初中圆题型总结
初中数学知识点最全总结(精选)
![初中数学知识点最全总结(精选)](https://img.taocdn.com/s3/m/9b6eca96dc3383c4bb4cf7ec4afe04a1b071b015.png)
初中数学知识点最全总结(精选)初中数学知识点最全总结(精选)小伙伴们处在中考复习阶段,我们好好梳理知识点是非常重要的一个环节。
数学知识点是很重要的,下面小编给大家整理了关于初中数学知识点最全总结的内容,欢迎阅读,内容仅供参考!初中数学知识点最全总结1圆的基本性质1.半圆或直径所对的圆周角是直角。
2.任意一个三角形一定有一个外接圆。
3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
4.在同圆或等圆中,相等的圆心角所对的弧相等。
5.同弧所对的圆周角等于圆心角的一半。
6.同圆或等圆的半径相等。
7.过三个点一定可以作一个圆。
8.长度相等的两条弧是等弧。
9.在同圆或等圆中,相等的圆心角所对的弧相等。
10.经过圆心平分弦的直径垂直于弦。
直线与圆的位置关系1.直线与圆有唯一公共点时,叫做直线与圆相切。
2.三角形的外接圆的圆心叫做三角形的外心。
3.弦切角等于所夹的弧所对的圆心角。
4.三角形的内切圆的圆心叫做三角形的内心。
5.垂直于半径的直线必为圆的切线。
6.过半径的外端点并且垂直于半径的直线是圆的切线。
7.垂直于半径的直线是圆的切线。
8.圆的切线垂直于过切点的半径。
2平行线的两条判定定理(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
简称:内错角相等,两直线平行。
(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。
简称:同旁内角互补,两直线平行。
补充平行线的判定方法:(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
(3)平行线的定义。
3投影投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。
平行投影:由平行光线(如太阳光线)形成的投影称为平行投影。
中心投影:由同一点发出的光线所形成的投影称为中心投影。
24、视图当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。
物体的三视图特指主视图、俯视图、左视图。
北师大版 九年级数学下册 第三章 圆 专题课讲义 圆章节复习(解析版)
![北师大版 九年级数学下册 第三章 圆 专题课讲义 圆章节复习(解析版)](https://img.taocdn.com/s3/m/fdb7e716cd7931b765ce0508763231126edb7787.png)
圆章节复习课前测试【题目】课前测试如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.【答案】;存在,DE=;y=(0<x<).【解析】(1)如图(1),∵OD⊥BC,∴BD=BC=,∴OD==;(2)如图(2),存在,DE是不变的.连接AB,则AB==2,∵D和E分别是线段BC和AC的中点,∴DE=AB=;(3)如图(3),连接OC,∵BD=x,∴OD=,∵∠1=∠2,∠3=∠4,∴∠2+∠3=45°,过D作DF⊥OE.∴DF==,由(2)已知DE=,∴在Rt△DEF中,EF==,∴OE=OF+EF=+=∴y=DF•OE=••=(0<x<).总结:本题考查的是垂径定理、勾股定理、三角形的性质,综合性较强,难度中等.【难度】4【题目】课前测试如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.【答案】OD=3;AE是⊙O的切线;【解析】(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD==,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形,∴AD∥EO,∵DA⊥AE,∴OE⊥AC,又∵OE为圆的半径,∴AE为圆O的切线;(3)∵OD∥AC,∴=,即=,∴AC=7.5,∴EC=AC﹣AE=7.5﹣3=4.5,∴S阴影=S△BDO+S△OEC﹣S扇形FOD﹣S扇形EOG=×2×3+×3×4.5﹣=3+﹣=.总结:此题考查了切线的判定与性质,扇形的面积,锐角三角函数定义,平行四边形的判定与性质,以及平行线的性质,熟练掌握切线的判定与性质是解本题的关键.【难度】4知识定位适用范围:北师大版,初三年级,成绩中等以及中等以下知识点概述:圆是九年级下册的内容,是初中几何三大模块(三角形、四边形、圆)之一,也是中考几何必考内容,包含与园有关的圆性质、与圆有关的位置关系及与圆有关的计算三部分,相比三角形与四边形,圆部分的知识点更多,需要记忆的概念和公式也就更多,另外它还要跟三角形和四边形结合,综合考查几何知识,难度骤然提升,解题思维更要灵活。
中考最值难点突破阿氏圆问题(解析版 )
![中考最值难点突破阿氏圆问题(解析版 )](https://img.taocdn.com/s3/m/94659a5ba88271fe910ef12d2af90242a895abf2.png)
中考最值难点突破阿氏圆问题模块一典例剖析+针对训练【模型简介】在圆上找一点P使得PA+k·PB的值最小.类型一:求和最小求PA+k·PB的最小值,PA+k·PB=PA+PC≥AC,当A,P,C三点共线时,最小值为AC1.(2019秋•山西期末)阅读以下材料,并按要求完成相应的任务.已知平面上两点A、B,则所有符合PAPB=k(k>0且k≠1)的点P会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标系中,在x轴,y轴上分别有点C(m,0),D(0,n),点P是平面内一动点,且OP=r,设OPOD=k,求PC+kPD的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD上取点M,使得OM:OP=OP:OD=k;第二步:证明kPD=PM;第三步:连接CM,此时CM即为所求的最小值.下面是该题的解答过程(部分):解:在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.任务:(1)将以上解答过程补充完整.(2)如图2,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为△ABC内一动点,满足CD =2,利用(1)中的结论,请直接写出AD+23BD的最小值.思路引领:(1)在OD上取点M,使得OM:OP=OP:OD=k,利用相似三角形的性质以及两点之间线段最短解决问题即可.(2)利用(1)中结论计算即可.解(1)在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.∴MP:PD=k,∴MP=kPD,∴PC+kPD=PC+MP,当PC+kPD取最小值时,PC+MP有最小值,即C,P,M三点共线时有最小值,利用勾股定理得CM=OC2+OM2=m2+(kr)2=m2+k2r2.(2)∵AC=m=4,CDBC =23,在CB上取一点M,使得CM=23CD=43,∴AD+23BD的最小值为42+43 2=4103.总结提升:本题属于相似形综合题,考查了相似三角形的判定和性质,勾股定理,两点之间线段最短等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.针对训练1.如图,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连接AP,BP,求AP+12BP的最小值.思路引领:连接CP,在CB上取点D,使CD=1,连接DP、AD,则有CDCP=CPCB=12,以此可证明△PCD ∽△BCP ,即可得到PD BP=12,AP +12BP =AP +PD ,以此可推出当点A 、P 、D 在同一条直线上时,AP +12BP 的最小值为AD 的长,再根据勾股定理即可求解.解:连接CP ,在CB 上取点D ,使CD =1,连接DP 、AD ,则有CD CP =CP CB=12,∵∠PCD =∠BCP ,∴△PCD ∽△BCP ,∴PD BP =12,∴PD =12BP ,∴AP +12BP =AP +PD ,要使AP +12BP 最小,只要AP +PD 最小,当点A 、P 、D 在同一条直线上时,AP +PD 最小,即AP +12BP 的最小值为AD 的长,在Rt △ACD 中,CD =1,AC =6,∴AD =AC 2+CD 2=37.∴AP +12BP 的最小值为37.总结提升:本题主要考查相似三角形的判定与性质、勾股定理,根据题意分析出点A 、P 、D 在同一条直线上时,AP +12BP 的最小值为AD 的长是解题关键.2.如图,在平面直角坐标系xOy 中,A (6,-1),M (4,4),以M 为圆心,22为半径画圆,O 为原点,P 是⊙M 上一动点,则PO +2PA 的最小值为10.思路引领:连接OM ,在OM 上截取MN ,使得MN =2,连接PN ,AN .证明△PMN ∽△OMP ,推出PN OP=MN MP =12,推出PN =12OP ,推出OP +2OA =212OP +PA =2(PN +PA ),再根据PN +PA ≥AN ,求出AN ,可得结论.解:连接OM ,在OM 上截取MN ,使得MN =2,连接PN ,AN .∵M(4,4),∴OM=42+42=42,∵PM=22,MN=2,∴PM2=MN•MO,∴PM MN =MO PM,∵∠PMN=∠OMP,∴△PMN∽△OMP,∴PN OP =MNMP=12,∴PN=12OP,∵N(3,3),A(6,-1),∴AN=32+42=5,∴OP+2OA=212OP+PA=2(PN+PA),∵PN+PA≥AN,∴PN+PA≥5,∴OP+2OA≥10,∴OP+2OA的最小值为10,故答案为:10.总结提升:本题考查相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.3.(2018•碑林区校级三模)问题提出:(1)如图1,在△ABC中,AB=AC,BD是AC边上的中线,请用尺规作图做出AB边上的中线CE,并证明BD=CE:问题探究:(2)如图2,已知点P是边长为6的正方形ABCD内部一动点,PA=3,求PC+ 12PD的最小值;问题解决:(3)如图3,在矩形ABCD中,AB=18,BC=25,点M是矩形内部一动点,MA=15,当MC+35MD最小时,画出点M的位置,并求出MC+35MD的最小值.思路引领:(1)如图1中,作线段AB的垂直平分线MN交AB于点E,连接EC.线段EC即为所求,再根据SAS证明△BAD≌△CAE即可解决问题;(2)如图2中,在AD上截取AE,使得AE=32.首先证明△PAE∽△DAP,推出PE DP=PA AD =12,可得PE=12PD,推出PC+12PD=PC+PE,利用三角形的三边关系即可解决问题;(3)如图3中,如图2中,在AD上截取AE,使得AE=9.由△MAE∽△DAM,推出EMMD =MA AD =1525=35,可得ME=35MD,推出MC+35MD=MC+ME,利用三角形的三边关系即可解决问题;解:(1)如图1中,作线段AB的垂直平分线MN交AB于点E,连接EC.线段EC即为所求;∵AB=AC,AE=EC,AD=CD,∴AE=AD,∵AB=AC,∠A=∠A,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE.(2)如图2中,在AD上截取AE,使得AE=32.∵PA2=9,AE•AD=32×6=9,∴PA2=AE•AD,∴PA AD =AEPA,∵∠PAE=∠DAP,∴△PAE∽△DAP,∴PE DP =PAAD=12,∴PE=12PD,∴PC+12PD=PC+PE,∵PC+PE≥EC,∴PC+12PD的最小值为EC的长,在Rt△CDE中,∵∠CDE=90°,CD=6,DE=9 2,∴EC=62+92 2=152,∴PC+12PD的最小值为152.(3)如图3中,在AD上截取AE,使得AE=9.∵MA2=225,AE•AD=9×25=225,∴MA2=AE•AE,∴MA AD =AE MA,∵∠MAE=∠DAM,∴△MAE∽△DAM,∴EM MD =MAAD=1525=35,∴ME=35MD,∴MC+35MD=MC+ME,∵MC+ME≥EC,∴MC+35MD的最小值为EC的长,此时点M在线段EC上(如图M′).在Rt△CDE中,∠CDE=90°,CD=18,DE=16,∴EC=162+182=2145,∴MC+35MD的最小值为2145.总结提升:本题属于四边形综合题,考查了正方形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,三角形的三边关系,最短问题等知识,解题的关键是运用数形结合的思想解决问题,添加常用辅助线,构造相似三角形解决问题,用转化的思想思考问题,属于中考压轴题.类型二: 求差最大2.(2020秋•天宁区校级月考)如图,已知菱形ABCD的边长为8,∠B=60°,圆B的半径为4,点P是圆B上的一个动点,则PD-12PC的最大值为 237 .思路引领:连接PB,在BC上取一点G,使得BG=2,连接PG,DG,过点D作DH⊥BC交BC的延长线于H.利用相似三角形的性质证明PG=12PC,再根据PD-12PC=PD-PG≤DG,求出DG,可得结论.解:连接PB,在BC上取一点G,使得BG=2,连接PG,DG,过点D作DH⊥BC交BC的延长线于H.∵PB=4,BG=2,BC=8,∴PB2=BG•BC,∴PB BG =BC PB,∵∠PBG=∠CBP,∴△PBG∽△CBP,∴PG PC =PBBC=12,∴PG=12PC,∵四边形ABCD是菱形,∴AB∥CD,AB=CD=BC=8,∴∠DCH=∠ABC=60°,在Rt△CDH中,CH=CD•cos60°=4,DH=CD•sin60°=43,∴GH=CG+CH=6+4=10,∴DG=GH2+DH2=102+(43)2=237,∵PD-12PC=PD-PG≤DG,∴PD-12PC≤237,∴PD-12PC的最大值为237.总结提升:本题考查阿氏圆问题,菱形的性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.针对训练1.(2022•常熟市二模)如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD-12PC的最大值为5.思路引领:由PD-12PC=PD-PG≤DG,当点P在DG的延长线上时,PD-12PC的值最大,最大值为DG=5.解:在BC上取一点G,使得BG=1,如图,∵PB BG =21=2,BCPB=42=2,∴PB BG =BC PB,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴PG PC =BGPB=12,∴PG=12PC,当点P在DG的延长线上时,PD-12PC的值最大,最大值为DG=42+32=5.故答案为:5总结提升:本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.2.(2021•商河县校级模拟)(1)初步思考:如图1,在△PCB中,已知PB=2,BC=4,N为BC上一点且BN=1,试证明:PN=12 PC(2)问题提出:如图2,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD+ 12PC的最小值.(3)推广运用:如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,求PD-12PC的最大值.思路引领:(1)通过相似三角形△BPN∽△BCP的性质证得结论;(2)如图2中,在BC上取一点G,使得BG=1.由△PBG∽△CBP,推出PGPC =BGPB=12,推出PG=12PC,推出PD+12PC=DP+PG,由DP+PG≥DG,当D、G、P共线时,PD+12PC的值最小,最小值为DG=42+32=5.由PD-12PC=PD-PG≤DG;(3)如图3中,在BC上取一点G,使得BG=1,作DF⊥BC于F.解法类似(2);解:(1)证明:如图1,∵PB=2,BC=4,BN=1,∴PB2=4,BN•BC=4.∴PB2=BN•BC.∴BN BP =BP BC.又∵∠B=∠B,∴△BPN∽△BCP.∴PN PC =BNBP=12.∴PN=12PC;(2)如图2,在BC上取一点G,使得BG=1,∵PB BG =21=2,BCPB=42=2∴PB BG =BCPB,∠PBG=∠PBC∴△PBG∽△CBP∴PG PC =BGPB=12∴PG=12PC∴PD+12PC=DP+PG∵DP+PG≥DG∴当D、P、G共线时,PD+12PC的值最小,最小值为DG=42+32=5 (3)同(2)中证法,如图3,当点P在DG的延长线上时,PD-12PC的最大值,最大值为DG=37.总结提升:本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.类型三:综合应用3.((2020•成华区校级模拟)如图1,抛物线y=mx2-3mx+n(m≠0)与x轴交于点C( -1,0)与y轴交于点B(0,3),在线段OA上有一动点E(不与O、A重合),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出抛物线和直线AB的函数表达式;(2)设△PMN的面积为S1,△AEN的面积为S2,当S1S2=3625时,求点P的坐标;(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转的到OE′,旋转角为α(0°<α< 90°),连接E′A、E′B,求E'A+23E'B的最小值.思路引领:(1)令y =0,求出抛物线与x 轴交点,列出方程即可求出a ,根据待定系数法可以确定直线AB 解析式.(2)由△PNM ∽△ANE ,推出PN AN =65,列出方程即可解决问题.(3)在y 轴上取一点M 使得OM ′=43,构造相似三角形,可以证明AM ′就是E ′A +23E ′B 的最小值.解:(1)∵抛物线y =mx 2-3mx +n (m ≠0)与x 轴交于点C (-1,0)与y 轴交于点B (0,3),则有n =3m +3m +n =0 ,解得m =-34n =3,∴抛物线y =-34x 2+94x +3,令y =0,得到-34x 2+94x +3=0,解得:x =4或-1,∴A (4,0),B (0,3),设直线AB 解析式为y =kx +b ,则b =34k +b =0,解得k =-34b =3 ,∴直线AB 解析式为y =-34x +3.(2)如图1中,设P m ,-34m 2+94m +3 ,则E (m ,0),∵PM ⊥AB ,PE ⊥OA ,∴∠PMN =∠AEN ,∵∠PNM =∠ANE ,∴△PNM ∽△ANE ,∵△PMN 的面积为S 1,△AEN 的面积为S 2,S 1S 2=3625,∴PN AN=65,∵NE∥OB,∴AN AB =AE OA,∴AN=54(4-m),∵抛物线解析式为y=-34x2+94x+3,∴PN=-34m2+94m+3--34m+3=-34m2+3m,∴-34m2+3m54(4-m)=65,解得m=2或4(舍弃),∴m=2,∴P2,92.(3)如图2中,在y轴上取一点M′使得OM′=43,连接AM′,在AM′上取一点E′使得OE′=OE.∵OE′=2,OM′•OB=43×3=4,∴OE′2=OM′•OB,∴OE' OM'=OB OE',∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB,∴M'E'BE'=OE'OB=23,∴M′E′=23BE′,∴AE′+23BE′=AE′+E′M′=AM′,此时AE′+23BE′最小(两点间线段最短,A、M′、E′共线时),最小值=AM′=42+432=4103.总结提升:本题属于二次函数综合题,考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM′就是E′A+23E′B的最小值,属于中考压轴题针对训练4.(2021•九龙坡区校级模拟)在△ABC中,∠CAB=90°,AC=AB.若点D为AC上一点,连接BD,将BD绕点B顺时针旋转90°得到BE,连接CE,交AB于点F.(1)如图1,若∠ABE=75°,BD=4,求AC的长;(2)如图2,点G为BC的中点,连接FG交BD于点H.若∠ABD=30°,猜想线段DC与线段HG的数量关系,并写出证明过程;(3)如图3,若AB=4,D为AC的中点,将△ABD绕点B旋转得△A′BD′,连接A′C、A′D,当A′D+2A′C最小时,求S△A′BC.2思路引领:(1)通过作辅助线,构造直角三角形,借助解直角三角形求得线段的长度;(2)通过作辅助线,构造全等三角形,设AC=a,利用中位线定理,解直角三角形,用a的代数式表示CD和HG,即可得CD与HG的数量关系;(3)构造阿氏圆模型,利用两点之间线段最短,确定A'(4)的位置,继而求得相关三角形的面积.解:(1)过D作DG⊥BC,垂足是G,如图1:∵将BD绕点B顺时针旋转90°得到BE,∴∠EBD=90°,∵∠ABE=75°,∴∠ABD=15°,∵∠ABC=45°,∴∠DBC=30°,BD=2,BG=3DG=23,∴在直角△BDG中有DG=12∵∠ACB=45°,∴在直角△DCG中,CG=DG=2,∴BC=BG+CG=2+23,BC=2+6;∴AC=22(2)线段DC与线段HG的数量关系为:HG=3CD,4证明:延长CA,过E作EN垂直于CA的延长线,垂足是N,连接BN,ED,过G作GM⊥AB于M,如图:∴∠END=90°,由旋转可知∠EBD=90°,∴∠EDB=45°∴∠END =∠EBD =90°,∴E ,B ,D ,N 四点共圆,∴∠BNE =∠EDB =45°,∠NEB +∠BDN =180°∵∠BDC +∠BDN =180°,∠BCD =45°,∴∠BEN =∠BDC ,∴∠BNE =45°=∠BCD ,在△BEN 和△BDC 中,∠BNE =∠BCD∠BEN =∠BDC BE =BA,∴△BEN ≌△BDC (AAS ),∴BN =BC ,∵∠BAC =90°,在等腰△BNC 中,由三线合一可知BA 是CN 的中线,∵∠BAC =∠END =90°,∴EN ∥AB ,∵A 是CN 的中点,∴F 是EC 的中点,∵G 是BC 的中点,∴FG 是△BEC 的中位线,∴FG ∥BE ,FG =12BE ,∵BE ⊥BD ,∴FG ⊥BD ,∵∠ABD =30°,∴∠BFG =60°,∵∠ABC =45°,∴∠BGF =75°,设AC =a ,则AB =a ,在Rt △ABD 中,AD =33a ,BD =BE =233a ,∴FG =12BE ,∴FG =33a ,∵GM ⊥AB ,∴△BGM 是等腰三角形,∴MG =MB =22BG =22×12BC =22×12×2AC =12a ,在Rt △MFG 中,∠MFG =60°,∴3MF =MG ,∴MF =36a ,∴BF=BM+MF=3+36a,在Rt△BFH中,∠BFG=60°,∴FH=12BF=3+312a,∴HG=FG-FH=33a-3+312a=14(3-1)a,又∵CD=a-33a=33(3-1)a,∴CD HG =43,∴HG=34CD;(3)设AB=a,则BC=2a,取BC的中点N,连接A′D,A′C,A′N,连接DN,如图3,由旋转可知A′B=AB=a,∵A'BBN =a22a=2,BCA'B=2aa=2,∴A'BBN =BCA'B=2,又∠A'BN=∠CBA',∴△A′BN∽△CBA′,∴A'N A'C =A'BBC=22,∴A'N=22A'C,根据旋转和两点之间线段最短可知,A'D+22A'C最小,即是A'D+A'N最小,此时D、A'、N共线,即A'在线段DN上,设此时A'落在A''处,过A''作A''F⊥AB于F,连接AA'',如图4,∵D,N分别是AC,BC的中点,∴DN是△ABC的中位线,∴DN∥AB,∵AB⊥AC,∴DN⊥AC,∵∠A=∠A''FA=∠A''DA=90°,∴四边形A''FAD是矩形,∴AF=A''D,A''F=AD=2,∵又A''B=AB=4,设AF=x,在直角三角形A''FB中,A''B2=A''F2+BF2,∴42=22+(4-x)2,解得x=4-23.∴此时S△A''BC=S△ABC-S△AA''B-S△A''AC=12AB•AC-12AB•A''F-12AC•A''D=12×4×4-1 2×4×2-12×4×(4-23)=43-4.总结提升:此题主要考查全等三角形判定,等腰三角形的三线合一,解直角三角形,四点共圆,几何最值的阿氏圆模型等知识,综合性强,难度较大,属于压轴题,解得关键是作辅助线,构造全等三角形和相似三角形解决问题.5.(2022•高唐县二模)如图,抛物线y=-x2+bx+c经过点A(-4,-4),B(0,4),直线AC的解析式为y=-12x-6,且与y轴相交于点C,若点E是直线AB上的一个动点,过点E作EF⊥x轴交AC于点F.(1)求抛物线y=-x2+bx+c的解析式;(2)点H是y轴上一动点,连接EH,HF,当点E运动到什么位置时,四边形EAFH是矩形?求出此时点E,H的坐标;(3)在(2)的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上以动点,求12AM+ CM的最小值.思路引领:(1)直接利用待定系数法求解即可;(2)先利用待定系数法求出直线AB的解析式,可判断出AB⊥AC,当四边形EAFH是平行四边形时,四边形EAFH是矩形,分别点E、H、F的坐标,再利用中点坐标公式求解即可;(3)先取EG的中点P,进而判断出△PEM∽△MEA,即可得出PM=12AM,连接CP交⊙E于点M,再求出点P坐标,即可得出结论.解:(1)将点A(-4,-4),B(0,4)代入y=-x2+bx+c得:-16-4b+c=-4c=4,解得:b=-2 c=4,∴抛物线解析式为:y =-x 2-2x +4;(2)如图,当点E 运动到(-2,0)时,四边形EAFH 是矩形,设直线AB 的解析式为y =kx +b ,将点A (-4,-4),B (0,4)代入得:-4k +b =-4b =4 ,解得:k =2b =4 ,∴线AB 的解析式为y =2x +4,∵直线AC 的解析式为y =-12x -6,∴AB ⊥AC ,∴当四边形EAFH 是平行四边形时,四边形EAFH 是矩形,此时,EF 与AH 互相平分,设E (m ,2m +4),H (0,t )则F m ,-12m -6 ,∵A (-4,-4),∴12(m +m )=12(-4+0)122m +4-12m -6 =12(-4+t ),解得:m =-2t =-1∴E (-2,0),H (0,-1);(3)如图,由(2)可知E (-2,0),H (0,-1),A (-4,-4),∴EH =5,AE =25,设AE 交⊙E 于点G ,取GE 的中点P ,则PE =52,设P (k ,2k +4),∵E (-2,0),∴PE 2=(k +2)2+(2k +4)2=522,∴k =-52或k =-32(舍去),∴P -52,-1 ,∵C (0,-6),∴PC =-52 2+(-1+6)2=552,连接PC 交⊙E 于点M ,连接EM ,则EM =EH =5,∴PE ME =525=12,∵ME AE =525=12,∴PE ME =MEAE,∵∠PEM=∠MEA,∴△PEM∽△MEA,∴PM AM =MEAE=12,∴PM=12AM,∴12AM+CM=PM+CM,∴当P、M、C三点共线时,12AM+CM取得最小值即PC的长,∴1 2AM+CM最小值为552.总结提升:本题是二次函数的综合题,考查了待定系数法求函数关系式,平行四边形的性质,矩形的性质,相似三角形的判定与性质,中点坐标公式,极值的确定,熟练掌握待定系数法求函数解析式,利用中点坐标公式构建方程,以及构造相似三角形是解决问题的关键.模块二2023中考押题预测1.(2021秋•西峡县期末)如图,在△ABC中,∠A=90°,AB=AC=4,点E、F分别是边AB、AC的中点,点P是以A为圆心、以AE为半径的圆弧上的动点,则12PB+PC的最小值等于()A.4B.32C.17D.15思路引领:在AB上截取AQ=1,连接AP,PQ,CQ,证明△APQ∽△ABP,可得PQ=1 2PB,则12PB+PC=PC+PQ,当C、Q、P三点共线时,PC+PQ的值最小,求出CQ即为所求.解:在AB上截取AQ=1,连接AP,PQ,CQ,∵点E、F分别是边AB、AC的中点,点P是以A为圆心、以AE为半径的圆弧上的动点,∴AP AB =12,∵AP=2,AQ=1,∴AQAP=12,∵∠PAQ=∠BAP,∴△APQ∽△ABP,∴PQ=12PB,∴12PB+PC=PC+PQ≥CQ,在Rt△ACQ中,AC=4,AQ=1,∴QB=AC2+AQ2=17,∴12PB+PC的最小值17,故选:C.总结提升:本题考查了阿氏圆问题,相似三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造相似三角形是解题的关键.2.(2022秋•永嘉县校级期末)如图所示,∠ACB=60°,半径为2的圆O内切于∠ACB.P 为圆O上一动点,过点P作PM、PN分别垂直于∠ACB的两边,垂足为M、N,则PM+ 2PN的取值范围为6-23≤PM+2PN≤6+23 .思路引领:PM+2PN=212PM+PN,作MH⊥PN,HP=12PM,确定HN的最大值和最小值.解:作MH⊥NP于H,作MF⊥BC于F,∵PM⊥AC,PN⊥CB,∴∠PMC=∠PNC=90°,∴∠MPN=360°-∠PMC-∠PNC-∠C=120°,∴∠MPH=180°-∠MPN=60°,∴HP=PM•cos∠MPH=PM•cos60°=12PM,∴PN+12PM=PN+HP=NH,∵MF=NH,∴当MP与⊙O相切时,MF取得最大和最小,如图1,连接OP,OG,OC,可得:四边形OPMG是正方形,∴MG=OP=2,在Rt△COG中,CG=OG•tan60°=23,∴CM=CG+GM=2+23,在Rt△CMF中,MF=CM•sin C=(2+23)×32=3+3,∴HN=MF=3+3,PM+2PN=212PM+PN=2HN=6+23,如图2,由上知:CG=23,MG=2,∴CM=23-2,∴HM=(23-2)×32=3-3,∴PM+2PN=212PM+PN=2HN=6-23,∴6-23≤PM+2PN≤6+23.总结提升:本题考查的是解直角三角形等知识,解决问题的关键是构造12 PM.3.(2021秋•龙凤区期末)如图,在Rt△ABC中,∠C=90°,AC=9,BC=4,以点C为圆心,3为半径做⊙C,分别交AC,BC于D,E两点,点P是⊙C上一个动点,则13PA+PB的最小值为 17 .思路引领:在AC上截取CQ=1,连接CP,PQ,BQ,证明△ACP∽△PCQ,可得PQ=13AP,当B、Q、P三点共线时,13PA+PB的值最小,求出BQ即为所求.解:在AC上截取CQ=1,连接CP,PQ,BQ,∵AC=9,CP=3,∴CP AC =13,∵CP=3,CQ=1,∴CQCP=13,∴△ACP∽△PCQ,∴PQ=13AP,∴13PA+PB=PQ+PB≥BQ,∴当B、Q、P三点共线时,13PA+PB的值最小,在Rt△BCQ中,BC=4,CQ=1,∴QB=17,∴13PA+PB的最小值17,故答案为:17.总结提升:本题考查阿氏圆求最短距离,熟练掌握胡不归求最短距离的方法,利用三角形相似将13PA转化为PQ是解题的关键.4.(2022春•长顺县月考)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接PA,PB,则PA+14PB的最小值为 1452 .思路引领:如图,在CB上取一点F,使得CF=12,连接PF,AF.利用相似三角形的性质证明PF=14PB,根据PF+PA≥AF,利用勾股定理求出AF即可解决问题.解:如图,在CB上取一点F,使得CF=12,连接PF,AF.∵∠DCE=90°,DE=4,DP=PE,∴PC=12DE=2,∵CF CP =14,CPCB=14,∴CF CP =CP CB,∵∠PCF=∠BCP,∴△PCF∽△BCP,∴PF PB =CFCP=14,∴PF=14PB,∴PA+14PB=PA+PF,∵PA+PF≥AF,AF=CF2+AC2=12 2+62=1452,∴PA+14PB≥1452,∴PA+14PB的最小值为1452,故答案为145 2.总结提升:本题考查阿氏圆问题,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用转化的思想思考问题.5.(2021秋•梁溪区校级期中)如图,⊙O与y轴、x轴的正半轴分别相交于点M、点N,⊙O 半径为3,点A(0,1),点B(2,0),点P在弧MN上移动,连接PA,PB,则3PA+PB的最小值为 85 .思路引领:在y轴上取点H(0,9),连接BH,通过证明△AOP∽△POH,可证HP=3AP,则3PA+PB=PH+PB,当点P在BH上时,3PA+PB有最小值为HB的长,即可求解.解:如图,在y轴上取点H(0,9),连接BH,∵点A(0,1),点B(2,0),点H(0,9),∴AO=1,OB=2,OH=9,∵OA OP =13=39=OPOH,∠AOP=∠POH,∴△AOP∽△POH,∴AP HP =OPOH=13,∴HP=3AP,∴3PA+PB=PH+PB,∴当点P在BH上时,3PA+PB有最小值为HB的长,∴BH=OB2+OH2=4+81=85,故答案为:85.总结提升:本题考查了阿氏圆问题,相似三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造相似三角形是解题的关键.6.(2020•武汉模拟)【新知探究】新定义:平面内两定点A ,B ,所有满足PA PB=k (k 为定值)的P 点形成的图形是圆,我们把这种圆称之为“阿氏圆”【问题解决】如图,在△ABC 中,CB =4,AB =2AC ,则△ABC 面积的最大值为 163 .思路引领:以A 为顶点,AC 为边,在△ABC 外部作∠CAP =∠ABC ,AP 与BC 的延长线交于点P ,证明△APC ∽△BPA ,由相似三角形的性质可得BP =2AP ,CP =12AP ,从而求出AP 、BP 和CP ,即可求出点A 的运动轨迹,再找出距离BC 最远的A 点的位置即可求解.解:以A 为顶点,AC 为边,在△ABC 外部作∠CAP =∠ABC ,AP 与BC 的延长线交于点P ,∵∠CAP =∠ABC ,∠BPA =∠APC ,AB =2AC ,∴△APC ∽△BPA ,AP BP =CP AP =AC AB =12,∴BP =2AP ,CP =12AP ,∵BP -CP =BC =4,∴2AP -12AP =4,解得:AP =83,∴BP =163,CP =43,即点P 为定点,∴点A 的轨迹为以点P 为圆心,83为半径的圆上,如图,过点P 作BC 的垂线,交圆P 与点A 1,此时点A 1到BC 的距离最大,即△ABC 的面积最大,S △ABC =12BC •A 1P =12×4×83=163.故答案为:163.总结提升:本题考查相似三角形的判定和性质,三角形的面积,确定点的运动轨迹,熟练掌握三角形的判定和性质以及三角形的面积公式是解题的关键.7.(2020•溧阳市一模)如图,在⊙O 中,点A 、点B 在⊙O 上,∠AOB =90°,OA =6,点C 在OA 上,且OC =2AC ,点D 是OB 的中点,点M 是劣弧AB 上的动点,则CM +2DM 的最小值为 410 .思路引领:延长OB到T,使得BT=OB,连接MT,CT.利用相似三角形的性质证明MT= 2DM,求CM+2DM的最小值问题转化为求CM+MT的最小值.求出CT即可判断.解:延长OB到T,使得BT=OB,连接MT,CT.∵OM=6,OD=DB=3,OT=12,∴OM2=OD•OT,∴OMOD =OT OM,∵∠MOD=∠TOM,∴△MOD∽△TOM,∴DM MT =OMOT=12,∴MT=2DM,∵CM+2DM=CM+MT≥CT,又∵在Rt△OCT中,∠COT=90°,OC=4,OT=12,∴CT=OC2+OT2=42+122=410,∴CM+2DM≥410,∴CM+2DM的最小值为410,∴答案为410.总结提升:本题考查相似三角形的判定和性质,阿氏圆问题,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.8.如图,正方形ABCD的边长为4,E为BC的中点,以B为圆心,BE为半径作⊙B,点P是⊙B上一动点,连接PD、PC,则PD+12PC的最小值为5.思路引领:如图,在BC上取一点T,使得BT=1,连接PB,PT,DT.证明△PBT∽△CBP,推出PTPC=PBCB=12,推出PT=12PC,由PD+12PC=PD+PT≥DT=5,由此可得结论.解:如图,在BC上取一点T,使得BT=1,连接PB,PT,DT.∵四边形ABCD是正方形,∴∠DCT=90°,∵CD=4,CT=3,∴DT=CD2+CT2=42+32=5,∵PB=2,BT=1,BC=4,∴PB2=BT•BC,∴PB BT =BC PB,∵∠PBT=∠PBC,∴△PBT∽△CBP,∴PT PC =PBCB=12,∴PT=12PC,∵PD+12PC=PD+PT≥DT=5,∴PD+12PC的最小值为5,故答案为:5.总结提升:本题考查阿氏圆问题,正方形的性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.9.如图,扇形AOB中,∠AOB=90°,OA=6,C是OA的中点,D是OB上一点,OD=5,P是AB上一动点,则PC+12PD的最小值为 132 .思路引领:如图,延长OA使AE=OB,连接EC,EP,OP,证明△OPE∽△OCP推出PCPE =OPOE=12,推出EP=2PC,推出PC+12PD=12(2PC+PD)=12(PD+PE),推出当点E,点P,点D三点共线时,PC+12PD的值最小.解:如图,延长OA使AE=OB,连接EC,EP,OP,∵AO=OB=6,C分别是OA的中点,∴OE=12,OP=6,OC=AC=3,∴OP OE =OCOP=12,且∠COP=∠EOP∴△OPE ∽△OCP ∴PC PE =OP OE=12,∴EP =2PC ,∴PC +12PD =12(2PC +PD )=12(PD +PE ),∴当点E ,点P ,点D 三点共线时,PC +12PD 的值最小,∵DE =OD 2+OE 2=52+122=13,∴PD +PE ≥DE =13,∴PD +PE 的最小值为13,∴PC +12PD 的值最小值为132.故答案为:132.总结提升:本题考查阿氏圆问题,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用转化的思想思考问题.10.如图所示的平面直角坐标系中,A (0,4),B (4,0),P 是第一象限内一动点,OP =2,连接AP 、BP ,则BP +12AP 的最小值是 17 .思路引领:如图,取点T (0,1),连接PT ,BT .利用相似三角形的性质证明PT =12PB ,推出PB +12PA =PB +PT ≥BT ,求出BT ,可得结论.解:如图,取点T (0,1),连接PT ,BT .∵T (0,1),A (0,4),B (4,0),∴OT =1,OA =4,OB =4,∵OP =2,∴OP 2=OT •OA ,∴OP OT =OA OP,∵∠POT =∠AOP ,∴△POT ∽△AOP ,∴PT PA =OPOA=12,∴PT=12PA,∴PB+12PA=PB+PT,∵BT=12+42=17,∴PB+PT≥17,∴BP+12AP≥17∴BP+12PB的最小值为17.故答案为:17.总结提升:本题考查阿氏圆问题,相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.11.如图,边长为4的正方形,内切圆记为圆O,P为圆O上一动点,则2PA+PB的最小值为25 .思路引领:2PA+PB=2PA+22PB,利用相似三角形构造22PB.解:设⊙O半径为r,OP=r=12BC=2,OB=2r=22,取OB的中点I,连接PI,∴OI=IB=2,∵OPOI =22=2,OB OP =222=2,∴OPOI =OB OP,∠O是公共角,∴△BOP∽△POI,∴PI PB =OIOP=22,∴PI=22PB,∴AP +22PB =AP +PI ,∴当A 、P 、I 在一条直线上时,AP +22PB 最小,作IE ⊥AB 于E ,∵∠ABO =45°,∴IE =BE =22BI =1,∴AE =AB -BE =3,∴AI =32+12=10,∴AP +22PB 最小值=AI =10,∵2PA +PB =2PA +22PB ,∴2PA +PB 的最小值是2AI =2×10=25.故答案是25.总结提升:本题是“阿氏圆”问题,解决问题的关键是构造相似三角形.12.如图,在每个小正方形的边长为1的网格中,△OAB 的顶点O ,A ,B 均在格点上,点E 在OA 上,且点E 也在格点上.(I )OE OB的值为 23 ;(Ⅱ)DE 是以点O 为圆心,2为半径的一段圆弧.在如图所示的网格中,将线段OE 绕点O 逆时针旋转得到OE ′,旋转角为α(0°<α<90°)连接E 'A ,E 'B ,当E 'A +23E 'B 的值最小时,请用无刻度的直尺画出点E ′,并简要说明点E '的位置是如何找到的(不要求证明) 通过取格点K 、T ,使得OH :OD =2:3,构造相似三角形将23E ′B 转化为E ′H .思路引领:(1)求出OE ,OB 即可解决问题.(2)构造相似三角形把23E ′B 转化为E ′H ,利用两点之间线段最短即可解决问题.解:(1)由题意OE =2,OB =3,∴OE OB =23,故答案为:23.(2)如图,取格点K,T,连接KT交OB于H,连接AH交DE于E′,连接BE′,点E′即为所求.故答案为:通过取格点K、T,使得OH:OD=2:3,构造相似三角形将23E′B转化为E′H,利用两点之间线段最短即可解决问题.总结提升:本题是作图-旋转变换,主要考查了相似三角形的判定与性质,两点之间,线段最短等知识,找到点H是解题的关键.13.(2021秋•定海区期末)如图1,正方形OABC边长是2,以OA为半径作圆,P为弧AC上的一点,过点P作PM⊥AB交AB于点M,连结PO、PA,设PM=m,PA=n.(1)求证:∠POA=2∠PAM;(2)探求m、n的数量关系,并求n-m最大值;(3)如图2:连结PB,设PB=h,求2h+2m的最小值.思路引领:(1)根据正方形性质和三角形内角和定理即可证得结论;(2)如图1,过点O作OE⊥PA于E,先证明△APM∽△OAE,利用相似三角形性质可得出m=14n2,进而可得:n-m=n-14n2=-14(n-2)2+1,再运用二次函数性质即可得出答案;(3)如图2,连接AC、BD交于点D,连接PD,当D、P、M三点共线且DM⊥AB时,PD+ PM=DM最小,即2h+2m=2DM最小,根据正方形和等腰直角三角形的性质即可求得答案.解:(1)证明:∵四边形OABC是正方形,∴∠OAB=90°,∴∠OAP+∠PAM=90°,即2∠OAP+2∠PAM)=180°,∵OA=OP,∴∠OPA=∠OAP,∵∠OPA+∠OAP+∠POA=180°,∴2∠OAP+∠POA=180°,∴∠POA=2∠PAM;(2)解:如图1,过点O作OE⊥PA于E,∵OA=OP,OE⊥PA,∴AE=12PA,∠AOE=∠POE=12∠POA,∵∠POA=2∠PAM,∴∠PAM=12∠POA,∴∠PAM=∠AOE,∵PM⊥AB,∴∠AMP=90°=∠OEA,∴△APM∽△OAE,∴PMPA =AEOA,即mn=12n2,∴m=14n2,∴n-m=n-14n2=-14(n-2)2+1,∴当n=2时,n-m取得最大值,n-m最大值为1;(3)解:如图2,连接AC、OB交于点D,连接PD,∵四边形ABCO是正方形,∴AC⊥BD,OD=AD=BD,∴OD OA =OAOB=22,∵OP=OA,∴OD OP =OPOB=22,∵∠POD=∠BOP,∴△POD∽△BOP,∴PD PB =OPOB=22,∴PD=22PB,∵PB=h,PM=m,∴2h +2m =222h +m=222PB +PM =2(PD +PM ),∵当D 、P 、M 三点共线且DM ⊥AB 于M 时,PD +PM =DM 最小,∴当D 、P 、M 三点共线且DM ⊥AB 时,2h +2m =2(PD +PM )=2DM 最小,如图3,∵△ABD 是等腰直角三角形,DM ⊥AB ,∴DM =12AB =1,∴2DM =2,即2h +2m 的最小值为2.总结提升:本题是圆的综合题,考查了等腰直角三角形的性质,正方形的性质,三角形内角和定理,圆的性质,相似三角形的判定和性质,两点之间线段最短,点到直线的距离垂线段最短,二次函数最值的应用,利用相似三角形性质列出关于m 、n 的关系式恰当运用配方法是解题关键.14.(2022•从化区一模)已知,AB 是⊙O 的直径,AB =42,AC =BC .(1)求弦BC 的长;(2)若点D 是AB 下方⊙O 上的动点(不与点A ,B 重合),以CD 为边,作正方形CDEF ,如图1所示,若M 是DF 的中点,N 是BC 的中点,求证:线段MN 的长为定值;(3)如图2,点P 是动点,且AP =2,连接CP ,PB ,一动点Q 从点C 出发,以每秒2个单位的速度沿线段CP 匀速运动到点P ,再以每秒1个单位的速度沿线段PB 匀速运动到点B ,到达点B 后停止运动,求点Q 的运动时间t 的最小值.思路引领:(1)AB 是⊙O 的直径,AC =BC 可得到△ABC 是等腰直角三角形,从而得道答案;(2)连接AD 、CM 、DB 、FB ,首先利用△ACD ≌△BCF ,∠CBF =∠CAD ,证明D 、B 、F 共线,再证明△CMB 是直角三角形,根据直角三角形斜边上的中线等于斜边的一半,即可得证;(3)“阿氏圆”的应用问题,以A 为圆心,AP 为半径作圆,在AC 上取点M ,使AM =1,连接PM ,过M 作MH ⊥AB 于H ,连接BM 交⊙A 于P ',先证明PM =PC 2,PC 2+BP 最小,即是PM +BP 最小,此时P 、B 、M 共线,再计算BM 的长度即可.解:(1)∵AB 是⊙O 的直径,∴∠ABC =90°,∵AC=BC,∴△ABC是等腰直角三角形,∠CAB=45°,∵AB=42,∴BC=AB•sin45°=4;(2)连接AD、CM、DB、FB,如图:∵△ABC是等腰直角三角形,四边形CDEF是正方形,∴CD=CF,∠DCF=∠ACB=90°,∴∠ACD=90-∠DCB=∠BCF,又AC=BC,∴△ACD≌△BCF(SAS),∴∠CBF=∠CAD,∴∠CBF+∠ABC+∠ABD=∠CAD+∠ABC+∠ABD=∠DAB+∠CAB++∠ABC+∠ABD=∠DAB+45°+45°+∠ABD,而AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠ABD=90°,∴∠CBF+∠ABC+∠ABD=180°,∴D、B、F共线,∵四边形CDEF是正方形,∴△DCF是等腰直角三角形,∵M是DF的中点,∴CM⊥DF,即△CMB是直角三角形,∵N是BC的中点,∴MN=12BC=2,即MN为定值;(3)以A为圆心,AP为半径作圆,在AC上取点M,使AM=1,连接PM,过M作MH⊥AB 于H,连接BM交⊙A于P',如图:一动点Q从点C出发,以每秒2个单位的速度沿线段CP匀速运动到点P,再以每秒1个单位的速度沿线段PB匀速运动到点B,∴Q运动时间t=PC2+BP,∵AM=1,AP=2,AC=BC=4,∴AMAP =APAC=12,又∠MAP=∠PAC,∴△MAP∽△PAC,∴PMPC =AMAP=12,∴PM=PC2,。
【单元练】《易错题》初中九年级数学上册第二十四章《圆》知识点总结(专题培优)
![【单元练】《易错题》初中九年级数学上册第二十四章《圆》知识点总结(专题培优)](https://img.taocdn.com/s3/m/3b9190f5bb68a98270fefa68.png)
一、选择题1.如图,在ABC 中,90ACB ∠=︒,过B ,C 两点的O 交AC 于点D ,交AB 于点E ,连接EO 并延长交O 于点F .连接BF ,CF ,若135EDC ∠=︒,2AE =,4BE =,则CF 的值为( ).A 10B .2C .23D .3A解析:A【分析】 由四边形BCDE 内接于⊙O 知∠EFC=∠ABC=45°,据此得AC=BC ,由EF 是⊙O 的直径知∠EBF=∠ECF=∠ACB=90°及∠BCF=∠ACE ,再根据四边形BECF 是⊙O 的内接四边形知∠AEC=∠BFC ,从而证△ACE ≌△BCF 得AE=BF ,根据Rt △ECF 是等腰直角三角形知EF 2=20,继而可得答案.【详解】∵四边形BCDE 内接于O ,且135EDC ∠=︒, ∴18045EFC ABC EDC ︒∠=∠=-∠=︒,∵90ACB ∠=︒, ∴ABC 是等腰三角形,∴AC BC =,又∵EF 是O 的直径, ∴90EBF ECF ACB ∠=∠=∠=︒,∴BCF ACE ∠=∠,∵四边形BECF 是O 的内接四边形,∴AEC BFC ∠=∠,∴()ACE BFC ASA ≅△△,∴AE BF =,Rt BEF △中,22222224220EF BF BE BE AE =+=+=+=,Rt ECF △中,45EFC ∠=︒,∴CE CF =,∴2222220CE CF CF EF +===,∴210CF =, ∴10CF =, 故选:A .【点睛】本题主要考查圆周角定理,解题的关键是掌握圆内接四边形的性质、圆周角定理、全等三角形的判定与性质及勾股定理. 2.如图,A 是B 上任意一点,点C 在B 外,已知2AB =,4BC =,ACD △是等边三角形,则BCD △的面积的最大值为( )A .434+B .43C .438+D .63A解析:A【分析】 以BC 为边作等边BCM ,连接DM ,则DCM CAB ≅△△,根据全等三角形的性质得到DM=AB=2为定值,即点D 在以M 为圆心,半径为2的圆上运动,当点D 运动至BC 为中垂线与圆的交点时,BC 边上的高取最大值为232+,根据三角形的面积即可得到结论.【详解】解:以BC 为边作等边BCM ,连接DM ,∵60DCA MCB ==∠∠,∴DCM ACB =∠∠,∵DC=AC ,MC=BC ,∴DCM CAB ≅△△(SAS ),∴DM=AB=2为定值,即点D 在以M 为圆心,半径为2的圆上运动,当点D 运动至BC 为中垂线与圆的交点时,BC 边上的高取最大值为232,此时面积为:434故选:A【点睛】本题考查了等边三角形的性质,三角形面积的计算,找出点D 的位置是解题的关键. 3.如图,AB 、AC 是⊙O 的切线,B 、C 为切点,∠A =50°,点P 是圆上异于B 、C 的点,则∠BPC 的度数是( )A .65°B .115°C .115°或65°D .130°或65°C解析:C【分析】根据切线的性质得到OB ⊥AB ,OC ⊥AC ,求出∠BOC ,分点P 在优弧BC 上、点P 在劣弧BC 上两种情况,根据圆周角定理、圆内接四边形的性质计算即可.【详解】解:∵AB 、AC 是⊙O 的切线,∴OB ⊥AB ,OC ⊥AC ,∴∠OBA =90°,∠OCA =90°∵∠A =50°,∴∠BOC =360°﹣90°﹣90°﹣50°=130°,如图,当点P 在优弧BPC 上时,∠BPC =12∠BOC =65°, 当点P ′在劣弧BC 上时,∠BP ′C =180°﹣65°=115°,故选:C .【点睛】本题考查的是切线的性质、圆周角定理、圆内接四边形的性质,掌握圆的切线垂直于经过切点的半径及圆周角定理是解题的关键.4.2020年温州市实验中学数学文化节征稿文化节LOGO ,小明利用古希腊医学家希波克拉底所画图形进行设计.如图ABC 内接于一个半径为5的半圆,90ACB ∠=︒,分别以AB ,BC ,AC 为直径向外作半圆.若阴影部分图形面积之和是空白部分图形面积之和的3倍,则ABC 的面积为( )A .5πB .7.5πC .253πD .10πB解析:B【分析】 设AC=a ,BC=b ,由勾股定理可求得a 2+b 2=102,由三角形的面积公式和圆的面积公式分别求出空白部分图形面积和阴影部分图形面积,利用阴影部分图形面积之和是空白部分图形面积之和的3倍可求得ab ,进而可求得△ABC 的面积.【详解】解:设AC=a ,BC=b ,由题意,AB=10,∴a 2+b 2=102, 由图可知,空白部分面积为(25122ab π-), 阴影部分面积= 22111251()()2222222a b ab ab πππ⨯+⨯⨯+-+ = 22()2582a b ab ππ+-+ =1002582ab ππ-+ = ab , ∵阴影部分图形面积之和是空白部分图形面积之和的3倍,∴ab =3(25122ab π-), 解得:15ab π=,∴△ABC=12ab =7.5π, 故选:B .【点睛】 本题考查了圆的面积公式、三角形的面积公式、勾股定理、解方程等知识,熟记面积公式,利用割补法和整体思想解决问题是解答的关键.5.已知O 的直径10CD cm ,AB 是O 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC 的长为( ) A .5B .3C .2545D .233 解析:C【分析】连结OA ,由AB CD ⊥,根据垂径定理可以得到4AM =,结合勾股定理可以得到3OM =.在分类讨论,如图,当8CM =和2CM =时,再结合勾股定理即可求出AC .【详解】连结OA ,∵AB CD ⊥, ∴118422AM BM AB ===⨯=, 在Rt OAM 中,5OA =, ∴223OA OM AM -==,当如图时,538CM OC OM =+=+=,在Rt ACM △中,2245AC AM CM =+=,当如图时,532CM OC OM =-=-=,在Rt ACM △中,2225AC AM CM =+=故选C .【点睛】 本题考查垂径定理“垂直于弦的直径平分弦且平分这条弦所对的两条弧”.分类讨论思想也是解决本题的关键.6.如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙O 分别相交于点D 、C .若∠ACB=30°,AB= 3,则阴影部分的面积( )A 3B 3C 3π6D 3π6-C 解析:C【分析】首先求出∠AOB ,OB ,然后利用S 阴=S △ABO −S 扇形OBD 计算即可.【详解】连接OB .∵AB 是⊙O 切线,∴OB ⊥AB ,∵OC =OB ,∠C =30°,∴∠C =∠OBC =30°,∴∠AOB =∠C +∠OBC =60°,在Rt △ABO 中,∵∠ABO =90°,AB =3,∠A =30°,∴OB =ABtan30°=1,∴S 阴=S △ABO −S 扇形OBD =12×1×3−2601360π⋅=3π26-. 故选:C .【点睛】本题考查切线的性质、等腰三角形的性质、勾股定理,直角三角形30度角性质,解题的关键是学会分割法求面积,记住扇形面积公式,属于中考常考题型.7.如图,AB 圆O 的直径,弦CD AB ⊥,垂足为M ,下列结论不成立的是( )A .CM DM =B .CB BD =C .ACD ADC ∠=∠ D .OM MB =D解析:D【分析】 根据垂径定理得到CM=DM ,BC BD =,AC AD =,然后根据圆周角定理得∠ACD=∠ADC ,而对于OM 与MB 的大小关系不能判断.【详解】解:∵AB 是⊙O 的直径,弦CD ⊥AB ,∴CM=DM ,BC BD =,AC AD =,∴∠ACD=∠ADC .而无法比较OM ,MB 的大小,故选:D .【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.8.如图,AB 为O 的直径,C 为O 上一点,其中6AB =,120AOC ∠=︒,P 为O 上的动点,连AP ,取AP 中点Q ,连CQ ,则线段CQ 的最大值为( )A .37B .3272+C .237+D .33722+D 解析:D【分析】 如图,连接OQ ,作CH ⊥AB 于H .首先证明点Q 的运动轨迹为以AO 为直径的⊙K ,连接CK ,当点Q 在CK 的延长线上时,CQ 的值最大,利用勾股定理求出CK 即可解决问题;【详解】如图,连接OQ ,作CH ⊥AB 于H .∵AQ =QP ,∴OQ ⊥PA ,∴∠AQO =90°,∴点Q 的运动轨迹为以AO 为直径的⊙K ,连接CK ,当点Q 在CK 的延长线上时,CQ 的值最大,∵120AOC ∠=︒∴∠COH =60°在Rt △OCH 中,∵∠COH =60°,OC=12AB=3, ∴OH =12OC =32,CH 22332OC OH +=,在Rt △CKH 中,CK =223332⎛⎫+= ⎪⎪⎝⎭372, ∴CQ 的最大值为33722+, 故选:D .【点睛】 本题考查圆周角定理、轨迹、勾股定理、点与圆的位置关系等知识,解题的关键是正确寻找点Q 的运动轨迹,学会构造辅助圆解决问题,属于中考填空题中的压轴题. 9.如图,⊙O 的直径12CD =,AB 是⊙O 的弦,AB CD ⊥,垂足为P ,:1:2CP PO =,则AB 的长为( )A .45B .215C .16D .8A解析:A【分析】 连接OA ,先根据⊙O 的直径CD =12,CP :PO =1:2求出CO 及OP 的长,再根据勾股定理可求出AP 的长,进而得出结论.【详解】连接OA ,∵⊙O 的直径CD =12,CP :PO =1:2,∴CO =6,PO=4,∵AB ⊥CD ,∴22OA OP -2264-5,∴AB =2AP =22545⨯=故选:A .【点睛】本题考查了垂径定理和勾股定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式2222ar d⎛⎫=+⎪⎝⎭成立,知道这三个量中的任意两个,就可以求出另外一个.10.如图,点M是矩形ABCD的边BC、CD上的点,过点B作BN⊥AM于点P,交矩形ABCD的边于点N,连接DP,若AB=6,AD=4,则DP的长的最小值为()A.2 B.121313C.4 D.5A解析:A【分析】易证∠APB=90°,则P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB的中点为O,连接OD,OD与半圆的交点P′就是DP的长的最小值时的位置,OP′=OA=12AB=3,OD=5,DP′=OD−OP′=2,即可得出结果.【详解】解:∵BN⊥AM,∴∠APB=90°,∵AB=6为定长,则P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB的中点为O,连接OD,OD与半圆的交点P′就是DP长的最小值时的位置,如图所示:∵AB=6,AD=4,∴OP′=OA=12AB=3,OD22AD+OA224+3=5,∴DP′=OD−OP′=5−3=2,∴DP的长的最小值为2,故选:A.【点睛】本题考查了矩形的性质、勾股定理、轨迹等知识;判断出P点的运动轨迹,找出DP长的最小值时的位置是解题的关键.二、填空题AB=,11.如图,AB、AC、BD是O的切线,P、C、D为切点,如果8AC=,则BD的长为_______.5【分析】由于ABACBD是⊙O的切线则AC=APBP=BD求出BP的长即可求出BD的长【详解】解:∵ACAP为⊙O的切线∴AC=AP∵BPBD为⊙O 的切线∴BP=BD∴BD=PB=AB-AP=8-5解析:3【分析】由于AB、AC、BD是⊙O的切线,则AC=AP,BP=BD,求出BP的长即可求出BD的长.【详解】解:∵AC、AP为⊙O的切线,∴AC=AP,∵BP、BD为⊙O的切线,∴BP=BD,∴BD=PB=AB-AP=8-5=3.故答案为:3.【点睛】本题考查了切线长定理,两次运用切线长定理并利用等式的性质是解题的关键.12.如图,有一半径为6cm的圆形纸片,要从中剪出一个圆心角为60︒的扇形ABC,AB,AC为⊙O的弦,那么剪下的扇形ABC(阴影部分)的面积为 ___________.【分析】如图(见解析)先根据等边三角形的判定与性质可得再根据圆周角定理可得然后根据垂径定理勾股定理可得BC的长从而可得AB的长最后利用扇形的面积公式即可得【详解】如图连接OBOCBC 过点O 作于点D 由解析:218cm π【分析】如图(见解析),先根据等边三角形的判定与性质可得AB BC =,再根据圆周角定理可得120BOC ∠=︒,然后根据垂径定理、勾股定理可得BC 的长,从而可得AB 的长,最后利用扇形的面积公式即可得.【详解】如图,连接OB 、OC 、BC ,过点O 作OD BC 于点D ,由题意得:,60,6AB AC A OB OC cm =∠=︒==,ABC ∴是等边三角形,AB BC ∴=,由圆周角定理得:2120BOC A ∠=∠=︒,OD BC ⊥, 160,22BOD BOC BC BD ∴∠=∠=︒=, 30OBD ∴∠=︒,在Rt BOD 中,2213,332OD OB cm BD OB OD cm ===-=, 263AB BC BD cm ∴===,则剪下的扇形ABC (阴影部分)的面积为()()22606318360cm ππ⨯=,故答案为:218cm π.【点睛】本题考查了等边三角形的判定与性质、圆周角定理、垂径定理、扇形的面积公式等知识点,通过作辅助线,利用到垂径定理是解题关键.13.将面积为3πcm 2的扇形围成一个圆锥的侧面,若扇形的圆心角是120°,则该圆锥底面圆的半径为_____cm .1【分析】直接利用已知得出圆锥的母线长再利用圆锥侧面展开图与各部分对应情况得出答案【详解】解:设圆锥的母线长为Rcm 底面圆的半径为rcm ∵面积为3πcm2的扇形围成一个圆锥的侧面扇形的圆心角是120 解析:1【分析】直接利用已知得出圆锥的母线长,再利用圆锥侧面展开图与各部分对应情况得出答案.【详解】解:设圆锥的母线长为Rcm ,底面圆的半径为rcm ,∵面积为3πcm 2的扇形围成一个圆锥的侧面,扇形的圆心角是120°, ∴2120360R π⨯=3π, 解得:R =3,由题意可得:2πr =1203180π⨯, 解得:r =1.故答案为:1.【点睛】 此题主要考查了圆锥的计算,正确得出母线长是解题关键.14.如图所示,在平面直角坐标系中,正六边形OABCDE 边长是6,则它的外接圆圆心P 的坐标是______.【分析】如图所示连接POPA 过点P 作PG ⊥OA 于点G 由正六边形推出为等边三角形进而求出OGPG 的长度即可求得P 点坐标【详解】解:如图所示连接POPA 过点P 作PG ⊥OA 于点G 则∵多边形为正六边形∴∵∴解析:(3,33【分析】如图所示,连接PO ,PA ,过点P 作PG ⊥OA 于点G ,由正六边形OABCDE 推出OPA 为等边三角形,进而求出OG 、PG 的长度即可求得P 点坐标.【详解】解:如图所示,连接PO ,PA ,过点P 作PG ⊥OA 于点G ,则90OGP ∠=︒,∵多边形OABCDE 为正六边形,∴60OPA ∠=︒,∵PO PA =, ∴OPA 为等边三角形,又∵PG ⊥OA ,∴PG 平分OPA ∠,∴30OPG ∠=︒,又∵OA=6, ∴11163222OG OP OA ===⨯=, ∴由勾股定理得:22226333PG OP OG =-=-=,∴P 的坐标是()3,33,故答案为:()3,33【点睛】本题考查正多边形外接圆的问题,熟练掌握正多边形的性质,灵活运用三角形相关知识解决边角关系是本题的关键.15.如图,AB 是O 的直径,CD 是O 的弦,AB 、CD 的延长线交于点E ,已知2AB DE =,若COD ∆为直角三角形,则E ∠的度数为______︒.【分析】由于AB 是⊙O 的直径则AB =2DO 而AB =2DE 可得DO =DE 根据等腰三角形的性质得到∠DOE =∠E 又由于△COD 为直角三角形而OC =OD 所以△COD 为等腰直角三角形于是可得∠CDO =45° 解析:22.5︒【分析】由于AB 是⊙O 的直径,则AB =2DO ,而AB =2DE ,可得DO =DE ,根据等腰三角形的性质得到∠DOE =∠E ,又由于△COD 为直角三角形,而OC =OD ,所以△COD 为等腰直角三角形,于是可得∠CDO =45°,利用三角形外角性质有∠CDO =∠DOE +∠E ,则∠E =12∠CDO =22.5°.【详解】解:∵AB 是⊙O 的直径,∵AB =2DO ,而AB =2DE ,∴DO=DE,∴∠DOE=∠E,∵△COD为直角三角形,而OC=OD,∴△COD为等腰直角三角形,∴∠CDO=45°,∵∠CDO=∠DOE+∠E,∠CDO=22.5°.∴∠E=12故答案为:22.5°.【点睛】本题考查了圆的认识:圆上任意两点的连线段叫圆的弦;过圆心的弦叫圆的直径;直径的长等于半径的2倍.也考查了等腰直角三角形的判定与性质以及等腰三角形的性质.16.已知圆心O到直线l的距离为5,⊙O半径为r,若直线l与⊙O有两个交点,则r的值可以是________.(写出一个即可)答案不唯一如516等(满足即可)【分析】根据直线与圆的位置关系可得出圆的半径与圆心距之间的关系再取r的值即可【详解】解:∵直线l与⊙O有两个交点圆心O到直线l的距离为5∴∴在此范围内取值即可如516r>即可)解析:答案不唯一,如5.1,6等(满足5【分析】根据直线与圆的位置关系可得出圆的半径与圆心距之间的关系,再取r的值即可.【详解】解:∵直线l与⊙O有两个交点,圆心O到直线l的距离为5,r>∴5∴在此范围内取值即可,如5.1,6等.【点睛】此题主要考查了直线与圆的位置关系---相交,熟知直线与圆相交满足的条件是解答此题的关键.17.如图,在⊙O中,弦AC、BD相交于点E,且AB BC CD==,若∠BEC=130°,则∠ACD的度数为_____105°【分析】根据圆周角定理的推论可得∠BCA=∠CBD=∠CDB然后根据三角形的内角和定理即可求出∠BCA与∠CED再在△CDE中利用三角形的内角和求解即可【详解】解:∵∴∠BCA =∠CBD =∠解析:105°【分析】根据圆周角定理的推论可得∠BCA =∠CBD =∠CDB ,然后根据三角形的内角和定理即可求出∠BCA 与∠CED ,再在△CDE 中利用三角形的内角和求解即可【详解】解:∵AB BC CD ==,∴∠BCA =∠CBD =∠CDB ,∵∠BEC =130°,∴∠BCA =∠CBD =25°,∠CED =50°,∴∠CDB =25°,∴∠ACD =180°﹣50°﹣25°=105°.故答案为:105°.【点睛】本题考查了圆周角定理的推论和三角形的内角和定理,熟练掌握上述知识是解题的关键. 18.如图,AB 是O 的直径,O 交BC 的中点于D ,DE AC ⊥于E ,连接AD ,则下列结论正确的有______(填序号) ①AD BC ⊥;②EDA B ∠=∠;③12OA AC =;④DE 是O 的切线. ①②③④【分析】根据题意易得∠ADB=90°可得①进而根据线段垂直平分线的性质可得AC=AB 连接OD 然后根据圆的基本性质及切线的判定定理可求解【详解】解:∵是的直径∴∠ADB=90°∴AD ⊥BC 故① 解析:①②③④【分析】根据题意易得∠ADB=90°,可得①,进而根据线段垂直平分线的性质可得AC=AB ,连接OD ,然后根据圆的基本性质及切线的判定定理可求解.【详解】解:∵AB 是O 的直径,∴∠ADB=90°,∴AD ⊥BC ,故①正确;∵点D 是BC 的中点,∴AC=AB ,∴△ABC 是等腰三角形,∴∠B=∠C ,∠CAD=∠BAD ,∵DE ⊥AC ,∠CDA=90°,∴∠EDA+∠EAD=90°,∠CAD+∠C=90°,∴EDA C ∠=∠,∴EDA B ∠=∠,故②正确; ∵12OA AB =, ∴12OA AC =,故③正确; 连接OD ,如图所示:∵OD=OA ,∴∠ADO=∠DAO ,∴∠ADO=∠EAD ,∴∠ADO+∠EDA=90°,∴ED 是⊙O 的切线,故④正确;∴正确的有①②③④;故答案为①②③④.【点睛】本题主要考查切线的判定定理及等腰三角形的性质与判定,熟练掌握切线的判定定理及等腰三角形的性质与判定是解题的关键.19.如图,△ABC 内接于O ,∠BAC=45°,AD ⊥BC 于D , BD=6,DC=4,则AD 的长是_____. 12【分析】连接OAOBOC 过点O 作OE ⊥AD 于EOF ⊥BC 于F 根据圆周角定理得到∠BOC=90°再根据等腰直角三角形的性质计算求出OB 再由DF=BD-BF 得出DF 然后等腰直角三角形的性质求出OF 根 解析:12【分析】连接OA 、OB 、OC 过点O 作OE ⊥AD 于E ,OF ⊥BC 于F ,根据圆周角定理得到∠BOC=90°,再根据等腰直角三角形的性质计算,求出OB ,再由DF=BD-BF 得出DF ,然后等腰直角三角形的性质求出OF ,根据勾股定理求出AE ,再根据AD=AE+OF 得到答案.【详解】解:∵BD=6,DC=4,∴BC=BD+DC=10∵∠BAC=45°,∴∠BOC=90°, ∴2522==OB BC 连接OA 、OB 、OC 过点O 作OE ⊥AD 于E ,OF ⊥BC 于F ,∴BF=FC=5,∴DF=BD-BF=1,∵∠BOC=90°,BF=FC∴OF=12BC=5, ∵AD ⊥BC ,OE ⊥AD ,OF ⊥BC ,∴四边形OFDE 为矩形,∴OE=DF=1,DE=OF=5,在Rt △AOE 中,227,=-=AE OA OE∴AD=AE+DE=12.【点睛】本题考查的是三角形的外接圆,掌握圆周角定理、垂径定理、等腰直角三角形的性质是解题的关键.20.如图,直线AB ,CD 相交于点O ,∠AOC=30°,半径为1cm 的的圆心P 在射线OA 上,且与点O 的距离为6cm ,以1cm/s 的速度沿由A 向B 的方向移动,那么与直线CD 相切时,圆心P 的运动时间为 _____.4秒或8秒【分析】⊙P与CD相切应有两种情况一种是在射线OA上另一种在射线OB上设对应的圆的圆心分别在MN两点当P 在M点时根据切线的性质在直角△OME中根据30度的角所对的直角边等于斜边的一半即可求解析:4秒或8秒【分析】⊙P与CD相切应有两种情况,一种是在射线OA上,另一种在射线OB上,设对应的圆的圆心分别在M,N两点.当P在M点时,根据切线的性质,在直角△OME中,根据30度的角所对的直角边等于斜边的一半,即可求得OM的长,进而求得PM的长,从而求得由P到M移动的时间;根据ON=OM,即可求得PN,也可以求得求得由P到M移动的时间.【详解】①当⊙P在射线OA上,设⊙P于CD相切于点E,P移动到M时,连接ME.∵⊙P与直线CD相切,∴∠OEM=90°,∵在直角△OPM中,ME=1cm,∠AOC=30°,∴OM=2ME=2cm,则PM=OP-OM=6-2=4cm,∵⊙P以1cm/s的速度沿由A向B的方向移动,∴⊙P移动4秒时与直线CD相切;②当⊙P的圆移动到直线CD的右侧,同理可求ON=2则PN=6+2=8cm.∴⊙P移动8秒时与直线CD相切.故答案为:4秒或8秒.【点睛】本题主要考查了切线的性质和直角三角形的性质,注意已知圆的切线时,常用的辅助线是连接圆心与切点,本题中注意到分两种情况讨论是解题的关键.三、解答题21.如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,OD交⊙O于点D,点E在⊙O上,若∠AOD=50°.(1)求∠DEB的度数;(2)若OC=3,OA=5,①求弦AB的长;②求劣弧AB的长.解析:(1)25°;(2)①8;②25 9π【分析】(1)由垂径定理,可知AD BD=,再由圆周角定理求得∠DEB的度数.(2)①由勾股定理可得AC=4,由垂径定理可知,AC=BC=12AB=4,即可求解;②根据弧长公式即可求得答案.【详解】解:(1)∵OD⊥AB,∴AD BD=,∴∠AOD=∠BOD∴∠DEB=12∠AOD=12×50°=25°.(2)①∵OC=3,OA=5,∴AC=4,∵OD⊥AB,∴12AD BD AB==,∴AC =BC =12AB =4, ∴AB =8; ②∵∠AOD =50°,AD BD =,∴∠AOB =100°, ∵OA =5,∴AB 的长=1005251801809n r πππ⨯==. 【点睛】本题考查了圆周角定理、垂径定理,勾股定理及弧长公式.解答关键是应用垂径定理求得AC =BC =12AB =4. 22.如图,已知,90Rt ABC ACB ∆∠=︒.(1)请在图中用无刻度的直尺和圆规作一个圆,使得圆心О在边AC 上,且与边,AB BC 所在直线相切(不写作法,保留作图痕迹);(2)在(1)的条件下,若9,12AC BC ==,求O 的半径. 解析:(1)见解析;(2)O 的半径为4 【分析】(1)先作∠ABC 的角平分线,交AC 于点O ,然后过O 作AB 的垂线,交AB 于E ,以O 为圆心,OE 为半径作圆即可;(2)先利用勾股定理求出AB ,然后由OBC ABO ABC S S S ∆∆∆+=即可求出O 的半径. 【详解】解:(1)如图所示:(2)设直线AB 与O 切于点D ,连接OD ,则,OD AB ⊥90,ACB ∴∠=︒22222291215AB AC BC ∴=+=+=.15,AB ∴=设O 的半径为,r由得OBC ABO ABC S S S ∆∆∆+=1215912,r r +=⨯4,r ∴=即O 的半径为4【点睛】本题考查了尺规作图,切线的性质,理解题意熟练掌握角平分线和垂线的作图是解题的关键.23.如图,AB 是O 的一条弦,⊥OD AB ,垂足为C ,OD 交O 于点D ,点E 在O 上,若50AOD .(1)求DEB ∠的度数:(2)若3OC =,5OA =,①求弦AB 的长;②求劣弧AB 的长.解析:(1)25°;(2)①8;②25π9 【分析】 (1)根据垂径定理和圆周角定理求解即可;(2)①根据勾股定理和垂径定理求解即可;②先求出100AOB ∠=︒,再根据弧长公式计算即可. 【详解】解:(1)∵⊥OD AB ,∴AD BD =,∴11502522DEB AOD ∠=∠=⨯︒=︒; (2)①∵3OC =,5OA =,⊥OD AB ,∴22534AC =-=,∴AB=2AC=8;②∵50AOD ,AD BD =,∴100AOB ∠=︒, ∵5OA =,∴弧AB 的长π1005π25π1801809n r ⨯===. 【点睛】本题考查了垂径定理,圆周角定理,弧、弦、圆心角的关系,以及弧长公式,熟练掌握各知识点是解答本题的关键.24.已知点A 、B 在半径为2的⊙O 上,直线AC 与⊙O 相切,OC OB ,连接AB 交OC 于点D .(1)如图①,若60ACO ︒∠=,求B :(2)如图②,OC 与⊙O 交于点E ,若//BE OA ,求AB 的长.解析:(1)30°;(2)222+(1)由切线的性质可知∠OAC=90°,由三角形的内角和定理可知∠AOC=30°,由∠AOB=∠AOC+∠BOC 可得出∠AOB 的度数,结合OA=OB 可得出∠B=30°;(2)过B 作BH AO ⊥交AO 的延长线于H ,由BE ∥OA 可得出ABE OAB ∠=∠,结合等腰直角三角形的性质可得出45OBE ︒∠=,根据勾股定理得出2OH BH ==,最后再结合勾股定理即可得出结论. 【详解】解:(1))∵AC 与⊙O 相切,∴∠OAC=90°∵∠OCA=60°∴∠AOC=30°∵OC ⊥OB ,∴∠AOB=∠AOC+∠BOC=120°∵OA=OB , ∴180120302B ︒︒︒-∴∠==; (2)过B 作BH AO ⊥交AO 的延长线于H//BE OAABE OAB ∴∠=∠,90OB OE BOE ︒=∠=45OBE ︒∴∠=45HO B OAB OBA ABE OBA OBE ︒∴∠=∠+∠=∠+∠=∠=2OA OB ==2OH BH ∴==2222(22)(2)AB AH BH ∴=+=++842222=+=+【点睛】本题考查了切线的性质,勾股定理,等腰三角形的性质,熟练掌握切线的性质是解本题的关键.25.如图,半径为2的⊙O 与正五边形ABCDE 的边AB 、AE 相切于点M 、N ,求劣弧MN解析:45π 【分析】如图(见解析),先根据圆的切线的性质可得,OM AB ON AE ⊥⊥,再根据正五边形的内角和可得108A ∠=︒,然后根据四边形的内角和可得72MON ∠=︒,最后弧长公式即可得.【详解】如图:连接OM ,ON ,∵O 与正五边形ABCDE 的边AB 、AE 相切于点M 、N ,∴,OM AB ON AE ⊥⊥,90AMO ANO ∴∠=∠=︒,∵正五边形的每个内角为(52)1801085-⨯︒=︒, 108A ∴∠=︒,∴在四边形AMON 中,36072AMO ANO A MON ∠-∠=-∠∠︒-=︒,∵O 的半径为2,∴劣弧MN 的长度为72241805ππ⨯=.【点睛】本题考查了正五边形的内角和、圆的切线的性质、弧长公式等知识点,熟练掌握正五边形的内角和是解题关键.26.如图,OA 、OB 、OC 分别是⊙O 的半径,且AC =CB ,D 、E 分别是OA 、OB 的中点.CD 与CE 相等吗?为什么?解析:CD=CE .见解析.【分析】由题意易得OD=OE ,由等弧所对的圆心角相等可得DOC EOC ∠=∠,进而由全等三角形的判定证得△CDO ≌△CEO ,进而求证结论.【详解】CD=CE .∵ D 、E 分别是OA 、OB 的中点, ∴12OD OA ,12OE OB =, ∴OD=OE ,∵AC CB =.∴DOC EOC ∠=∠,又∵OC=OC ,∴△CDO ≌△CEO ,∴CD=CE .【点睛】本题主要考查圆圆周角定理、全等三角形的判定和性质,解题的关键是由等弧所对的圆心角相等求得DOC EOC ∠=∠.27.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,CD 是⊙O 的切线,AD ⊥CD 于点D ,E 是AB 延长线上一点,CE 交⊙O 于点F ,连接OC ,AC .(1)求证:AC 平分∠DAO ;(2)若∠DAO =105°,∠E =30°,①求∠OCE 的度数;②若⊙O 的半径为2EF 的长.解析:(1)见解析;(2)①45°,②32.【分析】(1)由切线性质知OC ⊥CD ,结合AD ⊥CD 得AD ∥OC ,即可知∠DAC =∠OCA =∠OAC ,从而得证;(2)①由AD ∥OC 知∠EOC =∠DAO =105°,结合∠E =30°可得结果;②作OG ⊥CE ,根据垂径定理及等腰直角三角形性质知CG =FG =OG ,由OC =2得出CG=FG=OG=2,在Rt△OGE中,由∠E=30°可得GE=23,由此计算即可.【详解】(1)证明:∵CD是⊙O的切线,∴OC⊥CD.∵AD⊥CD,∴AD∥OC.∴∠DAC=∠OCA.∵OC=OA,∴∠OCA=∠OAC.∴∠OAC=∠DAC.∴AC平分∠DAO.(2)①∵AD∥OC,∴∠EOC=∠DAO=105°.∵∠E=30°,∴∠OCE=180°-∠EOC-∠E =45°.②作OG⊥CE于点G,∵OC=2∠OCE=45°,∴CG=OG=2.∴FG=2.在Rt△OGE中,∠E=30°,∴GE=3∴EF=GE−FG=32 .【点睛】本题考查了圆的切线的性质、平行线的判定与性质、垂径定理等知识,熟练掌握切线的性质、平行线的判定与性质、垂径定理是解题的关键.28.如图,AB是O的直径,AM和BN是它的两条切线,DE切O于点E,交AM 于点D,交BN于点C,F是CD的中点,连接OF.(1)求证://OD BE ;(2)猜想:OF 与CD 有何数量关系?并说明理由.解析:(1)见解析;(2)(2)12OF CD =,理由见解析 【分析】(1)连接OE ,利用直角三角形HL 判定Rt AOD Rt EOD ∆∆≌,根据全等三角形的性质可知AOD ABE ∠=∠,根据平行线的判定即可求证结论;(2)根据切线长定理可知DA=DE ,CB=CE ,根据切线的性质可知AB ⊥AD ,BC ⊥AB ,证得四边形ABCD 是梯形,根据梯形的中位线定理并代换即可求证.【详解】(1)证明:连接OE ,∵AM ,DE 是O 的切线,OA 、OE 是O 的半径,∴OA OE =,90DAO DEO ∠=∠=︒,又∵OD 为公共边∴Rt AOD Rt EOD ∆∆≌(HL )∴12AOD EOD AOE ∠=∠=∠, ∵12ABE AOE ∠=∠, ∴AOD ABE ∠=∠,∴OD BE(2)12OF CD =, 理由:∵AM 、DE 是圆的切线,∴DA=DE ,AB ⊥AD ,同理可得:CB=CE ,BC ⊥AB ,证得四边形ABCD 是梯形,∵F 是CD 的中点、O 是AB 的中点,∴OF =()12AD BC + =()12DE CE +, ∴12OF CD =. 【点睛】 本题主要考查与圆有关的位置关系、切线长定理、全等三角形的判定与其性质、梯形,解题的关键是综合运用所学知识.。
初中数学总结归纳知识点(集锦8篇)
![初中数学总结归纳知识点(集锦8篇)](https://img.taocdn.com/s3/m/61f287db80c758f5f61fb7360b4c2e3f57272508.png)
初中数学总结归纳知识点(集锦8篇)初中数学总结归纳知识点第1篇1、不在同一直线上的三点确定一个圆。
2、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧推论2:圆的两条平行弦所夹的弧相等3、圆是以圆心为对称中心的中心对称图形。
4、圆是定点的距离等于定长的点的集合。
5、圆的内部可以看作是圆心的距离小于半径的点的集合。
6、圆的外部可以看作是圆心的距离大于半径的点的集合。
7、同圆或等圆的半径相等。
8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
12、①直线L和⊙O相交d ②直线L和⊙O相切d=r ③直线L和⊙O 相离d>r13、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。
14、切线的性质定理圆的切线垂直于经过切点的半径。
15、推论1经过圆心且垂直于切线的直线必经过切点。
16、推论2经过切点且垂直于切线的直线必经过圆心。
17、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
18、圆的外切四边形的两组对边的和相等外角等于内对角。
19、如果两个圆相切,那么切点一定在连心线上。
20、①两圆外离d>R+r ②两圆外切d=R+r ③两圆相交R-rr) ④两圆内切d=R-r(R>r) ⑤两圆内含dr)21、定理相交两圆的连心线垂直平分两圆的公共弦。
22、定理把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。
初中数学题型归纳整理
![初中数学题型归纳整理](https://img.taocdn.com/s3/m/ef6b992dcdbff121dd36a32d7375a417866fc186.png)
初中数学题型归纳整理 考试前,尤其是⾯临重要考试时,做好数学知识点的总结归纳很有必要。
那么初中数学题型归纳整理有哪些?请看看下⽂。
初中数学题型归纳 ⼀、计算题: 科学计数法、倒数相反数绝对值、简单概率运算、三视图求原图⾯积、三⾓形(相似、全等、内⾓外交关系)、统计(众数、中位数、平均数)、⼆次函数(顶点、对称轴、表达式)、函数图像关系 ⼆、填空题: 因式分解、⼆次函数解析式求解、三⾓形(相似、周长⾯积计算)、坐标(坐标点运动规律)、直线和反⽐例函数图像问题 三、解答题: 次⽅、开⽅、三⾓函数、次幂(0次、-1次)计算; 求解不等式组; 分式、多项式化简(整体代⼊⽅法求值); ⽅程组求解; ⼏何图形中证明三⾓形边相等; ⼀次函数与⼆次函数; 四、解答题 四边形边长、周长、⾯积求解; 圆相关问题(切割线、圆周⾓、圆⼼⾓); 统计图; 在数轴中求三⾓形⾯积; 五、解答题 ⼆次函数(解析式、直线⽅程); 圆与直线关系; 三⾓形⾓度相关计算; 总体来说中考题,题⽬多,需要熟练掌握相关的知识点,快速做题。
近些年北京中考数学题型都⽐较固定、难度适宜,需要在正确率⽅⾯留⼼,对于三⾓形、四边形⾯积计算知识板块要⾼度重视。
初中数学解题技巧 1.对数学考试成功的标志要有明确的认识 初中⽣⾝经⽆数次的数学考试,有成功也有失败,有考顺之时,也有别扭之⽇。
那么什么是数学考试成功的标志呢?有⼈说是分数,有⼈说是名次,还有⼈讲只有超过某⼈才算……其实数学考试分数也有绝对值和相对值,绝对值是拿你⾃⼰的数学考试分数与及格线、满分线等⽐较的结果。
相对值是将你⾃⼰的数学考试分数放在个⼈、班级、年级、全市等参照系中衡量其相对位置的结果。
正是由于选择的参照系不同,有的同学越⽐信⼼越⾜,越⽐⼲劲越⼤,越⽐越乐观;⽽有的同学则越⽐越没信⼼,越⽐对⾃⼰越怀疑,越⽐热情越低。
我的观点是,数学考试成功的标志有两条:⼀是,只要将⾃⼰的⽔平正常发挥出来了,就是⼀次成功的数学考试。
(完整版)初中圆题型总结
![(完整版)初中圆题型总结](https://img.taocdn.com/s3/m/0d26584069dc5022abea00c9.png)
圆的基本题型纵观近几年全国各地中考题,圆的相关看法以及性质等一般以填空题,选择题的形式观察并占有必然的分值;一般在 10 分- 15 分左右,圆的相关性质,如垂径定理,圆周角,切线的判断与性质等综合性问题的运用一般以计算证明的形式观察;利用圆的知识与其他知识点如代数函数,方程等相结合作为中考压轴题将会占有特别重要的地位,别的与圆相关的本质应用题,阅读理解题,研究存在性问题仍是热门考题,应引起注意 . 下面究近来几年来圆的相关热门题型,举例解析以下。
一、圆的性质及重要定理的观察基础知识链接:( 1)垂径定理;( 2)同圆或等圆中的圆心角、弦、弧之间的关系 .(3) 圆周角定理及推论(4)圆内接四边形性质【例 1】(江苏镇江)如图, AB 为⊙ O直径, CD 为弦,且 CD AB ,垂足为 H .(1)OCD 的均分线 CE 交⊙ O于 E ,连接 OE .求证: E 为弧 ADB的中点;(2)若是⊙ O的半径为 1,CD 3 ,①求 O 到弦 AC 的距离;②填空:此时圆周上存在个点到直线 AC 的距离为1.2【解析】(1)Q OC OE ,E OCEC又OCE DCE ,E DCE .A BO HOE ∥ CD .E D 又 CD AB ,AOE BOE 90o.E 为弧 ADB的中点.(2)①Q CD AB , AB 为⊙ O的直径,CD 3 ,1CD 3.又 OC CH33 .CH 1 ,sin COB 22 2 OC 1 2 COB 60o,BAC 30o.作 OP AC 于 P ,则 OP 1OA 1 .2 2②3.【谈论】本题综合观察了利用垂径定理和勾股定理及锐角三角函数求解问题的能力 . 运用垂径定理时,需增加辅助线构造与定理相关的“基本图形”.几何上把圆心到弦的距离叫做弦心距, 本题的弦心距就是指线段OD的长 . 在圆中解相关弦心距半径相关问题时 , 常常增加的辅助线是连半径或作出弦心距, 把垂径定理和勾股定理结合起来解题. 如图 , ⊙O的半径为r , 弦心距为 d , 弦长 a 之间d 2a 2的关系为 r 2 . 依照此公式 , 在 a 、r、d 三个量中 , 知道任何两个量即可2以求出第三个量 . 平时在解题过程中要善于发现并运用这个基本图形 .【例】(安徽芜湖)如图,已知点 E 是圆 O上的点,2B、C分别是劣弧 AD 的三均分点,BOC 46o,则 AED 的度数为.【解析】由B、C 分别是劣弧AD 的三均分点知,圆心角∠∠∠AOB= BOC= COD,又 BOC 46o,因此∠AOD=138o.依照同弧所对的圆周角等于圆心角的一半。
初三数学知识点总结归纳(4篇)
![初三数学知识点总结归纳(4篇)](https://img.taocdn.com/s3/m/c376a370bf1e650e52ea551810a6f524ccbfcbf4.png)
初三数学知识点总结归纳初三数学复习五大方法初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
初三数学知识点总结归纳(二)1.数的分类及概念数系表:说明:分类的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x0)性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aC.04.相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(三要素)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
圆相交线与平行线解析
![圆相交线与平行线解析](https://img.taocdn.com/s3/m/81132cf9866fb84ae55c8d50.png)
。
4、(2014·陕西)如图,⊙O的半径为4,B是⊙O外一点,连接OB,且 OB=6,过点B作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A 作切线BD的垂线,垂足为C.
(1)求证:AD平分∠BAC; (2)求AC的长.
圆是初中几何中相当重要的一节,对于本节课的 复习,我觉得提炼方法,形成知识体系是至观重要的:
(1)理解对顶角、余角、补角等概念,探索并掌握对顶角相等、同角(等 角)的余角相等,同角(等角)的补角相等的性质。
(2)理解垂线、垂线段等概念,能用三角尺或量角器过一点画已知直线的 垂线。
(3)理解点到直线的距离的意义,能度量点到直线的距离。 (4)掌握基本事实:过一点有且只有一条直线与这条直线垂直。 (5)识别同位角、内错角、同旁内角。 (6)理解平行线概念;掌握基本事实:两条直线被第三条直线所截,如果 同位角相等,那么两直线平行。
1、(2013• 德州)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径 画半圆,则图中阴影部分的面积为( )
A. 1 4
B. 1
1
C.
2
2
D.1 1 42
2、(2014·德州)如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是 ∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE. (1)求AC、AD的长; (2)试判断直线PC与⊙O的位置关系,并说明理由.
垂
特殊情况
直
垂直定义 垂线段最短
点到直线的距离
两条直线被第 三条直线所截
同位角、内错角、同旁内角
平行公理及其推理
平行线的判定 平行线的性质 两条平行线之间的距离
平移 平移的特征
(三)复习目标
中考数学考试常见知识点总结(优秀3篇)
![中考数学考试常见知识点总结(优秀3篇)](https://img.taocdn.com/s3/m/2d46f37b2a160b4e767f5acfa1c7aa00b52a9d01.png)
中考数学考试常见知识点总结(优秀3篇)为了帮助同学们复习2017中考数学,数学不论在什么层次的考试都是一个区分度很高的项目,中考也不例外。
的精心为您带来了3篇《中考数学考试常见知识点总结》,如果能帮助到您,将不胜荣幸。
初二数学知识点总结归纳篇一1圆是定点的距离等于定长的点的集合2圆的内部可以看作是圆心的距离小于半径的点的集合3圆的外部可以看作是圆心的距离大于半径的点的集合4同圆或等圆的半径相等5到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆6和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线7到已知角的两边距离相等的点的轨迹,是这个角的平分线8到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线9定理不在同一直线上的三点确定一个圆。
10垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧11推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧12推论2 圆的两条平行弦所夹的弧相等13圆是以圆心为对称中心的中心对称图形14定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等15推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等16定理一条弧所对的圆周角等于它所对的圆心角的一半中考数学考点整理篇二一、计算题:科学计数法、倒数相反数绝对值、简单概率运算、三视图求原图面积、三角形(相似、全等、内角外交关系)、统计(众数、中位数、平均数)、二次函数(顶点、对称轴、表达式)、函数图像关系二、填空题:因式分解、二次函数解析式求解、三角形(相似、周长面积计算)、坐标(坐标点运动规律)、直线和反比例函数图像问题三、问答题:次方、开方、三角函数、次幂(0次、-1次)计算;求解不等式组;分式、多项式化简(整体代入方法求值);方程组求解;几何图形中证明三角形边相等;一次函数与二次函数;四、图形题四边形边长、周长、面积求解;圆相关问题(切割线、圆周角、圆心角);统计图;在数轴中求三角形面积;五、解答题二次函数(解析式、直线方程);圆与直线关系;三角形角度相关计算;总体来说中考题,题目多,需要熟练掌握相关的知识点,快速做题。
中考热点:(一)圆中动点“PA+...
![中考热点:(一)圆中动点“PA+...](https://img.taocdn.com/s3/m/8a4c7290bdeb19e8b8f67c1cfad6195f312be8e1.png)
中考热点:圆中动点“PA+kPB”型最值问题一、问题导读在初中数学中,有一类几何动点“PA+kPB”型最值问题,学生普遍感到“害怕”。
普通方法求解可能就会失效!当k=1时,可以转化为“将军饮马”模型,我们可以利用对称变换来处理。
而如果k不等于1的话,我们必须利用转换思路,截取线段灵活转化线段值,转化为常见求解模式。
二、典例精析类型1 探究圆中“PA+kPB”型的最值问题例1.如图,在平面直角坐标系中,点A、B的坐标分别为(﹣2,0),(2,0),点M是AO中点,⊙A 的半径为2.(1)若△PAB是直角三角形,则点P的坐标为______.(直接写出结果)(2)若PM⊥AB,则BP与⊙A有怎样的位置关系?为什么?(3)若点E的坐标为(0,3),那么⊙A上是否存在一点P,使PE+1/2PB最小,如果存在,求出这个最小值,如果不存在,简要说明理由.【解析】(1)分两种情形:①∠PAB=90°,②∠APB=90°分别求解即可解决问题;答案为(﹣2,2)或(﹣2,﹣2)或(﹣1,√3)或(﹣1,﹣√3).(2)求出PA,PB的长,利用勾股定理的逆定理证明即可;(3)如图,连接EM.∵PA=4,AMAB=4,∴PA=AMAB,∴PA/AM=AB/PA,∵∠PAM=∠BAP,∴△PAM∽△BAP,∴PM/PB=PA/AB=1/2,∴PM=1/2PB,∴PE+1/2PB=PE+PM,∵PE+PM≥EM,∴PE+PM的最小值为线段EM的长,∵E(0,3),∴OE=3,∴由勾股定理可求得EM=√10,∴PE+1/2PB的最小值为√10.【点评】本题属于属于圆综合题,考查了勾股定理以及逆定理,相似三角形的判定和性质,三角形的三边关系等知识,解题的关键是学会利用分类讨论的思想思考问题,学会构造相似三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.例2.如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC 于点C,过点E作ED⊥AF,交AF的延长线于点D.(1)求证:DE是⊙O的切线;(2)若DE=3,CE=2,①求BC/AE的值;②若点G为AE上一点,求OG+1/2EG最小值.【解析】(1)根据切线的判定,连接过切点E的半径OE,利用等腰三角形和平行线性质即能证得OE⊥DE.(2)①观察DE所在的△ADE与CE所在的△BCE的关系,由等角的余角相等易证△ADE∽△BEC,即得BC/AE 的值.②先利用BC/AE的值和相似求出圆的直径,发现∠BAC=30°;利用30°所对直角边等于斜边一半,给EG构造以EG为斜边且有30°的直角三角形,把1/2EG转化到EP,再从P出发构造PQ=OG,最终得到三点成一直线时线段和最短的模型.解:①连接BE∵AB是⊙O直径∴∠AEB=90°∴∠BED=∠D=90°,∠BAE+∠ABE=90°∵BC是⊙O的切线,∴∠ABC=∠ABE+∠CBE=90°,∴∠BAE=∠CBE∵∠DAE=∠BAE,∴∠DAE=∠CBE,∴△ADE∽△BEC, ∴AE/BC=DE/CE,∵DE=3,CE=2,∴BC/AE=2/3②过点E作EH⊥AB于H,过点G作GP∥AB交EH于P,过点P作PQ∥OG交AB于Q,∴EP⊥PG,四边形OGPQ 是平行四边形,∴∠EPG=90°,PQ=OG∵BC/AE=2/3,∴设BC=2x,AE=3x,∴AC=AE+CE=3x+2∵∠BEC=∠ABC=90°,∠C=∠C,∴△BEC∽△ABC,∴BC/AC=CE/BC,∴BC =ACCE 即(2x)=2(3x+2),解得:x =2,x =﹣1/2(舍去)∴BC=4,AE=6,AC=8,∴sin∠BAC=BC/AC=1/2,∴∠BAC=30°∴∠EGP=∠BAC=30°,∴PE=1/2EG,∴OG+1/2EG=PQ+PE∴当E、P、Q在同一直线上(即H、Q重合)时,PQ+PE=EH最短∵EH=1/2AE=3,∴OG+1/2EG的最小值为3【点评】本题考查了等腰三角形和平行线性质,切线的判定和性质,相似的判定和性质,最短路径问题.第(1)题为常规题型较简单;第(2)①题关键是发现DE、CE所在三角形的相似关系;②是求出所有线段长后发现30°角,利用30°构造1/2EG,考查了转化思想.类型2 由已知含有PA+kPB型最值条件,探究圆的综合问题例3.如图,在△ACE中,CA=CE,∠CAE=30°,⊙O经过点C,且⊙O的直径AB在线段AE上.(1)试说明CE是⊙O的切线;(2)若△ACE中AE边上的高为h,试用含h的代数式表示⊙O的直径AB;(3)设点D是线段AC上任意一点(不含端点),连接OD,当1/2CD+OD的最小值为4√3时,求⊙O的直径AB的长.【解析】(1)连接OC,要证CE是⊙O的切线,只需证∠OCE=90°即可(2)过点C作CH⊥AB于H,连接OC,在Rt△OHC中运用三角函数即可求AB=4√3h/3AB;(3)作OF平分∠AOC,交⊙O于F,连接AF、CF、DF,先证明四边形AOCF是菱形,根据对称性可得DF =DO,过点D作DH⊥OC于H,DH=1/2DC,1/2DC+OD=DH+FD,根据两点之间线段最短可得:当F、D、H三点共线时,DH+FD最小,然后在Rt△OHF中运用三角函数求得AB的长.解:作OF平分∠AOC,交⊙O于F,连接AF、CF、DF则∠AOF=∠COF=1/2∠AOC=1/2(180°﹣60°)=60°.∵OA=OF=OC,∴△AOF、△COF是等边三角形,∴AF=AO=OC=FC,∴四边形AOCF是菱形,∴根据对称性可得DF=DO.过点D作DM⊥OC于M,∵OA=OC,∴∠OCA=∠OAC=30°,∴DM=DCsin∠DCM=DCsin30°=1/2DC,∴1/2CD+OD=DM+FD.根据两点之间线段最短可得:当F、D、M三点共线时,DM+FD(即1/2 CD+OD)最小,此时FM=OFsin∠FOM=√3/2OF=4√3,则OF=8,AB=2OF=16.∴当 CD+OD的最小值为4√3时,⊙O的直径AB的长为16.三、总结提升“PA+kPB”型最值问题问题核心解题思想就是“折转直”,通过截取构造等值线段,利用相似三角形、解直角三角形等,将问题利用这类问题常用定理:①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点间线段最短;③垂线段最短,从而求解问题。
重难点01讲 圆幂定理(2种题型)(原卷版)-【暑假自学课】2024年新九年级数学暑假精品课(苏科版
![重难点01讲 圆幂定理(2种题型)(原卷版)-【暑假自学课】2024年新九年级数学暑假精品课(苏科版](https://img.taocdn.com/s3/m/20bedb3049d7c1c708a1284ac850ad02df800761.png)
重难点01讲圆幂定理(2种题型)1.识别几何模型。
2.利用“圆幂定理”模型解决问题一、相交弦定理二、切割线定理题型一:相交弦定理一.选择题(共5小题)1.如图:若弦BC经过圆O的半径OA的中点P,且PB=3,PC=4,则圆O的直径为()A.7B.8C.9D.102.如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB的长是()A.2cm B.3cm C.4cm D.4cm3.如图,⊙O中,弦AB和CD相交于P,CP=2.5,PD=6,AB=8,那么以AP、PB的长为两根的一元二次方程是()A.x2﹣8x﹣15=0B.x2﹣8x+15=0C.x2+8x﹣15=0D.x2+8x+15=04.如图,已知⊙O的弦AB、CD相交于点P,P A=4cm,PB=3cm,PC=6cm,EA切⊙O于点A,AE与CD的延长线交于点E,若AE=cm,则PE的长为()A.4cm B.3cm C.5cm D.cm5.如图点P为弦AB上一点,连接OP,过P作PC⊥OP,PC交⊙O于点C,若AP=4,PB=2,则PC的长为()A.B.2C.D.3二.填空题(共8小题)6.已知如图,等腰△ABC内接于⊙O,∠B=∠ACB=30°,弦AD交BC于E,AE=2,ED=4,则⊙O的半径为.7.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径AB是mm.8.如图,四边形ABCD是⊙O的内接矩形,AB=2,BC=4,E是BC的中点,AE的延长线交⊙O于点F,则EF的长是.9.如图,⊙O过M点,⊙M交⊙O于A,延长⊙O的直径AB交⊙M于C,若AB=8,BC=1,则AM=.10.善于归纳和总结的小明发现,“数形结合”是初中数学的基本思想方法,被广泛地应用在数学学习和解决问题中.用数量关系描述图形性质和用图形描述数量关系,往往会有新的发现.小明在研究垂直于直径的弦的性质过程中(如图,直径AB⊥弦CD于E),设AE=x,BE=y,他用含x,y的式子表示图中的弦CD的长度,通过比较运动的弦CD和与之垂直的直径AB的大小关系,发现了一个关于正数x,y的不等式,你也能发现这个不等式吗?写出你发现的不等式.11.如图,AB是⊙O的直径,弦CD⊥AB,垂足是G,F是CG的中点,延长AF交⊙O于E,CF=2,AF=3,则EF的长是.12.已知:如图,PT切⊙O于点T,P A交⊙O于A,B两点且与直径CT交于点D,CD=2,AD=3,BD =6,则PB=.13.如图,正方形ABCD内接于⊙O,E为DC的中点,直线BE交⊙O于点F,如果⊙O的半径为,则O点到BE的距离OM=.三.解答题(共2小题)14.如图,⊙O中,直径CD⊥弦AB于E点,若CD=10,DE=2,求AB的长.15.如图,⊙O的直径AB=10,弦DE⊥AB于点H,AH=2.(1)求DE的长;(2)延长ED到P,过P作⊙O的切线,切点为C,若PC=2,求PD的长.题型二、切割线定理一.选择题(共5小题)1.已知:如图⊙O的割线P AB交⊙O于点A,B,P A=7cm,AB=5cm,PO=10cm,则⊙O的半径是()A.4cm B.5cm C.6cm D.7cm2.如图:P AB、PCD为⊙O的两条割线,若P A•PB=30,PC=3,则CD的长为()A.10B.7C.D.33.如图,已知P A是⊙O的切线,A为切点,PC与⊙O相交于B、C两点,PB=2cm,BC=8cm,则P A的长等于()A.4cm B.16cm C.20cm D.2cm4.如图,在Rt△ABC中,AC=5,BC=12,⊙O分别与边AB,AC相切,切点分别为E,C,则⊙O的半径是()A.B.C.D.5.如图,P A是⊙O的切线,A为切点,PBC是过点O的割线.若P A=8cm,PB=4cm,则⊙O的直径为()A.6cm B.8cm C.12cm D.16cm二.填空题(共3小题)6.如图,P A切⊙O于点A,PBC是⊙O的割线,若PB=BC=2,则P A=.7.如图,已知Rt△ABC的两条直角边AC,BC的长分别为3,4,以AC为直径作圆与斜边AB交于点D,则AD=.8.如图,已知Rt△ABC中,∠C=90°,AC=,BC=1,若以C为圆心,CB为半径的圆交AB于点P,则AP=.三.解答题(共4小题)9.如图,AB是⊙O的直径,点C是BA延长线上一点,CD切⊙O于D点,弦DE∥CB,Q是AB上一动点,CA=1,CD是⊙O半径的倍.(1)求⊙O的半径R;(2)当Q从A向B运动的过程中,图中阴影部分的面积是否发生变化?若发生变化,请你说明理由;若不发生变化,请你求出阴影部分的面积.10.如图,⊙O的直径AB=10,弦DE⊥AB于点H,AH=2.(1)求DE的长;(2)延长ED到P,过P作⊙O的切线,切点为C,若PC=2,求PD的长.11.如图,在△ABC中,∠BAC=90度.BM平分∠ABC交AC于M,以A为圆心,AM为半径作⊙A交BM于N,AN的延长线交BC于D,直线AB交⊙A于P,K两点,作MT⊥BC于T.(1)求证:AK=MT;(2)求证:AD⊥BC;(3)当AK=BD时,求证:.12.如图,AB是⊙O的直径,CB、CE分别切⊙O于点B、D,CE与BA的延长线交于点E,连接OC、OD.(1)△OBC与△ODC是否全等?(填“是”或“否”);(2)已知DE=a,AE=b,BC=c,请你思考后,选用以上适当的数,设计出计算⊙O半径r的一种方案:①你选用的已知数是;②写出求解过程.(结果用字母表示)一.选择题(共2小题)1.(2022秋•武汉期中)如图,已知AB是⊙O的一条弦,直径CD与弦AB交于点E,且BE=3AE,已知DE=8,CE=2,则点O到AB的距离为()A.B.C.2D.2.(2021•涟源市三模)如图,⊙O上经过点A的切线交直径CB的延长线于点P,且∠C=30°,⊙O的半径为2,则下列结论错误的是()A.的长为B.△ABP为等腰三角形C.B为OP中点D.∠P=30°二.解答题(共2小题)3.(2020•青秀区校级三模)如图,以△ABC的一边BC为直径的⊙O,交AB于点D,连接CD,OD,已知∠A+∠1=90°.(1)求证:AC是⊙O的切线;(2)若∠B=30°,AD=2,求⊙O的半径.4.(2023•郸城县一模)请阅读以下材料,完成相应任务.我们知道,过任意一个三角形的三个顶点能作一个圆,那么过任意一个四边形的四个顶点能作一个圆吗?李雷经过实践探究发现了如下结论:如果线段同侧两点(与线段在同一平面内)分别与线段两端点的连线所组成的夹角相等,那么这两点和线段两端点四点共圆.下面是李雷证明上述命题的过程(不完整).已知:如图1,点C,D是线段AB同侧两点,且∠ACB=∠ADB.求证:点A,B,C,D四点共圆.证明:作△ABC的外接圆⊙O,假设点D在⊙O外或在⊙O内.如图2,若点D在⊙O外.设AD与⊙O交于点E,连接BE,则∠ACB=∠AEB(依据一),又∵∠AEB=∠ADB+∠DBE(依据二),∴∠ACB=∠ADB+∠DBE.∴∠ACB>∠ADB.这与已知条件“∠ACB=∠ADB”矛盾,故点D在⊙O外不成立;如图3,若点D在⊙O内,……(请同学们补充完整省略的部分证明过程)综上所述,作△ABC的外接圆⊙O,点D在⊙O上,即点A,B,C,D四点共圆.(1)填空:将材料中依据一、依据二补充完整;依据一:同弧所对的圆周角相等;依据二:三角形的外角等于与它不相邻的两个内角的和.(2)请按照上面的证明思路,写出该证明的剩余部分;(3)填空:如图4,在四边形ABCD中,∠ABD=∠ACD,对角线AC,BD交于点E,E为AC中点,若BD=6,BE=4,则AC=4.。
圆的各种常考题型总结80题
![圆的各种常考题型总结80题](https://img.taocdn.com/s3/m/882cc9fab84ae45c3b358cd5.png)
《各章节核心资料“圆”80道常考题》【韩春成内部学员资料(30)】知识构架一、概念二、垂径定理三、弧、弦、圆心角的关系四、圆周角1.圆周角2.圆周角与圆心角3.圆周角与直径五、点与圆的位置关系六、过三点的圆七、三角形的外接圆、外心4.三角形外接圆半径5.与外接圆有关的计算与证明八、线与圆的位置关系1.直线与圆的位置关系2.切线的性质3.切线的判定:1.半径+垂直 2.垂直+半径4.切线长定理及三角形内切圆5.切线长定理(三角形内切圆)五、圆与圆的位置关系两圆的公切线、公共弦六、函数与圆典题精炼概念1.【易】如果两条弦相等,那么()A.这两条弦所对的弧相等B.这两条弦所对的圆心角相等C.这两条弦的弦心距相等D.以上答案都不对2.【易】(孝感市高中阶段学校招生考试数学)下列说法正确的是()A.平分弦的直径垂直于弦B.半圆(或直径)所对的圆周角是直角C.相等的圆心角所对的弧相等D.若两个圆有公共点,则这两个圆相交3.【易】(河南省实验中学2011年内部中考数学第一轮复习资料4)下列命题中,正确的是()①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③90的圆周角所对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤同弧所对的圆周角相等A.①②③B.③④⑤C.①②⑤D.②④⑤4. 【易】(安徽省初中毕业学业考试数学)如图,点P 是等边三角形ABC 外接圆O 上的点,在以下判断中,不正确的是( ) A .当弦PB 最长时,APC △是等腰三角形 B .当APC △是等腰三角形时,PO AC ⊥ C .当PO AC ⊥时,30ACP ∠=︒D .当30ACP ∠=︒,PBC △是直角三角形5. 【易】(北京景山学校第二学期八年级期末数学试卷)如图,如果AB 为O ⊙直径,弦CD AB ⊥,垂足为E ,那么下列结论中错误的是( )A .CE DE =B .BC BD =C .BAC BAD =∠∠D .AC AD >6. 【易】判断题:⑴ 直径是弦 ( ) ⑵ 弦是直径 ( ) ⑶ 半圆是弧 ( ) ⑷ 弧是半圆 ( )⑸ 长度相等的两条弧是等弧 ( )⑹ 等弧的长度相等 ( )⑺ 两个劣弧之和等于半圆 ( )⑻ 半径相等的两个圆是等圆 ( )⑼ 两个半圆是等弧 ( )⑽ 圆的半径是R ,则弦长的取值范围是大于0且不大于2R ( )7. 【易】(福建宁德中考)如图,AB 是O ⊙的直径,AC 是弦,若32ACO ∠=︒,则CO B ∠的度数等于__________.BOCBA垂径定理8. 【易】(湖南省株洲中考数学题)如图AB 是O ⊙的直径,42BAC ∠=︒,点D 是弦AC 的中点,则DOC ∠的度数是________度.9. 【易】(福建厦门中考)如图,O 的直径CD 垂直于弦AB ,垂足为E .若6A B c m =,则AE =_______cm .10. 【易】(房山区一模)如图,AB 为O 的直径,弦CD AB ⊥,垂足为点E ,联结OC ,若5OC =,2AE =,则CD 等于( )A .3B .4C .6D .811. 【易】(北京55中九年级上月考)已知:如图,O 的直径CD AB E ⊥弦于,若16AB DE ==,求:O 的半径42°ODCBAODE CBAD12. 【易】(北京市第八十中学第一学期初三)已知,如图,在O ⊙中,弦16MN =,半径OA MN ⊥,垂足为点B ,4AB =,求O ⊙半径的长.13. 【易】(东城二模)如图,宽为2cm 的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm ),则该圆的半径为__________cm .14. 【易】(浙江省2013年初中毕业生学业考试绍兴市试卷)绍兴是著名的桥乡,如图,圆拱桥的拱顶到水面的距离CD 为8m ,桥拱半径OC 为5m ,则水面宽AB 为( )A.4mB.5mC.6mD.8m15. 【中】(内江市二○一三年高中阶段教育学校招生考试及初中毕业会考试卷)如图,半圆O 的直径10cm AB =,弦6c m AC =,AD 平分BAC ∠,则AD 的长为( )A.B.C.D .4cm16. 【中】(四川省宜宾市中考数学试卷)如图,AB 是O ⊙的直径,弦CD AB ⊥于点G ,点F 是CD 上一点,且满足13CF FD =,连接AF 并延长交O ⊙于点E ,连接AD DE 、,AOABDCA(第11题)若=2=3CF AF ,.给出下列结论:①ADF AED △∽△;②2FG =;③tan E =∠;④DEF S =△________.弧、弦、圆心角的关系17. 【易】(厦门市初中毕业及高中阶段各类学校招生考试)如图所示,在O 中,AB AC =,30A ∠=︒,则B ∠=( )A .150︒B .75︒C .60︒D .15︒18. 【易】(通州区初三年级模拟考试)如图,AB 是O 的弦,OD AB ⊥于点D ,C 是AB 优弧上任意一点,则图中所有相等的线段有_____________;所有相等的角有_____________.19. 【易】(河南省实验中学内部中考数学第一轮复习资料4)如图:AC CB =,D E ,分别是半径OA 和OB 的中点,CD 与CE 的大小有什么关系?为什么?OD CBA圆周角20. 【易】(山东日照初中学业考试)如图,在ABC △中,以BC 为直径的圆分别交边AC 、AB 于D 、E 两点,连接BD 、DE .若BD 平分ABC ∠,则下列结论不一定成立的是( ) A .BD AC ⊥ B .22AC AB AE =⋅ C .ADE △是等腰三角形 D .2BC AD =21. 【易】(九年级第三次质量预测试题)如图,正三角形ABC 内接于O ,动点P 在圆周的劣弧AB 上,且不与A B 、重合,则BPC ∠等于( )A .B .C .D .22. 【易】(通州二模)如图,已知O 的两条弦AC BD ,相交于点E ,60A ∠=︒,则sin BDC∠的值为( )A .12B3C2D2OCBAED30 60 90 4523. 【易】 (台湾第一次中考数学科试题如图)(七),圆上有A B C D 、、、四点,其中80BAD ∠=︒。
初中数学.与圆有关的位置关系.教师版
![初中数学.与圆有关的位置关系.教师版](https://img.taocdn.com/s3/m/3a66473e9ec3d5bbfc0a7459.png)
与圆有关的位置关系中考内容中考要求A B C圆的有关概念理解圆及其有关概念会过不在同一直线上的三点作圆;能利用圆的有关概念解决简单问题圆的性质知道圆的对称性,了解弧、弦、圆心角的关系能用弧、弦、圆心角的关系解决简单问题能运用圆的性质解决有关1可题圆周角了解圆周角与圆心角的关系;知道直径所对的圆周角是直角会求圆周角的度数,能用圆周角的知识解决与角有关的简单问题能综合运用几何知识解决与圆周角有关的问题垂径定理会在相应的图形中确定垂径定理的条件和结论能用垂径定理解决有关1可题点与圆的位置关系了解点与圆的位置关系直线与圆的位置关系了解直线与圆的位置关系;了解切线的概念,理解切线与过切点的半径之间的关系;会过圆上一点圆圆的切线;了解切线长的概念能判定直线和圆的位置关系;会根据切线长的知识解决简单的问题;能利用直线和圆的位置关系解决简单问题能解决与切线有关的问题圆与圆的位置关系了解圆与圆的位置关系能利用圆与圆的位置关系解决简单问题中考内容与要求,中考考点分析圆是北京中考的必考内容,主要考查圆的有关性质与圆的有关计算,每年的第20题都会考查,第1小题一般是切线的证明,第2小题运用圆与三角形相似、解直角三角形等知识求线段长度问题,有时也以阅读理解、条件开放、结论开放探索题作为新的题型。
要求同学们重点掌握圆的有关性质,掌握求线段、角的方法,理解概念之间的相互联系和知识之间的相互转化,理解直线和圆的三种位置关系,掌握切线的性质和判定方法,会根据条件解决圆中的动态问题。
与圆有关的位置关系点和圆的位置关系[直线利阅的位置关系点和国的位苫矢系的ft 质利判定 直技和剧的位宥关系的性质和判定确定留的条件~| @线的性质用判定TM 角形外接冏|园和圆的位置关系定义示例剖析点和圆的位置关系:点P 在圆外:点和圆的位置关系有:点在圆上、点在圆内、点在圆外三种,这三种关系由这个点到圆心的距 离与半径的大小关系决定.设。
O 的半径为r ,点P 到圆心O 的距离为 点P 在圆上:d ,则有:/VA点在圆外 d r ;点在圆上 d r ; 点在圆内 d r .点P 在圆内:确定圆的条件:1.圆的确定确、个圆有两个基本条件:①圆心(定点) ,确正圆的位置;②半径(正长),确正圆的大小.只 Qy C有当圆心和半径都确定时,圆才能确定.模块点和圆的位置关系知识导航 生【例1】1.已知△ ABC 中, ACB 90 , AC 2 , BC 3, AB 的中点为 M ,⑴ 以C 为圆心,2为半径作OC,则点A , B , M 与OC 的位置关系如何?⑵ 若以C 为圆心作。
(必修2)4.1.1圆的标准方程(2课时)
![(必修2)4.1.1圆的标准方程(2课时)](https://img.taocdn.com/s3/m/7ed6d01ca2161479171128f3.png)
• (1)当圆心在某条直线上时, • (一)可设出圆心坐标,将圆心用一个字母 表示. • (二)也可以考虑若圆心在另一条直线上, 则圆心为两直线的交点.
• (2)当圆经过不共线三点时, • (一)可由两边的中垂线求得圆心,进而求 出半径. • (二)也可设标准方程,将三点坐标代入,
解三元一次方程组求得a、b、r.
• (3)设圆心坐标为(a,b),圆的方程为 • (x-a)2+(y-b)2=5. • 已知圆过点(0,1),(2,1),代入圆的方程中 得, 2 2
a +(1-b) =5 2 2 (2 - a ) + (1 - b ) =5 a1=1 ∴ b1=-1
,
a2=1 ,或 b2=3
练习
1.(1)已知点A(1,1)在圆C:x2+y2-2ax+2ay+2a2=4的内 部,求实数a的取值范围.
(2)点(2a, 1 a)在圆x2 + y2 = 4的内部,求实数 a 的取值范围. 2.根据下列条件,求圆的方程:
(1)求以C(1,3)为圆心,且和直线3x-4y-7=0相切的 直线的方程。
4.1.1 圆的标准方程
y O
A
x
r
生活中的圆
复习引入
问题一:什么是圆?初中时我们是怎样给圆 下定义的? 平面内与定点距离等于定长的点的集合(轨迹)是 圆。 问题二:平面直角坐标系中,如何确定一个 圆? 圆心:确定圆的位置 半径:确定圆的大小
探究新知
问题三:圆心是C(a,b),半径是r的圆的方程是什么?
圆心C:两条直线的交点
半径CA:圆心到圆上一点
例3 己知圆心为C的圆经过点A(1,1)和B(2,-2),且 圆心在直线l:x-y+1=0上,求圆心为C的圆的标准方 程. 解:∵A(1,1),B(2,-2)
初中数学圆知识点总结
![初中数学圆知识点总结](https://img.taocdn.com/s3/m/42a9661ca22d7375a417866fb84ae45c3b35c2e2.png)
初中数学圆知识点总结初中数学圆知识点总结1.点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,则①点在圆上<===>d=r;②点在圆内<===>dd>r.二.圆的对称性:1.与圆相关的概念:④同心圆:圆心相同,半径不等的两个圆叫做同心圆。
⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。
⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
⑦圆心角:顶点在圆心的角叫做圆心角.⑧弦心距:从圆心到弦的距离叫做弦心距.2.圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。
3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。
上述五个条件中的任何两个条件都可推出其他三个结论。
4.定理:在同圆或等圆中,相等的圆心角所对弧相等、所对的弦相等、所对的弦心距相等。
推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.三.圆周角和圆心角的关系:1.圆周角的定义:顶点在圆上,并且两边都与圆相交的角,叫做圆周角.2.圆周角定理;一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对圆周角相等;反之,在同圆或等圆中,相等圆周角所对弧也相等;推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径;四.确定圆的条件:1.理解确定一个圆必须的具备两个条件:经过一点可以作无数个圆,经过两点也可以作无数个圆,其圆心在这个两点线段的垂直平分线上.2.定理:不在同一直线上的三个点确定一个圆.3.三角形的外接圆、三角形的外心、圆的内接三角形的概念:(1)三角形的外接圆和圆的内接三角形:经过一个三角形三个顶点的圆叫做这个三角形的外接圆,这个三角形叫做圆的内接三角形.(2)三角形的外心:三角形外接圆的圆心叫做这个三角形的外心.(3)三角形的外心的性质:三角形外心到三顶点的距离相等.初中数学圆知识点学习技巧一.1、弧长公式n°的圆心角所对的弧长l的计算公式为L=nπr/1802、扇形面积公式,其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长.S=﹙n/360﹚πR2=1/2×lR3、圆锥的侧面积,其中l是圆锥的母线长,r是圆锥的地面半径.S=1/2×l×2πr=πrl4.圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。
沪教版初中总复习专题训练中考总复习:圆的有关概念、性质与圆有关的位置关系--知识讲解(提高)
![沪教版初中总复习专题训练中考总复习:圆的有关概念、性质与圆有关的位置关系--知识讲解(提高)](https://img.taocdn.com/s3/m/ef00d47a69eae009581bec4f.png)
沪教版初中数学中考总复习知识点梳理重点题型(常考知识点)巩固练习中考总复习:圆的有关概念、性质与圆有关的位置关系—知识讲解(提高)【考纲要求】1. 圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明会有下降趋势,不会有太复杂的大题出现;2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念及性质1.圆的有关概念圆、圆心、半径、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧;三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角.要点诠释:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.2.圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性.3.圆的确定不在同一直线上的三个点确定一个圆.要点诠释:圆心确定圆的位置,半径确定圆的大小.4.垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:在图中(1)直径CD,(2)CD⊥AB,(3)AM=MB,(4),(5).若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB不能为直径.5.圆心角、弧、弦之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等.6.圆周角圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1 在同圆或等圆中,相等的圆周角所对的弧也相等.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.要点诠释:圆周角性质的前提是在同圆或等圆中.7.圆内接四边形(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).考点二、与圆有关的位置关系1.点和圆的位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外d>r;点P在圆上d=r;点P在圆内d<r.要点诠释:圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.2.直线和圆的位置关系(1)切线的判定切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.(会过圆上一点画圆的切线)(2)切线的性质切线的性质定理圆的切线垂直于过切点的半径.(3)切线长和切线长定理切线长经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点诠释:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.(4)三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.(5)三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即 (S为三角形的面积,P为三角形的周长,r为内切圆的半径).3.圆和圆的位置关系(1)基本概念两圆相离、相切、外离、外切、相交、内切、内含的定义.(2)请看下表:要点诠释:①相切包括内切和外切,相离包括外离和内含.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“R-r”时,要特别注意,R>r.考点三、与圆有关的规律探究1.和圆有关的最长线段和最短线段了解和圆有关的最长线段与最短线段,对有关圆的性质的了解极为重要,下面对有关问题进行简单论述.(1)圆中最长的弦是直径.如图①,AB是⊙O的直径,CD为非直径的弦,则AB>CD,即直径AB是最长的弦.过圆内一点最短的弦,是与过该点的直径垂直的弦,如图②,P是⊙O内任意一点,过点P作⊙O的直径AB,过P作弦CD⊥AB于P,则CD是过点P的最短的弦.(2)圆外一点与圆上一点的连线中,最长的线段与最短的线段都在过圆心的直线上.如图所示,P在⊙O外,连接PO交⊙O于A,延长PO交⊙O于B,则在点P与⊙O上各点连接的线段中,PB最长,PA最短.(3)圆内一点与圆上一点的连线中,最长的线段与最短的线段也都在过圆心的直线上.如图所示,P为⊙O内一点,直径过点P,交⊙O于A、B两点,则PB最长、PA最短.2.与三角形内心有关的角(1)如图所示,I是△ABC的内心,则∠BIC.(2)如图所示,E是△ABC的两外角平分线的交点,.(3)如图所示,E是△ABC内角与外角的平分线的交点,.(4)如图所示,⊙O是△ABC的内切圆,D、E、F分别为切点,则∠DOE=180°-∠A.(5)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,.(6)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,P为上一点,则.【典型例题】类型一、圆的性质及垂径定理的应用1.已知:如图所示,⊙O中,半径OA=4,弦BC经过半径OA的中点P,∠OPC=60°,求弦BC的长.【思路点拨】要用好60°角,构造直角三角形.在圆中常用的是作出弦的弦心距,由弦心距,半弦长及半径构成直角三角形.【答案与解析】解:过O作OM⊥BC于M,连接OC.在Rt△OPM中,∠OPC=60°,OP,∴PM=1,OM=.在Rt△OMC中,BC=2MC=.【总结升华】圆的半径、弦长的一半、弦心距三条线段组成一个直角三角形,其中一个锐角为弦所对圆心角的一半,可充分利用它们的关系解决有关垂径定理的计算问题.2.如图所示,在⊙O中,弦AB与CD相交于点M,,连接AC.(1)求证:△MAC是等腰三角形;(2)若AC为⊙O直径,求证:AC2=2AM·AB.【思路点拨】(1)证明∠MCA=∠MAC;(2)证明△AOM∽△ABC.【答案与解析】证明:(1) ∵,∴∠MCA=∠MAC.∴△MAC是等腰三角形.(2)连接OM.∵AC为⊙O直径,∴∠ABC=90°.∵△MAC是等腰三角形,OA=OC,∴MO⊥AC.∴∠AOM=∠ABC=90°.∵∠MAO=∠CAB,∴△AOM∽△ABC,∴,∴AO·AC=AM·AB,∴AC2=2AM·AB.【总结升华】本题考查的是圆周角定理,涉及到全等三角形的判定与性质、相似三角形的判定与性质、等腰三角形的判定与性质及三角形内角和定理,涉及面较广,难度适中.举一反三:【变式】如图所示,在⊙O中,AB=2CD,则( )A. B.C. D.与的大小关系无法确定【答案】解:要比较与的大小有两种思路.(1)把的一半作出来,比较与的大小;(2)把作出来,比较与的大小.如图所示,作OE⊥AB,垂足为E,交于F.则,且.∵AB=2CD.∴AE=CD.在Rt△AFE中,AF>AE=CD.∴AF>CD.∴,即.答案A.【高清课堂:圆的有关概念、性质及与圆有关的位置关系 ID:412074 经典例题2】3.已知:如图所示,△ABC内接于⊙O,BD⊥半径AO于D.(1)求证:∠C=∠ABD;(2)若BD=4.8,sinC=,求⊙O的半径.【思路点拨】过O作OE⊥AB于E,连接BO,再由垂径定理及三角函数进行证明与求解.【答案与解析】解法一:(1)过O作OE⊥AB于E,连接BO(如图所示),则.又∵ BD⊥AO,∴∠ABD+∠BAD=90°.∵∠AOE+∠BAD=90°,∴∠ABD=∠AOE=∠C.(2)在Rt△ABD中,,∴.设AD=4k,则AB=5k,BD=3k=4.8,k=1.6.∴AB=8,AE=4.∵,∴.∴OA=5.解法二:(1)延长AO交⊙O于C′.(如图所示)∴∠C′=∠C.∵AC′为⊙O的直径,∴∠ABC′=90°.∴∠C′+∠BAD=90°.∵∠BAD+∠ABD=90°,∴∠ABD=∠C′=∠C.(2)在Rt△BDC′中,,∴.在Rt△ABC′中,∵,∴设AB=4k,则AC′=5k,BC′=3k=6.∴k=2.∴.【总结升华】解决圆周角的问题中常用的方法有两种:一是把圆周角转化为同弧所对圆心角的一半的角;二是将圆周角的顶点移动到使其一边经过圆心.类型二、圆的切线判定与性质的应用4.(2014秋•兴化市月考)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;(3)若AC=8,BC=6,求线段BE的长.【思路点拨】(1)根据切线的性质可得结论;(2)连接OE,根据圆周角定理得∠ACB=90°,进而可推导得出△PCF是等腰三角形;(3)先在Rt△ACB中,根据勾股定理计算出AB=10,最终算得BE的值.【答案与解析】(1)证明:∵PD为⊙O的切线,∴OC⊥DP,∵AD⊥DP,∴OC∥AD,∴∠DAC=∠OCA,∵O A=OC,∴∠OAC=∠OCA,∴∠OAC=∠DAC,∴AC平分∠DAB;(2)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵CE平分∠ACB,∴∠BCE=45°,∴∠BOE=2∠BCE=90°,∴∠OFE+∠OEF=90°,而∠OFE=∠CFP,∴∠CFP+∠OEF=90°,∵OC⊥PD,∴∠OCP=90°,即∠OCF+∠PCF=90°,而∠OCF=∠OEF,∴∠PCF=∠CFP,∴△PCF是等腰三角形;(3)解:在Rt△ACB中,∵AC=8,BC=6,∴AB==10,∴OB=5,∵∠BOE=90°,∴△BOE为等腰直角三角形,∴BE=OB=5.【总结升华】本题考查了切线的性质,圆周角定理和等腰三角形的判定.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.举一反三:【变式】(2015•毕节市)如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.【答案】(1)证明:连结OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠D+∠DFO=90°,∵AC=FC,∴∠CAF=∠CFA,∵∠CFA=∠DFO,∴∠CAF=∠DFO,而OA=OD,∴∠OAD=∠ODF,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)解:∵圆的半径R=5,EF=3,∴OF=2,在Rt△ODF中,∵OD=5,OF=2,∴DF==.类型三、切线的性质与等腰三角形、勾股定理综合运用5.如图所示,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD是⊙O的切线,ED⊥AB于F.(1)判断△DCE的形状;(2)设⊙O的半径为1,且,求证△DCE≌△OCB.【思路点拨】(1)由于AB是直径,那么∠ACB=90°,而∠ABC=30°,易求∠BAC=60°,结合OA=OC,易证△AOC 是正三角形,于是∠OCD=60°,结合CD是切线,易求∠DCE=30°,在Rt△AEF中,易求∠E=30°,于是∠DCE=∠E,可证△CDE为等腰三角形;(2)在Rt△ABC中,由于∠A=60°,AB=2,易求AC=AO=1,利用勾股定理可求BC=,CE=AE-AC=,那么BC=CE,而∠OBC=∠OCB=∠DCE=∠DEC=30°,从而可证△OBC≌△DCE.【答案与解析】解:(1)∵∠ABC=30°,∴∠BAC=60°.又∵OA=OC,∴△AOC是正三角形.∵CD是切线,∴∠OCD=90°.∴∠DCE=180°-60°=90°-30°.∴∠DCE=∠DEC而ED⊥AB于F,∴∠CED=90°-∠BAC=30°.故△CDE为等腰三角形.(2)证明:在△ABC中,∵AB=2,AC=AO=1,∴BC=.,∴.又∵∠AEF=30°,∴AE=2AF=.∴CE=AE-AC==BC.而∠OCB=∠ACB-∠ACO=30°=∠ABC,故△CDE≌△COB.【总结升华】本题考查了切线的性质、等边三角形的判定和性质、等腰三角形的判定、勾股定理、全等三角形的判定和性质.解题的关键是证明△AOC是正三角形.举一反三:【变式】如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q,则AB=________.【答案】解:连接PQ并延长交AB于E,设大圆的圆心为O,连接OA.设AB=2x,则AE=x,OB=2x-2.在Rt△OAE中,OA=5,∵OA2=OE2+AE2,即52=(2x-2)2+x2,∴x=3.∴AB=6.答案:66.如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,PC切⊙O于点C,连接AC.PM平分∠APC 交AC于M.(1)若∠CPA=30°,求CP的长及∠CMP的度数;(2)若点P在AB的延长线上运动,你认为∠CMP的大小是否发生变化?若变化,说明理由;若不变化,请求出∠CMP的度数;(3)若点P在直径BA的延长线上,PC切⊙O于点C,那么∠CMP的大小是否变化?请直接写出你的结论.【思路点拨】(1)作辅助线,连接OC,根据切线的性质知:OC⊥PC,由∠CPO的值和OC的长,可将PC的长求出;(2)通过角之间的转化,可知:∠CMP=(∠COP+∠CPO),故∠CMP的值不发生变化.【答案与解析】解:(1)连接OC,则∠OCP=90°.∵ OA=OC,∴∠COP=2∠CAP=60°.∴ CP=OC·tan60°=AB·tan60°=,∴ CP=.∵ PM平分∠CPA,∴.∴∠CMP=30°+15°=45°.(2)设∠CPA=α,∵ PM平分∠CPA,∴∠MPA=∠CPA.∵∠OCP=90°,∴∠COP=90°-α.又∵ OA=OC,∴∠CAP=.∴∠CMP=∠CAP+∠MPA.(3)∠CMP的大小没有变化∵∠CMP=∠A+∠MPA=∠COP+∠CPO=(∠COP+∠CPO)=×90°=45°.【总结升华】解第(2)小题时,引用“设∠CPA=α”这一方法,用代数方法计算得出结论,降低了解题的难度.本题主要考查切线的性质及对直角三角形性质的运用.举一反三:【变式】如图所示,AB是⊙O的直径,C是的中点,CD⊥AB于D,CD与AE相交于F.(1)求证:AC2=AF·AE;(2)求证:AF=CF.【答案】证明:(1)如图所示,连接CE,延长CD交⊙O于G,连接AG.∵AB是⊙O直径,CD⊥AB,∴.∴∠2=∠3.又∵∠1=∠1,∴△AFC∽△ACE.∴.∴ AC2=AF·AE.(2)由(1)得.又∵C是的中点,∴.∴∠2=∠1.∴AF=CF.。
圆的周长教学总结(汇编17篇)
![圆的周长教学总结(汇编17篇)](https://img.taocdn.com/s3/m/ad376d570a1c59eef8c75fbfc77da26925c5961e.png)
圆的周长教学总结(汇编17篇)圆的周长教学总结第1篇“圆的周长”是以长方形、正方形周长知识为认知基础的,是前面学习“圆的认识”的深化,是后面学习“圆的面积”等知识的基础,所以它起着承前启后的作用,是小学几何初步知识教学中的一项重要资料。
数学课程标准明确指出:“现代信息技术的发展对数学教育的价值、目标、资料以及学与教的方式产生了重大的影响。
数学课程的设计与实施应重视运用现代信息技术,异常要充分研究计算器、计算机对数学学习资料和方式的影响,大力开发并向学生供给更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。
”本节课探究的课题是“圆的周长”,学生学习圆的周长并非单纯的依靠模仿和记忆,经过运用多媒体教学手段,加深了学生对圆的周长计算方法的探索过程。
这节课的重点是理解圆的周长的意义及计算公式的推导过程,难点是理解掌握圆的周长公式及圆周率。
首先经过多媒体展示生活中自行车问题让学生猜想圆的周长可能与圆的什么有关?是直径的多少倍?激起了学生主动探究的欲望,然后利用多媒体自定义动画形式展示“绕”、“滚”等测量圆周长的方法,学生经过观察思考,很容易掌握这些方法,为后面的动手操作打下了良好的基础。
之后,学生利用准备的学具,以小组合作的形式来进一步证明自我的猜想是否具有合理性、科学性。
并对有困难的学生进行辅导帮忙,学生把自我研究的成果进行交流,发现了规律:圆的周长总是直径的3倍多一些,从而引出圆周率,学生有了这一发现,建立了新的认知结构,从而使学生体验到了新知的价值。
同时,以多媒体展示我国古代数学家在圆周率研究上的成果,培养了学生的爱国主义情操。
课堂上,生动趣味的探索资料,丰富多彩的多媒体课件,开放宽松的课堂环境,恰到好处的鼓舞激励,各抒己见的思想交锋,标准严密的知识表达,课堂生活的亲生经历,培养了学生观察、推理、分析、综合、抽象、概括的本事和解决简单的实际问题的本事,同时培养了学生的动手操作本事、创新精神以及团结合作精神。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中圆题型总结O的半径为12,求AB2+CD2的值。
【2】(第25题)如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.二、直线与圆的位置关系基础知识链接:1、直线与圆的位置关系有三种:⑴如果一条直线与一个圆没有公共点,那么就说这条直线与这个圆相离.⑵如果一条直线与一个圆只有一个公共点,那么就说这条直线与这个圆相切,此时这条直线叫做圆的切线,这个公共点叫做切点.⑶如果一条直线与一个圆有两个公共点,那么就说这条直线与这个圆相交,此时这条直线叫做圆的割线,这两个公共点叫做交点. 2、直线与圆的位置关系的判定;3、弦切角定理 弦切角等于它所夹的弧对的圆周角; 4. 和圆有关的比例线段(1)相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等; (2)推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项;(3)切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项;(4)推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
5. 三角形的内切圆(1)有关概念:三角形的内切圆、三角形的内心、圆的外切三角形、多边形的内切圆、圆的外切多边形; 6、圆的切线的性质与判定。
【例1】(甘肃兰州)如图,四边形ABCD 内接于⊙O ,BD 是⊙O 的直径,AE CD ⊥,垂足为E ,DA 平分BDE ∠. (1)求证:AE 是⊙O 的切线;(2)若301cm DBC DE ∠==,,求BD 的长.【解析】(1)证明:连接OA ,DA 平分BDE ∠,BDA EDA ∴∠=∠.OA OD ODA OAD =∴∠=∠,.OAD EDA ∴∠=∠.OA CE ∴∥.D ECB O AOEDCB AOFCBAAE DE ⊥,9090AED OAE DEA ∴∠=∠=∠=,.AE OA ∴⊥.AE ∴是⊙O 的切线.(2)BD 是直径,90BCD BAD ∴∠=∠=. 3060DBC BDC ∠=∠=,,120BDE ∴∠=.DA 平分BDE ∠,60BDA EDA ∴∠=∠=.30ABD EAD ∴∠=∠=.在Rt AED △中,90302AED EAD AD DE ∠=∠=∴=,,. 在Rt ABD △中,903024BAD ABD BD AD DE ∠=∠=∴==,,. DE 的长是1cm ,BD ∴的长是4cm .【点评】证明圆的切线,过切点的这条半径为必作辅助线.即经过半径的外端且垂直于这条半径的直线是圆的切线.【例2】(广东茂名)如图,⊙O 是△ABC 的外接圆,且AB =AC ,点D 在弧BC 上运动,过点D 作DE ∥BC ,DE 交AB 的延长线于点E ,连结AD 、BD . (1)求证:∠ADB =∠E ;(2)当点D 运动到什么位置时,DE 是⊙O (3)当AB =5,BC =6时,求⊙O 的半径.(4分) 【解析】(1)在△ABC 中,∵AB =AC , ∴∠ABC =∠C .∵DE ∥BC ,∴∠ABC =∠E , ∴∠E =∠C . 又∵∠ADB =∠C , ∴∠ADB =∠E .(2)当点D 是弧BC 的中点时,DE 是⊙O 的切线.理由是:当点D 是弧BC 的中点时,则有AD ⊥BC ,且AD 过圆心O . 又∵DE ∥BC ,∴ AD ⊥ED . ∴ DE 是⊙O 的切线.(3)连结BO 、AO ,并延长AO 交BC 于点F ,D ECB O A OEDC B A则AF ⊥BC ,且BF =21BC =3. 又∵AB =5,∴AF =4.设⊙O 的半径为r ,在Rt△OBF 中,OF =4-r ,OB =r ,BF =3, ∴ r 2=32+(4-r )2 解得r =825,∴⊙O 的半径是825. 【点评】 本题综合运用了等腰三角形的性质,圆的切线判定,解题最关键是抓住题中所给的已知条件,构造直角三角形,探索出不同的结论.【例4】 已知:如图7,点P 是半圆O 的直径BA 延长线上的点,PC 切半圆于C点,CD ⊥AB 于D 点,若PA :PC =1:2,DB =4,求tan ∠PCA 及PC 的长。
图7证明:连结CB∵PC 切半圆O 于C 点,∴∠PCA =∠B ∵∠P =∠P ,∴△PAC ∽△PCB ∴AC :BC =PA :PC∴ ∵AB 是半圆O 的直径,∴∠ACB =90° 又∵CD ⊥AB ∴∴AB =AD +DB =5 ∵∴【例5】 已知:如图8,在Rt △ABC 中,∠B =90°,∠A 的平分线交BC 于点D ,E 为AB 上的一点,DE =DC ,以D 为圆心,DB 长为半径作⊙D 。
求证:(1)AC 是⊙D 的切线; (2)AB +EB =AC分析:(1)欲证AC 与⊙D 相切,只要证圆心D 到AC 的距离等于⊙D 的半径BD 。
因此要作DF ⊥AC 于F(2)只要证AC=AF+FC=AB+EB,证明的关键是证BE=FC,这又转化为证△EBD≌△CFD。
证明:(1)如图8,过D作DF⊥AC,F为垂足∵AD是∠BAC的平分线,DB⊥AB,∴DB=DF∴点D到AC的距离等于圆D的半径∴AC是⊙D的切线(2)∵AB⊥BD,⊙D的半径等于BD,∴AB是⊙D的切线,∴AB=AF∵在Rt△BED和Rt△FCD中,ED=CD,BD=FD∴△BED≌△FCD,∴BE=FC∴AB+BE=AF+FC=AC小结:有关切线的判定,主要有两个类型,若要判定的直线与已知圆有公共点,可采用“连半径证垂直”的方法;若要判定的直线与已知圆的公共点没有给出,可采用“过圆心作垂线,证垂线段等于半径”的方法。
此例题属于后一类【例6】已知:如图9,AB为⊙O的弦,P为BA延长线上一点,PE与⊙O相切于点E,C为中点,连CE交AB于点F。
求证:分析:由已知可得PE2=PA·PB,因此要证PF2=PA·PB,只要证PE=PF。
即证∠PFE=∠PEF。
证明一:如图9,作直径CD,交AB于点G,连结ED,∴∠CED=90°∵点C为的中点,∴CD⊥AB,∴∠CFG=∠D∵PE为⊙O切线,E为切点∴∠PEF=∠D,∴∠PEF=∠CFG∵∠CFG=∠PFE,∴∠PFE=∠PEF,∴PE=PF∵PE2=PA·PB,∴PF2=PA·PB证明二:如图9-1,连结AC、AE图9-1∵点C是的中点,∴,∴∠CAB=∠AEC∵PE切⊙O于点E,∴∠PEA=∠C∵∠PFE=∠CAB+∠C,∠PEF=∠PEA+∠AEC∴∠PFE=∠PEF,∴PE=PF∵PE2=PA·PB,∴PF2=PA·PB【例7】(1)如图10,已知直线AB过圆心O,交⊙O于A、B,直线AF交⊙O 于F(不与B重合),直线l交⊙O于C、D,交BA延长线于E,且与AF垂直,垂足为G,连结AC、AD图10 图10-1 求证:①∠BAD=∠CAG;②AC·AD=AE·AF(2)在问题(1)中,当直线l向上平行移动,与⊙O相切时,其它条件不变。
①请你在图10-1中画出变化后的图形,并对照图10标记字母;②问题(1)中的两个结论是否成立?如果成立,请给出证明;如果不成立,请说明理由。
证明:(1)①连结BD∵AB是⊙O的直径,∴∠ADB=90°∴∠AGC=∠ADB=90°又∵ACDB是⊙O内接四边形∴∠ACG=∠B,∴∠BAD=∠CAG②连结CF∵∠BAD=∠CAG,∠EAG=∠FAB∴∠DAE=∠FAC又∵∠ADC=∠F,∴△ADE∽△AFC∴,∴AC·AD=AE·AF(2)①见图10-1②两个结论都成立,证明如下:①连结BC,∵AB是直径,∴∠ACB=90°∴∠ACB=∠AGC=90°∵GC切⊙O于C,∴∠GCA=∠ABC∴∠BAC=∠CAG(即∠BAD=∠CAG)②连结CF∵∠CAG=∠BAC,∠GCF=∠GAC,∴∠GCF=∠CAE,∠ACF=∠ACG-∠GFC,∠E=∠ACG-∠CAE∴∠ACF=∠E,∴△ACF∽△AEC,∴∴AC2=AE·AF(即AC·AD=AE·AF)说明:本题通过变化图形的位置,考查了学生动手画图的能力,并通过探究式的提问加强了对学生证明题的考查,这是当前热点的考题,希望引起大家的关注。
【强化练习】【1】(第22题)如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.【2】(第23题)如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线.(2)过点E作EH⊥AB于点H,求证:CD=HF.【3】(第25题)如图,在⊙O中,AB,CD是直径,BE是切线,B为切点,连接AD,BC,BD.(1)求证:△ABD≌△CDB;(2)若∠DBE=37°,求∠ADC的度数.【4】(第24题)如图,AB为⊙O的直径,PD 切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=2,求BD的长.【5】(第27题)如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.(1)求证:DE是半圆⊙O的切线.(2)若∠BAC=30°,DE=2,求AD的长.三、圆与圆的位置关系的考查基础知识链接:如果两个圆没有公共点,那么就说这两个圆相离,如图(1)、(2)、(3)所示.其中(1)又叫做外离,(2)、(3)又叫做内含.(3)中两圆的圆心相同,这两个圆还可以叫做同心圆.如果两个圆只有一个公共点,那么就说这两个圆相切,如图(4)、(5)所示.其中(4)又叫做外切,(5)又叫做内切.如果两个圆只有两个公共点,那么就说这两个圆相交,如图(6)所示.【例1】 (甘肃兰州).如图是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是( )A .内含B .相交C .相切D .外离【解析】 图中的两圆没有公共点,且一个圆上的所有点都在另一个圆的外部,故两圆外离,选D.【点评】圆与圆的位置关系有五种:外离、外切、相交、内切、内含.其关系可以用圆与圆公共点的个数及点与圆的位置关系来判定, 也可以用数量关系来表示圆与圆的位置关系:如果设两圆的半径为 1r 、2r ,两圆的圆心距为d,则圆与圆的位置关系与数量关系如下表【例2】(赤峰市)如图(1),两半径为r 的等圆⊙O 1和⊙O 2相交于M N ,两点,且⊙O 2过点1O .过M 点作直线AB 垂直于MN ,分别交⊙O 1和⊙O 2于A B ,两点,连结NA NB ,.(1)猜想点2O 与⊙O 1有什么位置关系,并给出证明; (2)猜想NAB △的形状,并给出证明;(3)如图(2),若过M 的点所在的直线AB 不垂直于MN ,且点A B ,在点M 的两侧,那么(2)中的结论是否成立,若成立请给出证明.O 2O 1N O 2O 1NB【解析】解:(1)2O 在1O 上 证明:∵⊙O 2过点1O ,12O O r ∴=. 又⊙O 1的半径也是r ,∴点2O 在⊙O 1上. (2)NAB △是等边三角形证明:MN AB ⊥,90NMB NMA ∴∠=∠=. BN ∴是⊙O 2的直径,AN 是⊙O 1的直径, 即2BN AN r ==,2O 在BN 上,1O 在AN 上. 连结12O O ,则12O O 是NAB △的中位线. 1222AB O O r ∴==.AB BN AN ∴==,则NAB △是等边三角形. (3)仍然成立.证明:由(2)得在⊙O 1中弧MN 所对的圆周角为60.在⊙O 2中弧MN 所对的圆周角为60.∴当点A B ,在点M 的两侧时, 在⊙O 1中弧MN 所对的圆周角60MAN ∠=,在⊙O 2中弧MN 所对的圆周角60MBN ∠=,NAB ∴△是等边三角形.注:(2),(3)是中学生猜想为等腰三角形证明正确给一半分.【点评】相交两圆的连心线垂直平分公共弦,又且⊙O 2过点1O ,构建对称性知,⊙O 1过O 2,再证△NAB 是等腰三角形;(2)1是的基础上发散探究,具有一定的开放性.四、圆与多边形的计算考查O 2O 1N BA 图O 2O 1 NB图基础知识链接:1、圆与正多边形的关系的计算;2、弧长、扇形面积、圆锥侧面积全面积的计算.【例1】(赣州)小芳随机地向如图所示的圆形簸箕内撒了几把豆子,则豆子落到圆内接正方形(阴影部分)区域的概率是【解析】设圆的半径为1,则圆的面积为π,易算得正方形的边长为2,正方形面积为2,则豆子落到圆内接正方形(阴影部分)区域的概率是2π. 【点评】本题考查的是几何概率,解题的关键是圆与圆内接正方形的面积,根据古典概型,可转化为面积之比.【例2】两同心圆,大圆半径为3,小圆半径为1,则阴影部分面积为 【解析】根据大、小圆的半径,可求得圆环的面积为8π,图中的阴影面积为圆环面积的一半4π.【点评】有关面积计算问题,不难发现,一些不规则的图形可转化为规则的图形计算,本题就较好的体现了转化方法和整体思想. 五、圆的综合性问题的考查基础知识链接:圆的有关知识与三角函数、一次函数、二次函数等综合应用。