程:固体中的扩散,包括气体、液体、1当物系中存在速度、温度和浓度的梯度时,则分别发生动量、热量、和质量的传递现象。
du dyτμ=- 表示两个作直线运动的流体层之间的切应力正比于垂直运动方向的速度变化率。
不同的流体有不同的传递动量的能力,这种性质用流体的动力黏性系数μ来反映,其物理意义可以理解为,它表征了单位速度梯度作用的切应力,反映了流体黏性滞性的动力性质,因此称它为“动力”黏性系数。
热质交换原理与设备课程第2章3对流传质问题的分析求解
CA)
4
d
2ub dCA
分离变量积分
4hm
L
dx
CA2
dC A
dub 0
CA1 C As C A
得
4hm dub
L
ln(C As
C A1 ) ln(C As
CA2 )
代入给定值,写成
ln(2.80
10 5
C As )
ln(2.80
10 5
0)
(4)(2.31 10 3 )(0.6) (0.025 )(1)
平均传质系数。长度为L的整个板面的平均传质系数hm 可由下
式计算
hm
将式③代入式⑤中并积分,
1 L
L
0
hmx dx
hm
0.664 DAB L
1
Re
2 L
1
Sc 3
⑥
⑦
Shm
hm L DAB
0.664
1
Re
2 L
1
Sc 3
适用条件:式⑥和式⑦适用于求 Sc 0.6 ,平板壁面上传质 速率很低,层流边界层部分的对流传质系数。
LD 0.05Re Sc d
在进行管内层流传质的计算过程中,所用公式中各物理量的
定性温度和定性浓度采用流体的主体温度和主体浓度,即
tb
t1
t2 2
, CAb
C A1
CA2 2
式中,下表1,2分别表示进、出口状态。
例2—8 常压下45℃的空气以1m/s的速度预先通过直径为25mm,长度为2m的金属管 道,然后进入与该管道连接的具有相同直径的萘管,于是萘由管壁向空气中传质。
故
设萘板表面积为A,且由于扩散所减薄的厚度为b,则有
(完整版)《热质交换原理与设备》习题答案(第版).doc
第一章绪论1、答:分为三类。
动量传递:流场中的速度分布不均匀(或速度梯度的存在);热量传递:温度梯度的存在(或温度分布不均匀);质量传递:物体的浓度分布不均匀(或浓度梯度的存在)。
2、解:热质交换设备按照工作原理分为:间壁式,直接接触式,蓄热式和热管式等类型。
间壁式又称表面式,在此类换热器中,热、冷介质在各自的流道中连续流动完成热量传递任务,彼此不接触,不掺混。
直接接触式又称混合式,在此类换热器中,两种流体直接接触并且相互掺混,传递热量和质量后,在理论上变成同温同压的混合介质流出,传热传质效率高。
蓄热式又称回热式或再生式换热器,它借助由固体构件(填充物)组成的蓄热体传递热量,此类换热器,热、冷流体依时间先后交替流过蓄热体组成的流道,热流体先对其加热,使蓄热体壁温升高,把热量储存于固体蓄热体中,随即冷流体流过,吸收蓄热体通道壁放出的热量。
热管换热器是以热管为换热元件的换热器,由若干热管组成的换热管束通过中隔板置于壳体中,中隔板与热管加热段,冷却段及相应的壳体内穷腔分别形成热、冷流体通道,热、冷流体在通道内横掠管束连续流动实现传热。
3、解:顺流式又称并流式,其内冷、热两种流体平行地向着同方向流动,即冷、热两种流体由同一端进入换热器。
逆流式,两种流体也是平行流体,但它们的流动方向相反,即冷、热两种流体逆向流动,由相对得到两端进入换热器,向着相反的方向流动,并由相对的两端离开换热器。
叉流式又称错流式,两种流体的流动方向互相垂直交叉。
混流式又称错流式,两种流体的流体过程中既有顺流部分,又有逆流部分。
顺流和逆流分析比较:在进出口温度相同的条件下,逆流的平均温差最大,顺流的平均温差最小,顺流时,冷流体的出口温度总是低于热流体的出口温度,而逆流时冷流体的出口温度却可能超过热流体的出口温度,以此来看,热质交换器应当尽量布置成逆流,而尽可能避免布置成顺流,但逆流也有一定的缺点, 即冷流体和热流体的最高温度发生在换热器的同一端,使得此处的壁温较高,为了降低这里的壁温,有时有意改为顺流。
热质交换原理与设备考点
热质交换原理与设备考点第二章:热质交换过程2.1 对于三传现象的解析:陈金峰2.2 质交换的基本方式:按机理分:分子扩散、对流扩散。
按推动力分:浓度扩散、热扩散、压力扩散。
同时存在分子扩散和对流扩散时称之为对流质交换。
2.3 关于扩散传质:2.3.1 斐克定律:在浓度场不随时间而变化的稳态扩散条件下,当无整体流动时,组成二元混合物中的组分A 和B 将发生相互扩散。
表达式:J 规则热运动引起的扩散过程)A= -DABdCA (只适用于分子无dzDp 2.3.2 斯蒂芬定律:m A =RT D zp´(pA1- pA2)(其中:pBM= p B2 - p B1pD z 为距BM ln B2pB1离,其中A 为扩散的组分,通常为水。
B 通常为空气)应用举例:P32 例2-42.3.3 扩散系数:实验测得,气体>液体>固体。
表示其扩散能力。
非标准状况下的扩散系数计算:D = D0p T 3 0 ( ) 2 p T2.4 对流传质与模型:2.4.1 对流传质系数:NA = hm(CAs-CA¥)hm为对流传质系数,CAs和CA¥分别为壁面处和主流的浓度2.4.2 相际间对流传质模型:刘易斯关系式 h = c ´ r ´ Le ,Le 等于 1 2.4.2.1 薄膜理论:当流体靠近物体表面流过时,存在一层附壁薄膜,在薄膜的流体侧与具有浓度均匀的主流连续接触,并假设膜内流体与主流不相混合和扰动。
在此条件下, 整个过传质程中相当于此薄膜上的扩散作用,而且认为在薄膜上垂直于壁面方向上呈线性浓D 度分布,膜内的扩散传质过程具有稳态的特性。
由薄膜理论,传质系数 h m = d .2.4.2.2 渗透理论:当流体流过表面时,有流体质点不断穿过流体的附壁薄层想表面迁移并与之接触,流体质点在与表面接触之际则进行质量的转移过程,此后质点又回到主流 核心中去。
流体质点在很短的接触时间内,接受表面传递的组分过程表现为不稳态特征。
热质交换2-3
u∞ CA∞ δ c
CA∞
自由流
CA
CAs
浓度边界层
浓度边界层示意图
在稳态传质下,组分A通过静止流层的传质速 率应等于对流传质速率,有
NA DAB dCA dy
hm(CA-CAs )
y 0
合并整理得
CAs-CA 上述结果以质量浓度为基准表示: DAB A / y y 0 hm As- A
质量累积速率为
M A = Adxdydz M A A = dxdydz
3)反应生成的质量流量 反应生成的质量流量=rAdxdydz 传质微分方程 将上三式代入质量守衡定律表达式中,得
( Au x ) ( Au y ) ( Au z ) A jAx jAy jAz rA 0 x y z x y z
2T Pr dT f 0 (10) 2 其中 2 d cp ts t Pr= (12) T (11) a ts t 0 式(10)的边界条件为 η=0,T* =0 η→∞,T* =1 类似地,可参照以上方法,求解边界层传质微分方程,将其化 为无因次的形式 2CA Sc dCA
球坐标系的对流传质方程
u A A A u A ur ' r r r sin A 2 A 1 2 A 1 1 D[ 2 (r ) 2 (sin ) 2 2 ]+rA 2 r r r r sin r sin
2.3
对流传质
对流传质是在流体流动条件下的质量 传输过程,是分子扩散和对流扩散的总作 用。例如空气流过水面,水气两相之间的 传质这一经常发生的物理现象。 对流传质过程与流体的运动特性密切 相关,如流体流动的起因、流体的流动性 质以及流动的空间条件等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章 对流传质分析与计算
3.1 对流传质的理论计算
3.2 对流传质的类比求解
3.3 对流传质的实验求解
3.4 对流传质的模型分析
3.5 热质传递同时进行过程分析
3.1 对流传质的理论求解
与对流换热相似,研究对流传质,主要目的是求解对流传质系数或计算传质通量。
对流传质的理论求解就是针对具体问题,在已知初始条件和边界条件下,通过求解边界层对流传质微分方程组,获得对流传质系数或传质通量。
3.1 对流传质的理论求解
理论上:
可从连续性方程、N-S方程、能量方程和对流传质微分方程,加上具体对流传质问题的初始条件和边界条件,可求解一切对流传质问题。
实际上:
方程的非线性和具体对流传质问题的复杂性,很难进行理论求解(或超出了本科生数学水平),只能求解很简单的对流传质问题。
2%噪丧稳概很F 、稳概很库牛
3.2 对流传质的类比求解
m
D D a C t St St ;Sh Nu ;Sc Pr ;;↔↔↔↔↔↔λ由传质传热因子表达式可知,只要将对流传热中的有关参数及准则数替换为对流传质的对应参量和准则数,即可由对流传热问题的解获得相应对流传质问题的解。
相关参数和准则数的对应关系为:
3.3 对流传质的实验求解
1%荧赠弄彝弄
很多实际问题不能通过理论求解,也无相应对流传热问题的解,无法利用类比求解,此时可通过实验获得问题的解,确定关联式形式。
应注意的是,关联式表达形式通常有两种:一是以少量无量纲准则数组成的关联式,二是以综合变量组成的关联式。
两者各有优缺点。
3.3 对流传质的实验求解2%凑炮裸数
A、实际传质问题的主要解决方法
B、近似性、局限性和条件性
C、与分析解和数值解的联系与区别
D、典型问题的实验关联式:管内强制对流传质
3.4 对流传质的模型分析
1%框跳
A、模型是什么?
B、过程:问题——提出问题的数学物理模型——研究模型的解——实验验证——模型修正——实验验证——……——问题模型
C、假设的重要性和关键性!
A 、船罚桑垃
提出过程:能斯特(1904年),惠特曼(1923年)
基本论点:存在附壁薄膜,主流与膜内流体连续接触但不干扰、膜内浓度分布线性、膜内稳态过程模型的解:
3.4 对流传质的模型分析
2%瓶钻野寸沃伟讲玫具垃桑垃δ
D
h m =
B 、津转桑垃
提出过程:希格比(1935年)
基本论点:一维非稳态问题,斐克第二定律描述。
模型的解:3.4 对流传质的模型分析
2%瓶钻野寸沃伟讲玫具垃桑垃c
m
t D h π2=比较:膜理论5
.0D h m ∝1
D
h m ∝)
0.1~5.0(,=∝n D h n
m 实验表明多数情况下:荧数6外摘悩决今二罚熄蟹命津转熄蟹胶困义野
3.5 热质传递同时进行过程分析2%烪讲伟轮吊敛足英敛伟讲寸伟烪玫彩哈
D、传质对传热的影响分析
1、传质的存在对壁
面热传导和总传热量
的影响的方向相反
2、当C0为正值时,
壁面上导热量明显减
值接近 4 时,
少,当C
壁面上的导热量几乎
等于零。
3、传质的存在,传质
速率的大小与方向影
响了壁面温度梯度,
从而影响壁面导热量。
3.5 热质传递同时进行过程分析3%伟讲彩哈伟烪玫库牛
A、传质冷却和烧蚀冷却
物墩队吐沃佐伟讲(伟讲玫字圣佳怍伟烪退够够墙功。
3.5 热质传递同时进行过程分析3%伟讲彩哈伟烪玫库牛
B、冷凝传热
物沃佐吐墩队伟讲(伟讲玫字圣佳墩队伟烪退够够墙功。
3.5 热质传递同时进行过程分析4%石规除埔玫列敲撰共窝弄
成立条件:
0.6 < Pr < 60; 0.6 < Sc <3000; Le ≈1。
条件表明,热扩散和质量扩散要满足一定的条件。
对于扩散不占主导地位的湍流热质交换过程,无论a/D是否等于1,刘伊斯关系式总是成立。
3.5 热质传递同时进行过程分析
5%测照活废玫熄蟹培痕
羊孤
6%羊渗烦填个玫伟烪伟讲
羊孤
本章小结
1%欺蔽寸沃伟讲窝摘玫噪省操毫6令稳概欺蔽丹迹炮2%烪讲伟轮吊敛足英走瞄个伟讲寸伟烪玫彩哈刀朋3%列敲撰共窝弄。