第九章:回归分析.ppt

合集下载

第九章 回归分析

第九章 回归分析

系数:
参数a、b的最小二乘估计
A good
line is one that minimizes the sum of squared differences between the points and the line.
根据推导,
a y bx
( x x )( y y ) b (x x)
Multiple Regression
R2adj - “adjusted R-square”
R2是一个受自变量个数与样本规模之比(k:n)影响的系数,一般是1:10 以上为好。当这个比值小于1:5时,R2倾向于高估实际的拟合的程度。 Takes into account the number of regressors in the model
X的变异
r2
Y的变异
Simple Regression
R2 - “Goodness of fit”
For simple regression, R2 is the square of the correlation coefficient
Reflects variance accounted for in data by the best-fit line
第九章 多元回归分析
浙江师范大学教育学院心理系
徐长江 xucj@
纲要
回归分析的基本原理
一元回归分析 多元回归分析
多元回归分析的方法 多元回归分析的实现
回归分析的目的
设法找出变量间的依存(数量)关系, 用函数 关系式表达出来
Example: Height vs Weight
Takes values between 0 (0%) and 1 (100%) Frequently expressed as percentage, rather than decimal

第九章:回归分析-30页文档

第九章:回归分析-30页文档
Regression Analysis
Chapter 11
Regression and Correlation
Techniques that are used to establish whether there is a mathematical relationship between two or more variables, so that the behavior of one variable can be used to predict the behavior of others. Applicable to “Variables” data only.
run
axis.
b
0
X
A simple linear relationship can be described mathematically by
Y = mX + b
Simple Linear Regression
slope =
rise run
=
(6 - 3)
1
=
(10 - 4)
2
Y
rise
5
run intercept = 1
Rent
Step 1: Scatter plot
2500 2300 2100 1900 1700 1500 1300 1100 900 700 500
500 700 900 1100 1300 1500 1700 1900 2100
Size
Scatter plot suggests that there is a ‘linear’ relationship between Rent and Size
High

第九章方差分析及回归分析 第2讲精品PPT课件

第九章方差分析及回归分析 第2讲精品PPT课件

x1, x2, , xn
因此干脆不把X看成随机变量,而将它当作 普通的变量。X的变化将使Y发生相应的变 化,但它们之间的变化是不确定的。由于Y 是随机变量 ,当X取得任一个可能的值x时, Y都相应地服从一定的概率分布。
10
设进行 n 次独立试验,测得试验数据如下表:
xபைடு நூலகம்
x1
x2
xn
y
y1
y2
yn
我们的问题是,如何根据这组观察值,用 “最佳”的形式来表达变量Y与x的相关关系?
比较合理的想法就是,取Xx时随机变量
Y的数学期望EY Xx 作为Xx时Y的估计值。
11
设Y的数学期望EY存在,其值随X的取值
而定,即Y的数学期望是x的函数。将这一函数
记为yx 或x,xEY Xx称为Y关于x
的回归函数。 为 此 , 我 们 就 将 讨 论 Y 与 x的 相 关 关 系 的 问 题
转 换 为 讨 论 E Y x与 x的 函 数 关 系 了 。
由一个或一组非随机变量来估计或预测某 一个随机变量的观察值时所建立的数学模 型及所进行的统计分析称为回归分析
7
如果这个模型是线性的就称为线性回归分析 这种方法是处理变量间相关关系的有力工具,是
数理统计工作中一种常用的方法。它不仅告诉人 们怎样建立变量间的数学表达式,即经验公式, 而且还利用概率统计知识进行分析讨论,判断出 所建立的经验公式的有效性,从而可以进行预测 或估计。 本章主要介绍如何建立经验公式。
14
温度x(oc) 100 110 120 130 140 150 160 170 180 190 得率(%) 45 51 54 61 66 70 74 78 85 89
得率与温度关系的散点图 100 90 80 70 60 50 40

第九章 回归分析华中科技大学共34页

第九章 回归分析华中科技大学共34页

习题
P174
返回
谢谢!
未知参数a,b的估计
(1)取 x的n个完全不同的值 x1 , x2 , , xn作独立试验,得到样本 ( x1 ,Y1), ( x2 ,Y2 ), , ( xn ,Yn ), 于是有
Yi a bxi i , i ~ N (0, 2 ),各 i相互独立。则有 Yi ~ N (a bxi , 2 ), i 1,2, , n,Yi之间相互独立。
回归分析
一元线性回归 未知参数a,b的估计 未知参数2的估计 线性假设的显著性检验 系数b的置信区间 回归函数值的点估计和置信区间
退出 返回
一元线性回归
E(Y)和X之间的函数 (X 关)称 系为 Y关于 X的回归函数。
以下假设:
E(Y)(X)abX YE(Y) , ~N(0,2) 即YabX , ~N(0,2),称为一元线性 型回 。
(2)bˆ ~ N(b, 2 Sxx )
(3)Yˆ0

bˆx0
Y
bˆ( x0
x)
~
N(a
bx0 ,
1 n
( x0 x)2 Sxx
2)
(4)Qe 2 ~ 2(n 2)
(5)Y ,bˆ,Qe相互独立
(6)若Y0 a bx0 0与Y1,Y2, ,Yn独立,则Y0,Yˆ0,Qe相互独立
线性假设的显著性检验
(2)利用最小二乘法估计 a, b,即使得
解得
n
min [Yi (a bxi )]2 i1
n

( xi x )(Yi Y )
i1 n
( xi x)2
S xY S xx
i1
aˆ Y bˆ x
2的估计
一元回归方程各有关计 统量的一些结果:

第九章:回归分析

第九章:回归分析

df
SS
MS
F Significance F
1
2268777 2268777 59.91376 7.51833E-08
23 870949.5 37867.37
24
3139726
Intercept X Variable 1
Coefficients Std Error t Stat P-value 177.12082 161.0043 1.1001 0.28267 1.0651439 0.137608 7.740398 7.52E-08
Correlation Levels
r = 0.05
r = 0.50
6
4
2
0
0
6
12
6
4
2
0
0
6
12
8
6
4
2
0
0
6
12
r = 0.95
10 8 6 4 2 0 0
6
12
r = –0.95
Correlation tells us how much linear association there is between two variables.
Thus, we should not use the equation to predict rent for an apartment whose size is 500 square feet, since this value is not in the range of size values used to create the regression equation.
df
SS
MS
F Significance F

医学统计学课件:回归分析

医学统计学课件:回归分析
利用逐步回归等方法,选择重要 的自变量,优化模型,提高预测 精度。
生存分析模型
生存分析模型概述
生存分析模型是用于研究生存时间与相关因素 之间关系的一种统计分析方法。
模型的建立与拟合
通过Cox比例风险模型等统计技术,拟合生存分 析模型,并评估模型的拟合效果。
生存曲线与影响因素
利用生存曲线描述生存时间与影响因素之间的关系,并评估不同因素对生存时 间的影响。
正态性
误差项应服从正态分布,即近似于钟形曲线。如 果误差项存在偏离正态分布的情况,需要采取措 施进行调整。
多重共线性诊断
定义:多重共线性是指自变量之间存在 较强的线性相关关系,导致模型估计失 真或不稳定。
特征值:如果特征值接近于0,则表明存 在严重的多重共线性问题。
条件指数:条件指数大于10表明模型受 到多重共线性的影响。
模型构建流程
数据清洗
对数据进行预处理,包括缺失值填充、异常值处理等,以确保数 据的质量和可靠性。
模型构建
根据已知的变量和因变量之间的关系,构建线性回归模型。
模型优化
通过逐步回归等方法对模型进行优化,以提高模型的预测精度和 稳定性。
模型评估指标
拟合优度
通过计算模型的R²值等指标,评估模型对数 据的拟合程度。
回归分析的分类
线性回归分析和非线性回归分析。
线性回归模型
线性回归模型的定义
线性回归模型是一种最常用的回归分析模型,其形式为Y = β0 + β1X1 + β2X2 + ... + βnXn。
线性回归模型的基本要素
因变量Y,自变量X1, X2, ..., Xn,以及模型中的系数β0, β1, ..., βn。

线性回归分析与方差分析.ppt

线性回归分析与方差分析.ppt
下面说明这一检验的方法.
若假设Y=a+bx+ 符合实际,则b不应为零 因为如果b=0,则Y=a+ 意味着Y与x无关
所以Y=a+bx是否合理,归结为对假设:
H0: b=0 H1 : b 0
进行检验
下面介绍检验假设H0的二种常用方法.
1.t检验法
若H0成立,即b=0,由定理7.1知,

~ N (0,1)
yˆ0 aˆ bˆx0
作为y0的预测值.可以证明
T
y0 yˆ0
~ t(n 2)
n ˆ
n2
1 1 n
(x0 x)2
n
(xi x)2
i1
从而可得
P | T | t (n 2) 1
2
所以,给定置信概率 1 ,Y0的置信区间为
( y0 (x0 ), y0 (x0 ))
其中
第九章 线性回归分析与方差分析
第一节 一元线性回归分析 第二节 可线性化的非线性回归 第三节 多元线性回归简介 第四节 方差分析
第一节 一元线性回归分析
在许多实际问题中,我们常常需要研究多 个变量之间的相互关系。 一般来说,变量之间的关系可分为两类: 一类是确定性关系,确定性关系是指变量之间的关 系可以用函数关系来表达,例如电流I电压V电 阻R之间有关系式V=IR。 另一类是非确定性关系,有些变量之间的关系是非 确定性的关系,这种关系无法用一个精确的函数 式来表示。
直线附近.但各点不完全在一条直线上,这是由于Y
还受到其他一些随机因素的影响.
这样,Y可以看成是由两部分叠加而成,一部
分是x的线性函数a+bx,另一部分是随机因素引起的
误差 ,即
y
Y=a+bx+

第九章 相关与回归分析 《统计学原理》PPT课件

第九章  相关与回归分析  《统计学原理》PPT课件

[公式9—4]
r xy n • xy
x y
[公式9—5]
返回到内容提要
第三节 回归分析的一般问题
一、回归分析的概念与特点
(一)回归分析的概念
现象之间的相关关系,虽然不是严格 的函数关系,但现象之间的一般关系值, 可以通过函数关系的近似表达式来反映, 这种表达式根据相关现象的实际对应资料, 运用数学的方法来建立,这类数学方法称 回归分析。
单相关是指两个变量间的相关关系,如 自变量x和因变量y的关系。
复相关是指多个自变量与因变量间的相关 关系。
(二)相关关系从表现形态上划分,可分为 直线相关和曲线相关
直线相关是指两个变量的对应取值在坐标 图中大致呈一条直线。
曲线相关是指两个变量的对应取值在坐 标图中大致呈一条曲线,如抛物线、指数曲线、 双曲线等。
0.578
a y b x 80 0.578 185 3.844
n
n7
7
yˆ 3.844 0.578x
二、估计标准误差 (一)估计标准误差的概念与计算 估计标准误差是用来说明回归直线方程 代表性大小的统计分析指标。其计算公式为:
Syx
y yˆ 2
n
[公式9—8]
实践中,在已知直线回归方程的情况下, 通常用下面的简便公式计算估计标准误差:
[例9—2] 根据相关系数的简捷公式计算有:
r
n xy x y
n x2 x2 n y2 y2
7 218018580
0.978
7 5003 1852 7 954 802
再求回归直线方程:
yˆ a bx
b
n xy x y
n x2 x2
7 2180 18580 7 50031852

第九章方差分析及回归分析

第九章方差分析及回归分析
的点估计及均值差的置信水平为0.95的置信 区间。
解:2 SE /(n r) 0.000016
1 x1 0.242, 2 x2 0.256, 3 x3 0.262 x 0.253
1 x1 x 0.011, 2 x2 x 0.003
2019/11/8
1
例1 设有三台机器,用于生产规格相同的铝 合金薄板。取样,测量薄板的厚度精确至千 分之一厘米。得结果如下表所示。
铝合金板的厚度
机器1
机器2
机器3
0.236
0.257
0.258
0.238
0.253
0.264
0.248
0.255
0.259
0.245
0.254
0.267
0.243
0.261
SE ( X i1 X1)2
( X is X s )2
i 1
i 1
nj
(Xij X j )2 / 2 ~ 2 (nj 1)
i1
由 2分布的可加性知
s
SE / 2 ~ 2 ( (nj 1)) j 1
SE / 2 ~ 2(n s)
因F0.05(2,12) 3.89 32.92,
故在水平0.05下拒绝H0 , 认为各台机器生产的 薄板厚度有显著差异。
2019/11/8
23
(五)未知参数的估计
不管H0是否为真,ˆ 2

SE nr

2的无偏估计。
拒绝还是接受H0,需要作出两总体N (i , 2)和N (k , 2),
( Xij Xi.)( Xi. X )
i1 j1
i1

数学建模——回归分析模型 ppt课件

数学建模——回归分析模型  ppt课件

有最小值:
n n i 1 i 1
i
2 2 ( y a bx ) i i i
ppt课件
ˆx ˆi a ˆ b y i
6
数学建模——回归分析模型
一元线性回归模型—— a, b, 2估计
n ( xi x )( yi y ) ˆ i 1 b n ( xi x )2 i 1 ˆ ˆ y bx a
数学建模——回归分析模型
Keep focused Follow me —Jiang
ppt课件
1
数学建模——回归分析模型
• • • • • 回归分析概述 几类回归分析模型比较 一元线性回归模型 多元线性回归模型 注意点
ppt课件
2
数学建模——回归分析模型
回归分析 名词解释:回归分析是确定两种或两种以上变数 间相互赖的定量关系的一种统计分析方法。 解决问题:用于趋势预测、因果分析、优化问题 等。 几类常用的回归模型:
可决系数(判定系数) R 2 为:
可决系数越靠近1,模型对数据的拟合程度越好。 ppt课件 通常可决 系数大于0.80即判定通过检验。 模型检验还有很多方法,以后会逐步接触
15
2 e ESS RSS i R2 1 1 TSS TSS (Yi Y )2
数学建模——回归分析模型
2 i i 1
残差平 方和
13
数学建模——回归分析模型
多元线性回归模型—— 估计 j 令上式 Q 对 j 的偏导数为零,得到正规方程组,
用线性代数的方法求解,求得值为:
ˆ ( X T X )1 X TY
ˆ 为矩阵形式,具体如下: 其中 X , Y ,

回归分析法PPT课件

回归分析法PPT课件
现代应用
随着大数据时代的到来,回归分析法在各个领域的应用越来越广泛,同 时也面临着新的挑战和机遇。
02
线性回归分析
线性回归模型
线性回归模型
描述因变量与自变量之间线性关 系的数学模型。
模型形式
(Y = beta_0 + beta_1X_1 + beta_2X_2 + cdots + beta_pX_p + epsilon)
解释
非线性回归模型可以用于解释因变量和解释变量之间的关系,通过模型参数和图 形化展示来解释关系。
04
多元回归分析
多元回归模型
01
02
03
多元线性回归模型
描述因变量与多个自变量 之间的关系,通过最小二 乘法估计参数。
非线性回归模型
描述因变量与自变量之间 的非线性关系,通过变换 或使用其他方法实现。
教育研究
在教育学研究中,回归分析法可用于研究教育成果和教育 质量,通过分析学生成绩和教学质量等因素,提高教育水 平。
其他领域的应用案例
市场调研
在市场营销中,回归分析法可用于分析消费者行为和市场趋 势,帮助企业制定更有效的营销策略。
农业研究
在农业研究中,回归分析法可用于研究作物生长和产量影响 因素,提高农业生产效率。
线性回归模型的预测与解释
预测
使用已建立的线性回归模型预测因变量的值。
解释
通过解释模型参数的大小和符号来理解自变量对因变量的影响程度和方向。
03
非线性回归分析
非线性回归模型
线性回归模型的局限性
非线性回归模型的定义
线性回归模型在解释变量与因变量之间的 关系时可能不够准确,无法描述它们之间 的非线性关系。

回归分析(excel)PPT课件

回归分析(excel)PPT课件
关系。
数据降维
通过回归分析找出影响 因变量的关键因素,实
现数据降维。
控制和优化
通过回归分析建立控制 和优化模型,实现生产
过程的控制和优化。
02
Excel回归分析工具介绍
线性回归工具的使用
使用步骤
选择数据,点击“数据”选项卡中的“数据分析”按钮,选择“回归”工具, 在弹出的对话框中设置因变量和自变量,点击“确定”即可得到线性回归分析 结果。
注意事项
多项式回归分析适用于非线性关系,但需要注意阶数的选择,过高或过低的阶数 都可能导致模型拟合不良。
逻辑回归工具的使用
使用步骤
选择数据,点击“数据”选项卡中的“数据分析”按钮,选 择“回归”工具,在弹出的对话框中设置因变量和自变量, 同时选择“Logistic回归”复选框,点击“确定”即可得到逻 辑回归分析结果。
避免过拟合和欠拟合
过拟合
过拟合是指模型在训练数据上表现良好 ,但在测试数据上表现较差的情况。为 了防止过拟合,可以使用正则化、增加 数据量、简化模型等方法。
VS
欠拟合
欠拟合是指模型在训练数据上表现较差, 无法捕捉到数据的内在规律和特征。为了 解决欠拟合问题,可以尝试增加模型复杂 度、调整模型参数等方法。
回归分析(excel)ppt课件
• 回归分析简介 • Excel回归分析工具介绍 • 回归分析的步骤 • 回归分析的案例 • 回归分析的注意事项
01
回归分析简介
回归分析的定义
01
回归分析是一种统计学方法,用 于研究自变量和因变量之间的相 关关系,并建立数学模型来预测 因变量的值。
02
它通过分析数据中的变量关系, 找出影响因变量的重要因素,并 计算出它们之间的最佳拟合直线 或曲线。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Tools>> Data analysis>> Regression (Correlation)
Simple Linear Regression
What is it?
Determines if Y
depends on X and
provides a math
equation for the
y
relationship
Step 2: Analysis via EXCEL
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.85
R Square
0.72
Adjusted R Square 0.71
Standard Error
194.60
Observations
25
ANOVA
Regression Residual Total
run
axis.
b
0
X
A simple linear relationship can be described mathematically by
Y = mX + b
Simple Linear Regression
slope =
rise run
=
(6 - 3)
1
=
(10 - 4)
2
Y
rise
5
run intercept = 1
(continuous data)
x
Does Y depend on X? Which line is correct?
Examples:
Process conditions and product properties
Sales and advertising budget
4
Simple Linear Regression
• “Regression” provides a functional relationship (Y=f(x)) between the variables; the function represents the “average” relationship.
• “Correlation” tells us the direction and the strength of the relationship.
Is there a Relationship Between the Variables?
What Direction is the Relationship?
How Strong is the Relationship?
High
... .
Y.. . . ..
. . .. .
Low
.. . .
Rent
Step 1: Scatter plot
2500 2300 2100 1900 1700 1500 1300 1100 900 700 500
500 700 900 1100 1300 1500 1700 1900 2100
Size
Scatter plot suggests that there is a ‘linear’ relationship between Rent and Size
Low
High
X
Simple Linear Regression
Is there a Relationship Between the Variables?
What Direction is the Relationship?
How Strong is the Relationship?
High
df
SS
MS
F Significance F
1
2268777 2268777 59.91376 7.51833E-08
TheTahneaalnyasliysssistasrtatsrtswwitihthaa SSccaatttteerrPPloltootfoYf Yvs vXs X.
Regression and Correlation
Excel will do Regression analysis and Correlation analysis:
0
X
0
5
10
Y = 0.5X + 1
Simple regression example
A n a g e n tf o ra r e s id e n tia lr e a le s ta te c o m p a n y in a la r g e c ity w o u ld lik e to p r e d ic tth e m o n th ly r e n ta lc o s tf o ra p a r tm e n ts b a s e d o n th e s iz e o fth e a p a r tm e n ta s d e f in e d b y s q u a r e f o o ta g e .A s a m p le o f2 5 a p a r tm e n ts in a p a r tic u la rr e s id e n tia ln e ig h b o r h o o d w a s s e le c te d to g a th e rth e in f o r m a tio n .
... .
?
Y.. .
. ..
?
. . .. .
Low
.. . . ?
Low
gression
m = slope =
rise run
Y
rise
b = Y intercept
= the Y value
at point that
the line
intersects Y
Regression Analysis
Chapter 11
Regression and Correlation
Techniques that are used to establish whether there is a mathematical relationship between two or more variables, so that the behavior of one variable can be used to predict the behavior of others. Applicable to “Variables” data only.
相关文档
最新文档