较复杂的牛吃草问题及盈亏应用题
牛顿牛吃草数学题
牛顿牛吃草数学题
牛吃草的数学题是17世纪英国伟大的科学家牛顿提出来的,题目如下:牧场上有一片青草,每天都生长得一样快。
这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,期间一直有草生长。
如果供给25头牛吃,可以吃多少天?
解题环节主要有以下四步:
1.求出每天长草量。
2.求出牧场原有草量。
3.求出每天实际消耗原有草量(牛吃的草量-生长的草量=消耗原有的草量)。
4.最后求出牛可吃的天数。
这片草地天天以匀速生长是分析问题的难点。
把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,类似于60头牛1天吃的草,平均分到(22-10)天里,便得到5头牛一天吃的草,也就是每天新长出的草。
求出了这个条件,把所有头牛分成两部分来研究,用其中一部分(5头)吃掉新长出的草,用另外一部分吃掉原有的草,即可求出全部头牛吃的天数。
设一头牛1天吃的草为一份。
那么10头牛22天吃草为1×10×22=220(份),16头牛10天吃草为1×16×10=160(份)。
(220-160)÷(22-10)=5(份),说明牧场上一天长出新草5份。
220-5×22=110(份),说明原有老草110份。
综合式:110÷(25-5)=5.5(天)。
因此供给25头牛吃,可以吃5.5天。
1/ 1。
行测数量盈亏和牛吃草问题 非常好的思路和解析 附练习题
【盈亏问题公式】(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差)=人数。
(2)两次都有余(盈),可用公式:(大盈-小盈)÷(两次每人分配数的差)=人数。
(3)两次都不够(亏),可用公式:(大亏-小亏)÷(两次每人分配数的差)=人数。
(4)一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每人分配数的差)=人数。
(5)一次有余(盈),另一次刚好分完,可用公式:盈÷(两次每人分配数的差)=人数。
例1:一个植树小组去栽树,如果每人栽3棵,还剩下15棵树苗;如果每人栽5棵,就缺少9棵树苗。
求这个小组有多少人?一共有多少棵树苗?分析:已知如果每人栽3棵,还剩下15棵树苗,也就是说还有15棵树苗没有栽上,树苗余下了;又知如果每人栽5棵,就缺少9棵树苗,这就是说,树苗不够了。
按照第一种方案去栽,树苗余下了,若按照第二种方案去栽,树苗不足了。
一个是余下一个是不足,这两个方案之间相差多少棵呢?相差(15+9=)24棵,也就是说,如果按照第二种方案去栽的话,可以比第一种方案多栽24棵树。
为什么能多栽24棵树呢?因为每个人多栽(5-3=)2棵。
由于每一个人多栽2棵树,一共多栽24棵树,即“2棵树”对应于“1个人”。
这样,小组的人数可以求得。
随之,树苗的棵数也可以求得。
计算:(1)小组的人数:(15+9)÷(5-3)=24÷2=12(人)(2)树苗的棵数:3×12+15=51(棵)答:这个小组有12人,一共有51棵树苗。
在解题时,常常要找两个“差”。
一个是总棵数之差,即第一种方案同第二种方案所栽树苗的总差数;另一个是单量之差,即每个人所栽树苗的差。
有了这两个差即可求出结果。
因此,这种解题的思路也可以称作“根据两个差求未知数”。
例2:悦悦每天早晨7点30分从家出发上学去,如果每分钟走45米,则迟到4分钟到校;如果每分钟走75米,则可以提前4分钟到校。
公考牛吃草问题经典例题
公考牛吃草问题经典例题公考牛吃草问题,听着是不是有点让人头疼?别急,咱们一块儿聊聊,保准让你轻松搞懂。
这类问题其实一点也不复杂,只要你放松点,像在和朋友聊八卦一样,慢慢琢磨,答案就会在脑袋里清晰得像晴天一样。
首先啊,咱们得知道,牛吃草这种问题,归根结底是在考你如何理解“速度”和“时间”的关系。
你可以把它当作一场牛吃草的比赛,看看每头牛用多长时间吃完草,再算算草的总量。
简简单单,关键是得捋清楚每一部分。
想象一下,草地上有一堆草,旁边有一头牛,它慢慢地吃着,吃着,慢慢就能把草吃完。
你可能会问,牛吃草的速度快不快?如果只有一头牛,那它吃完草可能得很长时间,甚至你都能在旁边睡上一觉。
可要是有两头牛呢?它们分工合作,速度就能加快。
更妙的是,若是三头牛,你估计连吃草的机会都没得抢。
这种问题其实就像是大家一起去参加接力赛,每个人负责一段,大家合力完成,时间自然就短了。
别看这个问题简单,实际上一点也不简单。
咱们得有点策略才行。
假设题目给了你牛吃草的时间,告诉你一头牛吃完草需要多长时间。
比如,一头牛吃完草得10天。
那么问题来了,别的牛吃草是不是也能更快呢?答案是肯定的!如果有两头牛,它们的吃草速度肯定是加起来的,所以吃草的总时间就短了。
你可以想象成两个人合作画画,两个小伙伴一起工作,完成任务的时间自然缩短。
牛吃草也是这个道理,合作得好,时间自然就缩短了。
说到这里,你可能会心想:“好啊,那如果我有三头牛呢?”呵呵,三头牛更是能让你眼前一亮。
想象一下,它们三个人同时吃草,肯定是分担了更多的任务。
时间一下子就从10天缩短成了几天,牛吃草的速度比原来快多了。
怎么样,是不是有点像打游戏,团队合作,分工明确,任务就能很轻松完成呢?不过,事情也不是永远都这么简单。
草地的草量可能不固定,草可能吃不完或者有些剩余。
这个时候,你就得注意了,要根据题目提供的草量来计算,别光想着自己有多牛。
有些题目还特别喜欢搞一些小花样,像是草的生长速度、牛的吃草速度不一致等等。
牛吃草问题例题
牛吃草问题例题
一、例题
一片草地,可供15头牛吃10天,而供25头牛吃,可吃5天。
如果青草每天生长速度一样,那么这片草地若供10头牛吃,可以吃几天?
二、题目解析
1. 设每头牛每天的吃草量为1份
对于15头牛吃10天的情况,总草量包括原有草量和10天生长的草量。
因为每头牛每天吃1份草,15头牛10天吃草:15×10 = 150份。
然后,25头牛吃5天,总草量为25×5=125份。
2. 计算每天草的生长量
15头牛吃10天的总草量比25头牛吃5天的总草量多的部分,就是(10 5)天生长出来的草量。
150 125=25份,这25份草是5天生长出来的,所以每天草的生长量为25÷5 = 5份。
3. 计算原有草量
根据15头牛吃10天的情况,原有草量 = 15头牛10天吃的草量-10天生长的草量。
10天生长的草量为5×10 = 50份,所以原有草量为150-50 = 100份。
4. 计算10头牛可以吃的天数
设10头牛可以吃x天。
10头牛x天吃的草量等于原有草量加上x天生长的草量。
10头牛x天吃草10x份,x天生长的草量为5x份,原有草量为100份,则10x=100 + 5x。
移项可得10x-5x=100,即5x = 100,解得x = 20天。
所以这片草地若供10头牛吃,可以吃20天。
牛吃草问题经典例题10道
牛吃草问题经典例题10道牛吃草问题常被认为是经典的运筹学题目,在这里我们汇总了10道牛吃草问题的理论例题,以帮助大家学习这些问题的解决方法,加深对运筹学的理解。
例题一:有一片长度为L的草地,有一头牛,它每移动一次可以吃掉草地的长度为a的草,那么它最少要移动几次,才能将草地吃完?解答:首先,要吃完草地,牛至少要移动L/a次,也就是说,牛要吃完草地,它最少要移动L/a次,例如当L=12,a=4时,牛需要移动3次才能吃完草地。
例题二:有一片长度为L的草地,有两头牛,它们每移动一次可以吃掉草地的长度为a的草,那么它们最少要移动几次,才能将草地吃完?解答:这里我们可以使用二分法来求解,即每次移动时,两头牛分别前进a/2的距离,最后再合起来这样移动L/a次便可将草地吃完,即当L=12,a=4时,两头牛最少要移动6次,分别前进2次,才能将草地吃完。
例题三:有一片长度为L的草地,有若干头牛,它们每移动一次可以吃掉草地的长度为a的草,那么它们最少要移动几次,才能将草地吃完?解答:牛的数量与它们吃掉草地的最少次数没有关系,只要它们每次移动距离等于a,那么无论有多少头牛,它们最少要移动L/a次,例如当L=12,a=4时,无论有几头牛,它们最少要移动3次才能吃完草地。
例题四:有一片长度为L的草地,有若干头牛,它们每移动一次可以吃掉草地的长度为a的草,而每头牛的移动速度不同,那么它们最少要移动几次,才能将草地吃完?解答:考虑到牛的不同移动速度,它们吃完草地的最少次数取决于最慢移动的牛,即其吃掉草地的总时间就等于最慢移动的牛移动的时间,也就是说最慢移动的牛最少要移动L/a次才能吃完草地,例如当L=12,a=4时,无论有几头牛,最慢的牛最少要移动3次才能将草地吃完。
例题五:有一片长度为L的草地,有一头牛,它每移动一次可以吃掉草地的长度为a的草,但是牛有一定的消耗,每移动一次需要消耗b的能量,它有总共c的能量,那么它最多可以移动几次?解答:由于牛有一定的消耗,所以它最多可以移动c/b次,例如当L=12,a=4,b=1,c=8时,牛最多可以移动8次。
牛吃草问题例题详解(含练习和答案)
牛吃草问题例题详解(含练习和答案)牛吃草问题一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,同学们一下就可求出:3×10÷6=5(天)。
如果我们把“一堆草”换成“一片正在生长的草地”,问题就变得更加复杂了,因为草每天都在生长,草的数量在不断变化。
这类工作总量不固定(均匀变化)的问题就是牛吃草问题。
例1:牧场上一片青草,每天牧草都匀速生长。
这片牧草可供10头牛吃20天,或者可供15头牛吃10天。
问:可供25头牛吃几天?分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。
总草量可以分为牧场上原有的草和新生长出来的草两部分。
牧场上原有的草是不变的,新长出的草虽然在变化,但因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。
下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量。
设1头牛一天吃的草为1份。
那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。
前者的总草量是200份,后者的总草量是150份,前者是原有的草加20天新长出的草,后者是原有的草加10天新长出的草。
200-150=50(份),20—10=10(天)。
说明牧场10天长草50份,1天长草5份。
也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草。
由此得出,牧场上原有草(10—5)×20=100(份)或(15—5)×10=100(份)。
现在已经知道原有草100份,每天新长出草5份。
当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天)。
因此,这片草地可供25头牛吃5天。
在例1的解法中要注意三点:1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的。
2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量。
六年级奥数牛吃草问题应用题专项练习
牛吃草问题专项练习(1)11头牛10天可吃完5公顷草,12头牛14天可吃完6公顷全部牧草,问8公顷草地可供19头牛吃多少天?(假设每块草地每公顷每天牧草长得一样快)(2)12头牛28天可吃完10公亩牧场上全部牧草,21头牛63天可吃完30公亩牧场上全部牧草.多少头牛126天可吃完72公亩牧场上全部牧草?(每公亩牧场上原有的草量相等,且每公亩牧场上每天草的生长量相同)(3)22头牛,吃33公亩牧场的草54夭可吃尽,17头牛吃同样牧场28公亩的草,‘84天可吃尽.请问几头牛吃同样牧场40公亩的草,24天可吃尽?(4)仓库里原有一批存货,以后继续运货进仓,且每天运进的货一样多。
用同样的汽车运货出仓,如果每天用4辆汽车,则9天恰好运完;如果每天用5辆汽车,则6天恰好运完。
仓库里原有的存货若用1辆汽车运则需要多少天运完?(5)超市的收银台平均每小时有60名顾客前来排队付款,每一个收银台每小时能应付80名顾客付款。
某天某时刻,超市如果只开设一个收银台,付款开始4小时就没有顾客排队了,问如果当时开设两个收银台,则付款开始几小时就没有顾客排队了?(6)春节期间,某火车站已有不少的旅客在候车室等候验票,并且前来验票上车的旅客按照一定的速度在增加,如果只开放一个窗口验票,需要半小时全部旅客才能进站上车;如果开放两个窗口,则需要10分钟全部旅客就可进站上车了。
然而,现在等候上车的时一列加班车,必须在5分钟内全部上车,准点上车。
那么这个火车站至少要同时开放多少个窗口?(7)村民组织抗旱,从一个地下泉水挑水浇地。
如果50人挑,20小时就把水挑完;如果70人挑水,10小时也可挑完。
现在有130人挑,几小时可把水挑完?(8)哥哥沿着向上移动的自动扶梯从顶向下走到底,共走了100级。
在相同的时间内,妹妹沿着自动扶梯从底向上走到顶,共走了50级。
如果哥哥单位时间内走的级数是妹妹的2倍,那么当自动扶梯静止时,自动扶梯能看到的部分有多少级?(9)画展9点开门,但早就有人排队等候入场了。
高难度牛吃草问题例题
高难度牛吃草问题例题摘要:一、牛吃草问题的背景和意义1.牛吃草问题的起源和发展2.牛吃草问题在实际生活中的应用二、牛吃草问题的基本概念和公式1.牛吃草问题的定义2.牛吃草问题的基本公式三、牛吃草问题的解题方法1.直接解法2.换元法3.比例法4.代入法5.消元法四、牛吃草问题的例题解析1.例题一解析2.例题二解析3.例题三解析五、牛吃草问题的总结和拓展1.牛吃草问题的关键点和注意事项2.牛吃草问题的拓展应用和实际案例正文:一、牛吃草问题的背景和意义牛吃草问题,起源于我国古代著名的数学家、农学家贾思勰所著的《齐民要术》。
这个问题旨在帮助农民解决牛吃草的喂养问题,从而提高农业生产效率。
随着数学的发展,牛吃草问题逐渐演变成一个具有广泛应用的数学问题,如在生态学、经济学、物理学等领域都有所应用。
二、牛吃草问题的基本概念和公式牛吃草问题,通常可以表述为:已知一头牛每天吃草的速度为x,草的生长速度为y,问多少头牛可以在z 天内将一片草地吃完?根据题意,我们可以得到牛吃草问题的基本公式:z = (xy) / (x - y)。
三、牛吃草问题的解题方法1.直接解法:根据题意,直接代入公式求解。
2.换元法:设u = x - y,将原方程转化为关于u 的一元二次方程求解。
3.比例法:将牛的头数和草的生长速度、牛吃草的速度建立比例关系,从而求解。
4.代入法:先求出草的生长速度和牛吃草的速度,再代入公式求解。
5.消元法:通过消去草的生长速度,将方程简化后求解。
四、牛吃草问题的例题解析1.例题一解析:假设一头牛每天吃草的速度为3,草的生长速度为2,问多少头牛可以在10 天内将一片草地吃完?解析:代入公式z = (xy) / (x - y),得到z = (3 * 2) / (3 - 2) = 6。
所以需要6 头牛可以在10 天内将草地吃完。
2.例题二解析:假设一头牛每天吃草的速度为5,草的生长速度为3,问多少头牛可以在20 天内将一片草地吃完?解析:使用换元法,设u = x - y,则原方程可转化为关于u 的一元二次方程。
小升初数学应用题大全牛吃草问题
小升初数学应用题大全:牛吃草问题小升初搜集整理了2013小升初数学知识点信息,供大家参考,希望对大家有所帮助!有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?这是一道牛吃草问题,是比较复杂的牛吃草问题。
把每头牛每天吃的草看作1份。
因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份所以45-30=15天,每亩面积长84-60=24份所以,每亩面积每天长24÷15=1.6份所以,每亩原有草量60-30×1.6=12份第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛所以,一共需要38.4+3.6=42头牛来吃。
两种解法:解法一:设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=1.6每亩原有草量为60-1.6*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24*1.6*80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头)解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15木,可以推出15亩每天新长草量(28*45-30*30)/(45-30)=24;15亩原有草量:1260-24*45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=42头:数学公式数量关系计算公式小升初数学知识定义定理公式数学公式思路:几何形体计算公式更多信息请点击:小升初小升初数学小升初数学知识点。
牛吃草问题工程问题经典例题(含答案版)
牛吃草问题、工程问题经典例题(含答案版)戴氏教育龙泉校区 VIP 数学教研组小升初冲刺第2讲牛吃草问题基本公式:1) 设定一头牛一天吃草量为“1”2)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;` 4)吃的天数=原有草量÷(牛头数-草的生长速度); 5)牛头数=原有草量÷吃的天数+草的生长速度。
例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。
问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150)÷(20-10)=5份10×20=200份??原草量+20天的生长量原草量:200-20×5=100 或150-10×5=100份15×10=150份??原草量+10天的生长量100÷(25-5)=5天[自主训练] 牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(180-150)÷(20-10)=3份9×20=180份??原草量+20天的生长量原草量:180-20×3=120份或150-10×3=120份15×10=150份??原草量+10天的生长量120÷(18-3)=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。
已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。
照此计算,可供多少头牛吃10天?解:假设1头牛1天吃的草的数量是1份草每天的减少量:(100-90)÷(6-5)=10份20×5=100份??原草量-5天的减少量原草量:100+5×10=150 或90+6×10=150份15×6=90份??原草量-6天的减少量(150-10×10)÷10=5头[自主训练] 由于天气逐渐寒冷,牧场上的牧草每天以均匀的速度减少,经测算,牧场上的草可供30头牛吃8天,可供25头牛吃9天,那么可供21头牛吃几天?解:假设1头牛1天吃的草的数量是1份草每天的减少量:(240-225)÷(9-8)=15份30×8=240份??原草量-8天的减少量原草量:240+8×15=360份或220+9×15=360份25×9=225份??原草量-9天的减少量360÷(21+15)=10天戴氏教育龙泉校区 VIP 数学教研组例3、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。
牛吃草问题、盈亏问题、鸡兔同笼问题
牛吃草问题、盈亏问题、鸡兔同笼问题1、由于天气逐渐变冷,牧场上的草每天以均匀的速度减少。
经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天。
那么,可供11头牛吃几天?分析:以1头牛1天吃的草为1份。
牧场上的草每天自然减少(20×5-16×6)÷(6-5)=4(份),原来牧场有草(20+4)×5=120(份),可供11头牛吃120÷(11+4)=8(天)。
2、有一个水池,池底有一个打开的出水口。
用5台抽水机 20时可将水抽完,用 8台抽水机 15时可将水抽完。
如果仅靠出水口出水,那么多长时间能把水漏完?分析:将1台抽水机1时的抽水量当做1份。
出水口每时出水(8×15-5×20)÷(20-15)=4(份),水池原有水(5+4)×20=180(份),单靠出水口漏完需180÷4=45(时)。
3、有三块草地,面积分别为4公顷、8公顷和10公顷。
草地上的草一样厚,而且长得一样快。
第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周。
问:第三块草地可供50头牛吃几周?分析:将第一块草地及牛的头数都扩大到原来的2倍,变成8公顷地可供48头牛吃6周。
对比第二块草地,8公顷地可供36头牛吃12周。
设1头牛1周吃的草为1份,则8公顷地每周长草(36×12-48×6)÷(12-6)=24(份),8公顷地原有草(36-24)×12=144(份)。
可供50头牛吃180÷(50-30)=9(周)。
4、若干个同学去划船,他们租了一些船,若每船4人则多5人,若每船5人则船上有4个空位。
问:有多少个同学?多少条船?分析:41名同学,9条船5、全班同学去划船,如果减少一条船,那么每条船正好坐9人;如果增加一条船,那么每条船正好坐6人。
问:全班有多少人?分析:36人。
6、2分和5分的硬币共36枚,共值 99分。
牛吃草问题应用题及答案(难点的)
牛吃草问题应用题及答案(难点的)1.牛吃草问题的描述牛吃草问题是一个经典的动态规划问题,它描述的是一头牛在一个n*m的草地上吃草,牛可以沿着上下左右四个方向移动,每次移动后都要吃掉草地上的一片草,问牛最多可以吃掉多少片草。
牛吃草问题的输入是一个n*m的草地,草地上的每片草都有一个价值,牛只能沿着上下左右四个方向移动,每次移动后都要吃掉草地上的一片草,问牛最多可以吃掉多少片草,以及牛最多可以吃掉的草的价值。
牛吃草问题的输出是牛最多可以吃掉的草的价值,以及牛最多可以吃掉的草的价值,以及牛最多可以吃掉的草的价值。
牛吃草问题的解法是使用动态规划的思想,首先建立一个n*m的矩阵,矩阵的每个元素表示牛在该位置可以吃掉的最大价值,然后从草地的左上角开始,每次向右或者向下移动一步,更新矩阵元素的值,最后矩阵的右下角元素的值就是牛最多可以吃掉的草的价值。
2.牛吃草问题的解法牛吃草问题的解法:1. 增加牧草的种植面积:增加牧草的种植面积,可以提高牧草的产量,从而满足牛的饲料需求。
2. 加强牧草管理:加强牧草管理,可以提高牧草的质量,从而满足牛的营养需求。
3. 引进其他饲料:引进其他饲料,可以补充牛的营养,减少牧草的需求量。
4. 加强牛的繁殖管理:加强牛的繁殖管理,可以减少牛的数量,从而减少牧草的需求量。
5. 开展草原保护:开展草原保护,可以保护草原的生态环境,从而提高牧草的产量。
3.牛吃草问题的难点分析牛吃草问题的难点分析:1. 对于牛吃草的问题,最大的难点在于如何有效地利用草地上的资源,使得牛能够尽可能多地吃到草,而不会因为吃草的过程中造成草地的破坏。
2. 另一个难点在于如何有效地控制牛的数量,使牛的数量不会过多,从而避免牛吃草对草地的过度消耗。
3. 另外,牛吃草问题还需要考虑牛的饲养管理,以及如何防止牛的疾病等因素,以保证牛的健康状况。
4. 最后,牛吃草问题还需要考虑如何在牛吃草的过程中,保护草地的生态环境,以及如何保护草地的生物多样性。
牛吃草问题经典例题及答案
牛吃草问题经典例题及答案
牛吃草是小学生中一道比较流行的非常有意义的例题,它承载着孩子们对世界
的好奇,也给出了一种启发:只有不断思考、不断积累,才能不断拓展视野,学会正确地看待客观世界。
牛吃草问题:假设有一头牛,吃完一块草以后,草变为两块,请问一天内有多
少牧草?
答案:2^n(n为牛吃草的次数)。
对于这道牛吃草问题,我们可以分析如下:
先来看一下,假设有一块草,牛第一天吃完以后,草就变为两块。
在第二天牛
吃了一块,剩下的又变成了两块。
就这么一直下去,直到最后一天牛吃了最后一块草,此时草的数量为2^n(n为牛吃草的次数)。
就算上,牛一天内就能吃掉2^n块草,但是也不完全是不可能的呀!我们可以
把n看成一种策略的积累,结合现实生活中的一些概念带入,假如有一头牛,牧场里只有一片草地,牛一直在草地上跑动,偶尔会停下来吃一口草,当它走到草地的另一端时,它发现其实自己所吃的草变成了两块,于是又继续跑,继续吃。
于是,也可以解释为:一天内有2^n块草。
为了鼓励孩子们细心思考,我们可以用“牛吃草问题”来引导孩子们学习。
让
孩子们熟悉问题,分析本质,并扩充自己的视野,当他们把问题解决了,也会有一种极大的成就感。
这种思维方式可以树立一种良好的学习习惯:多思考、多积累,从而拓展视野,更好地掌握知识,以头脑大开的方式看待客观世界。
而学前教育也正是通过这样的方式帮助孩子们拓展思维能力,培养他们的独立思考和创新能力的,这才是学前教育的真正意义。
牛吃草问题专题(例题+练习+作业)
牛吃草问题专题(例题+练习+作业)牛吃草问题,又称为消长问题或XXX牧场。
该问题最初由17世纪英国伟大的科学家XXX(1642-1727)提出。
典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
解决牛吃草问题常用到五个基本公式:1.设定一头牛一天吃草量为“1”;2.草的生长速度=草量差/时间差;3.原有草量=牛头数×吃的天数-草的生长速度×吃的天数;4.吃的天数=原有草量/(牛头数-草的生长速度);5.牛头数=原有草量/吃的天数+草的生长速度。
这五个公式是解决牛吃草问题的基础。
首先一般假设每头牛每天吃草量不变,设为“1”,解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。
例1:一块牧场长满了草,每天均匀生长。
这块牧场的草可供10头牛吃40天,供15头牛吃20天。
问:这片牧草可供25头牛吃多少天?练:1.一块牧场长满了青草,每天还在匀速生长。
这块牧场的草可供10头牛吃40天,供15头牛吃20天。
可供25头牛吃多少天?2.一个牧场长满青草,牛在吃草而草又在不断生长。
已知牛27头,6天把草吃尽,同样一片牧场,23头牛9天把草吃尽。
如果有牛21头,几天能把草吃尽?3.牧场上长满了青草,而且每天还在匀速生长。
这片牧场上的草可供9头牛吃20天,可供15头牛吃10天。
如果要供18头牛吃,可吃几天?例2:由于天气逐渐寒冷,牧场上的牧草每天以均匀的速度减少,经测算,牧场上的草可供30头牛吃8天,可供25头牛吃9天。
那么可供21头牛吃几天?练:1.由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。
如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?2.一片牧草,每天生长的速度相同。
现在这片牧草可供20头牛吃12天,或可供60只羊吃24天。
小学奥数牛吃草问题应用题练习50题附详解
小学奥数牛吃草问题专项练习50题附详解(1)120头牛28天吃完10公顷牧场上的全部牧草,210头牛63天吃完30公顷牧场上的全部牧草,如果每公顷牧场上原有的牧草相等,且每公顷每天新生长的草量相同,那么多少头牛126天可以吃完72公顷牧场上的全部牧草?(2)12头牛28天可以吃完10公亩牧场上全部牧草,21头牛63天可以吃完30公亩牧场上全部牧草.多少头牛126天可以吃完72公亩牧场上全部牧草(每公亩牧场上原有草量相等,且每公亩牧场上每天生长草量相等)?(3)牧场南面一块2000平方米的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供18头牛吃16天,或者供27头牛吃8天.在牧场的西侧有一块6000平方米的牧场,可供多少头牛吃6天?(4)画展9点开门,但早就有人排队等候入场了.从第一个观众来到时起,每分钟来的观众人数一样多.如果开3个入场口,则9点9分就不再有人排队了,如果开5个入场口,则9点5分就没有人排队了.那么第一个观众到达的时间是8点几分?(5)甲,乙,丙三个仓库,各存放着数量相同的面粉,甲仓库用一台皮带输送机和12个工人,5小时可将甲仓库内面粉搬完;乙仓库用一台皮带输送机和28个工人,3小时可将仓库内面粉搬完;丙仓库现有2台皮带输送机,如果要用2小时把丙仓库内面粉搬完,同时还要多少个工人?(每个工人每小时工效相同,每台皮带输送机每小时工效也相同,另外皮带输送机与工人一起往外搬运面粉)(6)甲,乙,丙三人同时从同一地点出发,沿同一路线追赶前面的小明,他们三人分别用9分钟,15分钟,20分钟追上小明,已知甲每小时行24千米,乙每小时行20千米,求丙每小时行多少千米?(7)假设地球上新生成的资源的增长速度是一定的,照此测算,地球上资源可供137.5亿人生活112.5年,或可供112.5亿人生活262.5年,为使人类能不断繁衍,那么地球上最多能养活多少亿人?(8)快、中、慢三车同时从A地出发,追赶一辆正在行驶的自行车,三车的速度分别是每小时24千米,20千米,19千米.快车追上自行车用了6小时,中车追上自行车用了10小时,慢车追上自行车用多少小时?(9)两位孩子逆着自动扶梯的方向行走.在20秒钟里,男孩可走27级梯级,女孩可走24级梯级,结果男孩走了2分钟到达另一端,女孩走了3分钟到达另一端.问:该扶梯共多少级?(10)两只蜗牛由于耐不住阳光的照射,从井顶逃向井底.白天往下爬,两只蜗牛白天爬行的速度是不同的,一只每个白天爬20分米,另一只爬15分米.黑夜里往下滑,两只蜗牛滑行的速度却是相同的.结果一只蜗牛恰好用5个昼夜到达井底,另一只蜗牛恰好用6个昼夜到达井底.那么,井深多少米?(11)某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟.如果同时打开7个检票口,那么需多少分钟?(12)某建筑工地开工前运进一批砖,开工后每天运进相同数量的砖,如果派15个工人砌砖墙14天可以把砖运完,如果派20个工人,9天可以把砖用完,现在派若干名工人砌了6天后,调走6名工人,其余工人又工作4天才砌完,问原来有多少工人来砌墙?(13)某商场八时三十分开门,但早有人来等候.从第一个顾客来到时起,每分钟来的顾客数一样多.如果开三个入口,八时三十九分就不再有人排队:如果开五个入口,八时三十五分就不再有人排队.那么,第一个顾客到达时是几点几分?(14)某游乐场在开门前有400人排队等待,开门后每分钟来的人数是固定的.一个入场口每分钟可以进来10个游客,如果开放4个入场口.20分钟就没有人排队,现在开放6个入口,那么开门后多少分钟后就没有人排队?(15)牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.问:这片牧草可供25头牛吃几天?(16)牧场上有一片牧草,可以供27头牛吃6天,供23头牛吃9天,如果每天牧草生长的速度相同,那么这片牧草可以供21头牛吃几天?(17)入冬及其它原因,某片草地的草每天自然减少且减少的速度相同.这片草地可供8头牛吃10天,或供26头牛吃4天.供16头牛吃,能吃几天?(18)天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么可供11头牛吃几天?(19)现欲将一池塘水全部抽干,但同时有水匀速流入池塘.若用8台抽水机10天可以抽干;用6台抽水机20天能抽干.问:若要5天抽干水,需多少台同样的抽水机来抽水?(20)沿着匀速成上升的自动扶梯,甲从上朝下走到底走了150级,乙从下朝上走到顶走了75级.如果甲每分钟走的扶梯级数是乙的3倍,那么这部自动扶梯有多少级?(21)羊村有一批青草,若8只大羊和10只小羊一起吃,则可以吃12天,已知两只小羊每天吃的草量与一只大羊吃的草量相等.那么,这批青草可供多少只小羊和5只大羊吃8天?(22)一个农夫有2公顷,4公顷和6公顷三块牧场,三场牧场上的草长得一样密,而且长得一样快,农夫将8头牛赶到2公顷的牧场,5天吃完了,农夫又将这8头牛赶到4公顷的牧场,15天又吃完了;最后,这8头牛又被赶到6公顷的牧场,这块牧场够吃多少天?(23)一个水库水量一定,河水匀速流入水库.5台抽水机连续20天可抽干,6台同样的抽水机15天可抽干.若要求6天抽干,需要多少台同样的抽水机?(24)一块草地,每天生长的速度相同.现在这片牧草可供16头牛吃20天,或者供80只羊吃12天.如果一头牛一天的吃草量等于4只羊一天的吃草量,那么10头牛与60只羊一起吃可以吃多少天?(25)一牧场上的青草每天都匀速生长.这片青草可供10头牛吃20周,或供15头牛吃10周.那么可供25头牛吃几周?(26)一牧场上的青草每天都匀速生长.这片青草可供27头牛吃6周或供23头牛吃9周.那么可供21头牛吃几周?(27)一片草地,每天都匀速长出青草,这片草地可供8头牛吃20天或15头牛吃15天,那么这片草地可供16头牛吃几天?(28)一片草地,每天都匀速长出青草.如果可供24头牛吃6天,或20头牛吃10天吃完.那么可供19头牛吃几天?(29)一片草地每天长的草一样多,现有牛、羊、鹅各一只,且羊和鹅吃草的总量正好是牛吃草的总量.如果草地放牧牛和羊,可以吃45天;如果放牧牛和鹅,可吃60天:如果放牧羊和鹅,可吃90天.这片草地放牧牛、羊、鹅,可以供它们吃多少天?(30)一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马,牛,羊一起去吃草,几天可以将这片牧草吃尽?(31)一艘轮船发生漏水事故,船长立即安排两部抽水机同时向外抽水,当时已经漏了500桶水,一部抽水机每分钟抽水18桶,另一部每分钟抽水12桶,经过25分钟把水抽完,问每分钟漏进水多少桶?(32)一只船有一个漏洞,水以均匀速度进入船内,发现漏洞时船内已经进入一些水,如果以8个人淘水,5小时可以淘完;如果以5个人淘水,10小时才能淘完.现在要想在2小时内淘完,需要多少人?(33)因为天气日渐寒冷,牧场上的草不但不生长,反而以固定的速度每天在减少.如果20头牛去吃20天可以吃完;如果30头牛去吃15天可以吃完.那么,如果10头牛去吃多少天可以吃完?(34)由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,可供11头牛吃几天?(35)由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可供多少头牛吃10天?(36)有甲、乙两块匀速生长的草地,甲草地的面积是乙草地面积的三倍.30头牛12天能吃完甲草地上的草,20头牛4天能吃完乙草地的草.问几头牛10天能同时吃完两块草地上的草?(37)有快、中、慢三辆车同时从同一地点出发,沿同一条公路追赶前面的一个骑车人,这三辆车分别用6分钟,10分钟,12分钟追上骑车人.现在知道快车每小时行24千米,中车每小时行20千米,那么慢车每小时行多少千米?(38)有三块草地,面积分别是4公顷,8公顷和10公顷,草地上的草一样厚,而且长得一样快.第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问:第三块草地可供50头牛吃几周?(39)有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?(40)有三块草地,面积分别是5,15,25亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,则第三块草地可供多少头牛吃60天?(41)有三块草地,面积分别为5,6和8公顷.草地上的草一样厚,而且长得一样快.第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天.问:第三块草地可供19头牛吃多少天?(42)有一个水池,池底有一个打开的出水口,用5台抽水机20小时可将水抽完,用8台抽水机15小时可将水抽完.如果仅靠出水口出水,那么多长时间能把水漏完?(43)有一个蓄水池,池中已经有一些水,一个进水管不断向池内匀速进水.如果打开10个相同的出水管放水,3小时放完;如果打开5个相同的出水管放水,8小时放完.如果要求在2小时放完,要安排多少个相同的出水管?(44)有一个长方形的水箱,上面有一个注水孔,底面有个出水孔,两孔同时打开后,如果每小时注水30立方米,7小时可以注满水箱;如果每小时注水45立方米,注满水箱可少用2.5小时.那么每小时由底面小孔排水多少立方米?(每小时排水量相同)(45)有一口井,用四部抽水机40分钟可以抽干,若用同样的抽水机6部,24分钟可以抽干,那么同样用抽水机5部,多少时间可以抽干?(46)有一口水井,连续不断涌出泉水,每分钟涌出的水量相等.如果使用3台抽水机来抽水,36分钟可以抽完;如果使用5台抽水机来抽水,20分钟可抽完.现在12分钟内要抽完井水,需要抽水机多少台?(47)有一牧场,17头牛30天可将草吃完,19头牛则24天可将草吃完.现有牛若干头,吃6天后卖了4头,余下的牛再吃2天便将草吃完,问有牛多少头(草每日匀速生长)?(48)有一牧场,已知养牛27头,6天把草吃尽,养牛23头,9天把草吃尽.如果养牛21头,那么几天能把草吃尽呢?(49)有一桶酒,每天都因桶有裂缝而要漏掉等量的酒,现在这桶酒如果给6人喝,4天可喝完;如果由4人喝,5天可喝完.这桶酒每天漏掉的酒可供几人喝一天?如果桶没有裂缝由4个人来喝需要几天喝完?(50)有一眼泉井,用功率一样的3台抽水机去抽井水,同时开机,40分钟可以抽干;用同样的6台抽水机去抽,则只需要16分钟就可以抽干,那么用同样的抽水机9台,几分钟可以抽干?小学奥数牛吃草问题专项练习50题详解(1)解:设1头牛1天吃1份牧草.120头牛28天吃掉120×28=3360份,说明每公顷牧场28天提供3360÷10=336份牧草;210头牛63天吃掉210×63=13230份,说明每公顷牧场63天提供13230÷30=441份牧草;每公顷牧场63-28=35天多提供441-336=105份牧草,说明每公顷牧场每天的牧草生长量为105÷35=3份,原有草量为336-28×3=252份.如果是72公顷的牧场,原有草量为252×72=18144份,每天新长出3×72=216份,126天共计提供牧草18144+126×216=45360份,可供45360÷126=360头牛吃126天.(2)解:设1头牛1天吃1份牧草,则每公亩牧场上的牧草每天的生长量:(21×63÷30-12×28÷10)÷(63-28)=0.3(份)每公亩牧场上的原有草量:21×63÷30-0.3×63=25.2(份)则72公亩的牧场126天可提供牧草:(25.2+0.3×126)×72=4536(份)可供养4536÷126=36头牛.(3)解:设1头牛1天的吃草量为"1"将它们转化为如下形式方便分析:18头牛16天共18×16=288份相当于原有草量+16天自然增加的草量27头牛8天供27×8=216 份相当于原有草量+8天自然增加的草量从上看出:2000平方米的牧场上16-8=8天生长草量=288-216=72即1天生长草量=72÷8=9那么2000平方米的牧场上原有草量:288-16×9=144或216-8×9=144则6000平方米的牧场1天生长草量=9×(6000÷2000)=27原有草量:144×(6000÷2000)=4326天里,西侧草场共提供草432+27×6=594可以让594÷6=99(头)牛吃6天.(4)解:设一个入口1分钟入场的人数为1份,3个入场口9分钟进入了27份观众,5个入场口5分钟进入了25份观众,说明4分钟来的观众人数是27-25=2份,即每分钟来0.5份.因为9点5分时共来了25份,来25份需要25÷0.5=50分钟,所以第一个观众到达的时间是8点15分.(5)解: 设1个工人1小时搬1份面粉.甲仓库中12个工人5小时搬了12×5=60份,乙仓库中28个工人3小时搬了28×3=84份,说明甲仓库的传送机5-3=2小时多输送了84-60=24份面粉,即每小时输送24÷2=12份,仓库中共有面粉(12+12)×5=120份.丙仓库中120份面粉需在2小时内搬完,每小时需搬120÷2=60份,因此需要工人60-12×2=36名.(6)解:(15×20-24×9)÷(15-9)=14(千米)15×20-14×15=90(千米)90÷20+14=18.5(千米).(7)解:设一亿人一年消耗的能源是1份.那么一年新生的能源是:(262.5×112.5-137.5×112.5)÷(262.5-112.5)=112.5×(262.5-137.5)÷(262.5-112.5)=14062.5÷150=93.75(份)要想使得人类不断生存下去,则每年消耗的能源最多就是每年新生的能源,那么最多的人口是:93.75÷1=93.75(亿人).答:地球上最多能养活93.75亿人.(8)解:6小时时自行车共走了:6×24=144(千米),10小时时自行车共走了:20×10=200(千米),自行车的速度为:(200-144)÷(10-6)=14(千米),三车出发时自行车已经走了:144-14÷6=60(千米),慢车追上的时间为:60÷(19-14)=12(小时).(9)解:2分钟=120秒,3分钟=180秒. 电动扶梯每分钟走:[(180÷20)×24-(120÷20)×27]÷(3-2)=216-162=54(级)电动扶梯共有:(120÷20)×27-54×2=54(级)答:该扶梯共54级.(10)解:(20×5-15×6+20)×5=30×5=150(分米)150分米=15米答:井深15米.(11)解:设1个检票口1分钟检票的人数为1份.因为4个检票口30分钟通过(4×30)份,5个检票口20分钟通过(5×20)份,说明在(30-20)分钟内新来旅客(4×30-5×20)份,所以每分钟新来旅客(4×30-5×20)÷(30-20)=2(份).假设让2个检票口专门通过新来的旅客,两相抵消,其余的检票口通过原来的旅客,可以求出原有旅客为(4-2)×30=60(份)或(5-2)×20=60(份).同时打开7个检票口时,让2个检票口专门通过新来的旅客,其余的检票口通过原来的旅客,需要60÷(7-2)=12(分).(12)解:依题意知开工前运进的砖相当于"原有草"开工后每天运进相同的砖相当于"草的生长速度"工人砌砖相当于"牛在吃草".所以设1名工人1天砌砖数量为"1",列表分析得:15人14天共15×14=210份:原有砖的数量+14天运来砖的数量20人9天共20×9 =180份:原有砖的数量+9天运来砖的数量从上面的表中可以看出(14-9)=5天运来的砖为(210-180)=30即1天运来的砖为30÷5=6原有砖的数量为:180-6×9=126假设6名工人不走,则能多砌6×4=24份砖则砖的总数为126+24+6×(6+4)=210因为是10天工作完,所以有210÷10=21名工人.(13)解:设每个入口每分钟来商场的人数为一份从八时三十分到八时三十九分经过了:9分钟从八时三十分到八时三十五分经过了:5分钟每个入口每分钟增加的人数:(9×3-5×5)÷(5-3)=2÷2=1(份)每个入口原有等候的人数:9×3-1×9=27-9=18(份)从第一个顾客来到时起,到八时三十分开门经过的时间是:18÷1=18(分钟)所以第一个顾客到达时是8点12分.答:第一个顾客到达时是8点12分.(14)解:4个入场口20分钟进入的人数是:10×4×20=800(人),开门后20分钟来的人数是:800-400=400(人),开门后每分钟来的人数是:400÷20=20(人),设开6个入场口x分钟后没有人排队,由题意列方程得10×6×x=400+20x, 40x=400,x=10.答:开放6个入场口10分钟后就没有人排队.(15)解:设1头牛1天吃的草为1份,由条件可知,前后两次青草的问题相差为10×20-15×10=50.为什么会多出这50呢?这是第二次比第一次多的那(20-10)=10(天)生长出来的,所以每天生长的青草为50÷10=5.现从另一个角度去理解,这个牧场每天生长的青草正好可以满足5头牛吃.由此,我们可以把每次来吃草的牛分为两组,一组是抽出的5头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(10-5)×20=100.那么:第一次吃草量20×10=200,第二次吃草量,15×10=150;每天生长草量50÷10=5.原有草量(10-5)×20=100或200-5×20=100.25头牛分两组,5头去吃生长的草,其余20头去吃原有的草那么100÷20=5(天).答:可供25头牛吃5天.(16)解:设每头牛每天吃"1"份草.每天新生草量为:(23×9-27×6)÷(9-6)=(207-162)÷3=45÷3=15(份)原有草量为:27×6-15×6=72(份)21头牛吃的天数:72÷(21-15)=72÷6=12(天)答:这片牧草可供21头牛吃12天.(17)解:设每头牛每天吃草1份则草每天减少:(26÷4-8×10)÷(10-4)=(104-80)÷6=24÷6=4(份)由于草每天减少4份,就相当于每天增加了4头牛吃草,那么草地原有的草的份数:(8+4)×10=12×10=120(份)16头牛吃:120÷(16+4)=120÷20=6(天)答:供16头牛吃,能吃6天.(18)解:5天时共有草:20×5=1006天时共有草:16×6=96草减少的速度为:(100-96)÷(6-5)=4原有的草量为:100+4×5=120可供11头牛吃:120÷(11+4)=8(天).(19)解:设1台抽水机1天的抽水量为1单位,则池塘每天的进水速度为:(6×20-8×10)÷(20-10)=4单位池塘中原有水量:6×20-4×20=40单位若要5天内抽干水,需要抽水机40÷5+4=12台.(20)解:(150×3+75×2)÷(3+2)=(450+150)÷5=120(级)答:这部自动扶梯有120级.(21)解:假设一只小羊每天吃1份草;这批青草共有:(8×2+10)×12=312(份)5只大羊8天吃青草:5×2×8=80(份)可供小羊的只数是:(312-80)÷8=29(只)答:可供29只小羊和5只大羊吃8天.(22)解:5×8÷2=20,15×8÷4=30(30-20)÷(15-5)=11×6=620-5×1=1515×6=9090÷(8-6)=45(天).(23)解:20天共抽水:20×5=10015天共抽水:15×6=90进水的速度为:(100-90)÷(20-15)=2原有水为:100-2×20=6060÷6=10(台)10+2=12(台).(24)解:设1头牛1天吃1份牧草那么16头牛20天一共吃了16×20=320份草20头牛12天吃了240份草每天长草量为(320-240)÷(20-12)=10份草原有的草量为320-10×20=120份草现在有10+15=25头牛,其中吃原有草的牛有25-10=15头那么可以吃120÷15=8天.(25)解:把一头牛一周所吃的牧草看作1,那么就有:10头牛20周所吃的牧草为:10×20=200 (这200包括牧场原有的草和20周新长的草)15头牛10周所吃的牧草为:15×10=150(这150包括牧场原有的草和10周新长的草)1周新长的草为:(200-150)÷(20-10)=5牧场上原有的草为:10×20-5×20=100每周新长的草不够250头牛吃,25头牛减去20头,剩下5头吃原牧场的草:100÷(25-5)=100÷20=5(周)答:可供25头牛吃5周.(26) 解:设1头牛1周吃的草为1份牧场每周新长草(23×9-27×6)÷(9-6)=15(份)草地原有草(27-15)×6=72(份)可供21头牛吃72÷(21-15)=12(周)(27) 解:假设每头牛每天吃青草1份青草的生长速度:(15×15-20×8)÷(20-15)=65÷5=13(份)草地原有的草的份数:15×15-13×15=225-195=30(份)每天生长的13份草可供13头牛去吃,那么剩下的16-13=3头牛吃30份草: 30÷(16-13)=30÷3=10(天)答:这片草地可供16头牛吃10天.(28) 解:6天时共有草:24×6=14410天时共有草:20×10=200草每天生长的速度为:(200-144)÷(10-6)=14原有草量:144-6×14=60可供19头牛: 60÷(19-14)=12(天).(29) 解:设1头牛1天吃草量为"1",将它们转化为如下形式方便分析.45天牛和羊吃草量=原有草量+45天新长草量 ①60天牛和鹅吃草量=原有草量+60天新长草量 ②90天牛(鹅和羊)吃草量=原有草量+90天新长草量 ③由①×②-③可得: 90天羊吃草量=原有草量,羊每天吃草量=原有草量÷90 由(3)分析知道:90天鹅吃草量=90天新长草量,鹅每天吃草量=每天新长草量;将分析的结果带入②得:原有草量=60,带入③得90天羊吃草量=60,羊每天吃草量=32 这样如果牛,羊和鹅一起吃,可以让鹅去吃新生草,牛和羊吃原有草可以吃:60÷(1+32)=36(天). (30) 解:设1匹马1天吃草量为"1",将它们转化为如下形式方便分析:15天马和牛吃草量=原有草量+15天新长草量 ①20天马和羊吃草量=原有草量+20天新长草量 ②30马(牛和羊)吃=原有草量+30天新长草量 ③由①×②-③可得: 30天牛吃草量=原有草量,牛每天吃草量=原有草量÷30;由③分析知道:30天羊吃草量=30天新长草量,羊每天吃草量=每天新长草量;将分析的结果带入②得:原有草量=20,带入③30天牛吃草量=20,得牛每天吃草量=32,这样如果马,牛和羊一起吃,可以让羊去吃新生草,马和牛吃原有草可以吃:20÷(1+32)=12(天). (31) 解:25分钟共抽水:(18+12)×25=750(桶)25分钟共漏水:750-500=250(桶)每分钟漏水:250÷25=10(桶).(32) 解:设每人每小时淘水1份.(1×10-5×8)÷(10-5)=10÷5=2(份)(30+2×2)÷2=34÷2=17(人)答:现在要想在2小时内淘完,需要17人.(33) 解:(30×15-20×20)÷(20-15)=1020×20+10×20=600600÷(10+10)=30(天)答:10头牛去吃30天可吃完.(34) 解:设1头牛1天吃1份牧草,则20头牛5天吃掉20×5=100份牧草,16头牛6天吃掉16×6=96份牧草,说明6-5=1天牧场上的牧草减少100-96=4份,我们可以假设有4头牛来帮忙把这部分草给吃了.牧场上的原有草量是:100+4×5=120份.原来有11头牛,现在又有4头牛来帮忙吃,所以可维持120÷(11+4)=8天.(35) 解:设1头牛1天吃的草为1份.20头牛5天吃100份,15头牛6天吃90份,100-90=10(份),说明寒冷使牧场1天减少青草10份,也就是说,寒冷相当于10头牛在吃草.由"草地上的草可供20头牛吃5天",再加上"寒冷"代表的10头牛同时在吃草,所以牧场原有草(20+10)×5=150(份).由 150÷10=15知,牧场原有草可供15头牛吃 10天,寒冷占去10头牛,所以,可供5头牛吃10天.(36) 解:设1头牛1天的吃草量为"1",将它们转化为如下形式方便分析,根据甲的面积是乙的3倍可以将关系(将乙看成1份,则甲就是3份)进行转化.甲: 30头牛12天30×12=360:甲原有草量+12天甲地自然增加的草量,甲转化为:10 头牛 12天10×12=120:乙原有草量+12天乙地自然增加的草量乙转化为: 20头牛4天20×4 = 80乙原有草量+ 4天乙地自然增加的草量.由此可以看出(12-4)=8天乙地长草量为(120-80)=40,即1天乙地长草量为40÷8=5;乙地的原有草量为:120-5×12=60;则甲,乙两地1天的新生草为:5×(3+1)=20,原有草量为:60×(3+1)=240;10天甲,乙两地共提供青草为:240+20×10=440,需要:440÷10=44(头)牛.(37)解:24×6=144(千米)10×20=200(千米)(200-144)÷(10-6)=14(千米)200-10×14=60(千米)60÷12+14=19(千米).(38)解:设1头牛1周吃1份牧草.24头牛6周吃掉24×6=144份,说明每公顷草地6周提供144÷4=36份牧草;36头牛12周吃掉36×12=432份,说明每公顷草地12周提供432÷8=54份牧草.每公顷草地12-6=6周多提供54-36=18份牧草,说明每公顷草地每周的牧草生长量是18÷6=3份,原有草量是36-3×6=18份.10公顷草地原有18×10=180份牧草,每周新增3×10=30份,可供50头牛吃180÷(50-30)=9周.(39)解:设每头牛每天的吃草量为1则每亩30天的总草量为:10×30÷5=60每亩45天的总草量为:28×45÷15=84那么每亩每天的新生长草量为(84-60)÷(45-30)=1.6每亩原有草量为:60-1.6×30=12那么24亩原有草量为:12×24=28824亩80天新长草量为24×1.6×80=307224亩80天共有草量3072+288=3360所以有3360÷80=42(头)答:第三块地可供42头牛吃80天.(40)解:30×10÷5=6028×45÷15=84(84-60)÷(45-30)=1.61.6×25=4060-1.6×30=1212×25=300300÷60=5(头)40+5=45(头).(41)解:因为5公顷草地可供11头牛吃10天, 120÷5=24,所以120公顷草地可供11×24=264(头)牛吃10天.因为6公顷草地可供12头牛吃14天,120÷6=20,所以120公顷草地可供12×20=240(头)牛吃14天.120÷8=15,问题变为: 120公顷草地可供19×15=285(头)牛吃几天?因为草地面积相同,可忽略具体公顷数,所以原题可变为:"一块匀速生长的草地,可供264头牛吃10天,或供240头牛吃14天,那么可供285头牛吃几天?"设1头牛1天吃的草为1份.每天新长出的草有(240×14-264×10)÷(14-10)=180(份).草地原有草(264—180)×10=840(份).可供285头牛吃840÷(285—180)=8(天).所以,第三块草地可供19头牛吃8天.(42)解:设1台抽水机1小时抽出1单位的水,那么5台抽水机20小时抽出5×20=100单位的水,8台抽水机15小时抽出8×15=120单位的水,说明池底的出水口20-15=5小时漏出120-100=20单位的水,则出水口的出水速度是每小时20÷5=4单位,水池中原有100+4×20=180单位的水,如果仅靠出水口出水,需要180÷4=45小时.(43)解:每小时新注入的水量是:(5×8-10×3)÷(10-5)=(40-30)÷5=10÷5=2(个)排水前原有的水量是:10×3-2×3=30-6=24(个)蓄水池2小时的总水量是:24+2×2=28(个)2小时把池内的水排完需要安排同样的出水管数是:28÷2=14(个)答:要想2小时内把池内的水排完需要安排同样的14个出水管.(44)解:7小时共注水:7×30=210(立方米)4.5小时共注水:(7-2.5)×45=202.5(立方米)排水速度为:(210-202.5)÷(7-4.5)=3(立方米).(45)解:设每台抽水机每分钟的抽水量为1份.井每分钟涌出的水量为:(4×40-6×24)÷(40-24)=16÷16=1(份)井里原有水量为:4×40-40×1=120(份)或6×24-24×1=120(份);井每分钟涌出的水即1份,要用1台抽水机去抽,剩下5-1=4(台)抽水机就要去抽原有的水:120÷(5-1)=120÷4=30(分钟)答:同样用抽水机5部,30分钟可以抽干.(46)解:36分钟时的总水量为:3×36=10820分钟时的总水量为:5×20=100涌水的速度为:(108-100)÷(36-20)=0.5原水量为:100-20×0.5=9090÷12=7.5 (台)7.5+0.5=8(台).(47)解:设1头牛1天吃1份草则牧草每天的生长量:(17×30-19×24)÷(30-24)=9份原有草量:17×30-9×30=240份假设牛的数量保持不变,连续吃6+2=8天共需要牧草240+9×8+4×2=320份因此有牛320÷8=40头.(48)解:设1头牛1天吃1份的草,求两个总量,27×6=162,23×9=207,总量的差÷时间差=每天长草量=安排去吃新草的牛数(207-162)÷(9-6)=15.每天长草量×天数=总共长出来的草15×6=90,草的总量-总共长出来的草=原有。
奥数牛吃草10题
牛吃草问题10题:1、一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天。
那么它可供几头牛吃20天?可供29头牛吃几天?2、牧场上长满牧草,每天牧草都匀速生长。
这片牧场可供10头牛吃20天,可供15头牛吃10天。
那么这片牧场可供几头牛吃25天?3、由于天气逐渐变冷,牧场上的草每天以均匀的速度减少。
经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天。
那么,可供11头牛吃几天?4、有一片草场,草每天的生长速度相同。
若14头牛30天可将草吃完,70只羊16天也可将草吃完(4只羊1天的吃草量相当于1头牛1天的吃草量)。
那么,17头牛和20只羊多少天可将草吃完?5、.牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供21头牛吃几周?6、有三块草地,面积分别为5公顷、15公顷和24公顷。
草地上的草一样厚,而且长得一样快。
第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天。
问:第三块草地可供多少头牛吃80天?7、有三块草地,面积分别为5,6和8公顷。
草地上的草一样厚,而且长得一样快。
第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天。
问:第三块草地可供19头牛吃多少天?8、一个水池装一个进水管和三个同样的出水管。
先打开进水管,等水池存了一些水后,再打开出水管。
如果同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,那么5分钟后水池空。
那么出水管比进水管晚开多少分钟?9、一个水池有一根进水管不间断地进水,还有若干根相同的抽水管若用24根抽水管抽水,6小时即可把池中的水抽干;若用21根抽水管抽水,8小时可把池中的水抽干。
若用16根抽水管,需要 ____小时可把水池中的水抽干。
10、画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5分就没有人排队。
高难度牛吃草问题例题
高难度牛吃草问题例题
【原创实用版】
目录
1.高难度牛吃草问题概述
2.例题介绍
3.解题思路和方法
4.结论
正文
【1.高难度牛吃草问题概述】
高难度牛吃草问题是指在牛吃草问题中,涉及到的草场、牛群数量、吃草速度等多个因素较为复杂,需要运用一定的数学知识和技巧进行求解的问题。
牛吃草问题属于数学中的算术问题,主要涉及牛吃草的基本公式和草场生长速度等概念。
【2.例题介绍】
假设有一个草场,草场的草每天以固定的速度生长,同时草场上有若干头牛在吃草。
已知每头牛每天吃草的量是固定的,问:在草场草量有限的情况下,若干头牛可以在草场上吃草多少天?
【3.解题思路和方法】
解牛吃草问题需要运用到牛吃草的基本公式,同时考虑到草场的草量有限,以及每天草的生长速度。
具体的解题步骤如下:
1) 设草场上原有草量为 A,草每天生长速度为 B,每头牛每天吃草量为 C,共有 N 头牛在草场上吃草,可吃草的天数为 X。
2) 根据牛吃草的基本公式,得出:A + BX = NXC
3) 由于草场草量有限,可吃草的天数 X 需满足:X ≤ A / (N * C)
4) 结合以上两个方程,可以求解出牛在草场上最多可以吃草的天数。
【4.结论】
高难度牛吃草问题需要运用牛吃草的基本公式,同时考虑到草场的草量有限和每天草的生长速度。
通过列方程和求解,可以得出牛在草场上最多可以吃草的天数。
高难度牛吃草问题例题
高难度牛吃草问题例题摘要:一、牛吃草问题简介二、高难度牛吃草问题解析1.问题概述2.解题思路3.举例说明三、实战应用与拓展1.应用场景2.解题技巧3.注意事项正文:一、牛吃草问题简介牛吃草问题,又称牛顿问题,源于古希腊数学家阿基米德对牛顿的研究。
该问题描述了在一定时间内,牛吃草的速度与草的生长速度之间的关系。
牛吃草问题可分为一般形式和高难度形式。
本文将重点讨论高难度牛吃草问题的解题方法。
二、高难度牛吃草问题解析1.问题概述高难度牛吃草问题通常包括以下几个要素:(1)牛的数量(N):表示吃草的动物数量。
(2)草场初始面积(A):表示草场可供牛食用的面积。
(3)草的生长速度(B):表示草场每小时增长的面积。
(4)牛的吃草速度(C):表示每头牛每小时消耗的草场面积。
(5)时间(t):表示经过一定时间后,草场剩余的面积。
2.解题思路解决高难度牛吃草问题的关键在于找到牛吃草速度与草场剩余面积之间的关系。
根据题目给出的条件,可以得到以下公式:A - (N * C + B) * t = 剩余面积3.举例说明假设有一个草场,初始面积为100公顷。
有3头牛在草场上吃草,每头牛每小时吃掉5公顷的草。
草场每小时增长10公顷。
经过2小时后,草场剩余面积是多少?根据公式,可得:100 - (3 * 5 + 10) * 2 = 剩余面积计算得:剩余面积= 60公顷三、实战应用与拓展1.应用场景高难度牛吃草问题在实际生活中较少出现,但在数学、物理等领域具有较高的研究价值。
掌握高难度牛吃草问题的解题方法,有助于提高解决问题的能力。
2.解题技巧解决高难度牛吃草问题的关键在于正确运用公式,将已知条件代入公式求解。
在实际解题过程中,需要注意单位的统一和公式的正确性。
3.注意事项解答高难度牛吃草问题时,首先要理清题目的条件,确保理解的准确性。
其次,要熟练掌握公式,并能灵活运用。
最后,要注意检查计算过程,确保结果的正确性。
通过以上分析,我们可以发现,高难度牛吃草问题虽然复杂,但只要掌握了正确的解题方法,就能轻松应对。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
较复杂的牛吃草问题及盈亏问题应用题
1、在一片牧场里,放养4头牛,吃6亩草,18天可以吃完:放养6头牛,吃1 0亩草,30天可以吃完,请问放入多少头牛,吃8亩草,24天可以吃完?(假定这片牧场每亩中的原草量相同,且每天草的生长两相等)
提示:牛吃草问题在奥数竞赛中常见,近几年考试的难度不会加深,但变形的题目五花八门。
不过不管怎么变,只要知道牛吃草问题的根本解法,一切都会变得很简单。
还记得牛吃草问题的第一步怎么做吗?
有人说求出草量,这不是第一步,你是怎么求出草量的?哦,明白了吧!
那就是假设!假设一头牛一天吃的是一份!这个是最关键的一步,也是非常容易忽视的一步,大家一定要记住这一步!
好,这样你就可以求出6亩和10亩的草量了吧!
转化一下,转化成一亩的草量,否则生长量和原有草量都不一样就无法求解了!
接下来的事情就好办了,就和普通的牛吃草问题一样了,求出一亩的原有草量和生长量。
请大家认真思考,把剩下的步骤写出来!
2、有快、中、慢三辆车同时从同一地点出发,沿同一公路追赶路上的一个骑车人。
这三辆车分別用6小时、10小时、12小时追上骑车人。
現在知道快车每小时走24千米,中速車每小时走20千米,那么,慢速車每小時走多少千米?
提示:找到题中的“牛”与“草”,你就成功了一半。
3、某游乐场在开门前已经有100个人排队等待,开门后每分钟来的游人数是相同的,一个入口处每分钟可以放入10名游客,如果开放2个入口20分钟后就没有人排队,现在开放8个入口处,每分钟关闭一个门,那么开门后几分钟就没人排队了?
提示:解答出“原来一共的人”和“每分钟来的人”后,要结合我们很擅长的等差数列问题来解决。
盈亏问题,顾名思义有剩余就叫盈,不够分就叫亏,不同的方法分配物品时,经常会产生这种盈亏现象.盈亏问题的关键是抓住两次分配时盈亏总量的变化.盈亏问题分为三类:⑴直接计算型盈亏问题;⑵条件转换型盈亏问题;⑶关系互换型盈亏问题.
1 2、3、。