人教版数学八年级下册16.2《二次根式的乘除》优秀教案
人教版数学八年级下册16.2《二次根式的乘除》教案
16.2 二次根式的乘除(2)教学内容: b ab a =反之ba b a =(a ≥0,b >0),利用它就可以进行二次 教学目标1.知识技能:(1).会进行简单的二次根式的除法运算.(2).使学生能利用商的算术平方根的性质进行二次根式的化简与运算.2. 数学思考:在学习了二次根式乘法的基础上进行总结对比,得出除法的运算法则.3. 解决问题:引导学生从特殊到一般总结归纳的方法以及类比的方法,解决数学问题.4. 情感态度:通过本节课的学习使学生认识到事物之间是相互联系的,相互作用的.教学重难点关键重点:会利用商的算术平方根的性质进行二次根式的化简,会进行简单的二次根式的除法运算.难点:二次根式的除法与商的算术平方根的关系及应用. 教学方法 1. 讨论分析法. 2. 类比法. 3. 逆向思维法. 4. 练习法. 教学过程 二、课前复习1.请同学们回忆ab b a =⋅ (a ≥0,b ≥0)是如何得到的?2.计算:()()0,04912.12>>⨯y x x xy ()322112.2⨯⨯()()()6416.3-⨯- ()()0,0,09.4432>>>c b a c b a三、探索新知1.(学生活动)请同学们完成下列各题:计算下列各式,观察计算结果,你发现什么规律?(1=________;(2;32____32(3)52___522.例题讲评()()18123232414÷,:计算例()61521123÷3.请你动手试一试计算下列各式:a38a3413÷)(xyaby x b a 205)2(32÷xyx 33218)3(3÷a b ab 363)4(÷例5:化简1003)1(2775)2( ()29253y x 4.最简二次根式:(1).被开方数不含分母;(2).被开方数不含能开得尽方的因数或因式.例:指出下列各式中的最简二次根式xb )1(32)2(ab3.0)3(ab 5.0)4(()525a 23)6(22)7(b a +x x x 96)8(23++5.相信自己,你能行!化简下列各式:)0x 94.12>(x nm 389.2755.3a b 24918.4xy a6.大显身手应用拓展=,且x为偶数,求(1+x 的值.分析:,只有a ≥0,b>0时才能成立.因此得到9-x ≥0且x-6>0,即6<x ≤9,又因为x 为偶数,所以x=8.解:由题意得9060x x -≥⎧⎨->⎩,即96x x ≤⎧⎨>⎩∴6<x ≤9 ∵x 为偶数 ∴x=8∴原式=(1+x )=(1+x )=(1+x )∴当x=8时,原式的值=6.四、归纳小结1.a ≥0,b>0a ≥0,b>0)及其运用.2.最简二次根式:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式. 五、布置作业 计算:(1)218; (2)102175÷; (3) a b a 2112532÷; (4) 31501000m m.。
16.2二次根式的乘除(1)-2022-2023学年人教版八年级数学下册说课稿(含详解)
16.2 二次根式的乘除(1)- 2022-2023学年人教版八年级数学下册说课稿(含详解)一、教材分析本节课是人教版八年级数学下册的第16单元,本单元共有4个知识点,分别是:1.二次根式的概念与性质。
2.二次根式的加减运算。
3.二次根式的乘法。
4.二次根式的除法。
本节课主要围绕第3个知识点展开,即二次根式的乘法。
学生在学习完二次根式的概念与性质以及二次根式的加减运算后,已经能够准确理解二次根式的含义,并能进行简单的加减运算。
通过本节课的学习,学生将进一步掌握二次根式的乘法运算规则,培养他们的数学思维能力和运算能力。
二、教学目标1.知识与能力:掌握二次根式的乘法运算规则,能够准确运用乘法的规则计算二次根式的值。
2.过程与方法:培养学生运用数学思维解决实际问题的能力,以及抽象思维和逻辑推理能力。
3.情感态度与价值观:培养学生对数学知识的兴趣和学习的主动性,培养他们坚持不懈,勤奋学习的品质。
三、教学重点1.二次根式的乘法运算规则及其应用。
2.培养学生的逻辑思维和运算能力。
四、教学内容和步骤1. 导入(5分钟)通过提问复习上节课学习的内容,引导学生复习二次根式的概念和加减运算规则。
2. 新课讲解(20分钟)步骤一:引导学生进行观察通过一个例子引导学生观察二次根式的乘法规律,并与之前学过的一次根式的乘法进行对比。
步骤二:提出乘法规则根据学生的观察结果,提出二次根式的乘法规则:对于任意实数a和b,以及非负实数m和n,有:√m * √n = √(m * n)步骤三:运用乘法规则解决问题通过简单的例子,引导学生运用乘法规则解决实际问题。
步骤四:拓展与延伸通过更复杂的例子,延伸讨论二次根式的乘法规则的应用。
3. 讲解与练习(15分钟)步骤一:讲解与演示讲解更复杂的乘法运算,如√3 * √5 * √2。
步骤二:练习与巩固提供一些练习题,让学生分组完成练习,并进行讲解和讨论。
4. 小结(5分钟)通过对本节课内容的回顾总结,帮助学生理解和记忆所学知识点。
人教版数学八年级下册16.2二次根式的乘除第一课时优秀教学案例
2.要求学生认真完成作业,并及时给予反馈,了解学生对知识点的掌握情况。如:“请同学们认真完成作业,明天我们将进行作业讲评。”
五、案例亮点
(二)问题导向
1.设计具有启发性的问题,引导学生思考二次根式乘除法的运算规律,如:“如何将二次根式的乘除法转化为我们已经学过的加减法?”等。
2.引导学生通过问题发现知识点之间的联系,如:提问:“二次根式的乘除法与实数的乘除法有什么异同?”等,让学生在思考中掌握知识。
(三)小组合作
1.组织学生进行小组讨论,分享各自的想法和解决问题的方法,让学生在合作中发现问题、解决问题,培养团队合作精神。
针对这一知识点,我设计了一节以学生为主体、注重实践与思考的优秀教学案例。首先,我会通过复习导入,引导学生回顾已学的二次根式知识,为新课的学习做好铺垫。接着,我将会引导学生通过小组合作、讨论交流的方式,探索二次根式的乘除运算规律,培养学生的主体探究能力和团队合作精神。在探索过程中,我会适时给予学生反馈和指导,帮助他们克服困难,理解并掌握二次根式的乘除运算方论,让学生分享各自对二次根式乘除法的理解和运算方法。如:“你们认为二次根式乘除法应该如何运算?请你们小组讨论一下,并分享给其他小组。”
2.引导学生通过讨论,发现和总结二次根式乘除法的运算规律。如:“通过讨论,我们发现二次根式乘除法可以转化为加减法,只需要将根号内的数相乘(或相除)即可。”
(四)总结归纳
1.教师引导学生总结本节课所学的二次根式乘除法的运算规律。如:“我们可以总结一下,二次根式的乘法可以理解为将根号内的数相乘,除法可以理解为将根号内的数相除。”
16.2二次根式的乘除法(教案)
1.教学重点
本节课的教学重点主要包括以下内容:
a.掌握二次根式乘法的运算法则,特别是\( \sqrt{a} \times \sqrt{b} = \sqrt{ab} \)的形式,以及如何将其他形式的二次根式乘法转化为这一形式;
b.理解并应用二次根式除法的运算法则,特别是\( \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \)和\( \frac{\sqrt{a}}{b} = \frac{\sqrt{a}}{\sqrt{b^2}} \)的形式,以及如何处理分母中含有二次根式的情况;
(3)\( \sqrt{a^2} \times \sqrt{b^2} = |a||b| \)(a、b为任意实数)
2.掌握二次根式除法的运算法则,能够正确计算以下形式的除法:
(1)\( \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \)(a≥0,b>0)
2.培养学生的逻辑思维能力,使其能够理解并运用二次根式乘除法的性质,解决实际问题;
3.培养学生的数学建模能力,通过解决实际情境中的问题,让学生体会数学知识在实际生活中的应用;
4.培养学生的数学抽象能力,让学生从具体的二次根式乘除运算中抽象出一般性规律,形成数学认知结构;
5.培养学生的合作交流意识,鼓励学生在小组讨论和交流中,共同探索二次根式乘除法的运算规律,提高解决问题的能力。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次根式乘除法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示二次根式乘除法的基本原理,如使用尺子和直角三角形模型来计算对角线长度。
人教版数学八年级下册16.2《二次根式的乘除》教学设计3
人教版数学八年级下册16.2《二次根式的乘除》教学设计3一. 教材分析《二次根式的乘除》是人教版数学八年级下册第16.2节的内容,这部分内容是在学生已经掌握了二次根式的性质和二次根式的加减法运算的基础上进行学习的。
二次根式的乘除法运算是初中数学中的重要内容,也是后续学习高中数学的基础。
本节内容主要让学生掌握二次根式的乘除法运算规则,理解并掌握二次根式乘除法运算的性质和规律,提高学生的数学运算能力。
二. 学情分析学生在学习本节内容之前,已经掌握了二次根式的性质和加减法运算,但对于二次根式的乘除法运算可能还存在一定的困难。
因此,在教学过程中,需要教师引导学生理解二次根式的乘除法运算规则,通过大量的练习,让学生熟练掌握二次根式的乘除法运算。
三. 教学目标1.让学生掌握二次根式的乘除法运算规则。
2.提高学生的数学运算能力。
3.培养学生的逻辑思维能力。
四. 教学重难点1.二次根式的乘除法运算规则。
2.二次根式的混合运算。
五. 教学方法1.讲解法:教师通过讲解,让学生理解二次根式的乘除法运算规则。
2.练习法:让学生通过大量的练习,熟练掌握二次根式的乘除法运算。
3.小组合作法:让学生通过小组合作,共同探讨二次根式的乘除法运算,培养学生的团队协作能力。
六. 教学准备1.PPT课件:教师需要准备PPT课件,用于展示二次根式的乘除法运算规则。
2.练习题:教师需要准备适量的练习题,用于让学生进行练习。
七. 教学过程1.导入(5分钟)教师通过复习二次根式的性质和加减法运算,引导学生进入二次根式的乘除法运算学习。
2.呈现(10分钟)教师通过PPT课件,呈现二次根式的乘除法运算规则,让学生初步了解二次根式的乘除法运算。
3.操练(10分钟)教师让学生进行二次根式的乘除法运算练习,引导学生掌握二次根式的乘除法运算规则。
4.巩固(10分钟)教师通过讲解和练习,让学生巩固二次根式的乘除法运算规则。
5.拓展(10分钟)教师引导学生进行二次根式的混合运算,提高学生的数学运算能力。
八年级数学下册16.2二次根式的乘除教案(人教版)【DOC范文整理】
八年级数学下册16.2二次根式的乘除教案(人教版).2二次根式的乘除教学内容:•=,反之=•及其运用.教学目标知识与技能目标:理解•=,=•,并利用它们进行计算和化简过程与方法目标:由具体数据,发现规律,导出•=并运用它进行计算;•利用逆向思维,得出=•并运用它进行解题和化简.情感与价值目标:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力.教学重难点关键重点:•=,=•及它们的运用.难点:发现规律,导出•=.关键:要讲清=,如=或==×.教法:1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;2、讲练结合法:在例题教学中,引导学生阅读,与算术平方根的乘法进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。
学法:1、类比的方法通过观察、类比,使学生感悟二次根式的乘法法则,形成有效的学习策略。
阅读的方法让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。
分组讨论法将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。
练习法采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。
媒体设计:PPT,展台。
课时安排:1课时。
教学过程一、复习引入请同学完成下列各题..填空×=_______,=______;×=_______,=________.×=________,=_______.参考上面的结果,用“>、0时才能成立.因此得到9-x≥0且x-6>0,即6<x≤9,又因为x为偶数,所以x=8.解:由题意得,即∴6<x≤9∵x为偶数∴x=8∴原式====∴当x=8时,原式的值==6.四、归纳小结本节课要掌握=和=及其运用.五、布置作业一、选择题.计算的结果是.A.B.c.D..阅读下列运算过程:数学上将这种把分母的根号去掉的过程称作“分母有理化”,那么,化简的结果是.A.2B.6c.D.二、填空题.分母有理化:=_________;=________;=______..已知x=3,y=4,z=5,那么的最后结果是_______.三、综合提高题.有一种房梁的截面积是一个矩形,且矩形的长与宽之比为:1,•现用直径为3c的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少?.计算•÷-3÷×答案:一、1.A2.c二、1.;;2.三、1.设:矩形房梁的宽为x,则长为xc,依题意,得:2+x2=2,x2=9×15,x=,x•x=x2=..原式=-÷=-=-=-原式=-2=-2=-a板书设计:.2二次根式的乘除情境引入例2学生板演=,反过来=例3例1练习小结2二次根式的乘除教学内容:最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算.教学目标知识与技能目标:理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.过程与方法目标:通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.情感与价值目标:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力.重难点关键.重点:最简二次根式的运用..难点关键:会判断这个二次根式是否是最简二次根式.教法:1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;2、讲练结合法:在例题教学中,引导学生阅读,类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。
【人教版八年级下册】《16.2 二次根式的乘除(第2课时)》教案教学设计
16.2 二次根式的乘除第2课时一、教学目标【知识与技能】1.会进行简单的二次根式的除法运算.2.使学生能利用商的算术平方根的性质进行二次根式的化简与运算.3.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.【过程与方法】1.在学习了二次根式乘法的基础上进行总结对比,得出除法的运算法则.2.引导学生用从特殊到一般的方法及类比的方法,解决数学问题.【情感态度与价值观】在经历探索二次根式除法运算法则的过程中,认识到事物之间的相互联系,获得成就感,建立学习数学的信心和兴趣.二、课型新授课三、课时第2课时共2课时四、教学重难点【教学重点】会进行简单的二次根式的除法运算,会用商的算术平方根的性质进行二次根式的化简与运算.【教学难点】二次根式的除法与商的算术平方根的关系及应用.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔.六、教学过程(一)导入新课(出示课件2-3)站在水平高度为h米的地方看到可见的水平距离为d米,它们近似地符合公式为d=8√ℎ5.问题1 某一登山者爬到海拔100米处,即ℎ5=20时,他看到的水平线的距离d1是多少?学生答:d1=8√20=16√5问题2 该登山者接着爬到海拔200米的山顶,即ℎ5=40时,此时他看到的水平线的距离d2是多少?学生答:d1=8√40=16√10问题3 他从海拔100米处登上海拔200米高的山顶,那么他看到的水平线的距离是原来的多少倍?解:d2d1=√1016√5教师提出问题:乘法法则是如何得出的?二次根式的除法该怎样算呢?除法有没有类似的法则?(二)探索新知1.探究二次根式的除法(出示课件5) 教师依次出示下列问题: 计算下列各式:(1)√4√9=___÷___=__;√49=_____;(2)√16√25=___÷___=__;√1625=______;(3)√36√49=___÷___=__;√3649=_______;学生依次解答如下:学生1答:(1)√4√9=2÷3=23;√49=23;学生2答:(2)√16√25=4÷5=45;√1625=45;学生3答:(3)√36√49=6÷7=67;√3649=67;教师问: 观察两者有什么关系?出示课件6: 观察三组式子的结果,我们得到下面三个等式: 依次展示学生答案: 学生1答:(1)√4√9=√49;学生2答:(2)√16√25=√1625;学生3答:(3)√36√49=√3649.教师问:通过上述二次根式除法运算结果,联想到二次根式乘法运算法则,你能说出二次根式√a√b的结果吗?(出示课件7)学生回答:√a√b =√ab.教师问:在前面发现的规律√a√b =√ab中,a,b的取值范围有没有限制呢?学生讨论回答:a≥0,b>0师生一起归纳总结:(出示课件8)二次根式的除法法则:√a √b =√ab(a≥0,b>0)教师问:你能利用文字描述二次根式的除法法则吗?学生答:算术平方根的商等于被开方数商的算术平方根.教师追问:当二次根式根号外的因数(式)不为1时,如何处理呢?学生答:类比单项式除以单项式法则进行化简.教师总结如下:文字叙述:算术平方根的商等于被开方数商的算术平方根.当二次根式根号外的因数(式)不为1时,可类比单项式除以单项式法则,易得√an√b =mn√ab(a≥0,b>0,n≠0)考点1:利用二次根式的除法法则计算根号外因数是1的二次根式计算:(出示课件9) (1)√24√3;(2)√32÷√118;师生共同讨论解答如下: 解:(1)√24√3=√243=√8=2√2;(2)√32÷√118=√32÷118=√32×18=√3×9=3√3;教师追问:像(2)除式中有分数或分式时,如何化简呢? 学生答:先要转化为乘法再进行运算.出示课件10,学生自主练习后口答,教师订正.考点2:利用二次根式的除法法则计算根号外因数不是1的二次根式计算: (出示课件11)(1)√425√6;(2)2√112÷12√16;学生独立思考后,师生共同解答. 解:(1)√425√6 =35√426=35√7;(2)2√112÷12√16=(2÷12)√32÷16=(2×2)√32×6=4√9=12;教师问:类似(2)中被开方数中含有带分数的怎样计算呢? 学生答:应先将带分数化成假分数,再运用二次根式除法法则进行运算.出示课件12,学生自主练习后口答,教师订正.2.探究商的算术平方根的性质从前面知识点1的题目我们可以得到下面三个等式:(1)√49=√4√9;(2)√1625=√16√25;(3)√3649=√36√49.教师问:通过上述二次根式除法运算结果,联想到二次根式乘法运算法则,你能说出二次根式√ab的结果吗?学生回答:√ab =√a√b.教师问:在前面发现的规律√ab =√a√b中,a,b的取值范围有没有限制呢?学生回答:a≥0,b>0师生一起归纳总结:(出示课件13)二次根式的商的算术平方根的性质:√a b =√a√b(a≥0,b>0)教师问:你能利用语言描述商的算术平方根的性质吗?学生答:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.考点1:商的算术平方根的性质的应用 化简:(出示课件14-15) (1)√3100 ;(2)√7527; (3)√279;(4)√8125x2(x>0); (5)√0.09×1690.64×196.学生独立思考后,师生共同解答. 展示学生答案如下: 学生1解:(1)√3100=√3√100 =√310; 学生2解:(2)√7527=√52×3√32×3=√52√32=53;学生3补充解法:√7527=√75√27 =√33√3=53.学生4解:(3)√279=√259=√25√9=53; 学生5解:(4)√8125x2==√92√(5x )=95x;学生6解:(5)√0.09×1690.64×196=√0.32× 132√0.82×142=0.3×130.8×14=39112.教师问:像(5)可以如何计算的呢?学生答:可以先用商的算术平方根的性质,再运用积的算术平方根性质.出示课件16,学生自主练习,教师给出答案。
人教版八年级数学下册16.2二次根式的乘除优秀教学案例
1.通过探究二次根式的乘除运算,培养学生的逻辑思维能力和运算能力。
2.运用小组合作、讨论交流的方式,培养学生的团队协作能力和沟通能力。
3.引导学生运用数形结合的方法,通过图形直观地理解二次根式的乘除运算。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和自信心,激发学生学习数学的内在动力。
针对以上问题,我制定了以下教学策略,以提高学生的学习效果和解决问题的能力。
二、教学目标
(一)知识与技能
1.理解二次根式的乘除法则,能够正确进行二次根式的乘除运算。
2.掌握二次根式的性质和化简方法,能够将二次根式进行化简。
3.能够运用二次根式的乘除运算解决实际问题,提高运用数学知识解决实际问题的能力。
2.二次根式的化简方法:引导学生总结二次根式的化简方法,掌握提取公因数、应用平方差公式等技巧,提高解题效率。
3.实际问题解决:引导学生总结如何运用二次根式的乘除运算解决实际问题,培养学生的应用能力和解决问题的能力。
(五)作业小结
1.布置作业:设计具有针对性和实践性的作业,让学生巩固和应用所学知识,提高学生的实际操作能力。
2.培养学生勇于探索、坚持不懈的学习精神,培养学生的自主学习能力。
3.通过对实际问题的解决,让学生体验到数学与生活的紧密联系,培养学生的应用意识和社会责任感。
作为一名特级教师,我深知教学目标的重要性,它不仅是教学活动的出发点和归宿,也是评价教学效果的重要依据。在教学过程中,我将紧紧围绕以上教学目标,采用多种教学方法和手段,引导学生积极参与,主动探究,使学生在知识与技能、过程与方法、情感态度与价值观等方面得到全面发展。
人教版八年级数学下册16.2二次根式的乘除优秀教学案例
一、案例背景
16.2二次根式的乘除 (教学课件)- 初中数学人教版八年级下册
解: ( 思考】乘法法则是如何得出的?二次根式的除法该怎样算呢2 除法有没有类似的法则?
学习 目标 3. 理解最简二次根式的概念,能熟练地将二 次根式化为最简二次根式。
2. 会运用除法法则及商的算术平方根进行简 单运算.
1. 掌 握二次根式的除法法则,会用法则进行计算.
探究新知 知识点1
二次根式的除法
探究新知
归纳总结 二次根式的乘法法则的推广: ①多个二次根式相乘时此法则也适用,即
√a·√b .....√n=√ab...n(a≥0,b≥0....n≥0)
②当二次根号外有因数(式)时,可以类比单项式乘单 项式的法则计算,即根号外的因数(式)的积作为根号 外的因数(式),被开方数的积作为被开方数,即
化简:
(1)√ 16×81;(2)√4a²b³(a≥0,b≥0).
解:(1)√ 16×81
(2)√4a²b³
(2 ) 中4 ²ab³ 含有 像 4 a²,b²,, 这
= √16×√81
=√4O√a²O√b³
样开的尽方的因 数或因式,把它
=4×9
=36;
=2OaO√b²Ob
们开方后移到根 号外.
巩固练习
计算:
(1)
(2)
●
解: (1) (2)
提示:像(2)中除式是分数或分(1)
(2)
(3)
●
解:(1)
探究新知
考点② 利用二次根式的除法法则计算根号外因数不是1的 二次根式
计算: (1) 解:(1)
假分数,再运用二次根式除法法则进行运算.
巩固练习 计算,看谁算的既对又快.
重
探究新知
方法点拨
化简二次根式的步骤:
1.把被开方数分解因式(或因数);
人教版数学八年级下册16.2《二次根式的乘除》教案
一、教学内容
人教版数学八年级下册16.2《二次根式的乘除》教案:
1.章节内容:本节课主要学习二次根式的乘除运算。
2.教学内容:
a.理解二次根式的乘法法则,并能正确运用;
b.掌握二次根式的除法法则,并能熟练进行混合运算;
c.能够将二次根式乘除运算与其他数学知识相结合,解决实际问题;
3.重点难点解析:在讲授过程中,我会特别强调乘法法则和除法法则这两个重点。对于难点部分,如根号内同类项的合并和化简,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次根式乘除相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量并计算正方形对角线长度,演示二次根式乘除的基本原理。
(3)熟练进行二次根式的混合运算,解决实际问题;
举例:计算\( \frac{\sqrt{45} \times \sqrt{20}}{\sqrt{5} \times \sqrt{9}} \),并应用于实际情境。
2.教学难点
(1)理解并运用二次根式乘法法则时,根号内同类项的识别与合并;
难点举例:\( \sqrt{12} \times \sqrt{8} = \sqrt{12 \times 8} \)转化为\( 2\sqrt{3} \times 2\sqrt{2} = 4\sqrt{6} \)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次根式的乘除》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算面积或长度的问题?”(如计算正方形对角线长度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次根式乘除的奥秘。
人教版数学八年级下册16.2二次根式的乘除(教案)
(1)根号内乘除运算的简化:在二次根式乘除运算过程中,学生往往难以把握根号内乘除运算后的简化步骤。
-难点解释:如\(\sqrt{2} \times \sqrt{8} = \sqrt{2 \times 8}\),需简化根号内的结果为\(\sqrt{16}\),进而得到最终答案4。
(2)混合运算中乘除法则的运用:在二次根式乘除混合运算中,学生容易混淆乘除法则,导致计算错误。
-练习:计算\(\sqrt{18} \times \sqrt{2}\)、\(\sqrt{12} \times \sqrt{27}\)等。
2.二次根式的除法法则:理解二次根式除法的运算规律,能够熟练进行除法运算。
-例子:\(\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}\)(其中\(b \neq 0\),\(a \geq 0\),\(b > 0\))
人教版数学八年级下册16.2二次根式的乘除(教案)
一、教学内容
本节课选自人教版数学八年级下册16.2节,主要内容包括:
1.二次根式的乘法法则:掌握二次根式乘法的运算规律,能够正确进行乘法运算。
-例子:\(\sqrt{a} \times \sqrt{b} = \sqrt{ab}\)(其中\(a \geq 0\),\(b \geq 0\))
-练习:计算\(\frac{\sqrt{48}}{\sqrt{3}}\)、\(\frac{\sqrt{54}}{\sqrt{9}}\)等。
3.二次根式的乘除混合运算:学会运用乘除法则,解决二次根式的乘除混合运算问题。
-例子:\(\sqrt{18} \div \sqrt{2} \times \sqrt{12}\)
5.设计不同难度的练习题,帮助学生巩固所学知识,逐步突破难点。
《二次根式的乘除法》教案设计
《二次根式的乘除法》教案设计《二次根式的乘除法》教案设计范文(通用8篇)在教学工作者实际的教学活动中,总不可避免地需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。
那么写教案需要注意哪些问题呢?下面是店铺为大家整理的《二次根式的乘除法》教案设计,欢迎大家借鉴与参考,希望对大家有所帮助。
《二次根式的乘除法》教案设计篇1【教学目标】1.运用法则进行二次根式的乘除运算;2.会用公式化简二次根式。
【教学重点】运用进行化简或计算【教学难点】经历二次根式的乘除法则的探究过程【教学过程】一、情境创设:1.复习旧知:什么是二次根式?已学过二次根式的哪些性质?2.计算:二、探索活动:1.学生计算;2.观察上式及其运算结果,看看其中有什么规律?3.概括:得出:二次根式相乘,实际上就是把被开方数相乘,而根号不变。
将上面的公式逆向运用可得:积的算术平方根,等于积中各因式的算术平方根的积。
三、例题讲解:1.计算:2.化简:小结:如何化简二次根式?1.(关键)将被开方数因式分解或因数分解,使之出现“完全平方数”或“完全平方式”;2.P62结果中,被开方数应不含能开得尽方的因数或因式。
四、课堂练习:(一).P62练习1、2其中2中(5)注意:不是积的形式,要因数分解为36×16=242(二).P673计算(2)(4)补充练习:1.(x>0,y>0)2.拓展与提高:化简:1).(a>0,b>0)2).(y2.若,求m的取值范围。
☆3.已知:,求的值。
五、本课小结与作业:小结:二次根式的乘法法则作业:1).课课练P9-102).补充习题《二次根式的乘除法》教案设计篇2教材分析:本节内容出自九年级数学上册第二十一章第三节的第一课时,本节在研究最简二次根式和二次根式的乘除的基础上,来学习二次根式的加减运算法则和进一步完善二次根式的化简。
本小节重点是二次根式的加减运算,教材从一个实际问题引出二次根式的加减运算,使学生感到研究二次根式的加减运算是解决实际问题的需要。
人教版八年级数学下册16.2二次根式的乘除法(教案)
-掌握二次根式除法法则:√a / √b = √(a / b)。学生需理解除法法则的推导过程,并能应用于简化二次根式。
-举例:计算√27 / √3,学生应得出√(27 / 3) = √9 = 3。
-理解并运用二次根式的乘除法解决实际问题,如计算面积、体积等。
-例子:√20 / √5 = √(20 / 5) = √4 = 2,但√20 / √3需要将分母有理化,变为(√20 * √3) / (√3 * √3)= √60 / 3 = 2√5 / 3。
-难点三:理解二次根式乘除法则与整数的乘除法则的区别和联系,避免混淆。
-例如:学生应明白√2 * √3不等于2 * 3,而是等于√(2 * 3)。
-能够从实际例子中抽象出二次根式的乘除法则,培养数学抽象素养。
4.培养学生的数学应用意识:通过解决实际问题,让学生体会二次根式乘除法在实际生活中的应用,提高数学应用意识。
-能够将二次根式乘除法应用于解决实际问题,培养数学应用意识。
三、教学难点与重点
1.教学重点
-掌握二次根式乘法法则:√a * √b = √(a * b)。学生需理解乘法法则的推导过程,并能熟练应用于具体计算。
-能够运用二次根式乘除法法则进行正确运算,培养推理与论证能力。
2.培养学生的数学运算能力:通过实际操作,让学生熟练掌握二次根式的乘除运算,提高运算速度和准确性。
-能够迅速准确地完成二次根式的乘除运算,培养数学运算能力。
3.培养学生的数学抽象素养:使学生能够从具体实例中抽象出二次根式乘除法则,形成数学模型,提高数学抽象思维。
还有一点我觉得需要注意的是,在总结回顾环节,虽然大部分同学能够掌握今天所学的内容,但仍有少数同学对某些知识点存在疑问。为了确保每位同学都能跟上教学进度,我决定在课后设立一个答疑时间,专门解答同学们的疑问。
人教版八年级数学下册16.2 二次根式的乘除优秀教案
人教版八年级数学下册16.2 二次根式的乘除优秀教案二次根式是初中阶段“数与式”内容的最后一章,因此承担着整理“数与式”的内容、方法和基本思想的任务.本节研究二次根式的乘法运算.运算法则是运算的依据,因此教材通过“探究”栏目,引导学生利用二次根式的性质,从具体数字运算中发现规律,进而归纳得出二次根式的乘法法则.基于以上分析,确定本节课的教学重点:探究二次根式的乘法法则和积的算术平方根的性质.二、目标和目标解析1.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;(2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.三、教学问题诊断分析本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难.运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气.,培养学生良好的运算习惯.在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简.本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简.四、教学过程设计1.复习引入,探究新知我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1 什么叫二次根式?二次根式有哪些性质?师生活动学生回答.【设计意图】乘法运算和二次根式的化简需要用到二次根式的性质.问题2 教材第6页“探究”栏目,计算结果如何?有何规律?师生活动学生计算、思考并尝试归纳,引导学生用自己的语言描述乘法法则的内容.【设计意图】学生在自主探究的过程中发现规律,运用类比思想,由特殊到一般地,采用不完全归纳的方法得出二次根式的乘法法则.要求学生用数学语言和文字分别描述法则,以培养学生的符号意识.2.观察比较,理解法则问题3 简单的根式运算.师生活动学生动手操作,教师检验.问题4 成立的条件是什么?等式反过来有什么价值?师生活动学生回答,给出正确答案后,教师给出积的算术平方根的性质.【设计意图】让学生运用法则进行简单的二次根式的乘法运算,以检验法则的掌握情况.乘法法则反过来就是积的算术平方根的性质,性质是为运算服务的,积的算术平方根的性质将积的算术平方根分解成几个因数或因式的算术平方根的积,利用整式的运算法则、乘法公式等可以简化二次根式,培养学生的运算能力.3.例题示范,学会应用例1 化简:(1);(2).师生活动提问:你是怎么理解例(1)的?如果学生回答不完善,再追问:这个问题中,就直接将结果算成可以吗?你认为本题怎样才达到了化简的效果?师生合作回答上述问题.对于根式运算的最后结果,一般被开方数中有开得尽方的因数或因式,应依据二次根式的性质将其移出根号外.再提问:你能仿照第(1)题的解答,能自己解决(2)吗?【设计意图】通过运算,培养学生的运算能力,明确二次根式化简的方向.积的算术平方根的性质可以进行二次根式的化简.师生活动学生计算,教师检(1)在被开方数相乘的时候,就可以考虑因数或因式分解,由直接可得而不必先写成再分解;(2)二次根式的乘法运算类似于整式的乘法运算,交换律、结合律都是适用的.对于根号外有系数的根式在相乘时,可以将系数先相乘作为积的系数,再对根式进行运算;(3)例(3)的运算是选学内容.让学有余力的学生学到“根号下为字母的二次根式”的运算.本题先利用积的算术平方根的性质,得到,然后利用二次根式的乘法法则,变成,由于可以判断,因此直接将x移出根号外.【设计意图】引导学生及时总结,强调利用运算律进行运算,利用乘法公式简化运算.让学生认识到,二次根式是一类特殊的实数,因此满足实数的运算律,关于整式运算的公式和方法也适用.教材中虽然指明,如未特别说明,本章中所有的字母都表示正数,但仍应强调,看到根号就要注意被开方数的符号.可以根据二次根式的概念对字母的符号进行判断,在移出根号时正确处理符号问题.【设计意图】巩固性练习,同时检验乘法法则的掌握情况.5.归纳小结,反思提高师生共同回顾本节课所学内容,并请学生回答以下问题:(1)你能说明二次根式的乘法法则是如何得出的吗?(2)你能说明乘法法则逆用的意义吗?(3)化简二次根式的基本步骤是怎样?一般对最后结果有何要求?6.布置作业:教科书第7页第2、3题.习题16.2第1,6题.五、目标检测设计1.下列各式中,一定能成立的是()【设计意图】考查二次根式的概念和性质,这是进行二次根式的乘法运算的基础.【设计意图】二次根式是特殊的实数,实数的相关运算法则也适用于二次根式.3.已知,化简二次根式的结果是()【设计意图】巩固二次根式的性质,利用积的算术平方根的性质正确化简二次根式.一、内容和内容解析1.内容二次根式的除法法则及其逆用,最简二次根式的概念。
新人教版初中数学教案:二次根式的乘除法 教案
16.2二次根式的乘除法二次根式的乘法一、学习目标1、掌握二次根式的乘法法则和积的算术平方根的性质。
2、熟练进行二次根式的乘法运算及化简。
二、学习重点、难点重点:掌握和应用二次根式的乘法法则和积的算术平方根的性质。
难点:正确依据二次根式的乘法法则和积的算术平方根的性质进行二次根式的化简。
三、学习过程(一)复习回顾1、计算:(1)4×9=______ 94⨯=_______(2)16×25 =_______ 2516⨯=_______(3)100×36 =_______ 36100⨯=_______2、根据上题计算结果,用“>”、“<”或“=”填空:(1)4×9_____94⨯(2)16×25____2516⨯(3)100×36__36100⨯(二)提出问题1、二次根式的乘法法则是什么?如何归纳出这一法则的?2、如何二次根式的乘法法则进行计算?3、积的算术平方根有什么性质?4、如何运用积的算术平方根的性质进行二次根式的化简。
(三)自主学习自学课本第5—6页“积的算术平方根”前的内容,完成下面的题目:1、用计算器填空:(1)2×3____6(2)5×6____30(3)2×5____10(4)4×5____202、由上题并结合知识回顾中的结论,你发现了什么规律?能用数学表达式表示发现的规律吗?3、二次根式的乘法法则是:(四)合作交流1、自学课本6页例1后,依照例题进行计算:(1)9×27 (2)25×32(3)a 5·ab 51 (4)5·a 3·b 312、自学课本第6—7页内容,完成下列问题:(1)用式子表示积的算术平方根的性质: 。
(2)化简: ①54 ②2212b a③4925⨯ ④64100⨯(五)展示反馈展示学习成果后,请大家讨论:对于9×27的运算中不必把它变成243后再进行计算,你有什么好办法?(六)精讲点拨1、当二次根式前面有系数时,可类比单项式乘以单项式法则进行计算:即系数之积作为积的系数,被开方数之积为被开方数。
分式乘除教学设计
分式乘除教学设计第1篇:分式乘除教学设计《16.2 二次根式的乘除》教学设计一.教材分析二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础.基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式.二、学情分析本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行.二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算.教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向.本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用.三、目标和目标解析1.教学目标(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;(2)会进行简单的二次根式的除法运算;(3)理解最简二次根式的概念.2.目标解析(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;(2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算.(3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式.四、教学过程设计1.复习提问,探究规律问题1 二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?师生活动学生回答。
【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.2.观察思考,理解法则问题2 教材第8页“探究”栏目,计算结果如何?有何规律?师生活动学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:.问题3 对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?师生活动学生思考,回答。
新人教版八年级数学下《16.2 二次根式的乘除 二次根式的除法》优质课教学设计_159
一、学习目标:
1、 理解 a = a (a≥0,b>0)和 a = a (a≥0,b>0);
bb
bb
2、利用二次根式的除法公式实行运算. 二、重点:
理解
a=
a (a≥0,b>0)和
a =
a (a≥0,b>0);
bb
bb
二、难点: 利用二次根式的除法公式实行运算
三、知识准备: 1.写出二次根式的乘法公式及逆向等式.
D. 2 7
____;
(2) 1 =___
__;
12
(3) 10 =___
___.
25
3.已知 x=3,y=4,z=5,那么 yz xy 的最后结果是___
九、作业: 1、教材 P10 习题 16.2 3,4 2、金牌学案 P9~10
____.
已知 9 x x6
七、小结:
9 x ,且 x 为偶数,求(1+x) x6
x2 5x 4 的值. x2 1
a=
(a≥0,b>0)和 a =
(a≥0,b>0)
b
b
八、达标检测:
1.计算 11 2 1 1 2 的结果是(
).
3 35
A. 2 5 7
B. 2 7
C. 2
2.分母有理化:(1) 1 =__ 32
2 填空:(1) 9 =____, 9 =____; 规律: 9 ______ 9 ;
16
16
16
16
(2) 16 =____, 16 =____;
36
36
五、自主学习:
规律: 16 ______ 16 ;对二次根式的除法规定:
二次根式乘除-经典教学教辅文档
练习1 计算以下各式:
作业:
教科书第10页,习题16.2第1,3(1)(2),8(1)题.
七、教学评价(创建量规,向先生展现他们将被如何评价(来自教师和小组其他成员的评价),也能够创建一个自我评价表,这样先生可以用它对本人的学习进行评价)
本节课计算简单,但是题的类型较多,需求先生练习扎实。经过练习可以发现先生对法则的运用掌握很好,但是二次根式的化简很迷茫。在以后的教学中要多加练习。
3.培养先生的探求发现能力。
五、重点、难点
二次根式乘法法则的探求和运用.
六、教学过程
成绩1 当a 是正数或0 时, 是实数吗?取a 值分
别为1,2,3,4,5试一试!
类比有理数的运算,你认为任何两个实数之间可以
进行哪些运算?
加、减、乘、除四则运算
成绩2 两个二次根式能否进行加、减、乘、除运
算?怎样运算?让我们从研讨乘法开始.
请写出两个二次根式,猜一猜,它们的积该当是多
少?
特殊化,从能开得尽方的
二次根式乘法运算开始考虑!
计算以下式子,并观察它们之间有甚么联系?
能用字母表示你所发现的规律吗?
二次根式乘法法则:普通地有来自(a≥0,b≥0 ).
二次根式与二次根式相乘,等于各被开方数相乘
的算术平方根.反之: (a≥0,b≥0 )
能试着说说上述公式成立的理由吗?
附件2:教学设计模板
教学设计
课题名称:16.2 二次根式的乘除(1)
姓名
工作单位
学科年级
八年级数学
教材版本
新人教版
一、课程标准要求
归纳出二次根式的乘法法则,并运用这个法则进行二次根式的计算和化简.
二、教材地位作用(用知识结构图阐明)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.2 二次根式的乘除(2)
教学内容: b a
b a =反之b
a b a =(a ≥0,b >0),利用它就可以进行二次 教学目标
1.知识技能:(1).会进行简单的二次根式的除法运算.
(2).使学生能利用商的算术平方根的性质进行二次根式的化简
与运算.
2. 数学思考:在学习了二次根式乘法的基础上进行总结对比,得出除法的运算法则.
3. 解决问题:引导学生从特殊到一般总结归纳的方法以及类比的方法,解决数学问题.
4. 情感态度:通过本节课的学习使学生认识到事物之间是相互联系的,相互作用的.
教学重难点关键
重点:会利用商的算术平方根的性质进行二次根式的化简,会进行简单的二次根式的除法运算.
难点:二次根式的除法与商的算术平方根的关系及应用. 教学方法 1. 讨论分析法. 2. 类比法. 3. 逆向思维法. 4. 练习法. 教学过程 二、课前复习
1.请同学们回忆ab b a =⋅ (a ≥0,b ≥0)是如何得到的?
2.计算:
()()0,04
912.
12
>>⨯
y x x xy ()322
112.2⨯⨯
()()()6416.3-⨯- ()()
0,0,09.
4432>>>c b a c b a
三、探索新知
1.(学生活动)请同学们完成下列各题:
计算下列各式,观察计算结果,你发现什么规律?
(1
=________
;(2
;
3
2
____
3
2(3)52___
5
2
2.例题讲评
()()18
123
23
2414÷,
:计算例
()6
1521123÷
3.请你动手试一试
计算下列各式:
a
3
8
a
3413
÷)(xy
ab
y x b a 205)2(32÷xy
x 33218)3(3
÷
a b ab 36
3)4(÷
例5:化简
1003
)
1(
2775)2( ()29253y x 4.最简二次根式:
(1).被开方数不含分母;
(2).被开方数不含能开得尽方的因数或因式.
例:指出下列各式中的最简二次根式
x
b )
1(3
2)2(ab
3
.0)3(ab 5.0)4(()
5
25a 2
3
)
6(22)7(b a +x x x 96)8(23++
5.相信自己,你能行!
化简下列各式:
)0x 94
.
12
>(x n
m 389.
27
55.
3a b 2
4918.
4xy a
6.大显身手
应用拓展
=,且x
为偶数,求(1+x 的值.
分析:
,只有a ≥0,b>0时才能成立.
因此得到9-x ≥0且x-6>0,即6<x ≤9,又因为x 为偶数,所以x=8.
解:由题意得90
60x x -≥⎧⎨->⎩,即96x x ≤⎧⎨>⎩
∴6<x ≤9 ∵x 为偶数 ∴x=8
∴原式=(1+x )
=(1+x )
=(1+x )
∴当x=8时,原式的值=6.
四、归纳小结
1.a ≥0,b>0a ≥0,b>0)及其运用.
2.最简二次根式:
(1)被开方数不含分母;
(2)被开方数不含能开得尽方的因数或因式. 五、布置作业 计算:
(1)218; (2)102175÷; (3) a b a 2112532÷
; (4) 31501000m m
.。