初一七年级数学绝对值练习题及答案解析

合集下载

初中数学七年级上册绝对值练习题含答案

初中数学七年级上册绝对值练习题含答案

初中数学七年级上册绝对值练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________ 1. 化简−|−3|等于( )A.−3B.−13C.13D.32. 如果一个数的绝对值等于它的相反数,那么这个数一定是( )A.正数B.负数C.非正数D.非负数3. 已知a、b、c都是负数,且|x−a|+|y−b|+|z−c|=0,则xyz是()A.负数B.非负数C.正数D.非正数4. 下列推断正确的是( )A.若|a|=|b|,则a=bB.若|a|=|b|,则a=−bC.若|m|=|−n|,则m=−nD.若m=−n,则|m|=|n|5. 已知x、y、z为有理数,且x+y+z=0,xyz<0,则y−z|x|+x−z|y|+x+y|z|的值为().A.−1B.1C.1或−1D.−36. 下列判断正确的是()A.−14>−15B.−35<−45C.−34>−45D.−1>−0.017. 若关于x的方程|2x−3|+m=0无解,|3x−4|+n=0只有一个解,|4x−5|+k=0有两个解,则m, n, k的大小关系是()A.m>n>kB.n>k>mC.k>m>nD.m>k>n8. 下列四组有理数大小的比较正确的是()A.−12>13B.−|−1|>−|+1|C.12<13D.|−12|>|−13|9. 绝对值大于2,且不大于5的整数有( )10. 以下选项中比|−12|小的数是( )A.2B.32C.12D.−1311. 在数−4,−3,−1,2中,大小在−2和1之间的数是________.12. 已知1<x <2,化简|x −1|+|x −2|=________.13. √3−2的相反数是________,绝对值是________.14. 绝对值小于227的整数有________.15. 若|x −1|=|−3|,那么x =________.16. 当a =________时,代数式|a −4|+3有最小值是________.17. 已知|a −2|+|b −4|=0,则2a +3b =________.18. 已知,则的值可能是________.19. 已知有理数a ,b 在数轴上的位置如图所示,则︱b −a ︱=________.20. 比较大小:−34________−45;−(−2)________−|−2|.21. 已知|x −1|+|y +2|=0,则x −y =________.22. 比较下列各对数的大小:(2)−518和−29.23. 已知|x|=3,|y|=4,且xy <0,求x +y 的值.24.(1)计算:|−6|−√9+(1−√2)0−(−3).(2)如图,BD 是菱形ABCD 的对角线,∠ABF =30∘,EF 为AB 的垂直平分线, 垂足为E ,交AD 于F ,连接BF ,求∠ABD 的度数.25. 某检修小组从A 地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下(单位:千米):(1)求收工时检修小组是否回到A 地?(2)在第________次纪录时距A 地最远.(3)若每千米耗油0.2升,每升汽油需8元,问检修小组工作一天需汽油费多少元?26. 问题:比较 −|65| 与+(−43) 的大小. 解:化简可得−|65|=−65,+(−43)=−43①,因为|65|=65,|−43|=43②又65=1815<2015=43③,所以−65<−43④,所以−|6|<+(−4)⑤(2)请按照上述方法比较 −(+1011)与−|910|的大小.27. 比较下列各数的大小,用“<”连接起来.−1017,−1219,−1523,−3031,−6091.28. 已知a =−4,b =−5,求a −b 的值.29. 已知|a|=2,|b|=3,且a +b <0,求a +b 的值.30. 比较下面两个数的大小.(1)−43与−32(2)比较−(−3.1)与3.2的绝对值.31. 比较有理数的大小.(1)−57与23(2)−8与−5(3)−57与−34(4)已知a >b >0,试比较−a 和−b 的大小.32. 已知a <b <0<c ,化简|a|−|−b|+|c|.33. 有理数a 、b 在数轴上的位置如图,计算|a −b|−2|a −c|−|b +c|.(1)如果甲报的数为x ,则乙报的数为x −1,丙报的数为________,丁报的数为________;(2)若丁报出的答案为2,则甲报的数是多少?35. 大家都知道,|5−(−2)|表示5与−2之差的距离,试探索:若x 表示一个有理数,且|x −2|+|x +4|>6,则有理数x 的取值范围是________.36. 若|a −2|+|b −3|+|c −1|=0,求a +2b +3c 的值.37. 已知x|=|−7|,|y|=|−5|,求x +y 的值.38. 若|x|<1,化简|x +1|+|x −1|.39. 已知下列有理数:−(−3)、−4、0、+5、−12(1)这些有理数中,整数有________个,非负数有________个.(2)画数轴,并在数轴上表示这些有理数.(3)把这些有理数用“<“号连接起来:________.40. 利用绝对值比较大小(1)−3.14与−π(2)−32与−54(3)−56与−57参考答案与试题解析初中数学七年级上册绝对值练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】A【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答2.【答案】C【考点】绝对值的意义【解析】此题暂无解析【解答】此题暂无解答3.【答案】A【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答4.【答案】D【考点】绝对值的意义【解析】此题暂无解析【解答】此题暂无解答5.【答案】B此题暂无解析【解答】此题暂无解答6.【答案】C【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答7.【答案】A【考点】有理数大小比较非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答8.【答案】D【考点】有理数大小比较绝对值【解析】此题暂无解析【解答】此题暂无解答9.【答案】D【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答10.有理数大小比较绝对值【解析】此题暂无解析【解答】此题暂无解答二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】−1【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答12.【答案】1【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答13.【答案】2−√3,2−√3【考点】绝对值的意义相反数的意义【解析】此题暂无解析【解答】此题暂无解答14.【答案】7个【考点】绝对值【解析】此题暂无解析【解答】【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答16.【答案】4,3【考点】绝对值的意义非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答17.【答案】16【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答18.【答案】2或0或−2【考点】绝对值的意义【解析】此题暂无解析【解答】此题暂无解答19.【答案】a−b【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】3【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答22.【答案】解:(1)∵−(−5)=5,−(+6)=−6,∴−(−5)>−(+6);(2)∵|−518|=518,|−29|=29,∴−518<−29.【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答23.【答案】解:∵|x|=3,|y|=4,∴x=±3,y=±4,∵xy<0,∴x=3时,y=−4,x+y=−1,x=−3时,y=4,x+y=−3+4=1,综上所述,x+y的值是1或−1.【考点】绝对值【解析】此题暂无解析【解答】24.【答案】解:(1)原式=6−3+1+3=7.(2)∵ EF 为AB 的垂直平分线,∴ FA =FB ,∴ ∠A =∠ABF =30∘.∵ 四边形ABCD 是菱形,∴ AD =AB ,∴ ∠ABD =180∘−30∘2=75∘.【考点】绝对值的意义零指数幂、负整数指数幂二次根式的性质与化简菱形的性质线段垂直平分线的性质【解析】此题暂无解析【解答】此题暂无解答25.【答案】解:(1)−3+8−9+10+4−6−2=2(千米).∴ 收工时检修小组未回到A 地.五(3)(3+8+9+10+4+6+2)×0.2×8=42×0.2×8=67.2(元)答:检修小组工作一天需汽油费67.2元.【考点】绝对值的意义有理数的混合运算正数和负数的识别【解析】此题暂无解析【解答】此题暂无解答26.【答案】(1)②(2)解:化简可得−(+1011)=−1011,−|910|=−910,因为|−1011|=1011,|−910|=910, 又1011=100110>99110=910,所以−1011<−910, 所以−(+1011)<−|910|.【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答27.【答案】解:∵ |−1017|=1017=60102,|−1219|=1219=6095,|−1523|=1523=6092,|−3031|=3031=6062,|−6091|=6091 ∴ −3031<−6091<−1523<−1219<−1017.(各负数绝对值的分子相同,分母越小,其绝对值就越大,本身反而越小)【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答28.【答案】解:因为a =−4,b =−5,所以a −b =−4+5=1.【考点】实数的运算【解析】此题暂无解析【解答】此题暂无解答29.【答案】解:由题意得|a|=2,|b|=3,a +b <0,∴ a =±2 ,b =−3,①当a =2,b =−3时,a +b =−1;②当a =−2,b =−3时,a +b =−5.∴a+b=−1或−5【考点】绝对值的意义绝对值【解析】此题暂无解析【解答】此题暂无解答30.【答案】解:(1)∵|−43|=43=86,|−32|=32=96,∴−43>−32.(2)∵−(−3.1)=3.1,3.2的绝对值是3.2,∴−(−3.1)<3.2的绝对值.【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答31.【答案】解:(1)−57<23;(2)−8<−5(3)∵57<34,∴−57>−34;(4)∵a>b>0,∴|a|>|b|>0,又∵−a<0,−b<0,∴−a<−b.【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答32.【答案】解:∵a<b<0<c,|a|−|−b|+|c|=−a−(−b)+c=−a+b+c.【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答33.【答案】解:根据数轴可知:b<a<0<c,且|a|<|c|<|b|,∴a−b>0,a−c<0,b+c<0,∴|a−b|−2|a−c|−|b+c|=a−b+2a−2c+b+c=3a−c.【考点】有理数大小比较绝对值【解析】此题暂无解析【解答】此题暂无解答34.【答案】|x−1|,|x−1|−1设甲为x,则|x−1|−1=2,解得:x=4或x=−2.所以甲报的数是4或者−2.【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答35.【答案】x>2或x<−4【考点】绝对值的意义绝对值【解析】此题暂无解析【解答】此题暂无解答36.【答案】解:根据题意得:{a −2=0b −3=0c −1=0,解得:{a =2b =3c =1,则原式=2+6+3=11.【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答37.【答案】解:∵ |x|=|−7|=7,|y|=|−5|=5, ∴ x =±7,y =±5,∴ 当x =7、y =5时,x +y =12, 当x =7、y =−5时,x +y =2, 当x =−7、y =5时,x +y =−2, 当x =−7、y =−5时,x +y =−12.【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答38.【答案】解:∵ 由|x|<1可得−1<x <1, ∴ x −1<0,x +1>0,则|x +1|+|x −1|=x +1+1−x =2.【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答39.【答案】4,3解:在数轴上表示这些有理数如图:−4<-12<0<−(−3)<+5【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答40.【答案】解:∵ |−3.14|<|−π|, ∴ −3.14>−π 解:∵ |−32|>|−54|,∴ −32<−54解:∵ |−56|>|−57|,∴ −56<−57【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答。

七年级数学上册数学 2.4.2 绝对值与相反数-绝对值(六大题型)(解析版)

七年级数学上册数学 2.4.2 绝对值与相反数-绝对值(六大题型)(解析版)

2.4.2绝对值与相反数——绝对值分层练习考察题型一求一个数的绝对值1.下列各对数中,互为相反数的是()A .(5)-+与(5)+-B .12-与(0.5)-+C .|0.01|--与1(100--D .13-与0.3【详解】解:A .(5)5-+=-,(5)5+-=-,不合题意;B .(0.5)0.5-+=-,与12-相等,不合题意;C .|0.01|0.01--=-,11()0.01100100--==,0.01-与0.01互为相反数,符合题意;D .13-与0.3不是相反数,不合题意.故本题选:C .2.若m 、n 互为相反数,则|5|m n -+=.【详解】解:m 、n 互为相反数,|5||5|5m n -+=-=.故本题答案为:5.3.比较大小:3(15--)| 1.35|--.(填“<”、“>”或“=”)【详解】解:3(1) 1.65--=,| 1.35| 1.35--=-,因为1.6 1.35>-,所以3(15--)| 1.35|>--.故本题答案为:>.考察题型二绝对值的代数意义1.最大的负整数是,绝对值最小的数是.【详解】解:最大的负整数是1-,绝对值最小的数是0.故本题答案为:1-,0.2.如果|2|2a a -=-,则a 的取值范围是()A .0a >B .0aC .0aD .0a <【详解】解:|2|2a a -=- ,20a ∴-,解得:0a .故本题选:C .3.如果一个数的绝对值是它的相反数,则这个数是()A .正数B .负数C .正数或零D .负数或零【详解】解: 一个数的绝对值是它的相反数,设这个绝对值是a ,则||0a a =-,0a ∴.故本题选:D .4.已知实数满足|3|3x x -=-,则x 不可能是()A .1-B .0C .4D .3【详解】解:|3|3x x -=- ,30x ∴-,即3x .故本题选:C .5.下列判断正确的是()A .若||||a b =,则a b=B .若||||a b =,则a b =-C .若a b =,则||||a b =D .若a b =-,则||||a b =-【详解】解:若||||a b =,则a b =-或a b =,所以A ,B 选项错误;若a b =,则||||a b =,所以C 选项正确;若a b =-,则||||a b =,所以D 选项错误.故本题选:C .6.在数轴上有A 、B 两点,点A 在原点左侧,点B 在原点右侧,点A 对应整数a ,点B 对应整数b ,若||2022a b -=,当a 取最大值时,b 值是()A .2023B .2021C .1011D .1【详解】解: 点A 在点B 左侧,0a b ∴-<,||2022a b b a ∴-=-=,a 为负整数,则最大值为1-,此时(1)2022b --=,则2021b =.故本题选:B .7.若x 为有理数,||x x -表示的数是()A .正数B .非正数C .负数D .非负数【详解】解:(1)若0x 时,||0x x x x -=-=;(2)若0x <时,||20x x x x x -=+=<;由(1)(2)可得:||x x -表示的数是非正数.故本题选:B .8.如果||||||m n m n +=+,则()A .m 、n 同号B .m 、n 异号C .m 、n 为任意有理数D .m 、n 同号或m 、n 中至少一个为零【详解】解:当m 、n 同号时,有两种情况:①0m >,0n >,此时||m n m n +=+,||||m n m n +=+,故||||||m n m n +=+成立;②0m <,0n <,此时||m n m n +=--,||||m n m n +=--,故||||||m n m n +=+成立;∴当m 、n 同号时,||||||m n m n +=+成立;当m 、n 异号时,则:||||||m n m n +<+,故||||||m n m n +=+不成立;当m 、n 中至少一个为零时,||||||m n m n +=+成立;综上,如果||||||m n m n +=+,则m 、n 同号或m 、n 中至少一个为零.故本题选:D .考察题型三解方程:()0x a a =>,x a =±;0x =,0x =1.若|| 3.2a -=-,则a 是()A .3.2B . 3.2-C . 3.2±D .以上都不对【详解】解:|| 3.2a -=- ,|| 3.2a ∴=,3.2a ∴=±.故本题选:C .2.若0a <,且||4a =,则1a +=.【详解】解:若0a <,且||4a =,所以4a =-,13a +=-.故本题答案为:3-.3.已知||4x =,||5y =且x y >,则2x y -的值为()A .13-B .13+C .3-或13+D .3+或13-【详解】解:||4x = ,||5y =且x y >,y ∴必小于0,5y =-,当4x =或4-时,均大于y ,①当4x =时,5y =-,代入224513x y -=⨯+=;②当4x =-时,5y =-,代入22(4)53x y -=⨯-+=-;综上,23x y -=-或2x y -=13+.故本题选:C .4.已知||4m =,||6n =,且||m n m n +=+,则m n -的值是()A .10-B .2-C .2-或10-D .2【详解】解:||m n m n +=+ ,||4m =,||6n =,4m ∴=,6n =或4m =-,6n =,462m n ∴-=-=-或4610m n -=--=-.故本题选:C .5.若|2|1x -=,则x 等于.【详解】解:根据题意可得:21x -=±,当21x -=时,解得:3x =;当21x -=-时,解得:1x =;综上,3x =或1x =.故本题答案为:1或3.6.小明做这样一道题“计算|2-★|”,其中★表示被墨水染黑看不清的一个数,他翻开后面的答案得知该题的结果为6,那么★表示的数是.【详解】解:设这个数为x ,则|2|6x -=,所以26x -=或26x -=-,①26x -=,62x -=-,4x -=,4x =-;②26x -=-,62x -=--,8x -=-,8x =;综上,4x =-或8.故本题答案为:4-或8.考察题型四绝对值的化简1.若1a <,|1||3|a a -+-=.【详解】解:1a < ,10a ∴->,30a ->,∴原式1342a a a =-+-=-.故本题答案为:42a -.2.若|||4|8x x +-=,则x 的值为.【详解】解:|||4|8x x +-= ,∴当4x >时,48x x +-=,解得:6x =;当0x <时,48x x -+-=,解得:2x =-.故本题选:2-或6.3.已知20212022x =,则|2||1||||1||2|x x x x x ---+++-+的值是.【详解】解:20212022x = ,即01x <<,20x ∴-<,10x -<,10x +>,20x +>,|2||1||||1||2|x x x x x ∴---+++-+2(1)12x x x x x =---+++--2112x x x x x =--++++--x =20212022=.故本题答案为:20212022.4.若a 、b 、c 均为整数,且||||1a b c a -+-=,则||||||a c c b b a -+-+-的值为()A .1B .2C .3D .4【详解】解:a ,b ,c 均为整数,且||||1a b c a -+-=,||1a b ∴-=,||0c a -=或||0a b -=,||1c a -=,①当||1a b -=,||0c a -=时,c a =,1a b =±,所以||||||||||||0112a c c b b a a c a b b a -+-+-=-+-+-=++=;②当||0a b -=,||1c a -=时,a b =,所以||||||||||||1102a c c b b a a c c a b a -+-+-=-+-+-=++=;综上,||||||a c c b b a -+-+-的值为2.故本题选:B .5.用abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,当||||||a b b c c a -+-+-取得最大值时,这个三位数的最小值是.【详解】解:abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,a b c ∴,||||||a b b c c a ∴-+-+-a b b c a c =-+-+-22a c =-2()a c =-,当||||||a b b c c a -+-+-取得最大值时,即a c -取得最大值,而a 、b 、c 是自然数,9a ∴=,0c =,∴这个三位数的最小值为900.故本题答案为:900.【根据数轴上的点的位置化简绝对值】6.已知a 、b 、c 的大致位置如图所示:化简||||a c a b +-+的结果是()A .2a b c ++B .b c -C .c b -D .2a b c--【详解】解:由题意得:0b a c <<<,且||||c a >.0a c ∴+>,0a b +<,∴原式()a c a b =+---a c a b =+++2a b c =++.故本题选:A .7.已知a ,b ,c 的位置如图所示,则||||||a a b c b ++--=.【详解】解:由数轴可知:0b a c <<<,且||||||b c a >>,0a b ∴+<,0c b ->,||||||a abc b ∴++--()()a abc b =--+--a a b c b=----+2a c =--.故本题答案为:2a c --.8.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c -0,a b +0,c a -0.(2)化简:||||||b c a b c a -++--.【详解】解:(1)由图可知:0a <,0b >,0c >且||||||b a c <<,所以0b c -<,0a b +<,0c a ->,故本题答案为:<,<,>;(2)||||||b c a b c a -++--()()()c b a b c a =-+----c b a b c a=----+2b =-.【当0a >,1||aa =,当0a <时,1||aa =-】9.已知0ab ≠,则||||a b a b +的值不可能的是()A .0B .1C .2D .2-【详解】解:①当a 、b 同为正数时,原式112=+=;②当a 、b 同为负数时,原式112=--=-;③当a 、b 异号时,原式110=-+=.故本题选:B .10.已知a ,b 为有理数,0ab ≠,且2||3||a bM a b =+.当a ,b 取不同的值时,M 的值等于()A .5±B .0或1±C .0或5±D .1±或5±【详解】解:由于a ,b 为有理数,0ab ≠,当0a >、0b >时,且2||3235||a b M a b =+=+=;当0a >、0b <时,且2||3231||a b M a b =+=-=-;当0a <、0b >时,且2||3231||a b M a b =+=-+=;当0a <、0b <时,且2||3235||a b M a b =+=--=-.故本题选:D .11.已知a ,b ,c 为非零有理数,则||||||a b c a b c ++的值不可能为()A .0B .3-C .1-D .3【详解】解:当a 、b 、c 没有负数时,原式1113=++=;当a 、b 、c 有一个负数时,原式1111=-++=;当a 、b 、c 有两个负数时,原式1111=--+=-;当a 、b 、c 有三个负数时,原式1113=---=-;原式的值不可能为0.故本题选:A .12.若||||||a b ab x a b ab =++,则x 的最大值与最小值的和为()A .0B .1C .2D .3【详解】解:当a 、b 都是正数时,1113x =++=;当a 、b 都是负数时,1111x =--+=-;当a 、b 异号时,1111x =--=-;则x 的最大值与最小值的和为:3(1)2+-=.故本题选:C .13.已知:||2||3||a b b c c a m c a b+++=++,且0abc >,0a b c ++=.则m 共有x 个不同的值,若在这些不同的m 值中,最大的值为y ,则(x y +=)A .4B .3C .2D .1【详解】解:0abc > ,0a b c ++=,a ∴、b 、c 为两个负数,一个正数,a b c +=-,b c a +=-,c a b +=-,∴||2||3||c a b m c a b---=++,∴分三种情况说明:当0a <,0b <,0c >时,1234m =--=-,当0a <,0c <,0b >时,1230m =--+=,当0a >,0b <,0c <时,1232m =-+-=-,m ∴共有3个不同的值,4-,0,2-,最大的值为0,3x ∴=,0y =,3x y ∴+=.故本题选:B .14.已知||1abc abc =,那么||||||a b c a b c++=.【详解】解:1abcabc =,0abc ∴>,a ∴、b 、c 均为正数或一个正数两个负数,①当a 、b 、c 均为正数时,1113ab c ab c ++=++=;②a 、b 、c 中有一个正数两个负数时,不妨设a 为正数,b 、c 为负数,1111ab c a b c++=--=-;综上,3ab c++=或1-.故本题答案为:3或1-.考察题型五绝对值的非负性1.任何一个有理数的绝对值一定()A .大于0B .小于0C .不大于0D .不小于0【详解】解:由绝对值的定义可知:任何一个有理数的绝对值一定大于等于0.故本题选:D .2.对于任意有理数a ,下列结论正确的是()A .||a 是正数B .a -是负数C .||a -是负数D .||a -不是正数【详解】解:A 、0a =时||0a =,既不是正数也不是负数,故本选项错误;B 、a 是负数时,a -是正数,故本选项错误;C 、0a =时,||0a -=,既不是正数也不是负数,故本选项错误;D 、||a -不是正数,故本选项正确.故本题选:D .3.式子|1|3x --取最小值时,x 等于()A .1B .2C .3D .4【详解】解:|1|0x - ,∴当10x -=,即1x =时,|1|3x --取最小值.故本题选:A .4.当a =时,|1|2a -+会有最小值,且最小值是.【详解】解:|1|0a - ,|1|22a ∴-+,∴当10a -=,即1a =,此时|1|2a -+取得最小值2.故本题答案为:1,2.5.已知|2022||2023|0x y -++=,则x y +=.【详解】解:|2022|x - ,|2023|0y +,20220x ∴-=,20230y +=,2022x ∴=,2023y =-,202220231x y ∴+=-=-.故本题答案为:1-.6.如果|3||24|y x +=--,那么(x y -=)A .1-B .5C .5-D .1【详解】解:|3||24|y x +=-- ,|3||24|0y x ∴++-=,30y ∴+=,240x -=,解得:2x =,3y =-,235x y ∴-=+=.故本题选:B .7.若|2|2|3|3|5|0x y z -+++-=.计算:(1)x ,y ,z 的值.(2)求||||||x y z +-的值.【详解】解:(1)由题意得:203050x y z -=⎧⎪+=⎨⎪-=⎩,解得:235x y z =⎧⎪=-⎨⎪=⎩,即2x =,3y =-,5z =;(2)当2x =,3y =-,5z =时,|||||||2||3||5|2350x y z +-=+--=+-=.8.若a 、b 都是有理数,且|2||1|0ab a -+-=,求1111(1)(1)(2)(2)(2022)(2022)ab a b a b a b +++⋯⋯+++++++的值.【详解】解:由题意可得:20ab -=,10a -=,1a ∴=,2b =,原式1111 (12233420232024)=+++⨯⨯⨯⨯111111112233420232024=-+-+-++-112024=-20232024=.考察题型六绝对值的几何意义1.绝对值相等的两个数在数轴上对应的两点距离为6,则这两个数是()A .6,6-B .0,6C .0,6-D .3,3-【详解】解: 绝对值相等的两个数在数轴上对应的两个点间的距离是6,∴这两个数到原点的距离都等于3,∴这两个数分别为3和3-.故本题选:D .2.绝对值不大于π的所有整数为.【详解】绝对值不大于π的所有整数为0,1±,2±,3±.故本题答案为:0,1±,2±,3±.3.绝对值小于4的所有负整数之和是.【详解】解: 绝对值小于4的所有整数是3-,2-,1-,0,1,2,3,∴符合条件的负整数是3-,2-,1-,∴其和为:3216---=-.故本题答案为:6-.4.大家知道|5||50|=-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离,又如式子|63|-,它在数轴上的意义是表示6的点与表示3的点之间的距离,类似地,式子|5|a +在数轴上的意义是.【详解】解:|5|a +在数轴上的意义是表示数a 的点与表示5-的点之间的距离.故本题答案为:表示数a 的点与表示5-的点之间的距离.5.计算|1||2|x x -++的最小值为()A .0B .1C .2D .3【详解】解:|1||2||1||(2)|x x x x -++=-+-- ,|1||2|x x ∴-++表示在数轴上点x 与1和2-之间的距离的和,∴当21x -时|1||2|x x -++有最小值3.故本题选:D .6.当a =时,|1||5||4|a a a -+++-的值最小,最小值是.【详解】解:当4a 时,原式5143a a a a =++-+-=,这时的最小值为3412⨯=,当14a <时,原式5148a a a a =++--+=+,这时的最小值为189+=,当51a -<时,原式51410a a a a =+-+-+=-+,这时的最小值接近为189+=,当5a -时,原式5143a a a a =---+-+=-,这时的最小值为3(5)15-⨯-=,综上,当1a =时,式子的最小值为9.故本题答案为:1,9.7.已知式子|1||2||3||4|10x x y y ++-+++-=,则x y +的最小值是.【详解】解:令12x x a ++-=,34y y b ++-=,根据绝对值几何意义:a 表示x 到1-与2两点之间的距离之和,b 表示y 到3-与4两点之间的距离之和, 当12x -,34y -时,正好有10a b +=,∴当1x =-,3y =-时,x y +的最小值为:1(3)4-+-=-.故本题答案为:4-.8.若不等式|2||3||1||1|x x x x a -+++-++对一切数x 都成立,则a 的取值范围是.【详解】解:数形结合:绝对值的几何意义:||x y -表示数轴上两点x ,y 之间的距离.画数轴易知:|2||3||1||1|x x x x -+++-++表示x 到3-,1-,1,2这四个点的距离之和.令|2||3||1||1|y x x x x =-+++-++,3x =-时,11y =,1x =-时,7y =,1x =时,7y =,2x =时,9y =,可以观察知:当11x -时,由于四点分列在x 两边,恒有7y =,当31x -<-时,711y <,当3x <-时,11y >,当12x <时,79y <,当2x 时,9y ,综上,7y ,即|2||3||1||1|7x x x x -+++-++对一切实数x 恒成立.∴a 的取值范围为7a .9.设|1|a x =+,|1|b x =-,|3|c x =+,则2a b c ++的最小值为.【详解】解:|1|2|1||3|x x x ++-++表示x 到1-、3-的距离以及到1的距离的2倍之和,当x 在1-和1之间时,它们的距离之和最小,此时26a b c ++=.故本题答案为:6.10.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.(2)如果|1|3x +=,那么x =;(3)若|3|2a -=,|2|1b +=,且数a 、b 在数轴上表示的数分别是点A 、点B ,则A 、B 两点间的最大距离是,最小距离是.(4)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-=.【详解】解:(1)数轴上表示4和1的两点之间的距离是:413-=,表示3--=,-和2两点之间的距离是:2(3)5故本题答案为:3,5;(2)|1|3x+=,x+=-,x+=或1313x=或4x=-,2故本题答案为:2或4-;(3)|3|2b+=,,|2|1a-=b=-或3b=-,∴=或1,1a5当5b=-时,则A、B两点间的最大距离是8,a=,3当1b=-时,则A、B两点间的最小距离是2,a=,1则A、B两点间的最大距离是8,最小距离是2,故本题答案为:8,2;(4)若数轴上表示数a的点位于4-与2之间,++-=++-=.a a a a|4||2|(4)(2)6故本题答案为:6.11.同学们都知道,|5(2)|--表示5与2-之差的绝对值,实际上也可理解为5与2-两数在数轴上所对的两点之间的距离.试探索(1)求|5(2)|--=;(2)同样道理|1008||1005|x x+=-表示数轴上有理数x所对点到1008-和1005所对的两点距离相等,则x=;(3)类似的|5||2|++-表示数轴上有理数x所对点到5x x-和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|5||2|7x x++-=,这样的整数是.(4)由以上探索猜想对于任何有理数x,|3||6|-+-是否有最小值?如果有,写出最小值;如果没有,x x说明理由.【详解】解:(1)|5(2)|7--=,故本题答案为:7;(2)(10081005)2 1.5-+÷=-,故本题答案为: 1.5-;(3)式子|5||2|7++-=理解为:在数轴上,某点到5x x-所对应的点的距离和到2所对应的点的距离之和为7,所以满足条件的整数x 可为5-,4-,3-,2-,1-,0,1,2,故本题答案为:5-,4-,3-,2-,1-,0,1,2;(4)有,最小值为3(6)3---=.12.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.如果表示数a 和1-的两点之间的距离是3,那么a =.(2)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-的值为;(3)利用数轴找出所有符合条件的整数点x ,使得|2||5|7x x ++-=,这些点表示的数的和是.(4)当a =时,|3||1||4|a a a ++-+-的值最小,最小值是.【详解】解:(1)|14|3-=,|32|5--=,|(1)|3a --=,13a +=或13a +=-,解得:4a =-或2a =,故本题答案为:3,5,4-或2;(2) 表示数a 的点位于4-与2之间,40a ∴+>,20a -<,|4||2|(4)[(2)]426a a a a a a ∴++-=++--=+-+=,故本题答案为:6;(3)使得|2||5|7x x ++-=的整数点有2-,1-,0,1,2,3,4,5,2101234512--++++++=,故本题答案为:12;(4)1a =有最小值,最小值|13||11||14|4037=++-+-=++=,故本题答案为:7.1.将2,4,6,8,⋯,200这100个偶数,任意分为50组,每组两个数,现将每组的两个数中任意数值记作a ,另一个记作b ,代入代数式1(||)2a b a b -++中进行计算,求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是.【详解】解:当a b >时,11(||)()22a b a b a b a b a -++=-++=,当a b <时,11(||)()22a b a b b a a b b -++=-++=,1021041062007550∴+++⋯⋯+=,∴这50个值的和的最大值是7550.故本题答案为:7550.2.39121239||||||||a a a aa a a a +++⋯+的不同的值共有()个.A .10B .7C .4D .3【详解】解:当0a >,1||a a =,当0a <时,1||aa =-,按此分类讨论:当1a 、2a 、3a 、⋯、9a 均为正数时,391212399||||||||a a a aa a a a +++⋯+=;当1a 、2a 、3a 、⋯、9a 有八个为正数,一个为负数时,39121239817||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有七个为正数,两个为负数时39121239725||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有六个为正数,三个为负数时,39121239633||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有五个为正数,四个为负数时,39121239541||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有四个为正数,五个为负数时,39121239451||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有三个为正数,六个为负数时,39121239363||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有两个为正数,七个为负数时,39121239275||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有一个为正数,八个为负数时,39121239187||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 均为负数时,391212399||||||||a a a aa a a a +++⋯+=-;所以共有10个值.故本题选:A .3.若x 是有理数,则|2||4||6||8||2022|x x x x x -+-+-+-+⋯+-的最小值是.【详解】解:当1012x =时,算式|2||4||6||2022|x x x x -+-+-+⋯+-的值最小,最小值=2|2|2|4|2|6|2|1012|x x x x -+-+-+⋯+-2020201620120=+++⋯+(20200)5062=+⨯÷20205062=⨯÷511060=.故本题答案为:511060.4.对于有理数x ,y ,a ,t ,若||||x a y a t -+-=,则称x 和y 关于a 的“美好关联数”为t ,例如,|21||31|3-+-=,则2和3关于1的“美好关联数”为3.(1)3-和5关于2的“美好关联数”为;(2)若x 和2关于3的“美好关联数”为4,求x 的值;(3)若0x 和1x 关于1的“美好关联数”为1,1x 和2x 关于2的“美好关联数”为1,2x 和3x 关于3的“美好关联数”为1,⋯,40x 和41x 关于41的“美好关联数”为1,⋯.①01x x +的最小值为;②12340x x x x +++⋯⋯+的最小值为.【详解】解:(1)|32||52|8--+-=,故本题答案为:8;(2)x 和2关于3的“美好关联数”为4,|3||23|4x ∴-+-=,|3|3x ∴-=,解得:6x =或0x =;(3)①0x 和1x 关于1的“美好关联数”为1,01|1||1|1x x ∴-+-=,∴在数轴上可以看作数0x 到1的距离与数1x 到1的距离和为1,∴只有当00x =,11x =时,01x x +有最小值1,故本题答案为:1;②由题意可知:12|2||2|1x x -+-=,12x x +的最小值123+=,34|4||4|1x x -+-=,34x x +的最小值347+=,56|6||6|1x x -+-=,56x x +的最小值5611+=,78|8||8|1x x -+-=,78x x +的最小值7815+=,......,3940|40||40|1x x -+-=,3940x x +的最小值394079+=,12340x x x x ∴+++⋯⋯+的最小值:371115...79+++++(379)202+⨯=820=,故本题答案为:820.。

七年级数学上册1.2.4 绝对值-求一个数的绝对值-解答题专项练习6(人教版,含解析)

七年级数学上册1.2.4 绝对值-求一个数的绝对值-解答题专项练习6(人教版,含解析)

2021-2022学年度人教版七年级数学上册练习1.2.4 绝对值-求一个数的绝对值1.把下列各数填在相应的表示集合的大括号里:1223,,,2.8,3,38,,101.1, 2.5,0,1,(96)43π------+--(1)正数集合{}... (2)整数集合{}... (3)正分数集合{}... (4)负分数集合{}...2.有理数a 、b 在数轴上的位置如图所示,求化简a b a b +--的结果.3.已知有理数 a ,b 互为相反数,x =2,求 a ﹣x+b+(﹣2)的值.4.按要求解答下列问题已知有理数−3、212、+(−1)、|−3|、0、−(−23)、−1.5 (1)请将上面所有负有理数填在横线上___. (2)画出数轴,并把上面各数表示在数轴上; (3)用“<”把以上各数连接起来.5.写出下列各数的绝对值:(1)+813;(2)-7.2;(3)0; (4)-813.6.(1)比较大小;①|﹣2|+|3| |﹣2+3|;②|4|+|3||4+3|;③|﹣12|+|﹣13| |﹣12+(﹣13)|;④|﹣5|+|0| |﹣5+0|.(2)通过(1)中的大小比较,猜想并归纳出|a|+|b|与|a+b|的大小关系,并说明a,b满足什么关系时,|a|+|b|=|a+b|成立?7.如果|a|=3,|b|=4,且a>b,求a,b的值.8.化简下列各数:(1)-[-(-2)];(2)-[+(-3)]}.(3)-[+(-1)];(4)+[-(+7)];(5)--[-(-│-3│)}(6)-+[-(+3)]}9.将下列各数化简后在数轴上表示出来:︱-1︱、︱0︱、-(-2)、绝对值是2的负数、-︱-3︱,并按从小到大的顺序将原数用不等号连接起来.10.在数轴上表示下列各数,并把下列各数用“>”号连接起来12-, -2, 12, 5--,-(-5)11.将下列各数在数轴上表示出来,并把这些数用“<”连接起来. -5,0,2,-2.5,-(-12),-|-1|.12.探究归纳(1)填空|-2018|= ;|0| = ; 2||5+= (2)由(1)得任何一个有理数的绝对值都是_________ (3)解决问题,已知3a -+2b +=0,求b 2-ab 的值.13.将下列各数在数轴上表示出来,并用“<”把这些数的连接起来. -112,0,2,-|-3|,-(-3.5)14.把下列各数填入相应的括号内: 2.5,-10%,22,0,-|-207|,-20,+9.78,-0.45,-(-47) 整数:{ ……} 负分数:{ ……} 非正数:{ ……} 非负整数:{ ……}15.在数轴上表示有理数:1.5,﹣|﹣2|,0,﹣(﹣1),﹣23,并用“>”号将它们连接起来.参考答案1.(1)14,2.8,38,π, 2.5-,+1,-(-96);(2)-23,3--,38,0,+1,-(-96);(3)14,2.8, 2.5-;(4)23-,-101.1解析:把各数的绝对值和括号去掉后,再根据各类数的特点进行归类. 详解:解:(1)正数集合{14,2.8,38,π, 2.5-,+1,-(-96 } (2)整数集合{-23,3--,38,0,+1,-(-96)} (3)正分数集合{14,2.8, 2.5-} (4)负分数集合{23-,-101.1} 点睛:本题考查有理数的分类,正确对各数进行去括号、去绝对值等操作是解题关键. 2.-2a解析:根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,合并即可得到结果. 详解:根据数轴上点的位置得:0b a <<,而且b a >, ∴b 0a ->,0a b +<, ∴a b a b +--=)()a b a b -+--( a b a b =---+=-2a . 故答案为-2a . 点睛:本题考查数轴上点的特点、绝对值的化简.解决本题的关键是根据数轴上点的位置,判断a-b 与a+b 的正负.3.-4或0.解析:利用绝对值的意义和相反数的定义得到a+b=0,x=2或-2,则原式=-x-2,然后把x 的分别代入计算即可. 详解:解:因为a 、b 互为相反数, 所以a+b=0.又因为|x|=2,所以x=2或-2,当x=2时,a-x+b+(-2)=(a+b )-x-2=0-2-2=-4; 当x=-2时,a-x+b+(-2)=(a+b )-x-2=0-(-2)-2=0. ∴a﹣x+b+(﹣2)的值为-4或0. 点睛:本题考查了绝对值:数轴上某个数与原点的距离叫做这个数的绝对值.互为相反数的两个数绝对值相等.也考查了相反数.4.(1)−3、+(−1)、−1.5;(2)详见解析;(3)−3<−1.5<+(−1)<0<−(−23)<212<|−3|. 解析:(1)根据小于零的数是负数,可得负数集合;(2)根据数轴是用直线上的点表示数的一条直线,可把数在数轴上表示出来; (3)根据数轴上的点表示的数右边的总比左边的大,可得答案. 详解:(1)负有理数为−3、+(−1)、−1.5. (2)如图所示:(3)用“<”把以上各数连接起来为:−3<−1.5<+(−1)<0<−(−23)<212<|−3|. 点睛:此题考查数轴,绝对值,有理数大小比较,解题关键在于画出数轴.5.(1)813;(2)7.2;(3)0;(4)813解析:根据绝对值的性质分别计算即可得解. 详解:(1)+813的绝对值是813; (2)-7.2的绝对值是7.2; (3)0的绝对值是0;(4)-813的绝对值是813.点睛:本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.(1)>;=;=;=.(2)成立解析:(1)①根据绝对值的意义得到|-2|+|3|=2+3=5,|-2+3|=1,比较大小即可求解;②根据绝对值的意义得到|4|+|3|=4+3=7,|4+3|=7,比较大小即可求解;③根据绝对值的意义得到|-12|+|-13|=12+13=56,|-12+(-13)|=56,比较大小即可求解;④根据绝对值的意义得到|-5|+|0|=5+0=5,|-5+0|=5,比较大小即可求解;(2)根据前面的结论可得到,当a、b同号时,|a+b|=|a|+|b|.详解:解:(1)①|﹣2|+|3|>|﹣2+3|;②|4|+|3|=|4+3|;③|﹣12|+|﹣13|=|﹣12+(﹣13)|;④|﹣5|+|0|=|﹣5+0|.(2)|a|+|b|与|a+b|的大小关系:|a+b|≤|a|+|b|,a,b满足同号时,|a+b|=|a|+|b|.点睛:本题考查了有理数的加法和绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=-a.7.a=±3,b=-4.解析:分析:根据绝对值的性质求出a、b的值,然后确定出a、b的对应情况.详解:∵|a|=3,∴a=±3.∵|b|=4,∴b=±4.∵a>b,∴a=±3,b=-4.点睛:本题考查了绝对值的性质,难点在于确定出a、b的对应情况.8.(1)-2(2)3(3)1(4)-7(5)3(6)3解析:试题分析:根据相反数的定义化简即可.试题解析:解:(1)-[-(-2)]=-2;(2)-[+(-3)]}=3;(3)-[+(-1)]=1; (4)+[-(+7)]=-7; (5)--[-(-│-3│)}=3 (6)-+[-(+3)]}=3 9.﹣3<﹣2<2解析:试题分析:根据绝对值的意义、相反数的意义,可化简数,根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上的点表示的数右边的总比左边的大,可得答案 试题解析:化简,得|﹣1|=1,|0|=0,﹣(﹣2)=2,绝对值是2的负数是﹣2,﹣|﹣3|=﹣3, 把数在数轴上表示出来,如图:,由数轴上的点表示的数右边的总比左边的大,得﹣3<﹣2<2考点:1.有理数大小比较;2.数轴. 10.;()1152522-->>->->-- 解析:对各数进行化简后在数轴上表示出来,然后根据数轴右边的数大于数轴左边的数可把各数用“>”号连接起来. 详解:解:∵-|-5|=-5,-(-5)=5, ∴在数轴表示各数如下:∴由各数在数轴上的排列可得:1152522-->>->->--(). 点睛:本题考查数的大小比较与数在数轴上的表示的综合运用,熟练掌握利用数轴比较数的大小的方法是解题关键.11.数轴见详解,15 2.51022⎛⎫-<-<--<<--< ⎪⎝⎭解析:先把绝对值和相反数进行化简,然后在数轴上表示出来,最后用“<”连接起来即可. 详解:解:∵1111,22⎛⎫--=---= ⎪⎝⎭,∴这组有理数在数轴上的表示如图所示:把这些数用“<”连接起来为15 2.51022⎛⎫-<-<--<<--< ⎪⎝⎭. 点睛:本题主要考查数轴上有理数的表示及有理数的大小比较,熟练掌握数轴上有理数的表示及有理数的大小比较是解题的关键.12.(1)2018,0,25;(2)非负数;(3)10 解析:(1)由绝对值的意义,即可求出答案; (2)由绝对值的意义,即可得到答案;(3)由绝对值的非负性进行计算,求出a 、b 的值,再求出答案即可. 详解:解:(1)|2018|2018-=;|0|0=;22||55+=; 故答案为:2018,0,25;(2)由(1)可知,任何一个有理数的绝对值都是非负数; 故答案为:非负数; (3)∵320a b -++=, ∴30a -=,20b +=, ∴3a =,2b =-,∴22(2)3(2)4610b ab -=--⨯-=+=. 点睛:本题考查了绝对值非负数的性质,绝对值的意义,解题的关键是掌握绝对值的意义进行解题.13.见解析.解析:先求出-|-3|和-(-3.5)的值,然后在数轴上表示出各数,根据在数轴上表示的数,从左到右依次增大,据此解答即可.详解:解:-|-3|=-3;-(-3.5)=3.5用数轴表示为:∴-|-3|<-112<0<2<-(-3.5).点睛:此题主要考查有理数在数轴上的表示、有理数的大小比较,解题的关键是正确找出有理数在数轴上对应的点.14.答案见解析解析:根据有理数的分类分别进行解答.详解:整数:{22,0,-20 ……}负分数:{-10%,-|-207|,-0.45……}非正数:{0,-10%,-|-207|,-0.45,-20 ……}非负整数:{22,0 ……}点睛:本题考查了有理数的分类.认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.15.在数轴上表示有理数见解析;21.5(1)023>-->>->--.解析:先在数轴上表示各个数,再比较即可.详解:22--=-,()11--=,2 3 -在数轴上表示有理数如下:2>-->>->--.1.5(1)023点睛:本题考查了绝对值、相反数和有理数的大小比较,能熟记有理数的大小比较法则是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.。

七年级数学绝对值典型试题及答案(中考重点考点试题)

七年级数学绝对值典型试题及答案(中考重点考点试题)

七年级数学绝对值典型试题及答案(中考重点考点试题)5分钟训练(预习类训练,可用于课前)1.判断题:(1)数a的绝对值就是数轴上表示数a的点与原点的距离; ()(2)负数没有绝对值; ()(3)绝对值最小的数是0; ()(4)如果甲数的绝对值比乙数的绝对值大,那么甲数一定比乙数大; ()(5)如果数a的绝对值等于a,那么a一定是正数. ()思路解析:(2)负数的绝对值为它的相反数.(4)可举反例如:-100的绝对值比5的绝对值大,但-100小于5.(5)还可能是0.答案:(1)√ 2)×(3)√(4)×(5)×2.填表:答案3.-3的绝对值是在_______上表示-3的点到________的距离,-3的绝对值是_________. 思路解析:根据绝对值的几何意义解题.答案:数轴原点 34.绝对值是3的数有_______个,各是________;绝对值是2.7的数有_______个,各是________;绝对值是0的数有________个,是________;绝对值是-2的数有没有?________.思路解析:根据绝对值的意义来解.答案:两±3 两±2.7 1 0 没有10分钟训练(强化类训练,可用于课中)1. (1)若|a|=0,则a=_______;(2)若|a|=2,则a=________.思路解析:根据绝对值的定义来解.答案:(1)0 (2)±22.如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系()A.-n>m>-m>nB.m>n>-m>-nC.-n>m>n>-mD.n>m>-n>-m思路解析:可通过特例解答,如5>0,-6<0,5<|-6|,则-m=-5,-n=6,它们的大小关系是6>5>-5>-6,即-n>m>-m>n.答案:A3.判断题:(1)两个有理数比较大小,绝对值大的反而小; ()(2)-3.14>4; ()(3)有理数中没有最小的数; ()(4)若|x|>|y|,则x>y; ()(5)若|x|=3,-x>0则x=-3. ()思路解析:(1)若都为负数时,才有绝对值大的反而小;(2)先利用符号判断,若同号,再判断绝对值大小.显然,-3.14<4;(3)如在负数中,没有最小的数,而正数大于零,大于负数;(4)举反例,|-5|>|-4|,而-5<-4;(5)由|x|=3可知,x=±3,又-x>0,则x必为负数,故x=-3.答案:(1)×(2)×(3)√(4)×(5)√4.填空题:(1)|-112|________;(2)-(-7)________;(3)-|-7|________;(4)+|-2|_______;(5)若|x|=3,则x_________;(6)|3-π|=_______. 思路解析:由绝对值定义来解,注意绝对值外面的负号.答案:(1)112(2)7 (3)-7 (4)2 (5)3或-3 (6)π-35.把四个数-2.371,-2.37%,-2.3·7·和-2.37用“<”号连接起来.思路解析:这里都是负数,利用绝对值大的反而小来判别,另外要注意循环小数和百分数的意义.答案:-2.37<-2.371<-2.37<-2.37%快乐时光女老师竭力向孩子们证明,学习好功课的重要性.她说:“牛顿坐在树下,眼睛盯着树在思考,这时,有一个苹果落在他的头上,于是他发明了万有引力定律,你们想想看,做一位伟大的科学家多么好,多么神气啊,要想做到这一点,就必须好好学习.”班上一个调皮鬼对此并不满意.他说:“兴许是这样,可是,假如他坐在学校里,埋头书本,那他就什么也发现不了啦.”30分钟训练(巩固类训练,可用于课后)1.比较大小:(1)-2_______5,|-72|_______|+38|,-0.01________-1;(2)-45和-56(要有过程).思路解析:(1)正数大于负数,则-2<5;|-27|=27=1656,|+38|=38=2156,∴|-72|<|+38|;两个负数,绝对值大的反而小,|-1|=1,|-0.01|=0.01,而0.01<1,∴-0.01>-1(2)-45=-0.8,-56=-0.83,-0.8离原点近,∴-0.8>-0.83即-45>-56.答案:(1)<<>(2)>2.写出绝对值不大于4的所有整数,并把它们表示在数轴上.思路解析:不大于就是小于或等于.答案:±1,±2,±3,±4,0.3.填空:(1)若|a|=6,则a=_______;(2)若|-b|=0.87,则b=_______;(3)若|-1c|=49,则c=_______;(4)若x+|x|=0,则x是数________.思路解析:(1) a=±6;(2)|-b|=|b|=0. 87,∴b=±0.87;(3)|-1c|=49,∴1c=±49,c=±214;(4) x是非正数.答案:(1)±6 (2)±0.87 (3)±214(4)非正4.求下列各数的绝对值:(1)-38; (2)0.15;(3)a(a<0); (4)3b(b>0);(5)a-2(a<2); (6)a-b.思路解析:欲求一个数的绝对值,关键是确定绝对值符号内的这个数是正数还是负数,然后根据绝对值的代数定义去掉绝对值符号(6)题没有给出a与b的大小关系,所以要进行分类讨论.解:(1)|-38|=38(2)|+0.15|=0.15(3)∵a<0,∴|a|=-a(4)∵b>0,∴3b>0,|3b|=3b(5)∵a<2,∴a-2<0,|a-2|=-(a-2)=2-a(6)(), ||0(),().a b a ba b a bb a a b->⎧⎪-==⎨⎪-<⎩5.判断下列各式是否正确:(1)|-a|=|a|;()(2)||||a aa a=(a≠0); ()(3)若|a|=|b|,则a=b;()(4)若a=b,则|a|=|b|;()(5)若a>b,则|a|>|b|;()(6)若a>b,则|b-a|=a-b. ()思路解析:判断上述各小题正确与否的依据是绝对值的定义,所以思维应集中到用绝对值的定义来判断每一个结论的正确性.判断(或证明)一个结论是错误的,只要能举出反例即可.如第(1)小题中取a=1,则|a|=|1|=1,|-a|=|-1|=1,所以-|a|=|-a|.答案:(1)√ (2)√ (3)× (4)√ (5)×(6)√6.有理数m,n在数轴上的位置如图,比较大小:-m______-n,1m_______1n.思路解析:取特殊值验得:由图知,m、n都是小于0而大于-1的数,取m=-23,n=-13∴-m=23>-n=13,而1m=-32,1n=-3,∵-32>-3,∴1m>1n.答案:>>7.若|x-1| =0,则x=_______,若|1-x |=1,则x=_________.思路解析:零的绝对值只有一个零,即x-1=0;一个正数的绝对值有两个数,∴1-x=±1. 答案:-1 0或2。

七年级数学绝对值(提高版)答案与试题解析

七年级数学绝对值(提高版)答案与试题解析

数学绝对值(提高版)试题1.设实数a、b、c满足a<b<c(ac<0),且|c|<|b|<|a|,则|x﹣a|+|x﹣b|+|x+c|的最小值是()A.B.|b|C.c﹣a D.﹣c﹣a2.|a﹣b|=|a|+|b|成立的条件是()A.ab>0B.ab>1C.ab≤0D.ab≤13.满足|x﹣2|+|x+1|=3的x的个数为()A.0B.2C.3D.多于3个4.若方程||x﹣2|﹣1|=a有三个整数解,则a的取值为()A.a>1B.a=1C.a=0D.0<a<15.已知(|1+x|+|2﹣x|)(|y+2|+|y﹣1|)=9,则x﹣2y的最小值为.6.已知实数x满足|x+1|+|x﹣4|=7.则x的值是.7.已知|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|=4,则实数x的取值范围是.8.已知方程|x﹣1|+|x﹣2|+|x﹣10|+|x﹣11|=m无解,则实数m的取值范围是.9.设a,b是方程||2x﹣1|﹣x|=2的两个不相等的根,则的值为.10.解方程:(1)|3x﹣5|+4=8;(2)|4x﹣3|﹣2=3x+4;(3)|x﹣|2x+1||=3;(4)|2x﹣1|+|x﹣2|=|x+1|.11.解下列方程:(1)|x+3|﹣|x﹣1|=x+1 (2)|x﹣1|+|x﹣5|=4.12.解方程:|2x+3|﹣|x﹣1|=4x﹣3.13.当a满足什么条件时,关于x的方程|x﹣2|﹣|x﹣5|=a有一解?有无数多个解?无解?14.讨论方程||x+3|﹣2|=k的解的情况.15.求关于x的方程||x﹣2|﹣1|﹣a=0(0<a<1)的所有解的和.数学绝对值(提高版)试题答案与试题解析1.设实数a、b、c满足a<b<c(ac<0),且|c|<|b|<|a|,则|x﹣a|+|x﹣b|+|x+c|的最小值是()A.B.|b|C.c﹣a D.﹣c﹣a解:∵ac<0∴a,c异号∴a<0,c>0又∵a<b<c,以及|c|<|b|<|a|∴a<b<﹣c<0<c|x﹣a|+|x﹣b|+|x+c|表示到a,b,﹣c三点的距离的和.当x在表示b点的数的位置时距离最小,即|x﹣a|+|x﹣b|+|x+c|最小,最小值是a与﹣c之间的距离,即﹣c﹣a.故选:D.2.|a﹣b|=|a|+|b|成立的条件是()A.ab>0B.ab>1C.ab≤0 D.ab≤1解:当a、b异号或a、b中有一个为0时,|a﹣b|=|a|+|b|成立,∴ab≤0,故选:C.3.满足|x﹣2|+|x+1|=3的x的个数为()A.0B.2C.3D.多于3个解:当x<﹣1时,方程化简为2﹣x﹣x﹣1=3,解得x=﹣1(不符合题意的解要舍去),当﹣1≤x<2时,2﹣x+x+1=3,x有无数个;当x≥2时,方程化简为x﹣2+x+1=3,解得x=2,综上所述:x有无数个,故选:D.4.若方程||x﹣2|﹣1|=a有三个整数解,则a的取值为()A.a>1B.a=1C.a=0D.0<a<1解:选:B.5.已知(|1+x|+|2﹣x|)(|y+2|+|y﹣1|)=9,则x﹣2y的最小值为﹣3.解:∵(|1+x|+|2﹣x|)(|y+2|+|y﹣1|)=9=3×3,∴﹣1≤x≤2,﹣2≤y≤1,∴x﹣2y的最小值为﹣1﹣2×1=﹣1﹣2=﹣3.故答案为:﹣3.6.已知实数x满足|x+1|+|x﹣4|=7.则x的值是﹣2或5.解:答案为:﹣2或5.7.已知|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|=4,则实数x的取值范围是2≤x≤3.x的取值范围是2≤x≤3.8.已知方程|x﹣1|+|x﹣2|+|x﹣10|+|x﹣11|=m无解,则实数m的取值范围是m<18.实数m的取值范围是m<18.9.设a,b是方程||2x﹣1|﹣x|=2的两个不相等的根,则的值为.解:∵||2x﹣1|﹣x|=2,∴|2x﹣1|﹣x=2或﹣2,∴|2x﹣1|=x+2或|2x﹣1|=x ﹣2,当2x﹣1≥0时,2x﹣1=x+2,解得x=3;当2x﹣1<0时,2x﹣1=﹣x﹣2,解得x=﹣;或当2x﹣1≥0时,2x﹣1=x﹣2,解得x=﹣1(舍去);当2x﹣1<0时,2x﹣1=﹣x+2,解得x=1(舍去);∴a=3,b=﹣,∴===×=.故答案为.10.解下列方程:(1)|3x﹣5|+4=8;(2)|4x﹣3|﹣2=3x+4;(3)|x﹣|2x+1||=3;(4)|2x﹣1|+|x﹣2|=|x+1|.解:(1)|3x﹣5|+4=8,∴|3x﹣5|=4,∴3x﹣5=4或3x﹣5=﹣4,移项化系数为1得:x=3或x=;(2)|4x﹣3|﹣2=3x+4,∴|4x﹣3|=3x+6,∴3x+6≥0即x≥﹣2,∴4x﹣3=3x+6或4x﹣3=﹣(3x+6),移项化系数为1解得:x=9或x=﹣;(3)|x﹣|2x+1||=3,∴x﹣|2x+1|=3或x﹣|2x+1|=﹣3,由x﹣|2x+1|=3知x>3,解得:x=﹣4(舍去);由x﹣|2x+1|=﹣3,移项得:|2x+1|=x+3≥0,∴x≥﹣3,2x+1=x+3或﹣(2x+1)=x+3,解得:x=2或x=;(4)当x<﹣1时,原方程可化为:1﹣2x﹣x+2=﹣x﹣1,x=2不符合题意;当﹣1≤x<时,原方程可化为:﹣2x+1﹣x+2=x+1,x=不符合题意;当≤x≤2时,原方程可化为:2x﹣1﹣x+2=x+1恒成立,说明凡是满足≤x≤2的x值都是方程的解;当x>2时,原方程可化为:2x﹣1+x﹣2=x+1,x=2不符合题意.故原方程的解为:≤x≤2.11.解下列方程:(1)|x+3|﹣|x﹣1|=x+1(2)|x﹣1|+|x﹣5|=4.解:(1)①当x≥1时,原方程可化为:x+3﹣(x﹣1)=x+1,解得:x=3;②当x<﹣3时,原方程可化为:﹣x﹣3﹣(1﹣x)=x+1,解得:x=﹣5;③当﹣3≤x<1时,原方程可化为:x+3+x﹣1=x+1,解得:x=﹣1.综上可得:方程的解为:x=3或x=﹣5或x=﹣1;(2)方程可理解为一个点到1和5两点的距离和,由此可得方程的解为:1≤x ≤5.12.解方程:|2x+3|﹣|x﹣1|=4x﹣3.解:(1)当x≤﹣时,原方程可化为:﹣3﹣2x+x﹣1=4x﹣3∴5x=﹣1,解得:x=﹣,与x≤﹣不符;(2)当x≥1时,原方程可化为:2x+3﹣x+1=4x﹣3∴3x=7.∴x=;(3)当﹣<x<1时,原方程可化为:2x+3﹣1+x=4x﹣3∴x=5与﹣<x <1不相符;综上所述,方程的解为:x=.13.当a满足什么条件时,关于x的方程|x﹣2|﹣|x﹣5|=a有一解?有无数多个解?无解?解:①x≥5时,x﹣2﹣(x﹣5)=x﹣2﹣x+5=3,当a=3时,有无数多解;当a≠3时,无论a取何值均无解;②x≤2时,2﹣x﹣(5﹣x)=2﹣x﹣5+x=﹣3,当a=﹣3时,有无数解;当a≠﹣3时,无解;③2<x<5时,x﹣2﹣(5﹣x)=x﹣2﹣5+x=2x﹣7,∴4<2x<10,∴4﹣7<2x﹣7<10﹣7即:﹣3<2x﹣7<3.所以当﹣3<a<3时,有一解;当a>3或a<﹣3时,无解.综上所述,当a=±3时,方程有无数个解,当a >3或a<﹣3时,无解;当﹣3<a<3时,有一解.14.讨论方程||x+3|﹣2|=k的解的情况.解:当k<0,原方程无解;当k=0时,原方程可化为:|x+3|﹣2=0,解得x=﹣1或x=﹣5;当0<k<2,此时原方程可化为:|x+3|=2±k,此时原方程有四解:x=﹣3±(2±k),即:x=k﹣1或x=﹣k﹣5或x=﹣k﹣1或x=k﹣5;当k=2时,原方程可化为:|x+3|=2±2,此时原方程有三解:x=1或x=﹣7或x =﹣3;当k>2时,原方程有两解:x+3=±(2±k),即:x=k﹣1或x=﹣k﹣5.故x=k﹣1或x=﹣k﹣1或x=﹣k﹣5或x=﹣5+k.15.求关于x的方程||x﹣2|﹣1|﹣a=0(0<a<1)的所有解的和.解:由原方程得||x﹣2|﹣1|=a,∴|x﹣2|﹣1=±a,∵0<a<1,∴|x﹣2|=1±a,即x﹣2=±(1±a),∴x=2±(1±a),从而x1=3+a,x2=3﹣a,x3=1+a,x4=1﹣a,∴x1+x2+x3+x4=8,即原方程所有解的和为8.。

初一七年级数学绝对值练习题及答案解析完整版

初一七年级数学绝对值练习题及答案解析完整版

初一七年级数学绝对值练习题及答案解析Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】知识点回顾:1、一般的,数轴上表示数a的点与原点的距离叫做绝对值,记做a。

2、由绝对值的定义可知:①一个正数的绝对值是它本身;②一个负数的绝对值是它的相反数;③0的绝对值是0.3、两个数比较大小的方法:1)数学中规定:在数轴上表示有理数,它们从左往右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

2)一般地①正数大于0,0大于负数,正数大于负数。

②两个负数,绝对值大的反而小。

小试牛刀:1.-8的绝对值是,记做。

2.绝对值等于5的数有。

3.若︱a︱=a,则a。

4.的绝对值是2004,0的绝对值是。

5一个数的绝对值是指在上表示这个数的点到的距离。

6.如果x<y<0,那么︱x︱︱y︱。

7.︱x-1︱=3,则x =。

8.若︱x+3︱+︱y-4︱=0,则x+y=。

9.有理数a,b在数轴上的位置如图所示,则ab,︱a︱︱b︱。

10.︱x︱<л,则整数x=。

11.已知︱x︱-︱y︱=2,且y=-4,则x=。

12.已知︱x︱=2,︱y︱=3,则x+y=。

13.已知︱x+1︱与︱y-2︱互为相反数,则︱x︱+︱y︱=。

14. 式子︱x+1︱的最小值是,这时,x值为。

15. 下列说法错误的是()A一个正数的绝对值一定是正数B一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数16.下列说法错误的个数是()(1) 绝对值是它本身的数有两个,是0和1(2) 任何有理数的绝对值都不是负数(3) 一个有理数的绝对值必为正数(4) 绝对值等于相反数的数一定是非负数A3B2C1D017.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a+b+c 等于()A -1B0C1D2拓展提高:18.如果a ,b 互为相反数,c,d 互为倒数,m 的绝对值为2,求式子 a b a b c ++++m -cd 的值。

七年级上册数学绝对值试题及答案

七年级上册数学绝对值试题及答案

七年级上册数学绝对值试题及答案在紧张的复习里,大家要认真对待每一张试卷。

由于试题卷的训练可以协助大家去测试学习中的缺点与漏洞!让大家来做一套试题卷吧!下面是我们收拾的七年级上册数学绝对值试题,欢迎阅读!七年级上册数学绝对值试题及答案一、选择题1.某地连续四天每天的平均气温分别是:1℃、﹣1℃、0℃、2℃,则平均气温中最低的是A.﹣1℃B.0℃C.1℃D.2℃【考点】有理数大小比较.【专题】应用题.【剖析】依据正数大于一切负数解答.【解答】解:∵1℃、﹣1℃、0℃、2℃中气温最低的是﹣1℃,平均气温中最低的是﹣1℃.故选:A.【点评】本题考查了有理数的大小比较,是基础题,熟记正数大于一切负数是解题的重要.2.在﹣1、0、1、2这四个数中,最小的数是A.0B.﹣1C.1D.2【考点】有理数大小比较.【剖析】依据正数大于0,0大于负数,可得答案.【解答】解:﹣1012,故选:B.【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题重要.3.下列各数中,最大的数是A.3B.1C.0D.﹣5【考点】有理数大小比较.【专题】常规题型.【剖析】依据正数都大于零,负数都小于零,正数大于负数,两个负数比较大小,绝对值大的数反而小,再进行比较,即可得出答案.【解答】解:∵﹣5013,故最大的数为3,故选:A.【点评】本题考查了实数的大小比较,学会正数都大于零,负数都小于零,正数大于负数,两个负数比较大小,绝对值大的数反而小是本题的重要.4.比﹣1大的数是A.﹣3B.﹣C.0D.﹣1【考点】有理数大小比较.【专题】常规题型.【剖析】依据零大于一切负数,负数之间相比较,绝对值大的反而小.【解答】解:﹣3、﹣、0、﹣1四个数中比﹣1大的数是0.故选:C.【点评】本题考查了有理数的大小比较,是基础题,熟记大小比较办法是解题的重要.5.在下列各数中,最小的数是A.0B.﹣1C.D.﹣2【考点】有理数大小比较.【剖析】依据正数大于0,0大于负数,可得答案.【解答】解:﹣2﹣10 ,故选:D.【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题重要.6.下列四个数中,最小的数是A.﹣B.0C.﹣2D.2【考点】有理数大小比较.【剖析】用数轴法,将各选项数字标于数轴之上即可解本题.【解答】解:画一个数轴,将A=﹣、B=0、C=﹣2、D=2标于数轴之上,可得:∵C点坐落于数轴最左侧,C选项数字最小.故选:C.【点评】本题考查了数轴法比较有理数大小的办法,牢记数轴法是解题的重要.7.下列各数中,最大的是A.0B.2C.﹣2D.﹣【考点】有理数大小比较.【剖析】用数轴法,将各选项数字标于数轴之上即可解本题.【解答】解:画一个数轴,将A=0、B=2、C=﹣2、D=﹣标于数轴之上,可得:∵D点坐落于数轴最右侧,B选项数字最大.故选:B.【点评】本题考查了数轴法比较有理数大小的办法,牢记数轴法是解题的重要.8.在数1,0,﹣1,﹣2中,最小的数是A.1B.0C.﹣1D.﹣2【考点】有理数大小比较.【剖析】依据正数大于0,0大于负数,可得答案.【解答】解:﹣2﹣101,故选:D.【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题重要.9.在﹣2,﹣1,0,2这四个数中,最大的数是A.﹣2B.﹣1C.0D.2【考点】有理数大小比较.【剖析】依据正数大于0,0大于负数,可得答案.【解答】解:﹣2﹣102,故选:D.【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题重要.10.在1,0,2,﹣3这四个数中,最大的数是A.1B.0C.2D.﹣3【考点】有理数大小比较.【剖析】依据正数大于0,0大于负数,可得答案.【解答】解:﹣3012,故选:C.【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题重要.11.下列四个数中,最小的数是A.﹣B.0C.﹣2D.2【考点】有理数大小比较.【剖析】有正数,0,负数,较小的数应为负数;在2个负数里,较小的数为绝对值较大的那个数.【解答】解:∵在﹣,0,﹣2,2这4个数中,﹣,﹣2为负数,﹣,﹣2比较即可,∵|﹣ |= ,|﹣2|=2, 2,﹣﹣2,最小的数为﹣2.故选:C.【点评】考查有理数的比较;用到的常识点为:负数小于0,负数小于一切正数;两个负数,绝对值大的反而小.12.在所给的,0,﹣1,3这四个数中,最小的数是A. B.0 C.﹣1 D.3【考点】有理数大小比较.【剖析】要解答本题可依据正数大于0,0大于负数,可得答案.【解答】解:﹣10 3.故选:C.【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题重要.13.比较﹣3,1,﹣2的大小,下列判断正确的是A.﹣3﹣21B.﹣2﹣31C.1﹣2﹣3D.1﹣3﹣2【考点】有理数大小比较.【剖析】本题是对有理数的大小比较,依据有理数性质即可得出答案.【解答】解:有理数﹣3,1,﹣2的中,依据有理数的性质,﹣3﹣201.故选:A.【点评】本题主要考查了有理数大小的判定,困难程度较小.14.在数,1,﹣3,0中,最大的数是A. B.1 C.﹣3 D.0【考点】有理数大小比较.【剖析】依据正数0负数,几个正数比较大小时,绝对值越大的正数越大解答即可.【解答】解:正数0负数,几个正数比较大小时,绝对值越大的正数越大.可得1 0﹣3,所以在,1,﹣3,0中,最大的数是1.故选:B.【点评】此题主要考查了正、负数、0及正数之间的大小比较.正数0负数,几个正数比较大小时,绝对值越大的正数越大.15.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是A.点MB.点NC.点PD.点Q【考点】有理数大小比较.【剖析】先依据相反数确定原点的位置,再依据点的位置确定绝对值最小的数即可.【解答】解:∵点M,N表示的有理数互为相反数,原点的位置大约在O点,绝对值最小的数的点是P点,故选C.【点评】本题考查了数轴,相反数,绝对值,有理数的大小比较的应用,解此题的重要是找出原点的位置,注意数形结合思想的运用.16.在数﹣3,﹣2,0,3中,大小在﹣1和2之间的数是A.﹣3B.﹣2C.0D.3【考点】有理数大小比较.【剖析】依据有理数的大小比较法则比较即可.【解答】解:依据0大于负数,小于正数,可得0在﹣1和2之间,故选:C.【点评】本题考查了有理数的大小比较的应用,注意:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小.17.下列各数中,绝对值最大的数是A.5B.﹣3C.0D.﹣2【考点】有理数大小比较;绝对值.【剖析】依据绝对值的定义,可得出距离原点越远,绝对值越大,可直接得出答案.【解答】解:|5|=5,|﹣3|=3,|0|=0,|﹣2|=2,∵5320,绝对值最大的数是5,故选:A.【点评】本题考查了实数的大小比较,以及绝对值的定义,解决本题的重要是求出各数的绝对值.18.在﹣1,﹣2,0,1四个数中最小的数是A.﹣1B.﹣2C.0D.1【考点】有理数大小比较.【剖析】依据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得10﹣1﹣2,故选:B.【点评】本题考查了有理数大小比较,正数大于零,零大于负数,注意两个负数比较大小,绝对值大的数反而小.19.下列各数中,最小的数是A.﹣3B.|﹣2|C.2D.2103【考点】有理数大小比较.【剖析】依据正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小,即可解答.【解答】解:∵|﹣2|=2,2=9,2103=2000,﹣3292000,最小的数是﹣2,故选:A.【点评】本题考查了有理数的大小比较的应用,注意:正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小.20.在﹣4,2,﹣1,3这四个数中,比﹣2小的数是A.﹣4B.2C.﹣1D.3【考点】有理数大小比较.【剖析】依据有理数大小比较的法则直接求得结果,再判定正确选项.【解答】解:∵正数和0大于负数,排除2和3.∵|﹣2|=2,|﹣1|=1,|﹣4|=4,421,即|﹣4||﹣2||﹣1|,﹣4﹣2﹣1.故选:A.【点评】考查了有理数大小比较法则.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.。

初一七年级数学绝对值练习题及答案解析

初一七年级数学绝对值练习题及答案解析

初一七年级数学绝对值练习题及答案解析数学绝对值是初中数学中的一个重要概念,它常常在方程、不等式、函数等各个章节中出现。

掌握绝对值的概念和性质对于解决数学问题非常重要。

下面是一些初一七年级的数学绝对值练习题及答案解析,帮助你巩固对绝对值的理解。

1. 计算以下数的绝对值:a) |-5|b) |0|c) |3|答案:a) |-5| = 5b) |0| = 0c) |3| = 3解析:绝对值表示一个数与0点之间的距离。

所以绝对值的结果总是非负数。

对于a) |-5|,-5与0之间的距离是5,所以结果是5。

对于b) |0|,0与0之间的距离是0,所以结果是0。

对于c) |3|,3与0之间的距离是3,所以结果是3。

2. 求解以下方程:a) |x| = 5b) |2x - 3| = 7答案:a) x = 5 或 x = -5b) x = 5 或 x = -2解析:对于a) |x| = 5,由于绝对值的定义是非负数,所以x可以是5或-5。

因为5与-5的绝对值都是5。

对于b)|2x - 3| = 7,需要分情况讨论。

当2x - 3 = 7时,解得x = 5。

当2x - 3 = -7时,解得x = -2。

3. 解以下不等式:a) |x + 2| < 3b) |3x - 1| ≥ 5答案:a) -5 < x < 1b) x ≤ -2 或x ≥ 2解析:对于a) |x + 2| < 3,我们可以使用绝对值的定义进行讨论。

当x + 2 > 0时,即x > -2,方程等价于x + 2 < 3,解得x < 1。

当x + 2 < 0时,即x < -2,方程等价于-(x + 2) < 3,解得x > -5。

所以综合起来,-5 < x < 1。

对于b) |3x - 1| ≥ 5,我们也需要分情况讨论。

当3x - 1 > 0时,即3x > 1,方程等价于3x - 1 ≥ 5,解得x ≥ 2。

部编数学七年级上册专题1.5绝对值2023年7上册同步培优(解析版)【人教版】含答案

部编数学七年级上册专题1.5绝对值2023年7上册同步培优(解析版)【人教版】含答案

【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题1.5绝对值【名师点睛】1.概念:数轴上某个数与原点的距离叫做这个数的绝对值.①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.3.绝对值的非负性:任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.根据上述的性质可列出方程求出未知数的值.【典例剖析】【例1】化简下列各数:(1)﹣(﹣5)(2)﹣(+7)(3)﹣[﹣(+23)](4)﹣[﹣(﹣a)](5)|﹣(+7)|(6)﹣|﹣8|(7)|﹣|+4 7 ||(8)﹣|﹣a|(a<0)【分析】(1)根据相反数定义求出即可;(2)根据相反数定义求出即可;(3)根据相反数定义求出即可;(4)根据相反数定义求出即可;(5)根据绝对值定义求出即可;(6)根据绝对值定义求出即可;(7)根据绝对值定义求出即可;(8)根据绝对值定义求出即可.【解析】(1)﹣(﹣5)=5;(2)﹣(+7)=﹣7;(3)﹣[﹣(+23)]=23;(4)﹣[﹣(﹣a)]=﹣a;(5)|﹣(+7)|=7;(6)﹣|﹣8|=﹣8;(7)|﹣|+47||=47;(8)﹣|﹣a|(a<0)=﹣(﹣a)=a.【点评】本题考查了绝对值,相反数的应用,注意:一个负数的绝对值等于它的相反数,一个正数的绝对值等于它本身,0的绝对值是0.【变式】化简:(1)﹣(﹣3);(2)﹣|﹣3.2|;(3)+(﹣0.5);(4)﹣|+13 |.【分析】(1)根据相反数的定义解决此题.(2)根据绝对值以及相反数的定义解决此题.(3)根据去括号法则解决此题.(4)根据绝对值以及相反数的定义解决此题.【解析】(1)﹣(﹣3)=3.(2)﹣|﹣3.2|=﹣3.2.(3)+(﹣0.5)=﹣0.5.(4)―|+13|=―13.【点评】本题主要考查绝对值以及相反数的定义,熟练掌握相反数的定义是解决本题的关键.【例2】已知a为整数(1)|a|能取最 小 (填“大”或“小”)值是 0 .此时a= 0 .(2)|a|+2能取最 小 (填“大”或“小”)值是 2 .此时a= 0 .(3)2﹣|a﹣1|能取最 大 (填“大”或“小”)值是 2 .此时a= 1 .(4)|a﹣1|+|a+2|能取最 小 (填“大”或“小”)值是 3 .此时a= ﹣2≤a≤1 .【分析】(1)由绝对值的性质即可得出答案;(2)由绝对值的性质即可得出答案;(3)由绝对值的性质即可得出答案;(4)由绝对值的性质即可得出答案.【解析】(1)|a|能取最小值是0.此时a=0.故答案为:小,0,0;(2)|a|+2能取最小值是2.此时a=0.故答案为:小,2,0;(3)2﹣|a﹣1|能取最大值是2.此时a=1.故答案为:大,2,1;(4)|a﹣1|+|a+2|能取最小值是3.此时﹣2≤a≤1;故答案为:小,3,﹣2≤a≤1.【点评】本题考查了绝对值的非负性质;熟练掌握绝对值的非负性质是解题的关键.【变式】.(1)如果|x|=2,则x= ±2 ;(2)如果x=﹣x,则x= 0 ;(3)如果|x|=x,求x的取值范围;(4)如果|x|=﹣x,求x的取值范围.【分析】(1)利用绝对值的定求解即可,(2)利用相反数的定义求解,(3)利用绝对值的性质求解即可,(4)利用绝对值的性质求解即可.【解析】(1)如果|x|=2,则x=±2;故答案为:±2.(2)如果x=﹣x,则x=0;故答案为:0.(3)如果|x|=x,则x≥0;(4)如果|x|=﹣x,则x≤0.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.【满分训练】一.选择题(共10小题)1.(2022•通辽)﹣3的绝对值是( )A.―13B.3C.13D.﹣3【分析】应用绝对值的计算方法进行计算即可得出答案.【解析】|﹣3|=3.故选:B.【点评】本题主要考查了绝对值,熟练掌握绝对值的计算方法进行求解是解决本题的关键.2.(2022•聊城)实数a的绝对值是54,a的值是( )A.54B.―54C.±45D.±54【分析】根据绝对值的意义直接进行解析【解析】∵|a|=5 4,∴a=±5 4.故选:D.【点评】本题考查了绝对值的意义,即在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.3.(2022•百色)﹣2023的绝对值等于( )A.﹣2023B.2023C.±2023D.2022【分析】利用绝对值的意义求解.【解析】因为负数的绝对值等于它的相反数;所以,﹣2023的绝对值等于2023.故选:B.【点评】本题考查绝对值的含义.即:正数的绝对值是它本身,负数的绝对值是它的相反数.4.(2022•绥化)化简|―12|,下列结果中,正确的是( )A.12B.―12C.2D.﹣2【分析】利用绝对值的意义解析即可.【解析】|―12|的绝对值是12,故选:A.【点评】本题主要考查了绝对值的意义,正确利用绝对值的意义是解题的关键.5.(2022•南充)下列计算结果为5的是( )A.﹣(+5)B.+(﹣5)C.﹣(﹣5)D.﹣|﹣5|【分析】根据相反数判断A,B,C选项;根据绝对值判断D选项.【解析】A选项,原式=﹣5,故该选项不符合题意;B选项,原式=﹣5,故该选项不符合题意;C选项,原式=5,故该选项符合题意;D选项,原式=﹣5,故该选项不符合题意;故选:C.【点评】本题考查了相反数,绝对值,掌握只有符号不同的两个数互为相反数是解题的关键.6.(2021秋•河东区期末)若ab≠0,那么|a|a+|b|b的取值不可能是( )A.﹣2B.0C.1D.2【分析】由ab≠0,可得:①a>0,b>0,②a<0,b<0,③a>0,b<0,④a<0,b >0;分别计算即可.【解析】∵ab≠0,∴有四种情况:①a>0,b>0,②a<0,b<0,③a>0,b<0,④a<0,b>0;①当a>0,b>0时,|| a +||b=1+1=2;②当a<0,b<0时,|| a +||b=―1﹣1=﹣2;③当a>0,b<0时,|| a +||b=1﹣1=0;④当a<0,b>0时,|| a +||b=―1+1=0;综上所述,||a+||b的值为:±2或0.故选:C.【点评】本题考查绝对值的定义,运用分类讨论思想和熟练掌握并正确运用绝对值的定义是正确解题的关键.7.(2021秋•泗洪县期末)在数轴上有A、B两点,点A在原点左侧,点B在原点右侧,点A对应整数a,点B对应整数b,若|a﹣b|=2022,当a取最大值时,b值是( )A.2023B.2021C.1011D.1【分析】先根据A、B的位置关系,判断出a、b的大小关系,化简|a﹣b;再根据a取最大值,求出a的值;最后求出b的值.【解析】∵点A在点B左侧,∴a﹣b<0,∴|a﹣b|=b﹣a=2022;a为负整数,取最大值时为﹣1,此时b﹣(﹣1)=2022,则b=2021;故选:B.【点评】考查绝对值的化简和数轴.解题的关键在于能够结合数轴判断a、b的大小关系,进而化简|a﹣b|.注意:最大的负整数是﹣1.8.(2021秋•霍邱县期中)若|a|=﹣a,则在下列选项中a不可能是( )A.﹣2B.―12C.0D.5【分析】根据||=―a,结合绝对值性质可知:a≤0,不可能是正数.【解析】∵||=―a,∴实数a是非正数,即a≤0,∴选项中的数a不可能是正数,故选:D.【点评】本题考查了绝对值定义和性质,熟练掌握并正确运用绝对值性质是解题关键.9.(2020秋•九龙坡区校级期末)已知﹣1≤x≤2,则化简代数式3|x﹣2|﹣|x+1|的结果是( )A.﹣4x+5B.4x+5C.4x﹣5D.﹣4x﹣5【分析】由于﹣1≤x≤2,根据不等式性质可得:x﹣2≤0,x+1≥0,再依据绝对值性质化简即可.【解析】∵﹣1≤x≤2,∴x﹣2≤0,x+1≥0,∴3|x﹣2|﹣|x+1|=3(2﹣x)﹣(x+1)=﹣4x+5;故选:A.【点评】本题考查了不等式性质,绝对值定义和性质,整数加减运算等,熟练掌握并运用绝对值性质化简是解题关键.10.(2020秋•长垣市月考)若x为整数,且满足|x﹣2|+|x+4|=6,则满足条件的x的值有( )A.4个B.5个C.6个D.7个【分析】依据|x﹣2|+|x+4|=6,分类讨论即可得到所有整数x即可.【解析】①当x<﹣4时,|x﹣2|+|x+4|>6(不合题意);②当﹣4≤x≤2时,|x﹣2|+|x+4|=6,符合题意的所有整数x的值为﹣4,﹣3,﹣2,﹣1,0,1,2,③当x>2时,|x﹣2|+|x+4|>6(不合题意);综上所述,满足|x﹣2|+|x+4|=6的所有整数x的个数是7.故选:D.【点评】此题考查绝对值的意义,熟练掌握绝对值的意义是解题的关键.二.填空题(共8小题)11.(2022•常德)|﹣6|= 6 .【分析】根据绝对值的化简,由﹣6<0,可得|﹣6|=﹣(﹣6)=6,即得答案.【解析】﹣6<0,则|﹣6|=﹣(﹣6)=6,故答案为6.【点评】本题考查绝对值的化简求值,即|a|=a(a≥0)―a(a<0).12.(2022•泰州)若x=﹣3,则|x|的值为 3 .【分析】利用绝对值的代数意义计算即可求出值.【解析】∵x=﹣3,∴|x|=|﹣3|=3.故答案为:3.【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.13.(2020秋•达孜区期末)绝对值不大于4的整数有 9 个.【分析】根据绝对值的性质解析即可.【解析】根据绝对值的概念可知,绝对值不大于4的整数有4,3,2,1,0,﹣1,﹣2,﹣3,﹣4,一共9个.【点评】解析此题的关键是熟知绝对值的性质,即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.互为相反数的两个数的绝对值相等.14.(2020秋•吴江区期中)若|x|=﹣(﹣8),则x= ±8 .【分析】根据绝对值的性质解析可得.【解析】∵|x|=﹣(﹣8),∴x=±8.故答案为:±8.【点评】本题主要考查绝对值,掌握绝对值的性质是解题的关键.15.(2020秋•兴化市月考)当a= ﹣2 时,式子10﹣|a+2|取得最大值.【分析】根据任何数的偶次方是非负数,即可求解.【解析】∵|a+2|≥0,且当a+2=0,即a=﹣2时,|a+2|=0,∴当a=﹣2时,代数式10﹣|a+2|取得最大值是10.故答案是:﹣2.【点评】此题主要考查了非负数的性质,解题的关键是明确初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).16.(2022春•东台市期中)|x﹣2|+9有最小值为 9 .【分析】根据绝对值的非负性即可得出答案.【解析】∵|x﹣2|≥0,∴|x﹣2|+9≥9,∴|x﹣2|+9有最小值为9.故答案为:9.【点评】本题考查了绝对值的非负性,掌握|a|≥0是解题的关键.17.(2021秋•玄武区校级月考)如果|a+2|+|b﹣1|=0,那么(a+b)2021的值是 ﹣1 .【分析】根据绝对值的非负数的性质分别求出a、b,代入计算即可.【解析】∵|a+2|+|b﹣1|=0,∴a+2=0,b﹣1=0,解得a=﹣2,b=1,∴(a+b)2021=(﹣1)2021=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.18.(2021秋•虎林市期末)|a+3|+|b﹣2|=0,则a+b= ﹣1 .【分析】根据绝对值非负数的性质列式求解即可得到a、b的值,然后再代入代数式进行计算即可求解.【解析】根据题意得,a+3=0,b﹣2=0,解得a=﹣3,b=2,∴a+b=﹣3+2=﹣1.故答案为:﹣1.【点评】本题考查了绝对值非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.三.解析题(共4小题)19.在有理数3,﹣1.5,﹣312,0,2.5,﹣4,﹣(+3.5),|―12|中,求出其中分数的相反数和绝对值.【分析】据只有符号不同的两个数互为相反数,可得一个数的相反数;根据绝对值实数轴上的点到原点的距离,可得一个数的绝对值;【解析】﹣1.5的相反数1.5,绝对值是1.5;﹣312的相反数是312,绝对值是312;2.5的相反数是﹣2.5,绝对值是2.5;﹣(+3.5)=﹣3.5相反数是3.5,绝对值是3.5;|―12|=12相反数是―12,绝对值是12.【点评】本题考查了绝对值,利用了绝对值得性质:正数的绝对等于它本身,负数的绝对值等于它的相反数.20.求下列各数的绝对值:(1)﹣38;(2)0.15;(3)a(a<0);(4)3b(b>0);(5)a﹣2(a<2);(6)a﹣b.【分析】根据绝对值的含义和求法,求出每个数的绝对值各是多少即可.【解析】(1)|﹣38|=38;(2)|+0.15|=0.15;(3)∵a<0,∴|a|=﹣a;(4)∵b>0,∴3b>0,∴|3b|=3b;(5)∵a<2,∴a﹣2<0,∴|a﹣2|=﹣(a﹣2)=2﹣a;(6)a﹣b≥0时,|a﹣b|=a﹣b;a﹣b<0时,|a﹣b|=b﹣a.【点评】此题主要考查了绝对值的含义和应用,要熟练掌握,解析此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.21.(2020秋•江阴市校级月考)阅读下面的例题:我们知道|x|=2,则x=±2请你那么运用“类比”的数学思想尝试着解决下面两个问题.(1)|x+3|=2,则x= ﹣5或﹣1 ;(2)5﹣|x﹣4|=2,则x= 1或7 .【分析】(1)根据绝对值解析即可;(2)根据绝对值的非负性解析即可.【解析】(1)因为)|x+3|=2,则x=﹣5或﹣1;(2)因为5﹣|x﹣4|=2,可得:|x﹣4|=3,解得:x=1或7;故答案为:(1)﹣5或﹣1(2)1或7【点评】此题考查绝对值,关键是根据绝对值的非负性和概念解析.22.(2019秋•睢宁县期中)【观察与归纳】(1)观察下列各式的大小关系:|﹣2|+|3|>|﹣2+3||﹣8|+|3|>|﹣8+3||﹣2|+|﹣3|=|﹣2﹣3||0|+|﹣6|=|0﹣6|归纳:|a|+|b| ≥ |a+b|(用“>”或“<”或“=”或“≥”或“≤”填空)【理解与应用】(2)根据上题中得出的结论,若|m|+|n|=9,|m+n|=1,求m的值.【分析】(1)根据提供的关系式得到规律即可;(2)根据(1)中的结论分当m为正数,n为负数时和当m为负数,n为正数时两种情况分类讨论即可确定答案.【解析】(1)根据题意得:|a|+|b|≥|a+b|,故答案为:≥;(2)由上题结论可知,因为|m|+|n|=9,|m+n|=1,|m|+|n|≠|m+n|,所以m、n异号.当m为正数,n为负数时,m﹣n=9,则n=m﹣9,|m+m﹣9|=1,m=5或4;当m为负数,n为正数时,﹣m+n=9,则n=m+9,|m+m+9|=1,m=﹣4或﹣5;综上所述,m为±4或±5.【点评】本题考查了绝对值的知识,解题的关键是能够根据题意分类讨论解决问题,难度不大.。

初一(七年级)数学绝对值练习题及答案解析

初一(七年级)数学绝对值练习题及答案解析

初一(七年级)数学绝对值练习题及答案解析基础检测:1.-8的绝对值是,记做。

2.绝对值等于5的数有。

3.若︱a︱= a , 则 a 。

4.的绝对值是2004,0的绝对值是。

5一个数的绝对值是指在上表示这个数的点到的距离。

6.如果 x < y < 0, 那么︱x ︱︱y︱。

7.︱x - 1 ︱ =3 ,则 x =。

8.若︱x+3︱+︱y -4︱= 0,则 x + y = 。

9.有理数a ,b在数轴上的位置如图所示,则a b,︱a︱︱b︱。

10.︱x ︱<л,则整数x = 。

11.已知︱x︱-︱y︱=2,且y =-4,则 x = 。

12.已知︱x︱=2 ,︱y︱=3,则x +y = 。

13.已知︱x +1 ︱与︱y -2︱互为相反数,则︱x ︱+︱y︱= 。

14. 式子︱x +1 ︱的最小值是,这时,x值为。

15. 下列说法错误的是()A 一个正数的绝对值一定是正数B 一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数16.下列说法错误的个数是()(1)绝对值是它本身的数有两个,是0和1(2)任何有理数的绝对值都不是负数(3)一个有理数的绝对值必为正数(4)绝对值等于相反数的数一定是非负数A 3B 2C 1D 017.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则 a + b + c 等于 ( )A -1B 0C 1D 2拓展提高:18.如果a , b 互为相反数,c, d 互为倒数,m 的绝对值为2,求式子a b a b c+++ + m -cd 的值。

19.某司机在东西路上开车接送乘客,他早晨从A 地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞) +10 ,— 5, —15 ,+ 30 ,—20 ,—16 ,+ 14(1) 若该车每百公里耗油 3 L ,则这车今天共耗油 多少升?(2) 据记录的情况,你能否知道该车送完最后一个乘客是,他在A 地的什么方向?距A 地多远?20.工厂生产的乒乓球超过标准重量的克数记作正数,低于标准重量的克数记作负数,现对5个乒乓球称重情况如下表所示,分析下表,根据绝对值的定义判断哪个球的重量最接初一(七年级)数学上册绝对值同步练习答案基础检测:1.-8的绝对值是8 ,记做︱-8︱。

初一数学绝对值专项练习带答案解析

初一数学绝对值专项练习带答案解析

绝对值一.选择题(共16小题)1.相反数不不小于它自身旳数是()A.正数B.负数C.非正数D.非负数2.下列各对数中,互为相反数旳是()A.2和B.﹣0.5和C.﹣3和D.和﹣23.a,b互为相反数,下列各数中,互为相反数旳一组为()A.a2与b2B.a3与b5C.a2n与b2n(n为正整数)D.a2n+1与b2n+1(n为正整数)4.下列式子化简不对旳旳是()A.+(﹣5)=﹣5 B.﹣(﹣0.5)=0.5C.﹣|+3|=﹣3 D.﹣(+1)=15.若a+b=0,则下列各组中不互为相反数旳数是()A.a3和b3B.a2和b2C.﹣a和﹣b D .和6.若a和b互为相反数,且a≠0,则下列各组中,不是互为相反数旳一组是()A.﹣2a3和﹣2b3B.a2和b2C.﹣a和﹣b D.3a和3b7.﹣旳相反数是()A.﹣ B.C.±D .﹣8.﹣旳相反数是()A.B.﹣C .D .﹣9.下列各组数中,互为相反数旳是()A.﹣1与(﹣1)2B.1与(﹣1)2C.2与D.2与|﹣2|10.如图,图中数轴旳单位长度为1.如果点B,C表达旳数旳绝对值相等,那么点A表达旳数是()A.﹣4 B.﹣5 C.﹣6 D.﹣211.化简|a﹣1|+a﹣1=()A.2a﹣2B.0 C.2a﹣2或0 D.2﹣2a12.如图,M,N,P,R分别是数轴上四个整数所相应旳点,其中有一点是原点,并且MN=NP=PR=1.数a相应旳点在M与N之间,数b相应旳点在P与R之间,若|a|+|b|=3,则原点是()A.M或RB.N或P C.M或N D.P或R13.已知:a>0,b<0,|a|<|b|<1,那么如下判断对旳旳是()A.1﹣b>﹣b>1+a>aB.1+a>a>1﹣b>﹣bC.1+a>1﹣b>a>﹣bD.1﹣b>1+a>﹣b>a14.点A,B在数轴上旳位置如图所示,其相应旳数分别是a和b.对于如下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中对旳旳是()A.甲乙B.丙丁C.甲丙D.乙丁15.有理数a、b在数轴上旳位置如图所示,则下列各式中错误旳是()A.b<aB.|b|>|a|C.a+b>0 D.ab<016.﹣3旳绝对值是()A.3 B.﹣3 C .D .二.填空题(共10小题)17.|x+1|+|x﹣2|+|x﹣3|旳值为.18.已知|x|=4,|y |=2,且xy<0,则x﹣y旳值等于.19.﹣2旳绝对值是,﹣2旳相反数是.20.一种数旳绝对值是4,则这个数是.21.﹣旳绝对值是.22.如果x、y都是不为0旳有理数,则代数式旳最大值是.23.已知+=0,则旳值为.24.计算:|﹣5+3|旳成果是.25.已知|x|=3,则x旳值是.26.计算:|﹣3|=.三.解答题(共14小题)27.阅读下列材料并解决有关问题:我们懂得,|m|=.目前我们可以用这一结论来化简具有绝对值旳代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|旳零点值).在实数范畴内,零点值m=﹣1和m=2可将全体实数提成不反复且不漏掉旳如下3种状况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分如下3种状况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m ﹣1.综上讨论,原式=通过以上阅读,请你解决如下问题:(1)分别求出|x﹣5|和|x﹣4|旳零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|旳最小值.28.同窗们都懂得|5﹣(﹣2)|表达5与(﹣2)之差旳绝对值,也可理解为5与﹣2两数在数轴上所对旳两点之间旳距离,试摸索:(1)求|5﹣(﹣2)|=.(2)找出所有符合条件旳整数x,使得|x+5|+|x﹣2|=7成立旳整数是.(3)由以上摸索猜想,对于任何有理数x,|x﹣3|+|x ﹣6|与否有最小值?如果有,写出最小值;如果没有,阐明理由.29.计算:已知|x|=,|y|=,且x<y<0,求6÷(x ﹣y)旳值.30.求下列各数旳绝对值.2,﹣,3,0,﹣4.31.结合数轴与绝对值旳知识回答问题:(1)探究:①数轴上表达5和2旳两点之间旳距离是;②数轴上表达﹣2和﹣6旳两点之间旳距离是;③数轴上表达﹣4和3旳两点之间旳距离是;(2)归纳:一般地,数轴上表达数m和数n旳两点之间旳距离等于|m﹣n|.(3)应用:①如果表达数a和3旳两点之间旳距离是7,则可记为:|a﹣3|=7,那么a=;②若数轴上表达数a旳点位于﹣4与3之间,求|a+4|+|a﹣3|旳值;③当a取何值时,|a+4|+|a﹣1|+|a﹣3|旳值最小,最小值是多少?请阐明理由.32.计算:|x+1|+|x﹣2|+|x﹣3|.33.已知数轴上三点A,O,B表达旳数分别为﹣3,0,1,点P为数轴上任意一点,其表达旳数为x.(1)如果点P到点A,点B旳距离相等,那么x=;(2)当x=时,点P到点A,点B旳距离之和是6;(3)若点P到点A,点B旳距离之和最小,则x旳取值范畴是;(4)在数轴上,点M ,N表达旳数分别为x1,x2,我们把x1,x2之差旳绝对值叫做点M,N之间旳距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度旳速度从点O沿着数轴旳负方向运动时,点E以每秒1个单位长度旳速度从点A沿着数轴旳负方向运动、点F 以每秒4个单位长度旳速度从点B沿着数轴旳负方向运动,且三个点同步出发,那么运动秒时,点P 到点E,点F旳距离相等.34.阅读下面材料:如图,点A、B在数轴上分别表达有理数a、b,则A、B两点之间旳距离可以表达为|a﹣b|.根据阅读材料与你旳理解回答问题:(1)数轴上表达3与﹣2旳两点之间旳距离是.(2)数轴上有理数x与有理数7所相应两点之间旳距离用绝对值符号可以表达为.(3)代数式|x+8|可以表达数轴上有理数x与有理数所相应旳两点之间旳距离;若|x+8|=5,则x=.(4)求代数式|x+1008|+|x+504|+|x﹣1007|旳最小值.35.已知|a|=8,|b|=2,|a﹣b|=b﹣a,求b+a旳值.36.如图,数轴上旳三点A,B,C分别表达有理数a,b,c,化简|a﹣b|﹣|a+c|+|b﹣c|.37.若ab>0,化简:+.38.若a、b都是有理数,试比较|a+b|与|a|+|b|大小.39.若a>b,计算:(a﹣b)﹢|a﹣b|.40.当a≠0时,请解答下列问题:(1)求旳值;(2)若b≠0,且,求旳值.参照答案与试题解析一.选择题(共16小题)1.D.2.B.3.D.4.D.5.B.6.B.7.B .8.A.9.A.10.A.11.C.12.A.13.D.14.C.15.C.16.A.二.填空题(共10小题)17..18.6或﹣6.19.2,2.20.4,﹣4.21..22.1.23.﹣1.24.2.25.±3.26.=3.三.解答题(共14小题)27.【解答】(1)令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|旳零点值分别为5和4;(2)当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x<5时,原式=5﹣x+x﹣4=1;当x≥5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.(3)当x<4时,原式=9﹣2x>1;当4≤x<5时,原式=1;当x≥5时,原式=2x﹣9>1.故代数式旳最小值是1.28.解:(1)原式=|5+2|=7故答案为:7;(2)令x+5=0或x﹣2=0时,则x=﹣5或x=2当x<﹣5时,∴﹣(x+5)﹣(x﹣2)=7,﹣x﹣5﹣x+2=7,x=5(范畴内不成立)当﹣5<x<2时,∴(x+5)﹣(x﹣2)=7,x+5﹣x+2=7,7=7,∴x=﹣4,﹣3,﹣2,﹣1,0,1当x>2时,∴(x+5)+(x﹣2)=7,x+5+x﹣2=7,2x=4,x=2,x=2(范畴内不成立)∴综上所述,符合条件旳整数x有:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;故答案为:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(3)由(2)旳摸索猜想,对于任何有理数x,|x﹣3|+|x ﹣6|有最小值为3.29.解:∵|x|=,|y|=,且x<y<0,∴x=﹣,y=﹣,∴6÷(x﹣y)=6÷(﹣+)=﹣36.30.【解答】解:|2|=2,|﹣|=,|3|=3,|0|=0,|﹣4|=4.31.解:探究:①数轴上表达5和2旳两点之间旳距离是3,②数轴上表达﹣2和﹣6旳两点之间旳距离是4,③数轴上表达﹣4和3旳两点之间旳距离是7;(3)应用:①如果表达数a和3旳两点之间旳距离是7,则可记为:|a﹣3|=7,那么a=10或a=﹣4,②若数轴上表达数a旳点位于﹣4与3之间,|a+4|+|a﹣3|=a+4﹣a+3=7,a=1时,|a+4|+|a﹣1|+|a﹣3|最小=7,|a+4|+|a﹣1|+|a﹣3|是3与﹣4两点间旳距离.32.解:x<﹣1时,|x+1|+|x﹣2|+|x﹣3|=﹣(x+1)﹣(x﹣2)﹣(x﹣3)=﹣x﹣1﹣x+2﹣x+3=﹣3x+4;﹣1≤x≤2时,|x+1|+|x﹣2|+|x﹣3|=(x+1)﹣(x﹣2)﹣(x﹣3)=x+1﹣x+2﹣x+3=﹣x+6;2<x≤3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)﹣(x﹣3)=x+1+x﹣2﹣x+3=x+2;x>3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)+(x ﹣3)=x+1+x﹣2+x﹣3=3x﹣4.33.解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B旳距离之和是6,∴点P在点A旳左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B旳右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P 到点A,点B旳距离之和最小,因此x旳取值范畴是﹣3≤x≤1;(4)设运动时间为t,点P表达旳数为﹣3t,点E表达旳数为﹣3﹣t,点F表达旳数为1﹣4t,∵点P到点E,点F旳距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.34.解:(1)|3﹣(﹣2)|=5,(2)数轴上有理数x与有理数7所相应两点之间旳距离用绝对值符号可以表达为|x﹣7|,(3)代数式|x+8|可以表达数轴上有理数x与有理数﹣8所相应旳两点之间旳距离;若|x+8|=5,则x=﹣3或﹣13,(4)如图,|x+1008|+|x+504|+|x﹣1007|旳最小值即|1007﹣(﹣1008)|=.故答案为:5,|x﹣7|,﹣8,=﹣3或﹣13.35.解:∵|a|=8,|b|=2,∴a=±8,b=±2,∵|a﹣b|=b﹣a,∴a﹣b≤0.①当a=8,b=2时,由于a﹣b=6>0,不符题意,舍去;②当a=8,b=﹣2时,由于a﹣b=10>0,不符题意,舍去;③当a=﹣8,b=2时,由于a﹣b=﹣10<0,符题意;因此a+b=﹣6;④当a=﹣8,b=﹣2时,由于a﹣b=﹣6<0,符题意,因此a+b=﹣10.综上所述a+b=﹣10或﹣6.36.解:由数轴得,c>0,a<b<0,因而a﹣b<0,a+c<0,b﹣c<0.∴原式=b﹣a+a+c+c﹣b=2c.37.解:∵ab>0,∴①当a>0,b>0时,+=1+1=2.②当a<0,b<0时,+=﹣1﹣1=﹣2.综上所述:+=2或﹣2.38.解:①当a,b同号时,|a+b|=|a|+|b|,②当a,b中至少有一种0时,|a+b|=|a|+|b|,③当a,b异号时,|a+b|<|a|+|b|,综上所述|a+b|≤|a|+|b|.39.解:∵a>b,∴a﹣b>0,∴(a﹣b)﹢|a﹣b|=(a﹣b)+(a﹣b)=2a﹣2b.40.解:(1)当a>0时,=1;当a<0时,=﹣1;(2)∵,∴a,b异号,当a>0,b<0时,=﹣1;当a<0,b>0时,=﹣1;。

七年级数学上册《绝对值》练习题(附答案解析)

七年级数学上册《绝对值》练习题(附答案解析)

七年级数学上册《绝对值》练习题(附答案解析)一、选择题(共13小题)1. −3的绝对值是( )A. 3B. −3C. −13D. 132. −2的绝对值是( )A. 2B. −2C. ±2D. √23. 绝对值不大于3的正整数有( )A. 1个B. 2个C. 3个D. 4个4. 若∣x∣=∣y∣,则x与y的关系是( )A. 都是零B. 互为相反数C. 相等D. 相等或互为相反数5. 下列大小关系中错误的是( )A. −1<−1.5B. −12<−13C. ∣∣−12∣∣>∣∣−13∣∣ D. π>3.146. 小明和小兰玩游戏,小兰说出一个数,小明要说出它的相反数,如果小兰说出的数是−2021,那么小明要说出的数是( )A. 12021B. −12021C. 2021D. −20217. 如图,数轴上有A,B,C,D四个点,其中表示的数互为相反数的点是( )A. 点A与点DB. 点A与点CC. 点B与点DD. 点B与点C8. 已知∣x∣=3,∣y∣=8,且xy<0,则x+y的值等于( )A. ±5B. ±11C. −5或11D. −5或−119. 在数轴上有两个点,分别表示数x和y,已知∣x∣=1,且x>0,∣y+1∣=4,那么这两个点之间距离为( )A. 2或6B. 5或3C. 2D. 310. 在−3,−1,1,3四个数中,比−2小的数是( )A. −3B. −1C. 1D. 311. 下面两个数互为相反数的是( )A. −(+2015) 与 +(−2015)B. −0.8 和 −(+0.8)C. −1.25 和 45 D. +(−0.02) 与 −(−150)12. −2021 的绝对值是 ( )A. −2021B. 2021C. ±2021D. 1202113. 有理数 a 、 b 、 c 表示的点在数轴上的位置如下图所示,则 ∣a +c∣−∣c −b∣−2∣b +a∣= ( )A. 3a −bB. −a −bC. a +3b −2cD. a −b −2c二、填空题(共7小题)14. −12 的相反数是 .15. 方程 ∣x −3∣=2 的解是 .16. 若 x <y <0,则 −x y ,x −y ,∣x ∣ ∣y ∣.(填“>”“<”或“=”)17. 若 ∣a ∣=5,b =3,且 a <b ,则 a = .18. 数轴上到原点的距离小于 3.2 的点中,表示整数的点共有 个.19. 若有理数 a ,b 满足 ab ≠0,则 m =a∣a∣+∣b∣b 的值为 .20. 如图,在数轴上,点 A 表示的数是 ,其绝对值是 ;点 B 表示的数是 ,其绝对值是 ;点 C 表示的数是 ,其绝对值是 .三、解答题(共5小题)21. 求下列各数的绝对值:−5,4.5,−0.5,+1,0,π−3.22. 若点 A ,B ,C ,D 分别表示 −(−52),−(+12),+(−4),+(+712),点 E ,F 分别表示 +(−4) 与 +(+712) 的相反数,请画出数轴并在数轴上标出点 A ,B ,C ,D ,E ,F .23. 如果 1<x <2,求代数式 ∣x−2∣x−2−∣x−1∣1−x +∣x∣x 的值.24. 已知a>0,b<0,且a+b<0,请利用数轴比较a,b,−a,−b的大小,并用“<”号连接.25. 比较下列每组数的大小:(1)−334和−323;(2)−∣∣212∣∣和−(−314);(3)−1327和−3029;(4)−5.34和−∣∣−513∣∣.参考答案与解析1. A【解析】负数的绝对值是它的相反数,−3的绝对值是3.2. A【解析】负数的绝对值是它的相反数,故−2的绝对值是2.3. C4. D【解析】因为∣x∣=∣y∣,所以x,y在数轴上对应的点到原点的距离相等,则x=y或x=−y.5. A【解析】∵−1>−1.5,故选项A错误;∵∣∣−12∣∣=12,∣∣−13∣∣=13,且12>13,∴−12<−13,选项B和C都是正确的.选项D中π>3.14故选项D正确.故选:A.6. C7. A【解析】由题图可知,点A,B,C,D到原点的距离分别为2,1,0.5,2,到原点的距离相等的点是点A与点D,故选A.8. A【解析】∵∣x∣=3,∣y∣=8,∴x=±3,y=±8.∵xy<0,∴当x=3时,y=−8,当x=−3时,y=8.当x=3,y=−8时,x+y=3+(−8)=−5;当x=−3,y=8时.x+y=−3+8=5.9. A【解析】∵∣x∣=1,且x>0,∴x=1,∵∣y+1∣=4,∴y=−5或3,∴这两个点之间距离为1−(−5)=6或3−1=2.10. A11. D【解析】−(+2015)=−2015,+(−2015)=−2015,两数相等,A不合题意;−(+0.8)=−0.8,两数相等,B不合题意;−1.25和45不是互为相反数,C不合题意;+(−0.02)=−150,−(−150)=150,两个数互为相反数,D符合题意.12. B13. C14. 12【解析】根据只有符号不同的两个数叫做互为相反数,可得一个数的相反数.所以−12的相反数是12.15. x1=1,x2=516. >,<,>17. −5【解析】因为∣a∣=5,所以a=±5.又b=3,且a<b,所以a=−5.18. 719. 2或0或−220. 5.5,5.5,−3,3,−0.5,0.521. 5;4.5;0.5;1;0;π−3.22. −(−52)=52,−(+12)=−12,+(−4)=−4,+(+712)=712,+(−4) 的相反数是 4,+(+712) 的相反数是 −712,画出的数轴及各点在数轴上的位置如图.23. 当 1<x <2 时,x >0,x −1>0,x −2<0,原式=∣x−2∣x−2+∣x−1∣x−1+∣x∣x=−1+1+1=1.24. ∵a >0,b <0,且 a +b <0, ∴∣b ∣>∣a ∣, 在数轴上表示为:b <−a <a <−b . 25. (1) −334<−323;(2) −∣∣212∣∣<−(−314); (3) −1327>−3029;(4) −5.34<−∣∣−513∣∣.。

七年级数学上册有理数—绝对值(含解析)

七年级数学上册有理数—绝对值(含解析)

七年级数学上册有理数——绝对值考试要求:重难点:绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号.②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5.求字母a 的绝对值: ①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩②(0)(0)a a a a a ≥⎧=⎨-<⎩ ③(0)(0)a a a a a >⎧=⎨-≤⎩ 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小. 绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0a b c ++=,则0a =,0b =,0c =绝对值的其它重要性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-;(2)若a b =,则a b =或a b =-;(3)ab a b =⋅;a ab b =(0)b ≠; (4)222||||a a a ==;a 的几何意义:在数轴上,表示这个数的点离开原点的距离.a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离.例题精讲:【例1】到数轴原点的距离是2的点表示的数是( )A 、±2B 、2C 、-2D 、4【难度】1星【解析】此题要全面考虑,原点两侧各有一个点到原点的距离为2,即表示2和-2的点.【答案】根据题意,知到数轴原点的距离是2的点表示的数,即绝对值是2的数,应是±2.故选A.点评:利用数轴可以直观地求出两点的距离或解决一些与距离有关的问题,体现了数形结合的数学思想.【例2】下列说法正确的有()①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等,那么这两个数相等;③互为相反数的两个数的绝对值相等;④没有最小的有理数,也没有绝对值最小的有理数;⑤所有的有理数都可以用数轴上的点来表示;⑥符号不同的两个数互为相反数.A、②④⑤⑥B、③⑤C、③④⑤D、③⑤⑥【难度】2星【解析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【答案】①0是有理数,|0|=0,故本小题错误;②互为相反数的两个数的绝对值相等,故本小题错误;③互为相反数的两个数的绝对值相等,故本小题正确;④有绝对值最小的有理数,故本小题错误;⑤由于数轴上的点和实数是一一对应的,所以所有的有理数都可以用数轴上的点来表示,故本小题正确;⑥只有符号不同的两个数互为相反数,故本小题错误.所以③⑤正确.故选B.点评:本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.【例3】如果a的绝对值是2,那么a是()A、2B、-2C、±2D、【难度】1星【解析】根据题意可知:绝对值等于2的数应该是±2.【答案】2的绝对值是2,-2的绝对值也是2,所以a的值应该是±2.故选C.点评:本题考查了绝对值的概念,学生要熟练掌握.【例4】若a<0,则4a+7|a|等于()A、11aB、-11aC、-3aD、3a【难度】2星【解析】:本题考查有理数的绝对值问题,如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零【答案】:解:∵a<0,∴|a|=-a.4a+7|a|=4a+7|-a|=4a-7a=-3a.选C.【例5】一个数与这个数的绝对值相等,那么这个数是()A、1,0B、正数C、非正数D、非负数【难度】1星【解析】:根据绝对值的性质进行解答即可.【答案】解:因为一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,所以一个数与这个数的绝对值相等,那么这个数是非负数.故选D.【例6】已知|x|=5,|y|=2,且xy>0,则x-y的值等于()A、7或-7B、7或3C、3或-3D、-7或-3【难度】2星【解析】先根据绝对值的定义求出x、y的值,再由xy>0可知x、y同号,根据此条件求出x、y的对应值即可.【答案】解:∵|x|=5,|y|=2,∴x=±5,y=±2,∵xy >0,∴当x=5时,y=2,此时x-y=5-2=3;当x=-5时,y=-2,此时x-y=-5+2=-3.故选C .点评:本题考查的是绝对值的性质及有理数的加减法,熟知绝对值的性质是解答此题的关键.【例7】若1-=x x,则x 是( )A 、正数B 、负数C 、非负数D 、非正数 【难度】2星 【解析】本题作为选择题可用排除法进行解答,由于 是分式,所以x ≠0,故可排除C 、D ;再根据x 的取值范围进行讨论即可.【答案】:解:∵ 是分式, ∴x ≠0,∴可排除C 、D ,∵当x >0时,原式可化为 =1,故A 选项错误.故选B .点评:本题考查的是绝对值的性质,即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【例8】已知:a >0,b <0,|a|<|b|<1,那么以下判断正确的是( )A 、1-b >-b >1+a >aD 、1-b >1+a >-b >aC 、1+a >1-b >a >-bB 、1+a >a >1-b >-b【难度】3星【解析】根据绝对值的定义,可知a>0,b<0时,|a|=a,|b|=-b,代入|a|<|b|<1,得a<-b<1,由不等式的性质得-b>a,则1-b>1+a,又1+a>1,1>-b>a,进而得出结果.【答案】∵a>0,∴|a|=a;∵b<0,∴|b|=-b;又∵|a|<|b|<1,∴a<-b<1;∴1-b>1+a;而1+a>1,∴1-b>1+a>-b>a.故选D.点评:本题主要考查绝对值的定义:一个正数的绝对值是它本身;一个负数的绝对值是是它的相反数;0的绝对值是0;互为相反数的绝对值相等.【例9】已知a、b互为相反数,且|a-b|=6,则|b-1|的值为()A、2B、2或3C、4D、2或4【难度】2星【解析】根据互为相反数的两数和为0,又因为|a-b|=6,可求得b的值,代入即可求得结果判定正确选项.【答案】∵a、b互为相反数,∴a+b=0,∵|a-b|=6,∴b=±3,∴|b-1|=2或4.故选D.点评:此题把相反数和绝对值的运算结合求解.先根据相反数求出b的值,再确定绝对值符号中代数式的正负,去绝对值符号.【例10】a<0,ab<0,计算|b-a+1|-|a-b-5|,结果为()A、6B、-4C、-2a+2b+6D、2a-2b-6【难度】2星【解析】:根据已知条件先去掉绝对值即可求解.【答案】解:∵a<0,ab<0,∴b-a+1>0,a-b-5<0,∴|b-a+1|-|a-b-5|=b-a+1+a-b-5=-4.故选A.【例11】若|x+y|=y-x,则有()A、y>0,x<0B、y<0,x>0C、y<0,x<0D、x=0,y≥0或y=0,x≤0【难度】4星【解析】根据绝对值的定义,当x+y≥0时,|x+y|=x+y,当x+y≤0时,|x+y|=-x-y.从中得出正确答案.:【答案】解:∵|x+y|=y-x,又当x+y≥0时,|x+y|=x+y,可得x=0,y≥0或者y=0,x≤0又当x+y≤0时,|x+y|=-x-y,可得y=0,x≤0或x=0,y≥0∴x=0,y≥0或y=0,x≤0选D.点评:此题主要考查了绝对值的性质,能够根据已知条件正确地判断出x,y的值是解答此题的关键.【例12】已知:x<0<z,xy>0,且|y|>|z|>|x|,那么|x+z|+|y+z|-|x-y|的值()A、是正数B、是负数C、是零D、不能确定符号【难度】4星【解析】:先根据已知条件确定x、y、z的符号及其绝对值的大小,再画出数轴确定出各点在数轴上的位置,根据绝对值的性质即可去掉原式的绝对值,使原式得到化简.【答案】:解:由题意可知,x、y、z在数轴上的位置如图所示:所以|x+z|+|y+z|-|x-y|=x+z-(y+z)-(x-y)=0【例11】给出下面说法:(1)互为相反数的两数的绝对值相等;(2)一个数的绝对值等于本身,这个数不是负数;(3)若|m|>m,则m<0;(4)若|a|>|b|,则a>b,其中正确的有()A、(1)(2)(3)B、(1)(2)(4)C、(1)(3)(4)D、(2)(3)(4)【难度】3星【解析】:分别根据绝对值的性质、相反数的定义进行解答.【答案】解:(1)正确,符合绝对值的性质;(2)正确,符合绝对值的性质;(3)正确,符合绝对值的性质;(4)错误,例如a=-5,b=2时,不成立.故选A.(1)相反数的定义:只有符号不同的两个数,叫互为相反数;(2)绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.【例12】已知a,b,c为三个有理数,它们在数轴上的对应位置如图所示,则|c-b|-|b-a|-|a-c|= _________【难度】3星【解析】:根据图示,可知有理数a,b,c的取值范围b>1>a>0>c>-1,然后根据它们的取值范围去绝对值并求|c-b|-|b-a|-|a-c|的值.【答案】:解:根据图示知:b>1>a>0>c>-1,∴|c-b|-|b-a|-|a-c|=-c+b-b+a-a+c=0故答案是0.点评:本题主要考查了关于数轴的知识以及有理数大小的比较.【例13】若x<-2,则|1-|1+x||=______若|a|=-a,则|a-1|-|a-2|= ________【难度】3星【解析】根据已知x<-2,则可知1+x<0,x+2<0;再根据绝对值的定义|1-|1+x||逐步去掉绝对值可转化为-2-x根据已知|a|=-a与绝对值的定义,那么a≤0,则|a-1|-|a-2|可去掉绝对值后【答案】∵x<-2,∴1+x<0,x+2<0,则|1-|1+x||=|1-[-(1+x)]|=|2+x|=-2-x;∵|a|=-a,∴a≤0,∴a-1<0,a-2<0,,则|a-1|-|a-2|=1-a-(2-a),=1-a-2+a,=-1.故答案为:-2-x,-1.点评:此题主要考查了绝对值的性质,能够根据已知条件正确地判断出1+x<0、x+2<0、a≤0进而得出a-1<0、a-2<0,这些是解答此题的关键【例14】()2120a b++-=,分别求a b,的值【难度】3星【解析】根据平方和绝对值的非负性解决。

七年级数学上册1.2.4 绝对值-求一个数的绝对值-解答题专项练习5(人教版,含解析)

七年级数学上册1.2.4 绝对值-求一个数的绝对值-解答题专项练习5(人教版,含解析)

2021-2022学年度人教版七年级数学上册练习1.2.4 绝对值-求一个数的绝对值1.把以下各数分别表示在数轴上,并用“<”号把它们连接起来,0.5-,0,32-,()3--,22.探索研究:(1)比较下列各式的大小(用“<”“>”或“=”连接)①|3||2|+-_________|32|-;②1123+_______1123+; ③|6||3|+-________|63|-.(2)通过以上比较,请你归纳出当a ,b 为有理数时||||a b +与||a b +的大小关系.(直接写出结果)(3)根据(2)中得出的结论,当||20152015x x +=-时,x 的取值范围是________.若123415a a a a +++=,12345a a a a +++=,则12a a +=________.3.求有理数a 和﹣a 的绝对值.4.若a ,b 是表示两个不同点A ,B 的有理数,且|a|=5,|b|=2,它们在数轴的位置如图所示.(1)试确定a ,b 的值;并求表示a ,b 两数的点的距离;(2)若点C 在数轴上,点C 到点A 的距离是点C 到点B 距离的3倍,则点C 表示的数为_ ____.5.已知a 的相反数是5,b 的绝对值是3,求a b +的值.6.按要求写出,并在数轴上把这些数(已知的数字)表示出来:﹣3.5,0,﹣(﹣112),﹣(+2),﹣|﹣4|.﹣3.5的相反数;0的相反数;﹣(﹣112)的倒数;﹣(+2)的相反数的倒数;﹣|﹣4|的相反数.画出数轴并标出这些数:7.若1=a ,4b =,且a >b ,求a+b 的值8.某同学学习编程后,编了一个关于绝对值的程序,当输入一个数值后,屏幕输出的结果总比该数的绝对值小1.某同学输入-7后,把输出的结果再次输入,则最后屏幕输出的结果是多少?9.已知|a|=2,|b|=4, ①若a b <0,求a ﹣b 的值;②若|a ﹣b|=﹣(a ﹣b ),求a ﹣b 的值.10.把下列各数分别填入相应的集合里.2-,43--,0,227,π-,2019,()5-+,70+(1)正数集合:{};(2)整数集合:{};(3)负分数集合:{}.11.化简:(1)|﹣4| =_________ ;|4|=________.(2) 如果│x│=2,那么x=__________;如果│x│=x,那么x______0(填≥,≤)(3)如图,化简|a|﹣|b|﹣|c|.12.画一条数轴,在数轴上表示下列各数,并用“<”连接.2-,113-,4,50%,0, 2.5-.13.比较下列个数的大小(直接用“<”、“=”、或“>”连接,不写过程).(1)-(-1) -(+2);(2) -821-37;(3)-(-0.3)2 |-13 |;(4) (-1)2 24;(5) (0)3-1%;(6) 2273.14.14.在数轴上表示下列数,再用“<”号把各数连接起来.+2,()4-+,()1+-,3-,-2.515.已知||2x =,|3y=∣,且x y <,求x y +的值.参考答案1.见解析,()30.50232-<<-<<-- 解析:首先用正负数的形式把各数表示出来,然后根据数轴的意义把各数在数轴上表示出来,最后要的有理数在数轴上的排列规律把各数用“<”连接起来.详解:解:如图,A 表示-0.5,O 表示0,B 表示32-,C 表示2,D 表示-(-3), 根据有理数在数轴上的排列规律可以得到:()30.50232-<<-<<-- . 点睛: 本题考查有理数与数轴上点的对应关系,掌握有理数在数轴上的排列规律是解题关键.2.(1)①>;②=;③>;(2)||||||a b a b ++;(3)0x,10或10-或5或5- 解析:(1)根据有理数绝对值的化简方法分别化简、计算后进行比较即可; (2)根据(1)的规律即可得到答案;(3)根据(2)的规律即可得到答案.详解:(1)①因为|3||2|5,|32|1+-=-=,所以|3||2||32|+->-.②因为11112323+=+, 所以11112323+=+. ③因为|6||3|9,|63|3+-=-=,所以|6||3||63|+->-.故答案为>,=,>;(2)当a ,b 异号时,||||||a b a b +>+,当a ,b 同号时,||||||a b a b +=+,所以||||||a b a b ++;(3)由(2)中得出的结论可知,x 与2015-同号,所以x 的取值范围是0x . 因为1234123415,5a a a a a a a a +++=+++=,所以12a a +与34a a +异号,则1210a a +=或10-或5或5-,故答案为0x,10或10-或5或5-. 点睛:此题考查了有理数绝对值的化简:正数的绝对值等于它本身,零的绝对值是零,负数的绝对值等于它的相反数,以及绝对值的化简方法的应用.3.如果a >0,那么|a|=a ,|﹣a|=a ;如果a <0,那么|a|=﹣a ,|﹣a|=﹣a ;如果a =0时,|a|=0,|﹣a|=0.解析:根据一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0进行解答即可.详解:如果a >0,那么|a|=a ,|﹣a|=a ;如果a <0,那么|a|=﹣a ,|﹣a|=﹣a .如果a=0时,|a|=0,|﹣a|=0.点睛:本题考查了绝对值,解答此类问题,一定要掌握绝对值的定义,注意不要忽略0.求有理数a 的绝对值时,先要判明a 的符号.4.(1)a=-5,b=-2,距离是3;(2)12- 或114- 解析:(1)根据绝对值的定义结合由数轴得出a 、b 的符号即可得;根据数轴上两点间的距离公式即可得a ,b 两点的距离;(2)设C 点表示的数为x ,分以下两种情况:点C 在A 、B 之间、点C 在点B 右侧,利用两点间距离公式列方程求解.详解:(1)∵|a|=5,|b|=2,∴a=5或﹣5,b=2或﹣2,由数轴可知,a <b <0,∴a=﹣5,b=﹣2;A 、B 两点间的距离是﹣2﹣(﹣5)=3;(2)设C 点表示的数为x ,当点C 在A 、B 之间时,根据题意有:x ﹣(﹣5)=3(﹣2﹣x ),解得:x=114-;当点C 在点B 右侧时,根据题意有:x ﹣(﹣5)=3[x ﹣(﹣2)],解得:x=12-,∴C点表示的数为12-或114-.点睛:本题考查绝对值和数轴及两点间的距离公式,分类讨论思想的运用是解答本题的关键.5.-2或-8解析:-5的相反数是5,绝对值是3的数有两个,是±3,由此可得a、b的值;详解:由题意可知a的相反数是5,所以a=-5,b的绝对值是3,所以b =±3,a b+=-5+3=-2,-5-3=-8,故答案为-2或-8.点睛:此题考查相反数和绝对值的意义,解题的关键是得到a、b的值.6.3.5;0;23;12;4解析:利用相反数,倒数的定义计算求出值,表示在数轴上即可.详解:解:-3.5的相反数为3.5;0的相反数为0;-(-112)=32,32的倒数为23;-(+2)=-2,-2的相反数是2,2的倒数为12;-|-4|=-4,-4的相反数为4.故答案为3.5;0;23;12;4;点睛:此题考查了数轴,相反数,以及倒数,熟练掌握各自的性质是解本题的关键.7.-5或-3解析:根据a>b ,利用绝对值的代数意义求出a 与b 的值,即可确定出a+b 的值. 详解: ∵a 1=,b 4=,∴a=±1,b=±4,∵a>b,∴b=-4,当a=1时,a+b=1-4=-3;当a=-1时,a+b=-1-4=-5.点睛:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.8.5.解析:根据绝对值的代数意义和已知条件进行分析解答即可.详解:∵|-7|-1=6,|6|-1=5,∴最后屏幕输出的结果为5.点睛:熟知“绝对值的代数意义:一个正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数”是解答本题的关键.9.①±6②-2或-6解析:试题分析:(1)利用绝对值的性质a,b 有两个值,分类讨论.(2) 若|a ﹣b|=﹣(a ﹣b ),说明a ﹣b ≤0,再把满足条件的值代入求解.试题解析:∵|a|=2,|b|=4, ∴a=±2,b=±4, ①∵a b<0,∴a、b 异号,当a=2,b=﹣4时,a ﹣b=6,当a=﹣2,b=4时,a ﹣b=﹣6;②∵|a﹣b|=﹣(a ﹣b ),∴a﹣b≤0,∴a≤b,∴a=2时,b=4,a ﹣b=﹣2,a=﹣2时,b=4,a ﹣b=﹣6点睛:(1)例如()0x a a =≥,利用绝对值的性质,得x=a ±,一定注意多解问题,按照题意需要分类讨论.(2)推广1x -=a ()0a ≥,则利用绝对值的性质x=1a ±+.10.(1)22,2019,707⎧⎫+⎨⎬⎩⎭;(2)(){}2,0,2019,5,70--++;(3)43⎧⎫⎨-⎩-⎬⎭ 解析:(1)根据正数、绝对值的性质分析,即可得到答案;(2)根据整数的性质分析,即可得到答案;(3)根据负数、分数、绝对值的性质分析,即可得到答案.详解:(1)正数集合:22,2019,707⎧⎫+⎨⎬⎩⎭; (2)整数集合:(){}2,0,2019,5,70--++;(3)负分数集合:43⎧⎫⎨-⎩-⎬⎭. 点睛:本题考查了有理数的知识;解题的关键是熟练掌握、绝对值、正负数、整数、分数的性质,从而完成求解.11.(1)4,4;(2)2±,≥;(3)a b c ++解析:(1)根据绝对值的意义可直接求解;(2)根据绝对值的意义可直接进行求解;(3)由数轴可得0>>>a b c ,进而问题可求解.详解:解:(1)44,44-==,故答案为4,4;(2)∵2x =,x x =,∴2x =±,0x ≥;故答案为2±,≥;(3)如图可知:c<b<0<a , ∴a a =,b b =-,c c =-, ∴()()a b c a b c --=----,=a b c ++.点睛:本题主要考查绝对值的意义及数轴,熟练掌握绝对值的意义及数轴是解题的关键.12.数轴图见详解,121050% 2.543-<-<<<-<解析:首先根据绝对值的定义化简,然后利用数轴即可求解.详解:解: 2.5 2.5-=,∴在数轴上表示如下图:∴用“<”将各数连接为:121050% 2.543-<-<<<-<.点睛:本题考查了数轴、绝对值、有理数的比较大小,熟悉相关性质是解题的关键.13.(1)>;(2)>;(3)<;(4)<;(5)>;(6)>解析:根据有理数比较的法则即可得出答案.详解:解:(1)()()1=12=2,12,---+->-, ()()12∴-->-+;(2)3998=,7212121>, 78213->-; (3)()2110.30.0933--=--=,, ()210.33∴--<-; (4)()2411216-==,()2412∴-<; (5)()301%>-;(6)22 3.1437≈ 22 3.147∴>; 故答案为:(1)>;(2)>;(3)<;(4)<;(5)>;(6)>.点睛:本题考查了有理数大小比较法则:正数大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小.14.在数轴上表示见解析,()()4 2.5123-+<-<+-<+<-解析:先化简,再在数轴上表示各个数,然后比较即可.详解:∵()44-+=-,()11+-=-,33=-,∴在数轴上表示为:∴()()4 2.5123-+<-<+-<+<-.点睛:本题考查了相反数、绝对值以及利用数轴比较有理数的大小,能在数轴上正确表示各个数是解此题的关键,注意:在数轴上表示的数,右边的数总比左边大.15.1或5.解析:首先根据绝对值的性质,判断出x 、y 的大致取值范围,然后根据x <y 进一步确定x 、y 的值,再代值求解即可.详解:解:∵|x|=2,|y|=3,∴x=±2,y=±3;∵x<y ,∴x=±2,y=3.当x=2,y=3时,x+y=5;当x=-2,y=3时,x+y=1.故x+y 的值是1或5.点睛:本题主要考查的是绝对值的性质,能够正确的判断出x 、y 的取值是解答此题的关键.。

七年级绝对值习题附答案

七年级绝对值习题附答案

七年级绝对值习题附答案七年级绝对值习题附答案在数学学习中,绝对值是一个非常重要的概念。

它可以帮助我们理解数轴上的正数和负数之间的距离,并解决一些实际问题。

在七年级数学课程中,我们通常会遇到一些关于绝对值的习题。

本文将为大家提供一些七年级绝对值习题,并附上答案,希望能帮助大家更好地理解和掌握这个概念。

1. 求下列各式的值:a) |-3| = 3b) |5| = 5c) |-7| = 72. 求下列各式的值:a) |2 + 3| = |5| = 5b) |-4 - 6| = |-10| = 10c) |-8 + 12| = |-4| = 43. 求下列各式的值:a) |6 - 9| = |-3| = 3b) |-2 - 7| = |-9| = 9c) |-5 + 4| = |-1| = 14. 求下列各式的值:a) |2 × (-3)| = |-6| = 6b) |-4 × 5| = |-20| = 20c) |(-8) × (-2)| = |16| = 165. 求下列各式的值:a) |-2 ÷ 4| = |-0.5| = 0.5b) |-6 ÷ (-3)| = |2| = 2c) |8 ÷ (-4)| = |-2| = 2通过以上习题的解答,我们可以总结出一些规律和性质:1. 对于任意的实数a,有|a| ≥ 0,即绝对值的值一定是非负数。

2. 当a ≥ 0时,有|a| = a;当a < 0时,有|a| = -a。

3. 对于任意的实数a和b,有|a + b| ≤ |a| + |b|,即绝对值的加法不等式。

4. 对于任意的实数a和b,有|a - b| ≥ ||a| - |b||,即绝对值的减法不等式。

5. 对于任意的实数a和b,有|ab| = |a| × |b|,即绝对值的乘法性质。

6. 对于任意的实数a和b(b ≠ 0),有|a ÷ b| = |a| ÷ |b|,即绝对值的除法性质。

七年级数学-绝对值练习及答案

七年级数学-绝对值练习及答案

七年级数学-绝对值练习及答案七年级数学-绝对值练要点1.一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|,读作a的绝对值。

2.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.预练1-1:如果数轴上一个点到原点的距离为5,则这个点所表示的数的绝对值为5.知识点1:绝对值的意义1.(1) -3到原点的距离是3,所以|-3|=3;(2) 0到原点的距离是0,所以|0|=0;3) | -4 |是数轴上表示的点到原点的距离。

2.在数轴上,绝对值为14,且在原点左边的点表示的数为-14.3.|2,015|的意义是数轴上表示2,015的点与原点的距离。

4.如果点A,B表示的数的绝对值相等,那么点A表示的数是0.知识点2:绝对值的计算5.|-2,013|=2,013.6.|6|=6.7.错误的说法是:绝对值等于12的数只有12.8.若a与1互为相反数,则|a+2|=1.9.在有理数中,绝对值等于它本身的数有无数个。

10.计算:| -3.7 |=3.7,-(-3.7)=3.7,-| -3.7 |=-3.7,-| 3.7 |=-3.7.11.求下列各数的绝对值:(1) 8;(2) 7.2;(3) 0;(4) 8.知识点3:绝对值的性质12.(1)①正数:| 5 |=5,|12|=12;②负数:| -7 |=7,| -15|=15;③零:|0|=0;2)根据(1)中的规律发现:不论正数、负数和零,它们的绝对值一定是非负数,即|a|≥0.13.因为互为相反数的两个数到原点的距离相等,所以到原点的距离为2013的点有两个,分别是-2013和2013,即绝对值等于2,013的数是-2013和2013.14.若|a|+|b|=k,则a和b的取值有无数个,例如当k=0时,a=0,b=0;当k=1时,a=0,b=1或a=1,b=0等。

15.-4的绝对值是4.1.正确答案是C。

2.答案是B。

最新初一(七年级)数学绝对值练习题及答案解析

最新初一(七年级)数学绝对值练习题及答案解析

初一(七年级)数学绝对值练习题及答案解析基础检测:1.-8的绝对值是,记做 .2.绝对值等于5的数有 .3.若︱a︱= a , 则 a .4.的绝对值是2004,0的绝对值是 .5一个数的绝对值是指在上表示这个数的点到的距离.6.如果 x < y < 0, 那么︱x ︱︱y︱.7.︱x - 1 ︱ =3 ,则 x =.8.若︱x+3︱+︱y -4︱= 0,则 x + y = .9.有理数a ,b在数轴上的位置如图所示,则a b,︱a︱︱b︱.10.︱x ︱<л,则整数x = .11.已知︱x︱-︱y︱=2,且y =-4,则 x = .12.已知︱x︱=2 ,︱y︱=3,则x +y = .13.已知︱x +1 ︱与︱y -2︱互为相反数,则︱x ︱+︱y︱= .14. 式子︱x +1 ︱的最小值是,这时,x值为 .15. 下列说法错误的是()A 一个正数的绝对值一定是正数B 一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数16.下列说法错误的个数是()(1)绝对值是它本身的数有两个,是0和1(2)任何有理数的绝对值都不是负数(3)一个有理数的绝对值必为正数(4)绝对值等于相反数的数一定是非负数A 3B 2C 1D 017.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则 a + b + c 等于 ( )A -1B 0C 1D 2拓展提高:18.如果a , b 互为相反数,c, d 互为倒数,m 的绝对值为2,求式子a b a b c+++ + m -cd 的值.19.某司机在东西路上开车接送乘客,他早晨从A 地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞) +10 ,— 5, —15 ,+ 30 ,—20 ,—16 ,+ 14(1) 若该车每百公里耗油 3 L ,则这车今天共耗油 多少升?(2) 据记录的情况,你能否知道该车送完最后一个乘客是,他在A 地的什么方向?距A 地多远?20.工厂生产的乒乓球超过标准重量的克数记作正数,低于标准重量的克数记作负数,现对5个乒乓球称重情况如下表所示,分析下表,根据绝对值的定义判断哪个球的重量最接初一(七年级)数学上册绝对值同步练习答案基础检测:1.-8的绝对值是8 ,记做︱-8︱ .2.绝对值等于5的数有±5 .3.若︱a︱= a , 则 a ≥ 0 .4.±2004 的绝对值是2004,0的绝对值是0 .5.一个数的绝对值是指在数轴上表示这个数的点到原点的距离. 6.如果 x < y < 0, 那么︱x ︱> ︱y︱.7.︱x -1 ︱ =3 ,则 x =4或-2 .x -1 = 3,x = 4 ;—(x -1) = 3,x = -28.若︱x+3︱+︱y -4︱= 0,则 x + y = 1 .x+3 = 0 ,x = -3;y-4= 0,y = 4;x + y = 19.有理数a ,b在数轴上的位置如图所示,则a < b,︱a︱> ︱b︱.10.︱x ︱<л,则整数x = 0, ±1, ±2, ±3 .11.已知︱x︱-︱y︱=2,且y =-4,则 x = ±6 .︱x︱-4 = 2,︱x︱= 6,x = ±612.已知︱x︱=2 ,︱y︱=3,则x +y = ±1, ±5 .13.已知︱x +1 ︱与︱y -2︱互为相反数,则︱x ︱+︱y︱= 3 ..互为相反数:|x+1|+|y-2|=0x+1=0,x=-1;y-2=0,y=2 ;︱x ︱+︱y︱= 1 + 2 = 314. 式子︱x +1 ︱的最小值是 0 ,这时,x值为—1 .15. 下列说法错误的是( c )A 一个正数的绝对值一定是正数B 一个负数的绝对值一定是正数C 任何数的绝对值一定是正数错:0的绝对值是0,非正非负.D 任何数的绝对值都不是负数16.下列说法错误的个数是 ( A )(1) 绝对值是它本身的数有两个,是0和1错:所有非正数的绝对值都是它本身.(2) 任何有理数的绝对值都不是负数 对:任何有理数的绝对值都是正数或0(3) 一个有理数的绝对值必为正数 错:0非正非负.(4) 绝对值等于相反数的数一定是非负数错:绝对值等于相反数的数一定是非正数.A 3B 2C 1D 017.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则 a + b + c 等于 ( B )A -1B 0C 1D 2解析:最小的正整数:1,最大的负整数:-1,绝对值最小的有理数:0拓展提高:18.如果a , b 互为相反数,c, d 互为倒数,m 的绝对值为2,求式子a b a b c+++ + m -cd 的值. 解:a,b 互为相反数:b=-ac, d 互为倒数:d=1/c| m | = 2: m=±2a b a b c+++ + m -cd =0 + (±2) - 1=1或-319.某司机在东西路上开车接送乘客,他早晨从A 地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞) +10 ,—5, —15 ,+ 30 ,—20 ,—16 ,+14(1) 若该车每百公里耗油 3 L ,则这车今天共耗油 多少升?西最后停车位置解:总共行驶路程为:| +10 | + | —5 | + | —15 | + | + 30 | + | —20 | + | —16 | + | +14 |=110(公里)油耗为:110*(3/100)=3.3(升)(2)据记录的情况,你能否知道该车送完最后一个乘客是,他在A地的什么方向?距A地多远?解:A地为原点:+10 —5 —15+ 30 —20 —16 +14 = —2负方向为西方,他在A点的西方,距A点2千米.20.工厂生产的乒乓球超过标准重量的克数记作正数,低于标准重量的克数记作负数,现对5个乒乓球称重情况如下表所示,分析下表,根据绝对值的定义判断哪个球的重量最接解:| A | =| 0.01 | = 0.01| B | =| —0.02 | = 0.02| C | =| —0.01 | = 0.01| D | =| 0.04 | = 0.01| E | =| —0.03| = 0.03根据绝对值计算结果,A,B球最接近标准.。

人教版七年级数学上册《绝对值的化简》专题训练-附带答案

人教版七年级数学上册《绝对值的化简》专题训练-附带答案

人教版七年级数学上册《绝对值的化简》专题训练-附带答案类型一 绝对值之间是加号的化简1.计算: 34ππ-+-=________.【答案】1【解析】【分析】先化简绝对值 再加减运算即可求解.【详解】解:∵3<π<4 ∵34ππ-+-=34-+-=1故答案为:1.【点睛】本题考查化简绝对值、实数的加减运算 会利用绝对值的性质化简绝对值是解答的关键. 2.a 、b 两个有理数在数轴上的位置如图所示 则|a +b |=____.【答案】a b --##b a --【解析】【分析】 先根据数轴可得0,,b a b a 再确定a b +的符号 再化简绝对值即可.【详解】 解:由题意得:0,,b a b a 0,a b ∴+< .a b a b a b故答案为:.a b【点睛】本题考查的是利用数轴比较有理数的大小 绝对值的含义与化简 有理数的和的符号的确定掌握“0000x x x x xx ”是解本题的关键.3.若有理数,,a b c 在数轴上的位置如图:则b a b c -+-=____________ .【答案】c a -##-a+c【解析】【分析】根据数轴得出0a b c <<< ||||c a > 先去掉绝对值符号 再合并同类项即可.【详解】 解:从数轴可知:0a b c <<< ||||c a >0b c ∴-< 0b a ->||||b a b c b a b c c a ∴-+-=--+=-故答案是:c a -.【点睛】本题考查了数轴 绝对值 整式的加减 解题的关键是能正确去绝对值符号.4.已知32y -<< 化简23y y -++=_____.【答案】5【解析】【分析】根据绝对值的性质去掉绝对值号 然后化简即可.【详解】解:32y -<<23y y ∴-++=-(y -2)+(y +3)23y y =-++5=.故答案为:5.【点睛】本题考查了整式的加减、绝对值的意义 熟练掌握绝对值的意义是解题的关键.5.数a b 在数轴上的位置如图所示 化简:|b ﹣a |+|b |=______.【答案】2a b -##-2b +a【解析】【分析】根据数a b 在数轴上的位置得出2101b a --<<<<<然后化简绝对值即可. 【详解】解:根据数a b 在数轴上的位置可得:2101b a --<<<<<∵0b a -< 0b <∵|b ﹣a |+|b |=()2b a b b a b a b ---=-+-=-故答案为:2a b -.【点睛】本题考查了在数轴上表示有理数 化简绝对值 根据点在数轴上的位置得出相应式子的正负是解本题的关键.6.已知a b c 是∵ABC 的三边 化简:|a +b -c |+|b -a -c |=________.【答案】2a【解析】【分析】首先利用三角形的三边关系得出0,0a b c b a c +->--< 然后根据求绝对值的法则进行化简即可.【详解】解:∵,,a b c 是ABC ∆的三条边∵00a b c b a c +->--<, ∵||()()a a b c b a c b a c b c =+-+-+--+++-=2a b c b a c a +--++=.故答案为:2a .【点睛】熟悉三角形的三边关系和求绝对值的法则 是解题的关键 注意 去绝对值后 要先添加括号 再去括号 这样不容易出错.|a +b -c |+|b -a -c |7.若a 、b 、 c 为整数 且 | a - b |19 + | c - a |99 =1 则| c - a | + | a - b | + | b -c |=________.【答案】2【解析】【分析】根据题意 ,,a b c 三个数中有2个数相等 设a b = 则1c a -= 1b c -= 进而即可求得答案.【详解】解:,,a b c 为整数 则,a b c a --也为整数 且| a - b |19 与| c - a |99 为非负数 和为1 ,,a b c ∴三个数中有2个数相等当a b =时 则1c a -= 1b c -= 0a b -=∴| c - a | + | a - b | + | b -c |=1012++=同理 当a c =或c b =时 均得到| c - a | + | a - b | + | b -c |=2故答案为:2.【点睛】本题考查了非负数的性质 根据题意求出,,a b c 三个数中有2个数相等是解题的关键.8.有理数a b c 在数轴上的位置如图所示 化简:|c ﹣a |+|c ﹣b |+|a +b |=_____.【答案】2b【解析】【分析】根据有理数a b c 在数轴上的位置可得c ﹣a >0 c ﹣b <0 a +b >0 再根据绝对值的意义进行化简即可.【详解】根据有理数a b c 在数轴上的位置可知 a <0<c <b b a >∵c ﹣a >0 c ﹣b <0 a +b >0∵|c ﹣a |+|c ﹣b |+|a +b |=c ﹣a +b ﹣c +a +b=2b故答案为:2b【点睛】本题考查的是利用数轴比较有理数的大小 有理数的加减法的运算法则 绝对值的化简 去括号 整式的加减运算 掌握以上知识是解题的关键.类型二 绝对值之间是减号的化简9.在数轴上数a 、b 、c 所对应的点如图所示 化简:b a c b --+=__________.【答案】a -2b -c【解析】【分析】根据数轴得到b <0<a <c 且b c < 由此得到b -a <0 c+b >0 利用绝对值性质化简合并即可.【详解】解:由数轴得b <0<a <c 且b c <∵b -a <0 c+b >0 ∵b a c b --+=-b+a -c -b=a -2b -c故答案为:a -2b -c .【点睛】此题考查了利用数轴比较数的大小 有理数绝对值的性质化简计算 整式的加减法 正确比较有理数的大小化简绝对值是解题的关键.10.若a <1 化简:31a a ---=__________.【答案】2【解析】【分析】由题意根据a 的取值范围 可以将题目中的式子的绝对值去掉 从而可以解答本题.【详解】解:∵a <1∵|3-a |-|a -1|=3-a +a -1=2故答案为:2.【点睛】本题考查整式的加减、绝对值 解答本题的关键是明确相关的计算方法.11.a 、b 两个数在数轴上的位置如图所示 则化简||||b b a --的结果是________.【答案】a【解析】【分析】由数轴得0b > 0a < 0b a -> 去绝对值有()b b a -- 从而得出结果.【详解】解:0b > 0a <0b a ∴->()b b a b b a b b a a ∴--=--=-+=故答案为:a .【点睛】本题考查了数轴 去绝对值.解题的关键与难点在于判断绝对值里数值的正负.12.a b c 在数轴上的位置如图所示 化简:2a b a c +--=__________.【答案】2a b c --【解析】【分析】 由题意可得:0,,a b c ab c 再判断0,0,a b a c 【详解】 解:0,,a b c a b c 0,0,a b a c∴ ()()22a b a c a b a c +--=-+---⎡⎤⎣⎦2a b a c22a b a c2a b c故答案为:2a b c --【点睛】本题考查的是利用数轴比较有理数的大小 化简绝对值 去括号 合并同类项 熟练的“化简绝对值”是解题的关键.13.若有理数a 、b 、c 在数轴上的位置如图所示 则a b b c --+可化简为__.【答案】a c --##c a --【解析】【分析】根据数轴判断出0a b c <<< b c < 即可得到0a b -< 0b c +> 再利用绝对值性值计算即可;【详解】由数轴可得:0a b c <<< b c <∵原式b a b c a c =---=--;故答案是:a c --.【点睛】本题主要考查了利用数轴比较式子大小 绝对值的性质 准确分析计算是解题的关键.14.若2<x <5 则|x ﹣2|﹣|5﹣x |=_______.【答案】2x -7##-7+2x【解析】【分析】根据2<x <5 得到x -2>0 5-x <0 根据绝对值的意义去绝对值 去括号 合并同类项即可求解.【详解】解:因为2<x <5所以x -2>0 5-x <0所以|x ﹣2|﹣|5﹣x |=(x -2)-(5-x )=2x-7.故答案为:2x-7【点睛】本题考查了绝对值的化简合并同类项去括号等知识根据x的取值脱去绝对值是解题关键.15.有理数a b c在数轴上的对应点如图所示化简代数式:|a|﹣|﹣b|+|c|=_____.【答案】a b c-++【解析】【分析】由数轴知a<b<0<c去绝对值即可求解.【详解】解:由数轴知a<b<0<c∵|a|﹣|﹣b|+|c|=a b c a b c.故答案为:a b c-++.【点睛】本题考查绝对值的性质.确定绝对值符号内代数式的性质符号是解答此类题目的关键.16.若0<a<1 -2<b<-1 则1212a ba b-+--+=_____.【答案】﹣2【解析】【分析】先根据题意得出a﹣1<0 b+2>0 再根据绝对值的性质化简即可解答.【详解】解:∵0<a<1 -2<b<-1∵a﹣1<0 b+2>0∵1212 a ba b-+--+=(1)212 a ba b--+--+=﹣1﹣1故答案为:-2.【点睛】本题考查有理数的减法运算、绝对值的性质 会利用绝对值的性质化简是解答的关键. 类型三 绝对值之间有加有减的化简17.有理数a b c 在数轴上表示的点如图所示 化简||||2||a b a c b c +---+=__________.【答案】33b c --##33c b【解析】【分析】根据数轴得出a b + a c - 1b -的符号 再去绝对值即可.【详解】 由数轴得0a b c b c <<<,< ∵0a b +< 0a c -< 0b c +>∵||||2||a b a c b c +---+()()2a b a c b c =-++--+22a b a c b c =--+---33b c =--.故答案为:33b c --.【点睛】本题主要考查了数轴和绝对值 掌握数轴、绝对值以及合并同类项的法则是解题的关键. 18.已知a b c 是有理数 它们在数轴上的对应点如图所示 化简:|a ﹣c |﹣|a ﹣b |+|b ﹣c |=_____.【答案】22a c -##22c a -+【解析】【分析】根据数轴 判断出a b c ,,的符号 从而得到a c a b b c ---,,的符号 化简求解即可.【详解】所以 0a c -> 0a b -< 0b c -> ∵||||22a c a b b c a c a b b c a c --+--+-+--=-=故答案为:22a c -【点睛】本题考查了根据点在数轴的位置判断式子的符号 化简绝对值 能够准确判断式子的符号化简绝对值是解本题的关键.19.若有理数a b c 在数轴上的位置如图所示 则化简:||||||a c b c b ++--+=_________.【答案】a -【解析】【分析】根据有理数在数轴上的位置求得0c b a <<< c a >进而可得0a c +< 0b -> 0c b +< 进而化简绝对值即可【详解】解:根据有理数a b c 在数轴上的位置 可得0c b a <<< c a >∴0a c +< 0b -> 0c b +<∴||||||a c b c b ++--+=()a c b c b ------a c b c b a =---++=-故答案为:a -【点睛】本题考查了根据有理数在数轴上的位置判断式子的符号 绝对值化简 整式的加减运算 正确的判断式子的符号化简绝对值是解题的关键.20.有理数a b c 在数轴上的位置如图所示.化简代数式:323c a b c a b -+--+=_______ .【答案】5c +b##b+5c【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负 利用绝对值的代数意义化简 去括号合并即可.【详解】由图可知a <b <0<c则a +b <0 c -a >0 b -c <0 ∵==,c a c a b c c b a b a b ----+=--,∵原式=3()2()3()c a c b a b -+----332233c a c b a b =-+-++5c b =+故答案为:5c b +.【点睛】本题考查了整式的加减、数轴及绝对值的知识 掌握数轴上右边的数总比左边的数大是解答本题的关键.21.有理数a b c 在数轴上的位置如图所示 若m =|a +b |﹣|b ﹣1|﹣|a ﹣c | 则m =____.【答案】-1-c【解析】【分析】根据数轴上点的位置可得01b a c <<<< 即可推出0a b +< 10b -< 0a c -< 由此化简绝对值求解即可.【详解】解:由数轴上点的位置可知:01b a c <<<<∵0a b +< 10b -< 0a c -< ∵1m a b b a c =+----()()()1a b b c a =-+----1a b b c a =---+-+1c =--故答案为:1c --.【点睛】本题主要考查了根据数轴上点的位置化简绝对值 解题的关键在于能够熟练掌握数轴的相关知识.22.已知a <0 b <0 c >0 化简:2a b c a b a +--+--=________.【答案】3a b c ---【解析】【分析】根据条件分别求得2,,a b c a b a +---的符号 进而化简绝对值即可【详解】a <0b <0c >020,0,0a b c a b a ∴+<->--> ∴2a b c a b a +--+--=()2()a b c a b a ----+--2a b c a b a =---+--3a b c =---故答案为:3a b c ---【点睛】本题考查了化简绝对值 整式的加减 正确的化简绝对值是解题的关键.23.有理数a 、b 、c 在数轴上的位置如下图所示则a c a b b a a c +-+--+-=________.【答案】0【解析】【分析】由数轴上右边的点比左边点表示的数字大可知 c >b >a 且c >0 0>b >a a b c >> 再根据绝对值的性质解答即可.【详解】解:根据数轴可知c >b >a 且c >0 0>b >a a b c >>∵0a c +< 0a b +< 0b a -> 0a c -< ∵a c a b b a a c +-+--+-=()()()()a c a b b a a c -+++----=a c a b b a a c --++-+-+=0.故答案为:0.【点睛】注意要会根据数在数轴上的位置判断其符号以及组成的一些代数式的符号 难度适中. 24.已知a b c 为三个有理数 它们在数轴上的对应位置如图所示 则式子|c ﹣b |﹣|b ﹣a |﹣|a ﹣c |=______.【答案】0【解析】【分析】根据点在数轴上的位置判断式子的符号 然后根据绝对值的意义化简即可.【详解】解:根据数轴可知:1012c a b -<<<<<<∵0c b -< 0b a -> 0a c ->∵|c ﹣b |﹣|b ﹣a |﹣|a ﹣c |=()()()c b b a a c ------=c b b a a c -+-+-+=0;故答案为:0.【点睛】本题考查了根据点在数轴的位置判断式子的符号 化简绝对值 能够准确判断式子的符号化简绝对值是解本题的关键.25.已知点A 、B 在数轴上表示的数分别是a 和b :化简|2|||3||a a b a b ---++=__________.【答案】44a b --##44b a【解析】【分析】根据A B 两点在数轴上的位置得到 然后进行计算即可.【详解】解:由图可知:a <0<b a b >∵-2a >0 a -b <0 a +b <0∵|2|||3||a a b a b ---++=233a a b a b -+---=44a b --故答案为:44a b --.【点睛】本题考查数轴的基本知识结合绝对值的综合运用 一定要看清题中条件.26.实数a b c 在数轴上的位置如图所示 化简:c b b a c -+--=______.【答案】a【解析】【分析】由题意得 0c b a <<< 0c b -< 0b a -< 根据绝对值的非负性进行解答即可得.【详解】解:由题意得 0c b a <<<∵0c b -< 0b a -< ∵c b b a c -+--=()()b c a b c -+---=b c a b c -+-+=a故答案为:a .【点睛】本题考查了绝对值 解题的关键是掌握绝对值的非负性.27.已知有理数a 、b 在数轴上的对应点位置如图所示 请化简:2a a b a b ++--=____________.【答案】3b -【解析】【分析】根据有理数a 、b 在数轴上的对应点位置 化简即可.【详解】解:根据数轴可知:101a b <-<<< ∵2a a b a b ++--=()2()a a b a b --++-=22a a b a b ---+-=3b -故答案为:3b -.【点睛】本题考查了数轴 化简绝对值根据有理数在数轴上的位置得出相应式子的符号是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一七年级数学绝对值练习题及答案解析
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
知识点回顾:
1、一般的,数轴上表示数a的点与原点的距离叫做绝对值,记做a。

2、由绝对值的定义可知:
①一个正数的绝对值是它本身;
②一个负数的绝对值是它的相反数;
③0的绝对值是0.
3、两个数比较大小的方法:
1)数学中规定:在数轴上表示有理数,它们从左往右的顺序,就是从小到大
的顺序,即左边的数小于右边的数。

2)一般地
①正数大于0,0大于负数,正数大于负数。

②两个负数,绝对值大的反而小。

小试牛刀:
1.-8的绝对值是,记做。

2.绝对值等于5的数有。

3.若︱a︱=a,则a。

4.的绝对值是2004,0的绝对值是。

5一个数的绝对值是指在上表示这个数的点
到的距离。

6.如果x<y<0,那么︱x︱︱y︱。

7.︱x-1︱=3,则x =。

8.若︱x+3︱+︱y-4︱=0,则x+y=。

9.有理数a,b在数轴上的位置如图所示,则ab,
︱a︱︱b︱。

10.︱x︱<л,则整数x=。

11.已知︱x︱-︱y︱=2,且y=-4,则x=。

12.已知︱x︱=2,︱y︱=3,则x+y=。

13.已知︱x+1︱与︱y-2︱互为相反数,则︱x︱+︱y︱=。

14. 式子︱x+1︱的最小值是,这时,x值为。

15. 下列说法错误的是()
A一个正数的绝对值一定是正数
B一个负数的绝对值一定是正数
C 任何数的绝对值一定是正数
D 任何数的绝对值都不是负数
16.下列说法错误的个数是()
(1) 绝对值是它本身的数有两个,是0和1
(2) 任何有理数的绝对值都不是负数
(3) 一个有理数的绝对值必为正数
(4) 绝对值等于相反数的数一定是非负数
A3B2C1D0
17.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a+b+c 等于()
A -1B0C1D2
拓展提高:
18.如果a ,b 互为相反数,c,d 互为倒数,m 的绝对值为2,求式子 a b a b c ++++m -cd 的值。

初一(七年级)数学上册绝对值同步练习答案 基础检测:
1.-8的绝对值是8,记做︱-8︱。

2.绝对值等于5的数有±5。

3.若︱a ︱=a,则a ≥0。

4.±2004的绝对值是2004,0的绝对值是0。

5.一个数的绝对值是指在数轴上表示这个数的点到原点的距离。

6.如果x <y <0,那么︱x ︱>︱y ︱。

7.︱x -1︱=3,则x = 4或-2 。

x -1=3,x=4;—(x -1)=3,x=-2
8.若︱x+3︱+︱y -4︱=0,则x+y=1。

x+3=0,x=-3;y -4=0,y=4;x+y=1
9.有理数a ,b 在数轴上的位置如图所示,则a<b,
︱a ︱>︱b ︱。

10.︱x ︱<л,则整数x=0,±1,
±2,±3。

11.已知︱x ︱-︱y ︱=2,且y=-4,则x=±6。

︱x ︱-4=2,︱x ︱=6,x=±6
12.已知︱x ︱=2,︱y ︱=3,则x+y=±1,±5。

13.已知︱x+1︱与︱y -2︱互为相反数,则︱x ︱+︱y ︱=3。

.
互为相反数:|x+1|+|y-2|=0
x+1=0,x=-1;y-2=0,y=2;︱x ︱+︱y ︱=1+2=3
14. 式子︱x+1︱的最小值是0,这时,x 值为—1。

15. 下列说法错误的是(c )
A 一个正数的绝对值一定是正数
B 一个负数的绝对值一定是正数
C 任何数的绝对值一定是正数错:0的绝对值是0,非正非负。

D 任何数的绝对值都不是负数
16.下列说法错误的个数是(A )
(1) 绝对值是它本身的数有两个,是0和1错:所有非正数的绝对值都是它
本身。

(2) 任何有理数的绝对值都不是负数对:任何有理数的绝对值都是正数或0
(3) 一个有理数的绝对值必为正数错:0非正非负。

(4) 绝对值等于相反数的数一定是非负数错:绝对值等于相反数的数一定是
非正数。

A3B2C1D0
17.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a+b+c 等于(B )
A -1B0C1D2
解析:最小的正整数:1,最大的负整数:-1,绝对值最小的有理数:0 拓展提高:
18.如果a ,b 互为相反数,c,d 互为倒数,m 的绝对值为2,求式子 a b a b c
++++m -cd 的值。

解:
a ,
b 互为相反数:b=-a
c,d 互为倒数:d=1/c
|m|=2:m=±2
a b a b c
++++m -cd =0+(±2)-1
=1或-3
19.某司机在东西路上开车接送乘客,他早晨从A 地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞)
+10,—5,—15,+30,—20,—16,+14
(1) 若该车每百公里耗油3L ,则这车今天共耗油多少升?
(2)
解:
|+10|+|—5|+|—15|+|+30|+|—20|+|—16|+|+14|
=110(公里)
油耗为:110*(3/100)=3.3(升)
(3) 据记录的情况,你能否知道该车送完最后一个乘客是,他在A 地的什么
方向距A 地多远
(4)
解:
A 地为原点:
+10—5—15+30—20—16+14=—2
负方向为西方,他在A 点的西方,距A 点2千米。

20.工厂生产的乒乓球超过标准重量的克数记作正数,低于标准重量的克数记作负数,现对5个乒乓球称重情况如下表所示,分析下表,根据绝对值的定义判断哪个球的重量最接近标准?
|A|=|0.01|=0.01
|B|=|—0.02|=0.02
|C|=|—0.01|=0.01
|D|=|0.04|=0.01
|E|=|—0.03|=0.03
根据绝对值计算结果,A ,B 球最接近标准。

西。

相关文档
最新文档