2013年四川师范大学数学专业综合考研真题(Word版)
2013考研数学一数学二数学三(真题及答案)完美打印word版
![2013考研数学一数学二数学三(真题及答案)完美打印word版](https://img.taocdn.com/s3/m/3ad78ee0856a561252d36ffc.png)
2013考研数学(一、二、三)真题及答案解析第一部分:数一真题及答案解析1.已知极限arctan limkx x xc x →-=,其中k ,c 为常数,且0c ≠,则() A.12,2k c ==-B. 12,2k c ==C. 13,3k c ==-D. 13,3k c ==答案:D解析:用洛必达法则221121000011arctan 1111lim lim lim lim (1)k k k k x x x x x x x x x cx kx kx x k x ---→→→→--+-+====+因此112,k c k -==,即13,3k c ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) A. 2x y z -+=- B. 0x y z ++= C. 23x y z -+=- D. 0x y z --= 答案:A 解析:法向量(0,1,1)(,,)(2sin()1,sin(),),|(1,1,1)x y z n F F F x y xy x xy z y n -==-+-+=-切平面的方程是:1(0)1(1)1(1)0x y z ---++=,即2x y z -+=-。
3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰ ,令1()s i n n n S x b n x π∞==∑,则( )A .34 B. 14 C. 14- D. 34-答案:C解析:根据题意,将函数在[1,1]-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1||,(0,1)2()1||,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,它的傅里叶级数为()s x ,它是以2为周期的,则当(1,1)x ∈-且()f x 在x 处连续时,()()s x f x =。
91111()()()()44444s s s f -=-=-=-=-。
2013年考研数三真题及答案解析(完整版)
![2013年考研数三真题及答案解析(完整版)](https://img.taocdn.com/s3/m/e5e5711831126edb6e1a1012.png)
倚窗远眺,目光目光尽处必有一座山,那影影绰绰的黛绿色的影,是春天的颜色。
周遭流岚升腾,没露出那真实的面孔。
面对那流转的薄雾,我会幻想,那里有一个世外桃源。
在天阶夜色凉如水的夏夜,我会静静地,静静地,等待一场流星雨的来临…许下一个愿望,不乞求去实现,至少,曾经,有那么一刻,我那还未枯萎的,青春的,诗意的心,在我最美的年华里,同星空做了一次灵魂的交流…秋日里,阳光并不刺眼,天空是一碧如洗的蓝,点缀着飘逸的流云。
偶尔,一片飞舞的落叶,会飘到我的窗前。
斑驳的印迹里,携刻着深秋的颜色。
在一个落雪的晨,这纷纷扬扬的雪,飘落着一如千年前的洁白。
窗外,是未被污染的银白色世界。
我会去迎接,这人间的圣洁。
在这流转的岁月里,有着流转的四季,还有一颗流转的心,亘古不变的心。
2013年考研数三真题及答案解析一、选择题 1—8小题.每小题4分,共32分.、1.当0→x 时,用)(x o 表示比x 高阶的无穷小,则下列式子中错误的是( )(A ))()(32x o x o x =⋅ (B ))()()(32x o x o x o = (C ))()()(222x o x o x o =+ (D ))()()(22x o x o x o =+【详解】由高阶无穷小的定义可知(A )(B )(C )都是正确的,对于(D )可找出反例,例如当0→x 时)()(),()(2332x o x x g x o x x x f ===+=,但)()()(x o x g x f =+而不是)(2x o 故应该选(D ).2.函数xx x x x f xln )1(1)(+-=的可去间断点的个数为( )(A )0 (B )1 (C )2 (D )3 【详解】当0ln →x x 时,x x ex xx xln ~11ln -=-,1ln ln limln )1(1lim)(lim 0==+-=→→→x x x x x x x x x f x xx x ,所以0=x 是函数)(x f 的可去间断点.21ln 2ln limln )1(1lim)(lim 011==+-=→→→xx x x xx x x x f x xx x ,所以1=x 是函数)(x f 的可去间断点. ∞=+-=+-=-→-→-→xx x x xx x x x f x x x x ln )1(ln limln )1(1lim)(lim 111,所以所以1-=x 不是函数)(x f 的可去间断点.故应该选(C ).3.设k D 是圆域{}1|),(22≤+=y x y x D 的第k 象限的部分,记⎰⎰-=kD k dxdy x y I )(,则( )(A )01>I (B )02>I (C )03>I (D )04>I 【详解】由极坐标系下二重积分的计算可知()ππππππθθθθθθθθ22122110222)1(|cos sin 31)sin (sin 31)cos (sin )(k k kk kk D k d dr r d dxdy x y I k ---+-=-=-=-=⎰⎰⎰⎰⎰所以ππ32,32,04231-====I I I I ,应该选(B ). 4.设{}n a 为正项数列,则下列选择项正确的是( ) (A )若1+>n n a a ,则∑∞=--11)1(n n n a 收敛;(B )若∑∞=--11)1(n n n a 收敛,则1+>n n a a ;(C )若∑∞=1n na收敛.则存在常数1>P ,使n pn a n ∞→lim 存在;(D )若存在常数1>P ,使n pn a n ∞→lim 存在,则∑∞=1n na收敛.【详解】由正项级数的比较审敛法,可知选项(D )正确,故应选(D).此小题的(A )(B )选项想考查的交错级数收敛的莱布尼兹条件,对于选项(A ),但少一条件0lim =∞→n n a ,显然错误.而莱布尼兹条件只是交错级数收敛的充分条件,不是必要条件,选项(B )也不正确,反例自己去构造.5.设A,B,C均为n 阶矩阵,若AB=C,且B可逆,则(A )矩阵C 的行向量组与矩阵A 的行向量组等价. (B )矩阵C 的列向量组与矩阵A 的列向量组等价. (C )矩阵C 的行向量组与矩阵B 的行向量组等价. (D )矩阵C 的列向量组与矩阵B 的列向量组等价.【详解】把矩阵A ,C 列分块如下:()()n n C A γγγααα,,,,,,,2121 ==,由于AB=C,则可知),,2,1(2211n i b b b n in i i i =+++=αααγ,得到矩阵C 的列向量组可用矩阵A 的列向量组线性表示.同时由于B 可逆,即1-=CB A ,同理可知矩阵A 的列向量组可用矩阵C 的列向量组线性表示,所以矩阵C 的列向量组与矩阵A 的列向量组等价.应该选(B ).6.矩阵⎪⎪⎪⎭⎫ ⎝⎛1111a a b a a 与矩阵⎪⎪⎪⎭⎫ ⎝⎛00000002b 相似的充分必要条件是(A )2,0==b a (B )0=a ,b 为任意常数 (C )0,2==b a (D )2=a ,b 为任意常数【详解】注意矩阵⎪⎪⎪⎭⎫ ⎝⎛00000002b 是对角矩阵,所以矩阵A=⎪⎪⎪⎭⎫ ⎝⎛1111a a b a a 与矩阵⎪⎪⎪⎭⎫⎝⎛00000002b 相似的充分必要条件是两个矩阵的特征值对应相等.)22)2((111122a b b aa baa A E -++--=---------=-λλλλλλλ从而可知b a b 2222=-,即0=a ,b 为任意常数,故选择(B ).7.设321,,X X X 是随机变量,且)3,5(~),2,0(~),1,0(~23221N X N X N X ,{}22≤≤-=i i X P P ,则(A )321P P P >> (B )312P P P >> (C )123P P P >> (D )231P P P >> 【详解】若),(~2σμN X ,则)1,0(~N X σμ-1)2(21-Φ=P ,{}1)1(212122222-Φ=⎭⎬⎫⎩⎨⎧≤≤-=≤≤-=X P X P P ,{}())13737)1(3523535222333Φ-⎪⎭⎫⎝⎛Φ=⎪⎭⎫ ⎝⎛-Φ--Φ=⎭⎬⎫⎩⎨⎧-≤-≤--=≤≤-=X P X P P ,=-23P P 0)1(32)1(3371<Φ-<Φ-⎪⎭⎫⎝⎛Φ+.故选择(A ).8.设随机变量X 和Y 相互独立,且X 和Y 的概率分布分别为X 0 1 2 3P P1/21/41/81/8Y -1 0 1 P1/31/31/3则{}==+2Y X P ( ) (A )121 (B )81 (C )61 (D )21 【详解】{}{}{}{}612412411211,30,21,12=++=-==+==+====+Y X P Y X P Y X P Y X P ,故选择(C ).二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.设曲线)(x f y =和x x y -=2在点()0,1处有切线,则=⎪⎭⎫⎝⎛+∞→2lim n n nf n .【详解】由条件可知()1)1(',01==f f .所以2)1('22222)1(221lim 2lim -=-=-+⋅+--⎪⎭⎫ ⎝⎛+-+=⎪⎭⎫ ⎝⎛+∞→∞→f nn n f n f n n nf n n 10.设函数()y x z z ,=是由方程()xy y z x=+确定,则=∂∂)2,1(|xz. 【详解】 设()xyy z z y x F x -+=)(,,,则()1)(),,(,)ln()(,,-+=-++=x z x x y z x z y x F y y z y z z y x F ,当2,1==y x 时,0=z ,所以2ln 22|)2,1(-=∂∂xz. 11.=+⎰∞+x d x x12)1(ln . 【详解】2ln |1ln )1(1|1ln 11ln )1(ln 111112=+=+++-=+-=+∞+∞+∞+∞+∞+⎰⎰⎰x x dx x x x x x xd x d x x 12.微分方程041=+'-''y y y 的通解为 . 【详解】方程的特征方程为041=+-λλr,两个特征根分别为2121==λλ,所以方程通解为221)(xe x C C y +=,其中21,C C 为任意常数.13.设()ij a A =是三阶非零矩阵,A 为其行列式,ij A 为元素ij a 的代数余子式,且满足)3,2,1,(0==+j i a A ij ij ,则A = .【详解】由条件)3,2,1,(0==+j i a A ij ij 可知0*=+TA A ,其中*A 为A 的伴随矩阵,从而可知A AA A T -===-13**,所以A 可能为1-或0.但由结论⎪⎩⎪⎨⎧-<-===1)(,01)(,1)(,)(*n A r n A r n A r n A r 可知,0*=+TA A 可知*)()(A r A r =,伴随矩阵的秩只能为3,所以.1-=A14.设随机变量X 服从标准正分布)1,0(~N X ,则()=XXeE 2 . 【详解】()=X Xe E 2dx ex edx ex dx exe x x x x⎰⎰⎰∞+∞---∞+∞-+--∞+∞--+-==2)2(222)2(22222)22(2221πππ22222222)(2222e e X E e dt e dt te e t t =+=⎪⎪⎭⎫ ⎝⎛+=⎰⎰∞+∞--∞+∞--π. 所以为22e .三、解答题15.(本题满分10分)当0→x 时,x x x 3cos 2cos cos 1-与nax 是等价无穷小,求常数n a ,. 【分析】主要是考查0→x 时常见函数的马克劳林展开式. 【详解】当→x 时,)(211cos 22x o x x +-=,)(21)()2(2112cos 2222x o x x o x x +-=+-=,)(291)()3(2113cos 2222x o x x o x x +-=+-=,所以)(7))(291))((21))((211(13cos 2cos cos 122222222x o x x o x x o x x o x x x x +=+-+-+--=-,由于x x x 3cos 2cos cos 1-与nax 是等价无穷小,所以2,7==n a . 16.(本题满分10分) 设D 是由曲线3x y =,直线a x =)0(>a 及x 轴所转成的平面图形,y x V V ,分别是D 绕x轴和y 轴旋转一周所形成的立体的体积,若y x V V =10,求a 的值. 【详解】由微元法可知πππ35320253a dx x dx y V a ax ===⎰⎰;πππ37340762)(2a dx x dx x xf V a a y ===⎰⎰;由条件y x V V =10,知77=a . 17.(本题满分10分)设平面区域D 是由曲线8,3,3=+==y x x y y x 所围成,求⎰⎰Ddxdy x 2. 【详解】341683622332222221=+=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-xx xx D D Ddy dx x dy dx x dxdy x dxdy x dxdy x . 18.(本题满分10分)设生产某产品的固定成本为6000元,可变成本为20元/件,价格函数为,100060QP -=(P 是单价,单位:元,Q 是销量,单位:件),已知产销平衡,求: (1)该的边际利润.(2)当P=50时的边际利润,并解释其经济意义. (3)使得利润最大的定价P . 【详解】(1)设利润为y ,则6000100040)206000(2--=+-=Q Q Q PQ y , 边际利润为.50040'Q y -= (2)当P=50时,Q=10000,边际利润为20.经济意义为:当P=50时,销量每增加一个,利润增加20. (3)令0'=y ,得.40100002000060,20000=-==P Q19.(本题满分10分)设函数()x f 在),0[+∞上可导,()00=f ,且2)(lim =+∞→x f x ,证明(1)存在0>a ,使得();1=a f(2)对(1)中的a ,存在),0(a ∈ξ,使得af 1)('=ξ. 【详解】证明(1)由于2)(lim =+∞→x f x ,所以存在0>X ,当X x >时,有25)(23<<x f , 又由于()x f 在),0[+∞上连续,且()00=f ,由介值定理,存在0>a ,使得();1=a f(2)函数()x f 在],0[a 上可导,由拉格朗日中值定理, 存在),0(a ∈ξ,使得aa f a f f 1)0()()('=-=ξ.20.(本题满分11分) 设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=b B a A 110,011,问当b a ,为何值时,存在矩阵C ,使得B CA AC =-,并求出所有矩阵C .【详解】显然由B CA AC =-可知,如果C 存在,则必须是2阶的方阵.设⎪⎪⎭⎫ ⎝⎛=4321x xx x C , 则B CA AC =-变形为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛---++-+-b ax x xx x ax x ax ax x 1103243142132, 即得到线性方程组⎪⎪⎩⎪⎪⎨⎧=-=--=++-=+-bax x x x x ax x ax ax x 3243142132110,要使C 存在,此线性方程组必须有解,于是对方程组的增广矩阵进行初等行变换如下()⎪⎪⎪⎪⎪⎭⎫⎝⎛+---→⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=b a ab a aa ab A 0010000001011101010111011010010|, 所以,当0,1=-=b a 时,线性方程组有解,即存在矩阵C ,使得B CA AC =-.此时,()⎪⎪⎪⎪⎪⎭⎫⎝⎛--→00000000000011011101|b A ,所以方程组的通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=100101110001214321C C x x x x x ,也就是满足B CA AC =-的矩阵C 为⎪⎪⎭⎫⎝⎛-++=211211C C C C C C ,其中21,C C 为任意常数.21.(本题满分11分) 设二次型23322112332211321)()(2),,(x b x b x b x a x a x a x x x f +++++=.记⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=321321,b b b a a a βα.(1)证明二次型f 对应的矩阵为 TTββαα+2;(2)若βα,正交且为单位向量,证明f 在正交变换下的标准形为 22212y y +. 【详解】证明:(1)()()()()()()()()()()⎪⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=+++++=321321321321321321321321321321321321321321233221123322113212,,,,2,,,,,,,,,,2)()(2),,(x x x x x x x x x x x x x x x x x x x x x b b b b b b x x x x x x a a a a a a x x x x b x b x b x a x a x a x x x f T T TT ββααββαα所以二次型f 对应的矩阵为 TT ββαα+2.证明(2)设=A TTββαα+2,由于0,1==αβαT则()ααββαααββααα2222=+=+=T TT A ,所以α为矩阵对应特征值21=λ的特征向量;()ββββααβββααβ=+=+=222T T T A ,所以β为矩阵对应特征值12=λ的特征向量;而矩阵A 的秩2)()2()2()(=+≤+=TTTTr r r A r ββααββαα,所以03=λ也是矩阵的一个特征值.故f 在正交变换下的标准形为 22212y y +. 22.(本题满分11分)设()Y X ,是二维随机变量,X 的边缘概率密度为⎩⎨⎧<<=其他,010,3)(2x x x f X ,在给定)10(<<=x x X 的条件下,Y 的条件概率密度为⎪⎩⎪⎨⎧<<=其他,0,0,3)/(32x y x y x y f XY . (1)求()Y X ,的联合概率密度()y x f ,; (2)Y 的的边缘概率密度)(y f Y .【详解】(1)()Y X ,的联合概率密度()y x f ,:()⎪⎩⎪⎨⎧<<<<=⋅=其他,00,10,9)()/(,2x y x x y x f x y f y x f X XY(2)Y 的的边缘概率密度)(y f Y :⎪⎩⎪⎨⎧<<-===⎰⎰∞+∞-其他,010,ln 99),()(212y y y dx x y dx y x f y f yY 23.(本题满分11分)设总体X 的概率密度为⎪⎩⎪⎨⎧>=-其他,00,);(32x e x x f x θθθ,其中θ为为未知参数且大于零,n X X X ,21为来自总体X 的简单随机样本.(1)求θ的矩估计量; (2)求θ的极大似然估计量.【详解】(1)先求出总体的数学期望E (X )θθθ===⎰⎰∞+-∞+∞-022)()(dx e xdx x xf X E x ,令∑===n n i X n X X E 11)(,得θ的矩估计量∑=∧==ni i X n X 11θ. (2)当),2,1(0n i x i =>时,似然函数为⎪⎪⎭⎫ ⎝⎛-==-∑⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛==∏∏n i i i x n i i n n i x i e x e x L 11312132)(θθθθθ, 取对数,∑∑==-⎪⎪⎭⎫ ⎝⎛-=n i i n i i x x n L 11ln 31ln 2)(ln θθθ, 令0)(ln =θθd L d ,得0121=-∑=n i i x n θ, 解得的极大似然估计量为.。
2013年考研数学真题及参考答案(数学二)
![2013年考研数学真题及参考答案(数学二)](https://img.taocdn.com/s3/m/d60cd9df3186bceb19e8bbd6.png)
π
2
, 则当 x → 0 时, α ( x ) 是
【 】 .
(A) 比 x 高阶的无穷小 (C) 与 x 同阶但不等价的无穷小 【答案】 答案】C.
(B) 比 x 低阶的无穷小 (D) 与 x 等价的无穷小
【考点】 考点】计算极限的方法:常用的等价无穷小.
【解析】 解析】 x sin α ( x) = cos x − 1 ~ −
(D) I 4 > 0
【解析】 解析】在第 II 象限除原点外被积函数 y − x > 0 ,因此 I 2 > 0 . 【评注】 评注】在第 IV 象限除原点外被积函数 y − x < 0 ,因此 I 4 < 0 ; 在第 I 象限和第 III 象限,根据轮换对称性得
I1 = I 3 = 0 .
(7)设 A, B, C 均为 n 阶矩阵,若 AB = C ,且 B 可逆,则 (A) 矩阵 C 的行向量组与矩阵 A 的行向量组等价 (C) 矩阵 C 的行向量组与矩阵 B 的行向量组等价 【答案】 答案】B. 【考点】 考点】向量组的线性表示方法. 【解析】 解析】将矩阵 A 和 C 按列分块,设 A = (α1 , α 2 ,⋯ , α n ) , B = (bij ) , C = (γ 1 , γ 2 ,⋯ , γ n ) . ①由 AB = C 组线性表示; 【 】 . (B) 矩阵 C 的列向量组与矩阵 A 的列向量组等价 (D) 矩阵 C 的列向量组与矩阵 B 的列向量组等价
π
6
≤θ ≤
π
6
),则 L 所围平面图形的面积为
.
【答案】 答案】
π
12
.
【考点】 考点】计算极坐标曲线所围图形的面积.
2013年考研数学一真题及答案
![2013年考研数学一真题及答案](https://img.taocdn.com/s3/m/ac78c3bef605cc1755270722192e453610665bbb.png)
2013年考研数学一真题及答案2013年考研数学一真题及答案2013年考研数学一真题是考研数学考试中的一道难题,对于考生来说是一个重要的参考资料。
本文将对2013年考研数学一真题及答案进行分析和解读,帮助考生更好地理解和掌握这道题目。
首先,我们来看一下2013年考研数学一真题的具体内容。
这道题目是一道概率题,涉及到随机变量的概念和性质。
题目要求考生计算一个随机变量的期望和方差,以及给出一个概率的近似估计。
在解答这道题目时,我们首先需要理解随机变量的概念和性质。
随机变量是一个数值的函数,它的取值是由一个随机事件的结果决定的。
在这道题目中,随机变量X表示一个随机事件的结果,我们需要计算X的期望和方差。
计算随机变量的期望和方差是概率论的基本操作。
期望是随机变量的平均值,可以看作是随机变量的中心位置。
方差是随机变量离其期望值的平均偏离程度的平方根,可以看作是随机变量的离散程度。
在解答这道题目时,我们可以利用随机变量的定义和性质,结合概率的计算方法,进行计算。
首先,我们需要计算随机变量的期望。
根据随机变量的期望的定义,我们可以将随机变量的取值和对应的概率相乘,然后将所有的乘积相加,即可得到期望的值。
接下来,我们需要计算随机变量的方差。
根据随机变量的方差的定义,我们需要计算每个取值与期望的差的平方,然后将所有的平方相加,再乘以对应的概率,即可得到方差的值。
最后,题目还要求给出一个概率的近似估计。
在概率的近似估计中,我们可以利用大数定律和中心极限定理进行计算。
大数定律指出,随着试验次数的增加,样本平均值会趋近于总体平均值。
中心极限定理指出,随机变量的和在一定条件下会近似服从正态分布。
在解答这道题目时,我们可以利用大数定律和中心极限定理,进行概率的近似估计。
首先,我们需要进行多次试验,计算每次试验的结果。
然后,我们将每次试验的结果相加,再除以试验次数,即可得到概率的近似估计。
综上所述,2013年考研数学一真题是一道概率题,涉及到随机变量的期望和方差的计算,以及概率的近似估计。
2013考研数一真题及解析
![2013考研数一真题及解析](https://img.taocdn.com/s3/m/3791f44f83c4bb4cf7ecd1b9.png)
2013年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1)已知极限0arctan limkx x xc x→-=,其中,c k 为常数,且0c ≠,则( ) (A )12,2k c ==- (B )12,2k c == C )13,3k c ==- (D )13,3k c ==(2)曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) (A )2x y z -+=- (B )2x y z ++= (C )23x y z -+=- (D )0x y z --=(3)设1()2f x x =-,102()sin (1,2,...)n b f x n xdx n π==⎰,令1()sin n n S x b n x π∞==∑,则9()4S -=( ) (A )34 (B )14 (C )14- (D )34-(4)设222222221234:1,:2,:22,:22,l x y l x y l x y l x y +=+=+=+=为四条逆时针的平面曲线,记33()(2)(1,2,3,4)63ii l y x I y dx x dy i =++-=⎰Ñ,则= ( )(A )1I (B )2I (C )3I (D )3I(5)设矩阵A,B,C 均为n 阶矩阵,若,B AB C =则可逆,则 (A )矩阵C 的行向量组与矩阵A 的行向量组等价 (B )矩阵C 的列向量组与矩阵A 的列向量组等价(C )矩阵C 的行向量组与矩阵B 的行向量组等价 (D )矩阵C 的行向量组与矩阵B 的列向量组等价(6)矩阵1111a a b a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭与2000b 0000⎛⎫⎪⎪ ⎪⎝⎭相似的充分必要条件为 (A )a 0,b 2== (B )为任意常数b a ,0= (C )0,2==b a (D )为任意常数b a ,2=(7)设123X X X ,,是随机变量,且22123~N(0,1)~N(~(5,3)X N ,X 0,2),X ,{22}(1,2,3),j j P P X j =-≤≤=则( )(A )123P P P >> (B )213P P P >> (C )312P P P >> (D )132P P P >>(8)设随机变量~(),~(1,),X t n Y F n 给定(00.5),a a <<常数c 满足{}P X c a >=,则2{}P Y c >=( )(A )α (B )1α- (C )2α (D )12α-二、填空题:9?14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上.(9)设函数()f x 由方程(1)x y y x e --=确定,则1lim (()1)n n f n→∞-= . (10)已知321x x y e xe =-,22x x y e xe =-,23x y xe =-是某二阶常系数非齐次线性微分方程的3个解,该方程的通解为y = .(11)设sin sin cos x t y t t t=⎧⎨=+⎩(t 为参数),则224t d ydx π== .(12)21ln (1)xdx x +∞=+⎰ .(13)设ij A (a )=是三阶非零矩阵,|A |为A 的行列式,ij A 为ij a 的代数余子式,若ij ij a A 0(i,j 1,2,3),____A +===则(14)设随机变量Y 服从参数为1的指数分布,a 为常数且大于零,则{1|}P Y a Y a ≤+>=________。
2013年考研数学一真题及参考答案(完整版)
![2013年考研数学一真题及参考答案(完整版)](https://img.taocdn.com/s3/m/192495da76a20029bd642da8.png)
2013数学一硕士研究生入学考试1.已知极限0arctan limk x x x c x→-=,其中k ,c 为常数,且0c ≠,则( ) A. 12,2k c ==- B. 12,2k c == C. 13,3k c ==- D. 13,3k c == 2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( )A. 2x y z -+=-B. 0x y z ++=C. 23x y z -+=-D. 0x y z --=3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰ ,令1()sin n n S x b n x π∞==∑,则9()4-=S ( ) A .34 B. 14 C. 14- D. 34- 4.设221:1L x y +=,222:2L x y +=,223:22L x y +=,224:22L x y +=为四条逆时针方向的平面曲线,记33()(2)(1,2,3,4)63ii L y x I y dx x dy i =++-=⎰ ,则{}1234max ,,,I I I I = A. 1I B. 2I C. 3I D 4I5.设A,B,C 均为n 阶矩阵,若AB=C ,且B 可逆,则( )A.矩阵C 的行向量组与矩阵A 的行向量组等价B 矩阵C 的列向量组与矩阵A 的列向量组等价C 矩阵C 的行向量组与矩阵B 的行向量组等价D 矩阵C 的列向量组与矩阵B 的列向量组等价6.矩阵1111a a b a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭与20000000b ⎛⎫ ⎪ ⎪ ⎪⎝⎭相似的充分必要条件为( )A. 0,2a b ==B. 0,a b = 为任意常数C. 2,0a b ==D. 2,a b = 为任意常数7.设123,,X X X 是随机变量,且1(0,1)X N ,22(0,2)X N ,23(5,3)X N ,{}22(1,2,3)=-≤≤=i i P P X i ,则( ) A. 123P P P >> B. 213P P P >> C. 322P P P >> D 132P P P >>8.设随机变量()X t n ,(1,)Y F n ,给定(00.5)a a <<,常数c 满足{}P X c a >=,则{}2P Y c >=( )9.设函数y=f(x)由方程y-x=e x(1-y) 确定,则01lim [()1]n n f n→-= 。
2013考研数学三真题
![2013考研数学三真题](https://img.taocdn.com/s3/m/6643a9316c85ec3a87c2c5ab.png)
(A)若 an an1,则 (1)n1an 收敛 n1
(B) 若 (1)n1an 收敛,则 an an1 n1
(C) 若 n1
an
收敛,则存在常数
P
1
,使
lim
n
n
P
an
存在
第1页
(D)若存在常数
P
1
,使
lim
n
n
P
an
存在,则
an 收敛
(10)设函数 z z(x, y) 由方程 (z y) x
xy 确定,则 z x
(1,2)
________。
(11)求
ln x
dx ________。
1 (1 x)2
(12)微分方程 y y 1 y 0 通解为 y ________。 4
( 13 ) 设 A (aij) 是 三 阶 非 零 矩 阵 , | A | 为 A 的 行 列 式 , Aij 为 aij 的 代 数 余 子 式 , 若
2
x3
ex
,
0,
x 0, 其中
为未知参数且大于零,
X1,
X
,
2
X N 为来自总体
其它.
X 的简单随机样本.
(1)求 的矩估计量; (2)求 的最大似然估计量.
第6页
当 x 0 时,1 cos x cos 2x cos3x 与 axn 为等价无穷小,求 n 与 a 的值。
(16)(本题满分 10 分)
1
设 D 是由曲线 y x3 ,直线 x a(a 0) 及 x 轴所围成的平面图形,Vx ,Vy 分别是 D 绕 x 轴, y 轴旋转一
2013年考研数学真题及参考答案(数学一)
![2013年考研数学真题及参考答案(数学一)](https://img.taocdn.com/s3/m/cd600c2e5901020207409caa.png)
⑻ 设随机变量 X t ( n) ,Y F (1, n) ,给定 (0 0.5) ,常数 c 满足 P X c , 则P Y c
2
(
)
(A) (B) 1 (C) 2 (D) 1 2 二、填空题:9~14 小题,每小题 4 分,共 24 分.请将答案写在答题纸 指定位置上. ... ⑼ 设函数 y f ( x) 由方程 y x e ⑽ 已知 y1 e
x3 x y )e 的极值. 3
z 0 , z 2 所围成的立体为 . (Ⅰ)求曲面 的方程; (Ⅱ)求 的形心坐标.
(20) (本题满分 11 分) 设A
1 a 0 1 ,B ,当 a, b 为何值时,存在矩阵 C 使得 AC CA B ,并 1 0 1 b
ቤተ መጻሕፍቲ ባይዱ
(1 x 2
Di
y2 )dxdy . 2
2
1 2 1 y 0 x2 y 2 1 , 所 以 被 积 函 数 在 2 2 1 1 D1 : x 2 y 2 1 内,恒有 f ( x, y ) 0 ;且 x 2 y 2 1 时,有 f ( x, y ) 0 2 2
(0,1, 1)
{1, 1,1} ,
于是切平面方程为 x ( y 1) ( z 1) 0 ,故应选(A). ⑶ 应选(C) . 【分析】本题考查傅里叶级数的收敛定理.先将函数延拓成 ( 1,1) 上的奇函数 F ( x) .对
9 F ( x) 使用傅里叶级数的收敛定理(狄里赫雷定理)得到 S ( ) 的值. 4
(D) a 2, b 为任意常数
N (0,1) , X 2
N (0, 22 ) , X 3
2013年考研数三真题及答案解析(完整版)
![2013年考研数三真题及答案解析(完整版)](https://img.taocdn.com/s3/m/e5e5711831126edb6e1a1012.png)
倚窗远眺,目光目光尽处必有一座山,那影影绰绰的黛绿色的影,是春天的颜色。
周遭流岚升腾,没露出那真实的面孔。
面对那流转的薄雾,我会幻想,那里有一个世外桃源。
在天阶夜色凉如水的夏夜,我会静静地,静静地,等待一场流星雨的来临…许下一个愿望,不乞求去实现,至少,曾经,有那么一刻,我那还未枯萎的,青春的,诗意的心,在我最美的年华里,同星空做了一次灵魂的交流…秋日里,阳光并不刺眼,天空是一碧如洗的蓝,点缀着飘逸的流云。
偶尔,一片飞舞的落叶,会飘到我的窗前。
斑驳的印迹里,携刻着深秋的颜色。
在一个落雪的晨,这纷纷扬扬的雪,飘落着一如千年前的洁白。
窗外,是未被污染的银白色世界。
我会去迎接,这人间的圣洁。
在这流转的岁月里,有着流转的四季,还有一颗流转的心,亘古不变的心。
2013年考研数三真题及答案解析一、选择题 1—8小题.每小题4分,共32分.、1.当0→x 时,用)(x o 表示比x 高阶的无穷小,则下列式子中错误的是( )(A ))()(32x o x o x =⋅ (B ))()()(32x o x o x o = (C ))()()(222x o x o x o =+ (D ))()()(22x o x o x o =+【详解】由高阶无穷小的定义可知(A )(B )(C )都是正确的,对于(D )可找出反例,例如当0→x 时)()(),()(2332x o x x g x o x x x f ===+=,但)()()(x o x g x f =+而不是)(2x o 故应该选(D ).2.函数xx x x x f xln )1(1)(+-=的可去间断点的个数为( )(A )0 (B )1 (C )2 (D )3 【详解】当0ln →x x 时,x x ex xx xln ~11ln -=-,1ln ln limln )1(1lim)(lim 0==+-=→→→x x x x x x x x x f x xx x ,所以0=x 是函数)(x f 的可去间断点.21ln 2ln limln )1(1lim)(lim 011==+-=→→→xx x x xx x x x f x xx x ,所以1=x 是函数)(x f 的可去间断点. ∞=+-=+-=-→-→-→xx x x xx x x x f x x x x ln )1(ln limln )1(1lim)(lim 111,所以所以1-=x 不是函数)(x f 的可去间断点.故应该选(C ).3.设k D 是圆域{}1|),(22≤+=y x y x D 的第k 象限的部分,记⎰⎰-=kD k dxdy x y I )(,则( )(A )01>I (B )02>I (C )03>I (D )04>I 【详解】由极坐标系下二重积分的计算可知()ππππππθθθθθθθθ22122110222)1(|cos sin 31)sin (sin 31)cos (sin )(k k kk kk D k d dr r d dxdy x y I k ---+-=-=-=-=⎰⎰⎰⎰⎰所以ππ32,32,04231-====I I I I ,应该选(B ). 4.设{}n a 为正项数列,则下列选择项正确的是( ) (A )若1+>n n a a ,则∑∞=--11)1(n n n a 收敛;(B )若∑∞=--11)1(n n n a 收敛,则1+>n n a a ;(C )若∑∞=1n na收敛.则存在常数1>P ,使n pn a n ∞→lim 存在;(D )若存在常数1>P ,使n pn a n ∞→lim 存在,则∑∞=1n na收敛.【详解】由正项级数的比较审敛法,可知选项(D )正确,故应选(D).此小题的(A )(B )选项想考查的交错级数收敛的莱布尼兹条件,对于选项(A ),但少一条件0lim =∞→n n a ,显然错误.而莱布尼兹条件只是交错级数收敛的充分条件,不是必要条件,选项(B )也不正确,反例自己去构造.5.设A,B,C均为n 阶矩阵,若AB=C,且B可逆,则(A )矩阵C 的行向量组与矩阵A 的行向量组等价. (B )矩阵C 的列向量组与矩阵A 的列向量组等价. (C )矩阵C 的行向量组与矩阵B 的行向量组等价. (D )矩阵C 的列向量组与矩阵B 的列向量组等价.【详解】把矩阵A ,C 列分块如下:()()n n C A γγγααα,,,,,,,2121 ==,由于AB=C,则可知),,2,1(2211n i b b b n in i i i =+++=αααγ,得到矩阵C 的列向量组可用矩阵A 的列向量组线性表示.同时由于B 可逆,即1-=CB A ,同理可知矩阵A 的列向量组可用矩阵C 的列向量组线性表示,所以矩阵C 的列向量组与矩阵A 的列向量组等价.应该选(B ).6.矩阵⎪⎪⎪⎭⎫ ⎝⎛1111a a b a a 与矩阵⎪⎪⎪⎭⎫ ⎝⎛00000002b 相似的充分必要条件是(A )2,0==b a (B )0=a ,b 为任意常数 (C )0,2==b a (D )2=a ,b 为任意常数【详解】注意矩阵⎪⎪⎪⎭⎫ ⎝⎛00000002b 是对角矩阵,所以矩阵A=⎪⎪⎪⎭⎫ ⎝⎛1111a a b a a 与矩阵⎪⎪⎪⎭⎫⎝⎛00000002b 相似的充分必要条件是两个矩阵的特征值对应相等.)22)2((111122a b b aa baa A E -++--=---------=-λλλλλλλ从而可知b a b 2222=-,即0=a ,b 为任意常数,故选择(B ).7.设321,,X X X 是随机变量,且)3,5(~),2,0(~),1,0(~23221N X N X N X ,{}22≤≤-=i i X P P ,则(A )321P P P >> (B )312P P P >> (C )123P P P >> (D )231P P P >> 【详解】若),(~2σμN X ,则)1,0(~N X σμ-1)2(21-Φ=P ,{}1)1(212122222-Φ=⎭⎬⎫⎩⎨⎧≤≤-=≤≤-=X P X P P ,{}())13737)1(3523535222333Φ-⎪⎭⎫⎝⎛Φ=⎪⎭⎫ ⎝⎛-Φ--Φ=⎭⎬⎫⎩⎨⎧-≤-≤--=≤≤-=X P X P P ,=-23P P 0)1(32)1(3371<Φ-<Φ-⎪⎭⎫⎝⎛Φ+.故选择(A ).8.设随机变量X 和Y 相互独立,且X 和Y 的概率分布分别为X 0 1 2 3P P1/21/41/81/8Y -1 0 1 P1/31/31/3则{}==+2Y X P ( ) (A )121 (B )81 (C )61 (D )21 【详解】{}{}{}{}612412411211,30,21,12=++=-==+==+====+Y X P Y X P Y X P Y X P ,故选择(C ).二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.设曲线)(x f y =和x x y -=2在点()0,1处有切线,则=⎪⎭⎫⎝⎛+∞→2lim n n nf n .【详解】由条件可知()1)1(',01==f f .所以2)1('22222)1(221lim 2lim -=-=-+⋅+--⎪⎭⎫ ⎝⎛+-+=⎪⎭⎫ ⎝⎛+∞→∞→f nn n f n f n n nf n n 10.设函数()y x z z ,=是由方程()xy y z x=+确定,则=∂∂)2,1(|xz. 【详解】 设()xyy z z y x F x -+=)(,,,则()1)(),,(,)ln()(,,-+=-++=x z x x y z x z y x F y y z y z z y x F ,当2,1==y x 时,0=z ,所以2ln 22|)2,1(-=∂∂xz. 11.=+⎰∞+x d x x12)1(ln . 【详解】2ln |1ln )1(1|1ln 11ln )1(ln 111112=+=+++-=+-=+∞+∞+∞+∞+∞+⎰⎰⎰x x dx x x x x x xd x d x x 12.微分方程041=+'-''y y y 的通解为 . 【详解】方程的特征方程为041=+-λλr,两个特征根分别为2121==λλ,所以方程通解为221)(xe x C C y +=,其中21,C C 为任意常数.13.设()ij a A =是三阶非零矩阵,A 为其行列式,ij A 为元素ij a 的代数余子式,且满足)3,2,1,(0==+j i a A ij ij ,则A = .【详解】由条件)3,2,1,(0==+j i a A ij ij 可知0*=+TA A ,其中*A 为A 的伴随矩阵,从而可知A AA A T -===-13**,所以A 可能为1-或0.但由结论⎪⎩⎪⎨⎧-<-===1)(,01)(,1)(,)(*n A r n A r n A r n A r 可知,0*=+TA A 可知*)()(A r A r =,伴随矩阵的秩只能为3,所以.1-=A14.设随机变量X 服从标准正分布)1,0(~N X ,则()=XXeE 2 . 【详解】()=X Xe E 2dx ex edx ex dx exe x x x x⎰⎰⎰∞+∞---∞+∞-+--∞+∞--+-==2)2(222)2(22222)22(2221πππ22222222)(2222e e X E e dt e dt te e t t =+=⎪⎪⎭⎫ ⎝⎛+=⎰⎰∞+∞--∞+∞--π. 所以为22e .三、解答题15.(本题满分10分)当0→x 时,x x x 3cos 2cos cos 1-与nax 是等价无穷小,求常数n a ,. 【分析】主要是考查0→x 时常见函数的马克劳林展开式. 【详解】当→x 时,)(211cos 22x o x x +-=,)(21)()2(2112cos 2222x o x x o x x +-=+-=,)(291)()3(2113cos 2222x o x x o x x +-=+-=,所以)(7))(291))((21))((211(13cos 2cos cos 122222222x o x x o x x o x x o x x x x +=+-+-+--=-,由于x x x 3cos 2cos cos 1-与nax 是等价无穷小,所以2,7==n a . 16.(本题满分10分) 设D 是由曲线3x y =,直线a x =)0(>a 及x 轴所转成的平面图形,y x V V ,分别是D 绕x轴和y 轴旋转一周所形成的立体的体积,若y x V V =10,求a 的值. 【详解】由微元法可知πππ35320253a dx x dx y V a ax ===⎰⎰;πππ37340762)(2a dx x dx x xf V a a y ===⎰⎰;由条件y x V V =10,知77=a . 17.(本题满分10分)设平面区域D 是由曲线8,3,3=+==y x x y y x 所围成,求⎰⎰Ddxdy x 2. 【详解】341683622332222221=+=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-xx xx D D Ddy dx x dy dx x dxdy x dxdy x dxdy x . 18.(本题满分10分)设生产某产品的固定成本为6000元,可变成本为20元/件,价格函数为,100060QP -=(P 是单价,单位:元,Q 是销量,单位:件),已知产销平衡,求: (1)该的边际利润.(2)当P=50时的边际利润,并解释其经济意义. (3)使得利润最大的定价P . 【详解】(1)设利润为y ,则6000100040)206000(2--=+-=Q Q Q PQ y , 边际利润为.50040'Q y -= (2)当P=50时,Q=10000,边际利润为20.经济意义为:当P=50时,销量每增加一个,利润增加20. (3)令0'=y ,得.40100002000060,20000=-==P Q19.(本题满分10分)设函数()x f 在),0[+∞上可导,()00=f ,且2)(lim =+∞→x f x ,证明(1)存在0>a ,使得();1=a f(2)对(1)中的a ,存在),0(a ∈ξ,使得af 1)('=ξ. 【详解】证明(1)由于2)(lim =+∞→x f x ,所以存在0>X ,当X x >时,有25)(23<<x f , 又由于()x f 在),0[+∞上连续,且()00=f ,由介值定理,存在0>a ,使得();1=a f(2)函数()x f 在],0[a 上可导,由拉格朗日中值定理, 存在),0(a ∈ξ,使得aa f a f f 1)0()()('=-=ξ.20.(本题满分11分) 设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=b B a A 110,011,问当b a ,为何值时,存在矩阵C ,使得B CA AC =-,并求出所有矩阵C .【详解】显然由B CA AC =-可知,如果C 存在,则必须是2阶的方阵.设⎪⎪⎭⎫ ⎝⎛=4321x xx x C , 则B CA AC =-变形为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛---++-+-b ax x xx x ax x ax ax x 1103243142132, 即得到线性方程组⎪⎪⎩⎪⎪⎨⎧=-=--=++-=+-bax x x x x ax x ax ax x 3243142132110,要使C 存在,此线性方程组必须有解,于是对方程组的增广矩阵进行初等行变换如下()⎪⎪⎪⎪⎪⎭⎫⎝⎛+---→⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=b a ab a aa ab A 0010000001011101010111011010010|, 所以,当0,1=-=b a 时,线性方程组有解,即存在矩阵C ,使得B CA AC =-.此时,()⎪⎪⎪⎪⎪⎭⎫⎝⎛--→00000000000011011101|b A ,所以方程组的通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=100101110001214321C C x x x x x ,也就是满足B CA AC =-的矩阵C 为⎪⎪⎭⎫⎝⎛-++=211211C C C C C C ,其中21,C C 为任意常数.21.(本题满分11分) 设二次型23322112332211321)()(2),,(x b x b x b x a x a x a x x x f +++++=.记⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=321321,b b b a a a βα.(1)证明二次型f 对应的矩阵为 TTββαα+2;(2)若βα,正交且为单位向量,证明f 在正交变换下的标准形为 22212y y +. 【详解】证明:(1)()()()()()()()()()()⎪⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=+++++=321321321321321321321321321321321321321321233221123322113212,,,,2,,,,,,,,,,2)()(2),,(x x x x x x x x x x x x x x x x x x x x x b b b b b b x x x x x x a a a a a a x x x x b x b x b x a x a x a x x x f T T TT ββααββαα所以二次型f 对应的矩阵为 TT ββαα+2.证明(2)设=A TTββαα+2,由于0,1==αβαT则()ααββαααββααα2222=+=+=T TT A ,所以α为矩阵对应特征值21=λ的特征向量;()ββββααβββααβ=+=+=222T T T A ,所以β为矩阵对应特征值12=λ的特征向量;而矩阵A 的秩2)()2()2()(=+≤+=TTTTr r r A r ββααββαα,所以03=λ也是矩阵的一个特征值.故f 在正交变换下的标准形为 22212y y +. 22.(本题满分11分)设()Y X ,是二维随机变量,X 的边缘概率密度为⎩⎨⎧<<=其他,010,3)(2x x x f X ,在给定)10(<<=x x X 的条件下,Y 的条件概率密度为⎪⎩⎪⎨⎧<<=其他,0,0,3)/(32x y x y x y f XY . (1)求()Y X ,的联合概率密度()y x f ,; (2)Y 的的边缘概率密度)(y f Y .【详解】(1)()Y X ,的联合概率密度()y x f ,:()⎪⎩⎪⎨⎧<<<<=⋅=其他,00,10,9)()/(,2x y x x y x f x y f y x f X XY(2)Y 的的边缘概率密度)(y f Y :⎪⎩⎪⎨⎧<<-===⎰⎰∞+∞-其他,010,ln 99),()(212y y y dx x y dx y x f y f yY 23.(本题满分11分)设总体X 的概率密度为⎪⎩⎪⎨⎧>=-其他,00,);(32x e x x f x θθθ,其中θ为为未知参数且大于零,n X X X ,21为来自总体X 的简单随机样本.(1)求θ的矩估计量; (2)求θ的极大似然估计量.【详解】(1)先求出总体的数学期望E (X )θθθ===⎰⎰∞+-∞+∞-022)()(dx e xdx x xf X E x ,令∑===n n i X n X X E 11)(,得θ的矩估计量∑=∧==ni i X n X 11θ. (2)当),2,1(0n i x i =>时,似然函数为⎪⎪⎭⎫ ⎝⎛-==-∑⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛==∏∏n i i i x n i i n n i x i e x e x L 11312132)(θθθθθ, 取对数,∑∑==-⎪⎪⎭⎫ ⎝⎛-=n i i n i i x x n L 11ln 31ln 2)(ln θθθ, 令0)(ln =θθd L d ,得0121=-∑=n i i x n θ, 解得的极大似然估计量为.。