隧道断面图、炮孔布置图、起爆网路图
隧道光面爆破施工工法
隧道光面爆破施工工法一、工艺原理光面爆破是控制开挖轮廓的一种爆破技术,它沿开挖轮廓周边布孔,利用主炮孔爆破后形成的良好临空面,在光爆层中起爆,借以减少光爆孔爆破的夹制作用,降低炸药单耗,减少一次起爆药量,使其获得平滑的开挖廓面,减轻围岩的破坏,减小超欠挖和避免产生冒顶和坍塌。
二、光面爆破技术要点隧道开挖应根据工程地质条件、开挖断面、开挖方法、掘进循环进尺、钻眼机具和爆破器材等结合爆破振动要求进行钻爆设计。
施工中应根据爆破效果不断调整爆破参数。
2.1爆破参数选定2.1.1周边眼间距E周边眼间距直接控制开挖轮廓线平整度的主要因素,一般E=(12~15)d,其中炮眼直径d=35~45cm,对于节理发育,层理明显的围岩地段,周边眼的间距可适当减小,也可在两个炮眼之间2.1.2最小抵抗线W(光面层厚度)最小抵抗线W直接影响光面爆破效果和爆碴块度,周边抵抗线应大于周边眼间距E,软岩取较小的E值时,W值应适当增大。
2.2周边眼装药结构2.2.1软岩周边眼装药结构一般采用两种形式:一种是较破碎围岩采用空气间隔装药,导爆索传爆。
导爆索作为炮眼装药时,按10g/m折算为2号岩石硝铵炸药。
另一种是较完整的软弱岩层采用小直径光爆炸药连续装药。
分别如下图所示:2.2.2硬岩周边眼装药结构硬岩一般采用导爆索间隔装药,装药结构如下图:炮泥导爆索药卷周边眼间隔装药结构(单位:cm)除周边眼、中空眼外,其余掏槽、底眼、掘进眼的装药结构均为连续装药,只是装药长度不同2.2本隧道钻爆参数①循环进尺的确定:根据实际情况,为减少对围岩的扰动,IV、V级围岩根据钢架支护间距确定,本隧道IV级围岩2.0m,V级围岩1.0m,II、III级围岩不大于3.5m。
②钻孔直径选择:采用Φ42mm钻眼直径,炸药选择2号岩石乳化炸药。
③隧道开挖断面的大小:由岩石和开挖方法确定。
,总药量Q=q单×S×L,式中q单是单耗,本隧道初步确定q单=0.9Kg/m3左右。
爆破工程技术人员培训(岩土爆破设计题参考答案)
爆破工程技术人员培训(岩土爆破设计题参考答案)设计1:总体方案:采用露天浅孔台阶松动爆破,边坡部位采用预裂爆破。
将7.5m高的开挖体分5层进行爆破,每个台阶高度为H=1.5m。
(1)由于是浅孔爆破,所以选择炮孔直径为40mm。
为了控制爆破振动,确定单孔装药量Q=0.45kg<0.5kg。
采用药卷直径为32mm,长度为200mm,单卷药量150g的炸药。
装药长度:Lc=3某200=600mm=0.6m抵抗线:W=(24-45)d或W=(0.4-1.0)HW=0.8H=0.8某1.5=1.2m超深:h=(0.1-0.15)H=0.15-0.225,取0.2m。
炮孔深度:L=H+h=1.5+0.2=1.7m采用三角形布孔方式,炮孔密集系数m=1.15,即a=1.15b,由题已知单耗q=0.35kg/m3由于Q=q·V=q·a·b·H=1.15b2·q·H,将已知数据代入,计算得排距b=0.85m,孔距:a=1.15b=1.15某0.85=1.0m。
填塞长度:Lt=L-Lc=1.7-0.6=1.1m根据经验公式计算填塞长度:Lt=(20-30)d=0.8-1.2m,为了满足控制飞石的要求,取大值,所以Lt取1.1m是合适的。
装药结构:采用连续装药结构,即每个炮孔从孔底向上连续装入3个药卷,装药长度为0.6m,其余1.1m全部用于填塞。
(2)预裂爆破参数设计孔径d取40mm;孔间距S=(8-12)d,取10d,S=10某40=0.4m;预裂孔采用垂直孔,孔深等于台阶爆破时的浅孔深度,L=1.7m;线装药密度取L线=250-350g/m,由于炮孔较浅,所以取小值,按L 线=250g/m计算;填塞长度Lt=(10-20)d,取15d=0.6m;装药长度Lc=L-Lt=1.7-0.6=1.1m;单孔装药量Q=Lc某L线=1.1某250=275g;装药结构:不耦合装药,底部0.2m采用加强装药(线装药密度400g/m,装药量80g),中间0.6m采用正常装药(线装药密度250g/m,装药量150g),上部0.3m采用减弱装药(线装药密度150g/m,装药量45g)。
邻近铁路运营线隧道控制爆破技术
邻近铁路运营线隧道控制爆破技术摘要:福州绕城公路东南段A14合同段鳌峰山隧道施工:该隧道为双洞分离式隧道,全长1728.5米,隧道临近现有杭深运营线,控制爆破区域为隧道出口的进洞420m段,为保证既有运营线在隧道爆破时能安全运营,通过对隧道口采用盘踞分块切割工艺,并在后期爆破施工时采用小间距光面爆破并增加防爆排架保证施工安全,为邻近铁路运营线隧道爆破施工提供了重要参考意义。
关键词:小间距光面爆破;盘踞分块切割;安全监控;关键技术1工程概况福州绕城公路东南段A14合同段鳌峰山隧道施工:该隧道为双洞分离式隧道,全长1728.5米。
设计行车道宽度为3.75×3m,高度为5m,计算车速为100km/h。
其中本合同段负责左线982.2m,自ZK68+815.8至ZK69+798,右线956m,自YK68+820至YK69+776。
控制爆破区域为隧道出口的进洞420m段,桩号ZK69+363~ZK69+783,YK69+350~YK69+770。
隧道土石方开挖约13万m3。
鳌峰山隧道与铁路杭深线邻近,位于福厦线福州~福清区间。
新建鳌峰山隧道工程(洞口桩号YK69+776)距离福厦高铁630米。
2施工方案根据鳌峰山隧道特点,隧道洞口15m范围内采用盘踞分块切割,石块转移破碎的机械开挖施工工艺,隧道洞身开挖采用控制爆破法施工,对既有铁路设施安全允许振动速度控制在1cm/s以内,爆破作业前,按照爆破设计方案进行试爆,试爆工作遵循由小到大的原则进行。
试爆先按设计单耗的最低量并进行三个以上爆点实施,根据试爆的结果调整爆破孔、排距及炸药单耗,开挖台车的前、中、后位置,设置3道密孔钢筋网对爆破飞石进行阻截。
网孔孔径20mm,幅宽1m,密孔钢筋网设计为折叠式,爆破时展开,覆盖整个初支后的断面,有效防止飞石飞出洞外。
隧道口10m处搭设12m高的双层钢管防护排架悬挂一层嵌丝炮被,防止爆破飞石影响铁路运营,保证施工及其他人员、设备安全。
隧道爆破设计计算
Ⅳ级围岩爆破设计工程概况大瑶山隧道位于广东省乐昌市的庆云镇至两江镇的九峰河,隧道全长10331m,隧道以碳酸盐岩和碎屑岩为主,隧道内考虑到断裂带、部分浅埋段岩体风化、破碎等,2隧道围岩多为Ⅳ级。
隧道穿越地区有断裂构造,围岩较为破碎,裂缝较发育,断裂带附近易富水,岩溶水赋水性为中等,碎屑岩及浅变质岩属含水丰富的基岩裂隙水含水层,所以地下水较发育。
隧道断面设计为马蹄型,跨度B=,高为H=。
爆破方案选择为了保证隧道的开挖质量,又能加快施工速度,缩短工期,故IV级围岩实施爆破区段采用上、中、下三台阶开挖的光面爆破方案,由于围岩较为破碎,所以采用段台阶法,实现及早支护封闭。
由于采用三台阶的开挖方法,所以每循坏进尺的爆破工作都要分成三部分完成的。
对于一个开挖断面,先对上台阶进行爆破开挖、出渣,当上台阶向前开挖推进一定距离后,再对中、下进行爆破作业,应尽量减少相邻两个工作面之间施工相互干扰。
每月施工28天,采用2班循环掘进平行作业,月掘进计划进尺为120m。
爆破参数选择(一)上台阶参数计算(1)炮眼数N断面炮眼数是受多个因素限制,它和爆破作业面积、围岩等级等因素有关。
炮眼数目N可根据式(4-1)计算得出:N=NN(4-1)NN⁄实际根据表4-1选取:式中,q—炸药消耗量,一般取~ kg N3N1=1.0,N2=0.74,N3=0.74,N4=0.74。
S—爆破作业的面积,由开挖断面图可知,IV级围岩开挖断面S=137.2N2,上台阶断面积为N1=36.6N2,中台阶断面积N2=46.5N2,下台阶断面积N3=42.5N2;仰拱断面积N4=11.2N2。
—系数,根据表4-3取值,选取时要综合考虑各类炮眼,上台阶取;—药卷的炸药质量,2号岩石铵梯炸药的每米质量见表4-2;本工程中取;根据上式计算得出,上台阶炮眼数为N1109个,中台阶炮眼数为N2102个,下台阶炮眼数为N394个,仰拱炮眼数为N425个。
⁄)表4-1 隧道爆破单位耗药量(kg N3表4—2 2号岩石铵梯炸药每米质量γ值表4—3装药系数τ值每循环炮眼深度本隧道工程初步拟定月掘进循坏进尺为85m,每掘进循环的计划进尺数l120282,工程中炮眼利用率实取ρ,由式(4-2)计算炮眼深度得炮眼深度为。
巷道开挖爆破优化设计爆破布孔图爆破分段图爆破警戒图爆破装药图及连线图课程设计
巷道开挖爆破优化设计(爆破布孔图+爆破分段图+爆破警戒图+爆破装药图及连线图)-课程设计巷道开挖爆破优化设计(爆破布孔图+爆破分段图+爆破警戒图+爆破装药图及连线图)一:审题:设计目的与要求1掘进目的题为巷道掘进爆破施工,为使工程量减少,工程速度加快,应在保证安全的条件下,选用一种最有效的方案高速度,高质量的将既定断的岩石进香爆破,并将破碎后的岩石进行,一达到一定的高能过程目的,并尽可能使断面光滑平整,降低爆破对开挖范围以外的岩石的损坏的,最大限度的保持岩石原有的强度和稳定性,以利于爆破后围岩长期稳定,并降低爆破地震效应,空气冲击波及飞石距离使爆破对周围物体损伤最小。
2掘进要求为形成一定的井巷断面形状,必须在工作面上布置各种炮孔,如掏槽孔,周边孔,崩落孔,辅助孔。
且掘进爆破过程中要严格保证巷道的规格和方向,满足爆堆集中,快度均匀,炮孔利用率要高,周壁平整,材料消耗少等要求。
二:环境描绘1爆区环境一般井巷平硐的开挖都处于野外,周围人家少,交通通行量低,树木丛林稀少。
2工程地质由围岩的坚固性系数f=8~13并查普式岩石分级系数表得,f=8~13的岩石属于坚固岩石,一般为坚固的花岗类岩,大理岩,砂岩及石灰石类岩石,一般无裂隙,无浮土。
3水文地质围岩的坚固性系数f=8~13,密度为2.7t/m,岩体无裂隙,对水的渗透性极差,说明此围岩含水量极4爆破规模工程上规定一般隧道的掘进断面为大断面,而井巷的掘进为小断面,此三芯拱的断面为3米*4米,每次穿爆长度为3.5米,爆破规模较小。
三:设备选型1凿岩设备的选择因井巷的穿爆长度为3.5米〈5米,可知为浅孔爆破,应选用浅孔凿岩设备。
国产凿岩设备型号分析比较1)手持式气动凿岩机:重量轻,手持操作,可钻各种方向的的较小直径,较浅深度的炮眼,主要用于凿小向炮眼孔径40mm孔深〈3米,用于软,中,硬岩性,型号有y24,y26等2)气腿式凿岩机:重量一般24~30千克,主机安设在气腿上,靠气腿推动钻进,可凿水或倾斜的炮眼,孔径38~40mm孔深〈5米,用于软,中,硬岩性,型号有ysp45等。
隧道全断面开挖光面爆破工法(附示意图)
隧道全断⾯开挖光⾯爆破⼯法(附⽰意图)隧道全断⾯开挖光⾯爆破⼯法(附⽰意图)隧道全断⾯开挖光⾯爆破⼯法光⾯爆破是通过正确选择爆破参数和合理的施⼯⽅法,达到爆后壁⾯平整规则、轮廓线符合设计要求的⼀种控制爆破技术。
隧道全断开挖光⾯爆破⼯法,是应⽤光⾯爆破技术,对隧道实施全断⾯⼀次开挖的⼀种施⼯⽅法。
它与传统的爆破法相⽐,最显著的优点是能有效地控制周边眼炸药的爆破作⽤,从⽽减少对围岩的扰动,保持围岩的稳定,确保施⼯安全,同时,⼜能减少超、⽋挖,提⾼⼯程质量和进度。
⼀、光⾯爆破作⽤原理光⾯爆破的破岩机理是⼀个⼗分复杂的问题,⽬前仍在探索之中。
尽管在理论上还不甚成熟,但在定性分析⽅⾯已有共识。
⼀般认为,炸药起爆时,对岩体产⽣两种效应:⼀是药包爆炸瞬时⾼温⾼压⽓体形成的冲击波效应;⼆是爆炸⽓体膨胀做功所起的作⽤。
光⾯爆破是周边眼同时起爆,各炮眼的冲击波向其四周作径向传播,相邻炮眼的冲击相遇,则产⽣应⼒波的叠加,并产⽣切向拉⼒,拉⼒的最⼤值发⽣在相邻炮眼中⼼连线的中点,当岩体的极限抗拉强度⼩于此拉⼒时,岩体便被拉裂,在炮眼中⼼连线上形成裂缝,随后,爆炸⽓的膨胀使裂缝进⼀步扩展,形成平整的爆裂⾯⼆、光⾯爆破的技术要点要使光⾯爆破取得良好效果,⼀般需掌握以下技术要点:1.根据围岩特点,合理选定周边眼的间距和最⼩抵抗线,尽最⼤努⼒提⾼钻眼质量。
2.严格控制周边眼的装药量,尽可能将药量沿眼长均匀分布。
3.周边眼宜使⽤⼩直径药卷和低猛度、低爆速的炸药。
为满⾜装结构要求,可借助导爆索(传爆线)来实现空⽓间隔装药。
4.采⽤毫秒微差有序起爆。
要安排好开挖程序,使光⾯爆破具有良好的临空⾯。
(⼀)周边眼常⽤参数的选择1.周边眼间距E它是直接控制开挖轮廓⾯平整度的主要因素。
⼀般情况下E=(12~15)d,其中炮眼直径d=35~45mm。
对于节理较发育、层理明显以及开挖轮廓要求较⾼的地下⼯程,周边眼间距可适当减⼩,也可在两炮眼之间增加⼀个不装药的导向空眼。
巷道断面设计爆破说明书及爆破图表编制
巷道断面设计、爆破说明书及爆破图表编制学生姓名:学院:专业班级:专业课程:指导教师:2014年 5 月30 日《井巷工程》课程设计任务书题目:某煤矿年设计生产能力90万t吨,为瓦斯矿井,采用立井多水平开拓方式,采用中央分列式通风,井下最大涌水量为450m3/h.第二水平东运输大巷长度1600m,服务年限为25年;通过的流水量为 220 m3/h ,风量为 34m3/s ;采用XK8-9/132A蓄电池式电机车,牵引3.0 t矿车运输。
巷道内铺设一趟直径Φ为200mm的压气管和一趟直径Φ为100mm的供水管。
设计的大巷穿过中等稳定岩层,岩石坚固性系数f=4~6。
该矿实行“三八”工作制,计划月进尺140m,每月实际工作30d,掘支平行作业,每一掘进班完成一个循环。
预计正规循环率为0.9,炮眼利用率为0.9。
设计内容:1、选择合适的巷道断面形状。
2、设计双轨直线段的巷道断面。
确定巷道净宽、拱高、墙高、净断面面积、净周长,并进行风速校核。
选择合适的支护方式,确定支护参数。
最后确定巷道的掘进断面尺寸。
3、布置巷道内水沟和管线。
4、计算巷道掘进工程量和材料消耗量。
5、绘制巷道断面施工图,编制巷道特征表和每米巷道掘进工程量和材料消耗表。
6、根据设计的断面图,编制爆破作业图表。
包括爆破原始条件,三个方向的炮眼布置图、装药量及起爆顺序、预期爆破效果表。
设计要求:1、在规定的时间内认真、独立地完成计算、绘图、编写说明书等全部工作。
作到分析论证清楚、论据确凿,并积极采用切实可行的先进技术,力争使设计成果达到较高水平。
2、要通过计算确定的,必须有必要的计算步骤和过程。
要参照有关规范和经验确定的,请说明确定理由。
设计参照依据:《煤矿安全规程》、《煤矿井巷工程质量验收规范》、《煤矿巷道断面和交岔点设计规范》、《煤矿矿井采矿设计手册》、《井巷工程》东兆星等.3、说明书用稿纸手写(或打印),要求字迹工整,内容完整,表格要用统一编号和表头。
竖井隧道爆破专项安全施工方案
竖井与隧道爆破专项安全施工方案编制:审核:批准:2008年6月25日目录一、工程概况 (1)1、工程概况. (1)2、施工环境 (1)3、工程特点、重点及技术要求 ······················································· .6二、爆破区地形地貌、气候及工程地质条件 (7)三、开挖方法与爆破方案 (8)1、钻爆设计依据与设计方法 (9)2、开挖方案 (13)3、光面爆破技术 (13)四、竖井爆破施工 (19)五、爆破振动监测 (19)1、监测目的 (19)2、监测仪器 (20)3、监测实施 (20)六、施工资源计划及施工计划安排 (20)1、主要施工设备配备 (20)2、劳动力配备 (20)3、施工计划安排 (20)七、控制超欠挖的技术措施 (20)八、爆破振动安全距离计算 (23)九、钻爆安全技术措施与质量要求 (24)1、爆破安全一般规定 (24)2、钻眼 (25)3、装药 (26)4、爆破警戒和安全防护措施. (27)十、爆破施工组织 (28)1、爆破施工管理机构 (28)2、火工品的购置、搬运及使用管理 (28)十一、主要经济技术指标 (30)1、炸药单耗 (30)2、雷管单耗 (30)3、主要材料消耗 (30)十二、安全保证措施及事故应急预案 (30)1、爆破作业 (30)2、安全管理体系和安全目标. (31)3、事故应急预案 (31)十三、质量保证措施 (32)1、质量管理方针 (32)2、质量管理目标 (33)3、质量管理体系 (33)4、质量保证体系 (33)5、质量管理组织机构 (33)6、质量管理要求 (33)十四、环境保护措施 (34)1、施工区机械噪音 (34)2、生活垃圾 (34)翻身站~大浪站区间竖井与暗挖隧道爆破专项安全施工方案一、工程概况1、工程概况翻身站~灵芝公园站盾构区间左线从翻身站起点至里程左DK4+600存在硬岩,需采用矿山法拼管片,矿山法施工1号竖井中心里程设在右DK4+665.947,位于创业路立交桥旁。
巷道开挖爆破优化设计(爆破警戒示意图炮孔布置图网络敷设图巷道断面图装药结构图)-课程设计
巷道开挖爆破优化设计(爆破警戒示意图+炮孔布置图+网络敷设图+巷道断面图+装药结构图)-课程设计巷道开挖爆破优化设计(爆破警戒示意图+炮孔布置图+网络敷设图+巷道断面图+装药结极图)忙碌了一个多星期终于完成了爆破课程设计,说难也不难,可是自己真的做起来确实觉得到处碰壁,当初拿到题目时,脑子里真的想不出该怎么去做,应该说是无从下手了,于是就想着老师能给我们一些范本,好参照着做,结果也没有拿到,于是自己跑到图书管寻觅着相关资料,好不容易借了3本书,一阵幸喜之后便开始翻阅,从中找到了许多有用的设计资料,就这样不会了从书上慢慢找回需要的知识,在这样的过程中终于做完了我的爆破设计。
做完设计,自己收获很多,收获的不仅是平时没有见过或者很陌生的知识,尤其是通过自己的努力作出的成果的那种乐趣,我的设计题目是《道开挖优化爆破设计》,采用全断面一次爆破,运用光面爆破的方法进行设计。
由于光面爆破能减少超挖,爆破后形成规模,以及爆破后隧道轮廓外的围岩不产生或很少产生爆破裂缝,有效保持了围岩的稳定性等特点,在隧、巷道掘进中,光面爆破已全面推广,并成为一种标准的施工方法。
光面爆破技术的关键是更好准确的确定光爆参数,包括周面眼的布置,最小抵抗线,装药系数,以及不偶合系数的确定,根据确定的参数进行布孔和装药,近而为后来的施工开挖做准备。
通过本次设计我基本上了解到了一些爆破施工设计的方法、步骤以及注意事项。
更重要的是通过这次设计,使我发现了自己以前在学习这门课程中的不足。
爆破工程不是一门只注重理论的课程,事实上,一个好的爆破设计并不是单单靠书本知识就可以做出来的,它实际上是一个指导理论与实践经验的产物。
在爆破过程中,安全问题的重要性随时都体现着。
整个爆破环节中只要是出现一个小小的错误,都可能导致爆破的失败及危险的出现,更有可能造成人员伤亡。
爆破器材的运输、保管以及正常使用更是有着严格的规定。
所以在爆破实际施工过程中,一定要保持严谨、认真的态度,结合以往经验及实际情况进行设计施工。
路堑开挖爆破设计例题
公路路堑开挖爆破实例《指南》pp178~179铜南宣高速公路路堑石方爆破设计一、概况爆破工程位于安徽省铜陵县,系铜南宣高速公路路堑石方爆破工程。
其横断面如图所示,路基标高35.40m,路基宽26m,高边坡1∶0.75,低边坡1∶1.00,最大挖深8.48m。
爆破岩石为卵砾石层,部分为灰岩,岩石坚固性系数f=8~10。
公路路堑开挖爆破实例路堑横断面图二、方案设计采用深孔台阶延时爆破。
台阶高度H=8~10m。
公路路堑开挖爆破实例三、爆破参数孔径d=90mm;孔距a=3.0m;排距b=2.5m;孔深L=7~9.5m;=4.0~4.5m;装药长度L1=5~6m;填塞长度L2=3.0m;超深h=0.5~1.0m;最小抵抗线W1单位炸药消耗量q=0.4kg/m3;单孔装药量Q=22kg左右。
公路路堑开挖爆破实例四、装药及装药结构使用M型乳化炸药连续装药结构具有操作简单、装填速度快的优点,但在孔口部分容易产生大块。
孔内间隔装药虽然能够改变上述缺点,但施工复杂、费时费力。
为此,采用孔间交错改变填塞长度的方法,兼顾了二者的利弊(图)。
装药前首先清洗炮孔,测量孔深。
为确保装药可靠起爆,起爆药包放入2发导爆管雷管,置于离药包顶部1/3处,起爆药包中雷管聚能穴指向主药包方向。
装药结构见图所示。
公路路堑开挖爆破实例四、装药及装药结构装药结构图孔间交错改变填塞长度公路路堑开挖爆破实例五、起爆网路为确保传爆的可靠性,炮孔内装2发雷管,从每个炮孔内各取1发雷管分别组成两套爆破网路。
然后,用塑料导爆管将两套爆破网路组合在一起构成复式起爆网路,如图所示。
导爆管之间用四通连接,整个网路的末端用电雷管进行引爆。
现场使用1~10段毫秒延时导爆管雷管进行延时起爆。
公路路堑开挖爆破实例五、起爆网路复式起爆网路公路路堑开挖爆破实例六、爆破效果爆破破碎效果良好,只产生少量大块,80%的爆破碎石能够直接使用机械设备装运;底板平整;基本无飞石,极个别飞石也都控制在20m以内;爆破振动速度也在允许的范围之内。
隧道水压爆破施工工艺
1.隧道Ⅱ、Ⅲ级围岩段水压爆破施工工艺1 工艺概况隧道水压爆破是利用在水中传播的爆破应力波对水的不可压缩性,使爆炸能量经过水传递到炮眼围岩中几乎无损失,十分有利于岩石破碎。
是我国隧道掘进技术从“湿法”钻孔代替“干法”钻孔、从非电起爆代替火爆和电爆以来的第三个质的飞跃和变化。
隧道水压爆破是将炮眼中一定位置注入一定量的水,然后用专门的炮泥机生产炮泥回填堵塞。
由于炮眼中有水,因水具有压缩性极小、变形能低、热能损失小等特性,在水中传播的水激波能够按照水的“液压”作用,较均匀的、几乎无损失地把能量传递到围岩中。
在水激波做功的同时,被爆炸气体冲击压缩的高压水挤入爆生裂隙中,形成“水楔”,这种“水楔”的尖劈作用加剧了裂隙的延伸和扩展,使破碎块度更均匀;同时,炮眼中的水在高温高压下被雾化,吸收了爆生气体中的粉尘,起到了雾化降尘的作用,大大降低了粉尘对环境的污染,改善了洞内空气质量。
2 工艺特点隧道水压爆破施工有着显著的“三提高、两减少、一保护”的作用,主要表现在:提高循环进尺;提高光面爆破效果;提高炸药利用率;减少洞碴大块率;振动速度降低,减少对周边围岩扰动;粉尘含量降低,保护作业人员健康。
3 适用范围适用于隧道Ⅱ、Ⅲ级围岩段光面爆破施工。
4 主要引用标准(1) 《高速铁路隧道工程施工质量验收标准》(TB10753-2010)(2) 《铁路混凝土工程施工质量验收标准》(TB10424-2010)(3) 《高速铁路隧道工程施工技术指南》(铁建设[2010]241号)(4) 《铁路混凝土工程施工技术指南》(铁建设[2010]241号)(5) 《铁路隧道工程施工安全技术规程》(TB10304-2009)5 水压爆破施工方法5.1 隧道水压爆破采用主要设备图1 水袋加工机图2 炮泥加工机图3 成品水袋图4 成品炮泥5.2 主要机具设备5.2.1 机械设备表水压爆破主要设备表表1 设备名称单位数量设备名称单位数量气腿钻机台18 通风机台 4装载机台 2 KPS-60水袋机台 1挖机台 1 PNJ-A炮泥机台 1出碴车台 4 皮卡车台 1空压机台 65.3 水压爆破工艺流程图5 水压光面爆破施工工艺流程图5.4 炮泥加工具体施工步骤炮泥采用PNJ-A型炮泥机制作而成,机器外型尺寸150×45×53(cm),结构简单,操作方便,两人每小时可制作炮泥400~500个。
隧道全断面开挖光面爆破工法(附示意图)
隧道全断面开挖光面爆破工法(附示意图)隧道全断面开挖光面爆破工法光面爆破是通过正确选择爆破参数和合理的施工方法,达到爆后壁面平整规则、轮廓线符合设计要求的一种控制爆破技术。
隧道全断开挖光面爆破工法,是应用光面爆破技术,对隧道实施全断面一次开挖的一种施工方法。
它与传统的爆破法相比,最显著的优点是能有效地控制周边眼炸药的爆破作用,从而减少对围岩的扰动,保持围岩的稳定,确保施工安全,同时,又能减少超、欠挖,提高工程质量和进度。
一、光面爆破作用原理光面爆破的破岩机理是一个十分复杂的问题,目前仍在探索之中。
尽管在理论上还不甚成熟,但在定性分析方面已有共识。
一般认为,炸药起爆时,对岩体产生两种效应:一是药包爆炸瞬时高温高压气体形成的冲击波效应;二是爆炸气体膨胀做功所起的作用。
光面爆破是周边眼同时起爆,各炮眼的冲击波向其四周作径向传播,相邻炮眼的冲击相遇,则产生应力波的叠加,并产生切向拉力,拉力的最大值发生在相邻炮眼中心连线的中点,当岩体的极限抗拉强度小于此拉力时,岩体便被拉裂,在炮眼中心连线上形成裂缝,随后,爆炸气的膨胀使裂缝进一步扩展,形成平整的爆裂面二、光面爆破的技术要点要使光面爆破取得良好效果,一般需掌握以下技术要点:1.根据围岩特点,合理选定周边眼的间距和最小抵抗线,尽最大努力提高钻眼质量。
2.严格控制周边眼的装药量,尽可能将药量沿眼长均匀分布。
3.周边眼宜使用小直径药卷和低猛度、低爆速的炸药。
为满足装结构要求,可借助导爆索(传爆线)来实现空气间隔装药。
4.采用毫秒微差有序起爆。
要安排好开挖程序,使光面爆破具有良好的临空面。
(一)周边眼常用参数的选择1.周边眼间距E它是直接控制开挖轮廓面平整度的主要因素。
一般情况下E=(12~15)d,其中炮眼直径d=35~45mm。
对于节理较发育、层理明显以及开挖轮廓要求较高的地下工程,周边眼间距可适当减小,也可在两炮眼之间增加一个不装药的导向空眼。
2.最小抵抗线W(光面层厚度)W直接影响光面爆破效果和爆碴块度。
爆破工程技术人员培训岩土爆破设计题参考答案
第一部分设计题参考答案设计1:总体方案:采用露天浅孔台阶松动爆破,边坡部位采用预裂爆破。
将7.5m高的开挖体分5层进行爆破,每个台阶高度为H=1.5m。
(1)由于是浅孔爆破,所以选择炮孔直径为40mm。
为了控制爆破振动,确定单孔装药量Q=0.45kg<0.5kg。
采用药卷直径为32mm,长度为200mm,单卷药量150g的炸药。
装药长度:Lc=3×200=600mm=0.6m抵抗线:W=(24-45)d 或W=(0.4-1.0)HW=0.8H=0.8×1.5=1.2m超深:h=(0.1-0.15)H=0.15-0.225,取0.2m。
炮孔深度:L=H+h=1.5+0.2=1.7m采用三角形布孔方式,炮孔密集系数m=1.15,即a=1.15b,由题已知单耗q=0.35kg/m3由于Q=q·V= q·a·b·H=1.15b2·q·H,将已知数据代入,计算得排距b=0.85m,孔距:a=1.15b=1.15×0.85=1.0m。
填塞长度:Lt=L-Lc=1.7-0.6=1.1m根据经验公式计算填塞长度:Lt=(20-30)d=0.8-1.2m,为了满足控制飞石的要求,取大值,所以Lt取1.1m是合适的。
装药结构:采用连续装药结构,即每个炮孔从孔底向上连续装入3个药卷,装药长度为0.6m,其余1.1m全部用于填塞。
(2)预裂爆破参数设计孔径d取40mm;孔间距S=(8-12)d,取10d,S=10×40=0.4m;预裂孔采用垂直孔,孔深等于台阶爆破时的浅孔深度,L=1.7m;线装药密度取L线=250-350g/m,由于炮孔较浅,所以取小值,按L线=250g/m计算;填塞长度Lt=(10-20)d,取15d=0.6m;装药长度Lc=L-Lt=1.7-0.6=1.1m;单孔装药量Q=Lc×L线=1.1×250=275g;装药结构:不耦合装药,底部0.2m采用加强装药(线装药密度400g/m,装药量80g),中间0.6m采用正常装药(线装药密度250g/m,装药量150g),上部0.3m采用减弱装药(线装药密度150g/m,装药量45g)。
新版小断面隧道爆破设计(隧道爆破施工)
XXX隧道III级围岩全断面光面爆破设计1 工程概况由XXX公司承建的XXX隧道属于单线铁路隧道,位于青海省XXX山中段。
起迄里程为DK309+058~DK316+314,长7256米。
隧道岩层主要以奥陶系上统片理化蚀变安山岩和华力西期花岗岩为主。
隧道围岩级别分为III、IV、V级3种形式。
开挖采用钻爆法施工、光面爆破技术。
III级围岩采用全断面施工,IV级围岩采用两台阶法施工,V 级围岩采用三台阶法施工。
隧道进口海拔高度3257.1m,出口海拔高度3170m,斜井洞口海拔高度为3300m。
属于典型高原隧道。
隧道最大埋深约为220米。
隧道通过地层为第四系上更新统洪积细角砾土、奥陶系上统片理化蚀变安山岩,震旦系中统片岩,大理夹片岩,华力西期花岗岩及断层角砾岩。
细角砾土主要分布在地表,岩质中密。
其余岩层埋藏在表层以下,石质均较坚硬。
隧道区地质构造活动强烈,地质情况复杂,岩浆活动复杂多变,断层、褶皱构造较为发育,具有长期、多次、反复活动的特点。
2 施工方法该隧道III级、IV级普通围岩占了74%,支护主要设计参数为钢筋网、锚杆和喷射混凝土,岩体整体性较好,地质情况良好。
根据现场实际地质情况,洞身III级、IV级普通围岩采用全断面法光面爆破进行控制。
光面爆破参数应综合考虑隧道地质情况,开挖断面,开挖进尺及合理选择爆破器材等方面进行设计,我项目部在实施钻爆设计时,钻眼采用简易钻眼平台,YT-28风钻打眼。
起爆方式为非电雷管孔内微差起爆。
钻爆参数为:掏槽眼深度3.0m,周边眼辅助眼及底板眼眼深2.7m,循环进尺2.7m,爆破开挖使用RJ-2型乳化炸药,爆破网络采用非电毫秒雷管起爆、孔内微差爆破。
施工步骤如下:放样测量—炮孔定位—施钻、清孔—装药—爆破—出渣—复测断面○1 测量放样:钻眼前,测量人员必须准确绘出开挖断面的中心十字线和轮廓线。
○2 定位钻眼:按爆破设计图,标出所有炮眼的位置,特别要控制好掏槽眼和周边眼的位置,误差应分别控制在3cm和2cm以内。
隧道爆破设计(图文各级围岩及开挖方式钻爆眼布置)
Aad
A
2
a
a
2
(
d
2
)
d
φ 中空眼
d 炮眼
一般情况下不大于空眼直径的2倍 常用的空眼直径为102mm,眼距采用18~20cm
➢ 空眼数目
空眼数目越多掏槽爆破效果越好;炮眼越深空 眼数目越多。 ➢ 装药
装药长度占全眼长的70~90%
➢ 辅助抛掷
将空眼加深100~200mm,并在空眼底部放1~2 卷炸药。 ➢ 钻眼质量
L=(0.5~0.7)B
❖ 按每掘进循环的进尺数来确定
L l
❖ 按每掘进循环中所占时间来确定
L mvt N
目前常用的炮眼深度为1.8m~2.5m
➢ 装药量的计算
合理的药量应根据所使用的炸药的性能和质量、 地质条件、开挖断面尺寸、临空面数目、炮眼直 径和深度及爆破的质量要求来确定。
目前多采取先用体积公式计算出一个循环的总 用药量,然后按各种类型炮眼的爆破特性进行分 配,再在爆破实践中加以检验和修正,直到取得 良好的爆破效果为止的方法。
❖缺点 眼深易受开挖断面尺寸的限制,不易提高循 环进尺,也不便于多台凿岩机同时作业。
二、直眼掏槽
直眼掏槽(cylinder cut)由若干个垂直于开 挖面的炮眼所组成,掏槽深度不受围岩软硬和开 挖断面大小的限制,可以实现多台钻机同时作业、 深眼爆破和钻眼机械化,从而为提高掘进速度提 供了有利条件。
铁路隧道爆破
地下工程系 丁 谨
• 隧道施工爆破概述 • 炮眼的种类及作用 • 掏槽眼布置 • 隧道爆破参数及炮眼布置 • 周边眼的控制爆破 • 钻爆施工
• 钻爆设计实例
第一节 隧道爆破施工概述 一、隧道的基本概念
➢ 隧道的定义 ➢ 隧道的分类 ➢ 隧道施工方法
井巷掘进爆破设计-2
一、工程简介因生产要求需在—20m 水平掘进一条120m 长的平巷,使用年限3年。
岩层为砂岩f=8—12,断面为3.5×3.2m 2,工期一个月。
二、掘进方案选择依据岩石地质条件和所给断面积,使用年限,根据以往工程经验,选择三心拱(拱高1.2m ,墙高2m)一次全断面爆破施工。
掏槽方式选直孔桶型掏槽。
凿岩机选择2台气腿式风动凿岩机(一台备用),型号YT28。
炸药选用2#岩石乳化炸药(药卷规格:φ=32mm H=200mm G=150g )。
雷管选用毫秒延期导爆管雷管。
爆破开挖循环进尺2m 。
三、爆破参数确定 (一)参数确定炮孔直径:φ=40mm总孔数:3431.10103.33.33232=⨯==fs N 个炸药单耗根据岩石坚固性系数f=8—12断面面积S=10.31m 2,查表取 q=1.89kg/m 3炮孔深度:L 深=L 进/η=2.5m 。
(炮孔利用率取η=80%) 每循环总炸药量:Q=qv=1.89×(10.31×2.5)=48.71kg/m 3每次循环爆破方量V=S ×L 进=(10.31×2)×2=41.24m 3(二)炮孔布置 (1)掏槽孔孔深:L=2.7m (掏槽孔深度比其他孔加深0.2m ) 孔数:3个 孔径:φ=40mm 孔距:D=150mm单孔装药量:Q 1=αLG/H=(0.55×2.7×0.15)/0.2=1.11kg (7.5卷)(α—平均装药系数,取0.55)总装药量:Q 总1=Q 1×3=1.11×3=3.33kg (22卷) (2)周边孔 孔深:L=2.5m 孔数:21个 孔径:φ=40mm周边孔间距顶孔取0.5m ,边孔0.65m ,底孔0.6单孔装药量:Q 2=αLG/H=(0.55×2.5×0.15)/0.2=1.03kg (7卷)(α—平均装药系数,取0.65)总装药量:Q 总2=Q 2×21=21.66kg (144卷) (3)辅助孔 孔深:L=2.5m孔数:12个孔径:φ=40mm 间距:a=0.7m 排拒:b=0.65m W圈距=0.7m总装药量:Q总3=Q3×12=1.03×12=12.36kg(83卷)(4)掏槽孔距空孔距离取0.15m (5)光爆层厚度取W光=0.7m(6)炮孔总装药量:Q0=Q总1+Q总2+Q总3=3.33+21.68+12.36=37.35kg(7)炸药单耗校核:q=Q0/(s×L进)=1.8kg/m3符合设计要求(8)填塞长度:所有炮孔都须堵塞,填塞材料选用沙泥或炮纸,不能用可燃性材料,堵塞长度一般为炮孔长度的20%,一般不小于50cm。
高铁隧道光面爆破施工专项方案
合肥至福州铁路安徽段站前二标DK84+593.42革古山隧道光面爆破施工专项方案编制:复核:审核:中铁十三局合福铁路安徽段站前二标二分部二O一一年七月五日革古山隧道光面爆破施工专项方案1.编制依据(1)《合肥至福州铁路DK84+416.84~DK84+770革古山隧道设计图》(合福施图(隧)04);(2)《合肥至福州铁路双线隧道复合式衬砌施工图》(合福隧参01);(3)《合肥至福州铁路双线隧道辅助施工措施、防排水及施工方法施工图》(合福隧参04);(4)《民用爆炸物品安全管理条例》(2006.9.1);(5)《爆破安全规程》(GB6722-2003);(6)《高速铁路隧道工程施工技术指南》(铁建设【2010】241号);(7)《高速铁路隧道工程施工质量验收标准》(TB10753-2010);(8)隧道爆破现代技术,刘正雄等;中国铁道出版社。
2.适用范围本施工方案适用于合肥至福州铁路安徽段站前二标DK84+416.84~DK84+770革古山隧道暗洞段V级围岩光面爆破施工。
3.工程概况新建合福线合肥至福州高速铁路工程HFZQ-2标段革古山隧道全长353.16m,隧道分界里程分别为:DK84+416.84、DK84+770,位于居巢区银屏镇和无为县石涧镇的交界处。
DK84+444.84~DK84+686为暗洞,V级围岩。
(1)地形地貌:本隧道所通过的地层主要为剥蚀低山区,局部为低丘缓坡及丘间沟谷,地势起伏较小,自然坡度约为10º~25º,地表植被发育,多为自然山林。
(2)地层岩性:隧道表层为Q(el+dl)含砾粉质粘土,黄褐色硬塑,厚度为0.2~2m,进出口段下伏岩为S1ɡ砂质泥岩,全风化,黄褐色,岩芯呈土状,厚度为0~2m;洞身岩体松散,较破碎。
(3)水文地质:地下水为基岩裂隙潜水,较发育,环境水无化学侵蚀性,碳化环境等级T2。
在岩层破碎带及其影响带中,主要受大气降水及河水补给,以蒸发及人工开采方式排泄,局部以基岩裂隙潜水为主,局部具有承压性。