北师大版九下何时获得最大利润教案
新北师大版九年级数学下册第二章《何时获得最大利润 》优课件
在上述问题中,种 多少棵橙子树,可 以使果园橙子的 总产量最多?
x/棵 1 2 3 4 5 6 7 8 9 10 11 12 13 14 y/个
当增种10棵橙子树时,可以使果园橙子总产量最多。
议一议
何时橙子总产量最大
1、利用函数表达式描述橙子的总产量与增种橙子 树的棵数之间的关系。
y10x 0605 0x5x210 x 060000
5x10 260500
2、利用函数图象描述橙子的总产量与增种橙子树 的棵数之间的关系。 3、增种多少棵橙子,可以使橙子的总产量在60400 个以上? 当y604时 00,得
请你帮助分析,销售单价是 多少时,可以获利最多?
做一做
何时获得最大利润
某商店经营T恤衫,已知成批购进时单价是2.5元。 根据市场调查,销售量与销售单价满足如下关系:在 一段时间内,单价是13.5元时,销售量是500件,而 单价每降低1元,就可以多售出200件。
设销售价为x元(x≤13.5元),那么
销售量可表示为 : 53 02 20 01 0 2 0.5 3 0 0 xx 0 件;
销售额可表示为: x 5 32 0 2 0x00 1 20 .5 0 x3 0 02x 元; 所获利润可表示为:x 22 .5 0 x5 203 2 0 7x 0 1 0 0 8 .0 5 03 x 0 0元0 ;
独立 作业
P61 习题2.7 第1,2题
谢谢!
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月1日星期五2022/4/12022/4/12022/4/1 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/12022/4/12022/4/14/1/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/12022/4/1April 1, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
北师大版九年级数学下册:第2课时最大利润问题课件
随堂演练
1.服装店将进价为100元/件的服装按x元/件出售,每天可销 售(200-x)件,若想获得最大利润,则x应定为( A )
A.150 C.170
B.160 D.180
2.将进货价为70元/件的某种商品按零售价100元/件出售时每天能 卖出20件,若这种商品的零售价在一定范围内每降价1元,其日销 售量就增加1件,为了获得最大利润,决定降价x元,则单件的利 润为_(_3_0_-x_)_元,每日的销售量为_(_2_0_+_x_)_件,则每日的利润y(元) 关于x(元)的函数关系式是y=_-_x_2_+_1_0_x_+_6_0_0 (不要求写自变量的取值范围),所以每件降价__5_元时,每日获得 的最大利润为_6_2_5_元.
解:将这个函数关系式配方,得y=-100(x-12)2+225. 函数开口向上,顶点坐标是(12,225), ∵ 0 ≤ x≤2,
∴x= 12时,函数值取得最大值,最大值为y=225.
因此,当这种商品的售价降低1
2
元时,能使销售利润最大,最大利润
为225元 .
课堂小结
涨价销售
①每件涨价x元,则每星期售出商品的利润y元,填空:
单件利润(元)销售量(件) 每星期利润(元)
正常销售 涨价销售
20 20+x
300 300-10x
6000 y=(20+x)(300-10x)
建立函数关系式:y=(20+x)(300-10x), 即:y=-10x2+100x+6000.
②自变量x的取值范围如何确定? 营销规律是价格上涨,销量降落,因此只要考虑
销售中的常用数量关系 (1)销售额= 售价×销售量; (2)单件利润=售价-进价. (3)利润= 销售额-总成本=单件利润×销售量;
数学2.6《何时获得最大利润》学案(北师大版九年级下)
§2.6 何时获得最大利润学习目标:体会二次函数是一类最优化问题的数学模型.了解数学的应用价值,掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值.学习重点:本节重点是应用二次函数解决实际问题中的最值.应用二次函数解决实际问题,要能正确分析和把握实际问题的数量关系,从而得到函数关系,再求最值.实际问题的最值,不仅可以帮助我们解决一些实际问题,也是中考中经常出现的一种题型.学习难点:本节难点在于能正确理解题意,找准数量关系.这就需要同学们在平时解答此类问题时,在平时生活中注意观察和积累,使自己具备丰富的生活和数学知识才会正确分析,正确解题.学习方法:在教师的引导下自主学习。
学习过程:一、有关利润问题:某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?二、做一做:某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.⑴利用函数表达式描述橙子的总产量与增种橙子树的棵数之间的关系.⑵利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系.?⑶增种多少棵橙子,可以使橙子的总产量在60400个以上?三、举例:【例1】某商场经营一批进价为2元一件的小商品,在市场营销中发现此商品的日销售单价x元与日销售量y件之间有如下关系:(1①根据表中提供的数据描出实数对(x ,y )的对应点;②猜测并确定日销售量y 件与日销售单价x 元之间的函数表达式,并画出图象.(2)设经营此商品的日销售利润(不考虑其他因素)为P 元,根据日销售规律: ①试求出日销售利润P 元与日销售单价x 元之间的函数表达式,并求出日销售单价x 为多少元时,才能获得最大日销售利润?试问日销售利润P 是否存在最小值?若有,试求出;若无,请说明理由.②在给定的直角坐标系乙中,画出日销售利润P 元与日销售单价x 元之间的函数图象的简图,观察图象,写出x 与P 的取值范围.【例2】某化工材料经销公司购进了一种化工原料共7000kg ,购进价格为30元/kg ,物价部门规定其销售单价不得高于70元/kg ,也不得低于30元/kg .市场调查发现,单价定为70元时,日均销售60kg ;单价每降低1元,日均多售出2kg .在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x 元,日均获利为y 元.(1)求y 关于x 的二次函数表达式,并注明x 的取值范围.(2)将(1)中所求出的二次函数配方成y=a (x +a b 2)2+ab ac 442 的形式,写出顶点坐标,在图所示的坐标系中画出草图.观察图象,指出单价定为多少元时日均获利最多?是多少?(3)若将这种化工原料全部售出比较日均获利最多和销售单价最高这两种方式,哪一种获总利较多?多多少?四、随堂练习:五、课后练习作业:小结:教后记:。
北师大版九年级下册数学2.6 何时获得最大利润 学案2
2.6《何时获得最大利润》教学案青岛五中李庆1.经历探索“最大利润”等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学应用的价值。
2.会分析实际问题,能够从实际问题中找到变量之间的二次函数关系,并运用二次函数的知识求出最大(小)值,发展解决问题的能力。
一、问题情境:某大型商场的杨总到T恤衫部去视察,了解的情况如下:已知成批购进时单价是20元.根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是35元时,销售量是600件,而单价每降低1元,就可以多销售200件.于是杨总给该部门王经理下达一个任务,马上制定出获利最多的销售方案,这可把王经理给难住了?你能帮他解决这个问题吗?1、想一想已知成批购进时单价是20元.根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是35元时,销售量是600件,而单价每降低1元,就可以多销售200件,问将销售单价降低多少元时获利最多?如果设销售单价降低了为x元,(0≤x≤15且为整数)每件利润是_______元销售量可以表示为____________件获得的总利润y =_________________________所以,当单价降低_____元时,获利最多,为_________元.还记得本章一开始涉及的“种多少棵橙子树”的问题吗?某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.问增种多少棵橙子树,总产量最高?解答上述问题后,继续探讨:(1)利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系。
(2)增种多少棵橙子,可以使橙子的总产量在60400个以上?154015601580160016201640 y /6000060100 60200 6030060400 60500 60600y/个三、变个问法已知成批购进时单价是20元.且在一段时间内,单价是35元时,销售量是600件,而单价每降低1元,就以多销售200件:如果设销售单价为x 元,(20≤x ≤35的整数)每件利润是_______元销售量可以表示为_________________件获得的总利润y =_________________________根据所求得的二次函数表达式,可以解答最大利润问题。
北师大版九年级下册何时获得最大利润教案.doc
何时获得最大利润教材:北京师范大学出版社 九年级下册第二章《二次函数》的第六节 课时:1课时授课教师:成都七中育才学校 程智娟一、教材分析(教材地位及作用)教材中的函数是从探索具体实际问题的数量关系和变化规律中抽象出来的,用于刻画变量之间关系的常用数学模型.函数的学习可以使学生感受事物是互相联系和有规律地变化着的,体会数形结合的思想方法.在本章前,教材通过探索变量之间关系,探究一次函数和反比例函数,已经逐渐让学生建立了函数的基础知识,初步积累了研究函数性质的方法及用函数观点处理实际问题的经验.在本章的学习中,教材已研究了二次函数及其图象和性质,让学生初步了解了求特殊二次函数最大(小)值的一些方法.本节课在巩固二次函数性质及识图能力的同时,进一步让学生掌握利用二次函数知识求一些简单实际问题最大(小)值的方法,培养学生运用所学知识解决实际问题的能力.本节知识具有承上启下的作用,既是前面所学知识的具体应用,又为学生在高中阶段进一步学习二次函数,以及用二次函数研究二次多项式、二次方程、二次不等式等知识奠定基础.二、教学目标:●知识与技能:(1).能为一些较简单的生活实际问题建立二次函数模型,并在此基础上,根据二次函数关系式和图象特点,确定二次函数的最大(小)值,从而解决实际问题.(2).由具体到抽象,进一步理解二次函数c bx ax y ++=2图象的顶点坐标与函数最大(小)值的关系,并明确当0<a 时函数取得最大值,当0>a 时函数取得最小值.●数学思考:(1).体会二次函数是一类最优化问题的数学模型.(2).经历探究二次函数最大(小)值问题的过程,体会函数的思想方法和数形结合的思想方法.●解决问题:能将生活中的某些简单实际问题转化为二次函数模型,并能熟练运用二次函数知识解决这些实际生活中的最大(小)值问题.●情感与态度:(1).通过对实际生活中最大(小)值问题的探究,认识到二次函数是解决实际问题的重要工具.(2).积极参加数学活动,发展解决问题的能力,体会数学的应用价值.从而增强数学学习信心,体验成功的乐趣.三、教学重难点●教学重点:(1).探索销售中最大利润问题,从数学角度理解“何时获得最大利润”的意义.(2).引导学生将简单的实际问题转化为数学问题,并运用二次函数知识求出实际问题的最大(小)值,从而得到解决某些实际生活中最大(小)值问题的思想方法.●教学难点:从实际问题中抽象出二次函数模型,以利用二次函数知识解决某些实际生活中的最大(小)值问题.四、教学方式:引导——探究——发现五、学情分析:九年级学生已初步掌握函数的基础知识,积累了研究函数性质的方法及用函数观点处理实际问题的初步经验.由于年龄特征,他们借助直观图象更容易理解抽象的函数问题.我班学生思维较为活跃,在“引导——探究——发现”式的课堂教学中能积极参与讨论问题,大胆发表自己的见解和看法;但同样也存在审题不仔细、考虑问题不全面等不足.六、课前准备:教具:教材,课件,电脑学具:教材,练习本,铅笔,三角板七、教学过程:板书设计:八、教学设计说明本节课根据新课标中提出的“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展”的基本理念设计教学,主要体现在以下几个方面.1.教学内容本节课以生活场景引入问题,通过探索思考解决问题,前后呼应.体现了学生的数学学习内容应当是现实的、有意义的、富有挑战性的,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程的理念.2.教学方法打破传统教学模式,采用“引导——探究——发现”的教学方式,结合T恤衫销售、橙子产量、试销产品等实际问题的探究,希望通过师生互动、生生互动,共同解决问题,提高课堂教学效率,也体现教师是数学学习的组织者、引导者、合作者的理念.3.学习方式本节课采用学生独立思考探索与合作交流的学习方式,通过积极主动的学习活动,使学生成为数学学习的主体.在学习的活动中培养学生分析推理、交流合作和解决问题的能力,并体会到在解决问题过程中与他人合作的重要性.4.评价方式根据新课标的评价理念,教师既要关注学生学习结果,又要关注他们学习的过程,还要关注学生数学学习的水平和学生在数学活动中所表现出来的情感与态度.因此在本课教学中,我应关注学生能否将实际问题表示为函数模型;是否能运用二次函数知识解决实际问题并对结果进行合理解释;课堂中学生是否在教师引导下进行了独立思考和积极讨论.并注意整个教学过程中给予学生适当的评价和鼓励.5.教学设计反思:(1).本节课之前的学习内容中,学生已初步了解求特殊的二次函数最大(小)值的方法,但教材上没有求一般二次函数最大(小)值的方法.在学生探索“何时获得最大利润”的过程中,对求一般二次函数最大(小)值的方法,我引导学生进行了归纳总结,使感性认识上升为理性认识.(2).由于二次函数的最大(小)值还可能是自变量取值范围所在闭区间的端点所对应的函数值,按照新课标的要求,本节课只研究在二次函数顶点处取得最大(小)值的情况.结合我班学生实际,学生有可能提到闭区间上的最大(小)值问题,如果提出,我打算在课外辅导简单讲解,否则就不提此问题.(3).在引例中,若学生提到用图象来求最大利润问题,结合实际背景,图象应由一些不连续点构成,教材上没有给出此题图象.若学生提到此问题,我打算简单讲解,否则就不提此问题.(4).在小结利用二次函数知识解决生活中实际问题的步骤时,为渗透简单的数学建模和算法的思想,我给出了一个解决生活中实际问题的框架图,以帮助学生理解和总结.以上就是我对这节课的设计和思考,请各位专家指导,谢谢!。
利润管理-北师大版九年级下册何时获得最大利润教案 精品
何时获得最大利润教材:北京师范大学出版社 九年级下册第二章《二次函数》的第六节 课时:1课时授课教师:成都七中育才学校 程智娟一、教材分析(教材地位及作用)教材中的函数是从探索具体实际问题的数量关系和变化规律中抽象出来的,用于刻画变量之间关系的常用数学模型.函数的学习可以使学生感受事物是互相联系和有规律地变化着的,体会数形结合的思想方法.在本章前,教材通过探索变量之间关系,探究一次函数和反比例函数,已经逐渐让学生建立了函数的基础知识,初步积累了研究函数性质的方法及用函数观点处理实际问题的经验.在本章的学习中,教材已研究了二次函数及其图象和性质,让学生初步了解了求特殊二次函数最大(小)值的一些方法.本节课在巩固二次函数性质及识图能力的同时,进一步让学生掌握利用二次函数知识求一些简单实际问题最大(小)值的方法,培养学生运用所学知识解决实际问题的能力.本节知识具有承上启下的作用,既是前面所学知识的具体应用,又为学生在高中阶段进一步学习二次函数,以及用二次函数研究二次多项式、二次方程、二次不等式等知识奠定基础.二、教学目标:●知识与技能:(1).能为一些较简单的生活实际问题建立二次函数模型,并在此基础上,根据二次函数关系式和图象特点,确定二次函数的最大(小)值,从而解决实际问题.(2).由具体到抽象,进一步理解二次函数c bx ax y ++=2图象的顶点坐标与函数最大(小)值的关系,并明确当0<a 时函数取得最大值,当0>a 时函数取得最小值.●数学思考:(1).体会二次函数是一类最优化问题的数学模型.(2).经历探究二次函数最大(小)值问题的过程,体会函数的思想方法和数形结合的思想方法.●解决问题:能将生活中的某些简单实际问题转化为二次函数模型,并能熟练运用二次函数知识解决这些实际生活中的最大(小)值问题.●情感与态度:(1).通过对实际生活中最大(小)值问题的探究,认识到二次函数是解决实际问题的重要工具.(2).积极参加数学活动,发展解决问题的能力,体会数学的应用价值.从而增强数学学习信心,体验成功的乐趣.三、教学重难点●教学重点:(1).探索销售中最大利润问题,从数学角度理解“何时获得最大利润”的意义.(2).引导学生将简单的实际问题转化为数学问题,并运用二次函数知识求出实际问题的最大(小)值,从而得到解决某些实际生活中最大(小)值问题的思想方法.●教学难点:从实际问题中抽象出二次函数模型,以利用二次函数知识解决某些实际生活中的最大(小)值问题.四、教学方式:引导——探究——发现五、学情分析:九年级学生已初步掌握函数的基础知识,积累了研究函数性质的方法及用函数观点处理实际问题的初步经验.由于年龄特征,他们借助直观图象更容易理解抽象的函数问题.我班学生思维较为活跃,在“引导——探究——发现”式的课堂教学中能积极参与讨论问题,大胆发表自己的见解和看法;但同样也存在审题不仔细、考虑问题不全面等不足.六、课前准备:教具:教材,课件,电脑学具:教材,练习本,铅笔,三角板七、教学过程:板书设计:八、教学设计说明本节课根据新课标中提出的“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展”的基本理念设计教学,主要体现在以下几个方面.1.教学内容本节课以生活场景引入问题,通过探索思考解决问题,前后呼应.体现了学生的数学学习内容应当是现实的、有意义的、富有挑战性的,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程的理念.2.教学方法打破传统教学模式,采用“引导——探究——发现”的教学方式,结合T恤衫销售、橙子产量、试销产品等实际问题的探究,希望通过师生互动、生生互动,共同解决问题,提高课堂教学效率,也体现教师是数学学习的组织者、引导者、合作者的理念.3.学习方式本节课采用学生独立思考探索与合作交流的学习方式,通过积极主动的学习活动,使学生成为数学学习的主体.在学习的活动中培养学生分析推理、交流合作和解决问题的能力,并体会到在解决问题过程中与他人合作的重要性.4.评价方式根据新课标的评价理念,教师既要关注学生学习结果,又要关注他们学习的过程,还要关注学生数学学习的水平和学生在数学活动中所表现出来的情感与态度.因此在本课教学中,我应关注学生能否将实际问题表示为函数模型;是否能运用二次函数知识解决实际问题并对结果进行合理解释;课堂中学生是否在教师引导下进行了独立思考和积极讨论.并注意整个教学过程中给予学生适当的评价和鼓励.5.教学设计反思:(1).本节课之前的学习内容中,学生已初步了解求特殊的二次函数最大(小)值的方法,但教材上没有求一般二次函数最大(小)值的方法.在学生探索“何时获得最大利润”的过程中,对求一般二次函数最大(小)值的方法,我引导学生进行了归纳总结,使感性认识上升为理性认识.(2).由于二次函数的最大(小)值还可能是自变量取值范围所在闭区间的端点所对应的函数值,按照新课标的要求,本节课只研究在二次函数顶点处取得最大(小)值的情况.结合我班学生实际,学生有可能提到闭区间上的最大(小)值问题,如果提出,我打算在课外辅导简单讲解,否则就不提此问题.(3).在引例中,若学生提到用图象来求最大利润问题,结合实际背景,图象应由一些不连续点构成,教材上没有给出此题图象.若学生提到此问题,我打算简单讲解,否则就不提此问题.(4).在小结利用二次函数知识解决生活中实际问题的步骤时,为渗透简单的数学建模和算法的思想,我给出了一个解决生活中实际问题的框架图,以帮助学生理解和总结.以上就是我对这节课的设计和思考,请各位专家指导,谢谢!。
数学北师大版九年级下册何时获得最大利润
第二章二次函数6.何时获得最大利润陕西省旬邑县张洪镇原底社区初级中学中学李建成一、学生知识状况分析学生的知识技能基础:由简单的二次函数y=x2开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c,学生已经掌握了二次函数的三种表示方式和性质。
学生的活动经验基础:在前面对二次函数的研究中,学生研究了二次函数的图象和性质,掌握了研究二次函数常用的方法。
二、教学任务分析教学目标:(一)知识与技能1、经历探索T恤衫销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值。
2、能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力。
(二)过程与方法经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力。
(三)情感态度与价值观1、体会数学与人类社会的密切联系,了解数学的价值。
增进对数学的理解和学好数学的信心。
2、认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。
教学重点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值教学难点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值三、教学过程第一环节复习回顾活动内容:1.复习二次函数y=ax2+bx+c的相关性质:顶点坐标、对称轴、最值等。
2.复习这节课所要用的其他相关知识:利润=售价-进价,总利润=每件利润×销售额第二环节创设问题情境,引入新课活动内容:(有关利润的问题)某商店经营T恤衫,已知成批购进时单价是2.5元。
根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件。
二次函数应用教案第2课时最大利润优质课件
(1)假设果园增种x棵橙子树,那么果 园共有多少棵橙子树?这时平均每棵 树结多少个橙子?
果园共有(100+x)棵树, 平均每棵树结(600-5x)个橙子
(2)如果果园橙子的总产量为y个,那么 请你写出y与x之间的关系式.
y=(100+x)(600-5x)=-5x²+100x+60000.
在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?
则
y=(x
-
10)(5000
+
13-x 500×0.1 )
探究活动二
例2:某旅社有客房120间,每间房的日租金为160元时,每天都 客满,经市场调查发现,如果每间客房的日租金每增加10元时, 那么客房每天出租数会减少6间.不考虑其他因素,旅社将每间客 房的日租金提高到多少元时,客房日租金的总收入最高?
设提高售价x元,利润为y元,则
y=(30+x-20)[400-20x)]
= - 20x2+200x-4000
= - 20(x-5)2+4500
探究活动三
何时橙子总产量最大
某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一 些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵 树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵 树就会少结5个橙子.
解:设每间客房的日租金提高x个10元, 则每天客房出租数会减少6x 间。 设客房日租金总收入为y元
则y=(160+10x)(120-6x)= - 60(x-2)2+19440
∵x≥0,且120-6x>0 ∴0≤x<20
∵- 60<0 ∴当x=2时,y有最大值19440。
北师大版数学九年级下册二次函数的应用第2课时何时获得最大利润课件
知识迁移,活学活用
小结:解题的关键是要理清楚材料中的数量 关系,将实际问题转化为数学模型,利用已学的 数学知识解决实际问题.
具体步骤如下: (1)根据题意,列出二次函数表达式,注意 实际问题中自变量x的取值范围. (2)将二次函数表达式配方为顶点式的情势. (3)根据二次函数图象及其性质,在自变量 的取值范围内求出函数的最值.
请你帮助分析,厂家批发单价是多少时可 以获利最多?
视察学生,合理指点
解:批发价为x元时,获利y元.
则单件利润为(x-10)元,
降价后的销售量为
5
000
+
13 - x 0.1
×
500
件.
则
y
=
(
x
-
10)
5
000
+
13 - x 0.1
×
500
= 5 000( 000(- x2 + 24x - 140)
= -5 000[( x - 12)2 - 4].
所以,当批发价是12元时,获利最多.
知识迁移,活学活用
某旅社有客房120间,每间房的日租金为 160元时,每天都客满,经市场调查发现,如 果每间客房的日租金增加10元,那么客房每天 出租数会减少6间.不考虑其他因素,旅社将每 间客房的日租金提高到多少元时,客房日租金 的总收入最高?最高总收入是多少?
分析:客房日租金的总收入=客房的日租金 ×客房出租的间数.
知识迁移,活学活用
解:设客房的日租金增加x个10元,则客房每天的 出租数减少6x间,设客房日租金的总收入为y元, 则y=(160+10x)(120-6x)=-60(x-2)2+19 440. ∵x ≥0,且120-6x>0,∴0 ≤ x<20. 当x=2时, y有最大值19 440. 这时每间客房的日租金为160+10×2=180(元). 即旅社将每间客房的日租金提高到180元时,客房 日租金的总收入最高,最高总收入为19 440元.
2020年初中九年级数学下册《何时获得最大利润》精编版
北师大版初中数学九年级下册《何时获得最大利润》精品教案教材:北京师范大学出版社 九年级下册第二章《二次函数》的第六节 课时:1课时 授课教师: 教学目标: ●知识与技能:(1).能为一些较简单的生活实际问题建立二次函数模型,并在此基础上,根据二次函数关系式和图象特点,确定二次函数的最大(小)值,从而解决实际问题.(2).由具体到抽象,进一步理解二次函数c bx ax y ++=2图象的顶点坐标与函数最大(小)值的关系,并明确当0<a 时函数取得最大值,当0>a 时函数取得最小值. ●数学思考:(1).体会二次函数是一类最优化问题的数学模型.(2).经历探究二次函数最大(小)值问题的过程,体会函数的思想方法和数形结合的思想方法. ●解决问题:能将生活中的某些简单实际问题转化为二次函数模型,并能熟练运用二次函数知识解决这些实际生活中的最大(小)值问题. ●情感与态度:(1).通过对实际生活中最大(小)值问题的探究,认识到二次函数是解决实际问题的重要工具.(2).积极参加数学活动,发展解决问题的能力,体会数学的应用价值.从而增强数学学习信心,体验成功的乐趣.教学重难点●教学重点:(1).探索销售中最大利润问题,从数学角度理解“何时获得最大利润”的意义.(2).引导学生将简单的实际问题转化为数学问题,并运用二次函数知识求出实际问题的最大(小)值,从而得到解决某些实际生活中最大(小)值问题的思想方法.●教学难点:从实际问题中抽象出二次函数模型,以利用二次函数知识解决某些实际生活中的最大(小)值问题.教学方式:引导——探究——发现课前准备:教具:教材课件电脑学具:教材练习本教学过程:教学环节教师活动学生活动活动说明创设生活情境从生活中“服装销售”情景引入“何时获得最大利润”问题.该同学对父母开的服装店非常感兴趣,他对市场做了如下调查: 如果调整价格,每涨价1元,每月就会少卖出20件.请问同学们:将销售单价定为多少元,才可以获得最大利润?此时的最大利润是多少呢?请问同学们:销售单价定为多少元,才能学生观看情景动画.用多媒体对教材进行再创造,再现生活中“服装销售”情景,并对教材上的数据进行了修改,更贴近实际生活,帮助学生理解题意,激发学生的学习热情.使一个月获得的利润最大?探索思考探索思1.教师提问:问题1:如果单价是36元,那么一个月获得的利润是多少元呢?问题2:如果单价是40元、45元、50元,那么一个月获得的利润分别是多少元呢?问题3:从以上两个问题,你发现了什么?教师进行点评,得出答案,强调结果要化为最简形式根据上面的数据,用描点的方法画出图象,问:从图象中你发现了什么?在学生对图象进行观察发现后,引导思考:用什么样的数学知识可以解决这个问题呢?请做一做、试一试。
初中数学九年级下册《26何时获得最大利润》
课题§何时获取最大利润讲课日期 2 .9课题北师大版九年级下册教材所在地址P64~ P66出处课型新讲课讲课教师(一 ) 知识与技术目标:1.经历研究 T 恤衫销售中最大利润等问题的过程,领悟二次函数是一类最优化问题的数学模型,并感觉数学的应用价值.2.可以剖析和表示实诘问题中变量之间的二次函数关系,并运用二次函数的知识求出实诘问题的最大 (小 )值,发展解决问题的能力.教(二 )能力目标学经历销售中最大利润问题的研究过程,让学生认识数学与人类生活的亲近联系及对目标人类历史发展的作用,发展学生运用数学知识解决实诘问题的能力(三 )感情目标1.领悟数学与人类社会的亲近联系,认识数学的价值.增进对数学的理解和学好数学的信心.2.认识到数学是解决实诘问题和进行交流的重要工具,认识数学对促进社会进步和发展人类理性精神的作用.讲课要点: 1.研究销售中最大利润问题.要点2.可以剖析和表示实诘问题中变量之间的二次函数关系,并运用二次函数和的知识求出实诘问题中的最大( 小)值,发展解决问题的能力.难点难点:运用二次函数的知识解决实诘问题.教法学法采纳“指引研究式”及“合作交流式”的讲课方法,教学过程教学环节学生活动教师活动(一)复习引入某商店购进一批单价为20元的日用商品,假如以单价30 元销售,那么半个月内可售出400 件。
依据销售经验,提升销回顾旧知售单价会以致销售量的减少,即销售单价每提升1元,销售总结:指引学生回顾量就相应减少20 件。
销售单价提升多少时,才能在半个月内总利润=旧知,为后边新获取 2500 元的利润 ?单个利润×数课作准备量(二)研究新知某商店购进一批单价为20元的日用商品,假如以单价30 元销售,那么半个月内可售出400 件。
依据销售经验,提升销售单价会以致销售量的减少,即销售单价每提升 1 元,销售量就相减少 20 件。
若售价提升 x 元,半个月内得的利 y 元,写出 y 与 x 之的函数关系式。
北师大版九年级下册数学《何时获得最大利润》二次函数说课教学课件复习导学
y = (x-20) [400-20(x-30)] = -20x2+140x-20000
= -20(x-35)2+4500 ∴当x=35时,y有最大值为4500.
若规定销售单价不得高于 33元,则如何提高售价,可 在半月内获得最大利润?
35-30=5(元)
答:当销售单价提高5元,即单价为35元时,
可以在半月内获得最大利润4500元.
等量关系:橙子的总产量=每棵橙子树的产量×橙子树的数量
y=(100+x)(600-5x) = - 5x2+100x+60000 =-5(x-10)2+60500
∵a<0 ∴ y有最大值
当x
b 2a
10时,y最大值
4ac b2 4a
4 (5) 600001002 4 (5)
60500
挑战新高
某商店购进一批单价为20元的日用品,如果以单价30元销售, 那么半个月内可以售出400件.根据销售经验,提高单价会导
致销售量的减少,即销售单价每提高1元,销售量相应减少20 件.如何提高售价,才能在半个月内获得最大利润?
解: 假设销售单价为x(x≥30)元,销售利润为y元,则
y= -20(x-35)2+4500
2. 利用函数图象描述橙子的总产量y与增种橙子树的棵数x之间
的关系.
y/个
当x<10时,橙子的总产量随 60600
增种棵树的增加而增加;
60500
当x>10时,橙子的总产量随 60400 增种棵树的增加而减少. 当x=10时,橙子的总产量最大. 60300
60200
增增种种6多、7少、棵8、橙9子、1树0、, 可11以、1使2、橙1子3或的1总4棵产橙量子
北师大版九年级下册第二章二次函数第二章:何时获得最大利润课程设计
北师大版九年级下册第二章二次函数第二章:何时获得最大利润课程设计一、课程概述本课程为北师大版九年级下册第二章二次函数第二章课程设计,主要探讨在何时可以获得最大利润的问题。
通过本课程的学习,学生将学习到二次函数的应用,包括二次函数的定义、图像、性质以及在实际应用中的应用,如何利用二次函数的相关知识求解最大利润等。
二、教学目标1.理解二次函数的定义、图像以及相关性质;2.知道二次函数在实际应用中的应用;3.掌握如何利用二次函数求解最大利润;4.养成分析问题、解决实际问题的能力。
三、教学内容1. 复习二次函数的概念回顾二次函数的概念、图像及性质,强化二次函数的概念,为下一步讲解提供铺垫。
2. 二次函数的应用通过讲解二次函数在现实生活中的应用,如:物品的价格随着时间的变化等问题。
通过简单的例子,让学生意识到二次函数在实际中的重要性。
3. 求解最大利润讲解如何利用二次函数求解最大利润问题。
通过一个具体的问题,如:小张卖苹果所得到的收益是苹果的单价乘以卖出的数量,而小张的成本由于取决于他所花费的钱数,因此我们可以列出方程求解最大利润。
4. 实例分析引入实际问题进行分析和解决。
如:小李卖元宵,花费为40元,每卖出一份可以获得10元收益,问最多能获得多少元收益?通过此例,让学生对二次函数求最大值的方法有一个更加深入的理解。
四、教学方法1.向学生提出问题,引导学生思考;2.举例说明解题过程,引导学生进行操作;3.加深学生对知识点的理解,进行问题练习;4.引导学生进行分析和探究。
五、教学时长本课程时长为2课时。
六、教学重点1.理解二次函数的定义、图像以及相关性质;2.掌握如何利用二次函数求解最大利润。
七、教学难点如何将抽象的概念与实际生活相结合,让学生认识到二次函数在实际应用中的重要性。
八、教学评估1.考查学生对二次函数的理解、应用以及能否运用二次函数求解问题的能力;2.结合实际问题出题,考查学生分析和解决问题的能力。
何时获得最大利润的说课课件
下降1元后:(500+200*1)件
下降2元后:(13.5—2)元
下降2元后:(500+200*2)件
下降3元后:(13.5—3) 元
下降3元后:(500+200*3)件
设销售单价为X元,所获利润为Y元
下降(13.5—X)元后:X元
下降(13.5—X)元后:500+200*(13.5—X)件
分析: 通过一步步的探 销售量可以表示为__50_0_+_2_0_0_*(_1_3_.5_—__X_)__; 索,明确目标求 销售额(销售总收入)可以表示为 _[_5_0_0+_2_0_0_*_(1_3_.5_—__X_)_] ;X 出销售单价与利 所获利润与销售单价之间的关系式可以表示: 润分的析关最系大,利进润_而________Y_=_[5_0_0_+_2_0_0_*(_1_3_.5_—__X_)]_(__X_—__2._5_)_______
(二)教学难点
从实际问题中抽象出二次函数模型
二、学情分析
现在的中学生对一切充满好奇, 对新鲜事物总想了解它,利用这个心 理特点,引导学生自主探索生活中的 二次函数的数学问题。而且,九年级 学生已初步掌握函数的基础知识,积 累了研究函数性质的方法及用函数观 点解决实际问题的初步经验。但由于 学生对二次函数的应用意识较淡薄, 运用二次函数解决问题的能力需提高。
一、教材分析
2、教学目标 (过程与方法)
(1)通过教师的提问,引导学生自主探讨, 用观察法、归纳法、图像法,逐步分析二 次函数图象的顶点坐标与函数最值的关系, 让学生懂得利用二次函数知识解决实际问 题。
(2)通过课堂的训练,让学生懂得求解二 次函数的一般方法,再结合生活中例子, 引导学生抽象出二次函数的数学模型,让 学生体会函数的思想方法和数形结合的思 想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.6 何时获得最大利润
教学目标
(一)教学知识点
1.经历探索T恤衫销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.
2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力.
(二)能力训练要求
经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力.
(三)情感与价值观要求
1.体会数学与人类社会的密切联系,了解数学的价值.增进对数学的理解和学好数学的信心.
2.认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.
教学重点
1.探索销售中最大利润问题.
2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题中的最大(小)值,发展解决问题的能力
教学难点
运用二次函数的知识解决实际问题.
教学方法
在教师的引导下自主学习法.
教具准备
投影片三张
第一张:(记作§2.6 A)
第二张:(记作§2.6 B)
第三张:(汜作§2.6 C)
教学过程
Ⅰ. 创设问题情境,引入新课
[师]前面我们认识了二次函数,研究了二次函数的图象和性质,由简单的二次函数y =x2开始,然后是y=ax2.y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c,掌握了二次函数的三种表示方式.怎么突然转到了获取最大利润呢?看来这两者之间肯定有关系.那么究竟有什么样的关系呢?我们本节课将研究有关问题.
Ⅱ.讲授新课
一、有关利润问题
投影片:(§2.6 A)
某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.
请你帮助分析,销售单价是多少时,可以获利最多?
没销售单价为x(x≤13.5)元,那么
(1)销售量可以表示为;
(2)销售额可以表示为;
(3)所获利润可以表示为;
(4)当销售单价是元时,可以获得最大利润,最大利润是.
[师]从题目的内容来看好像是商家应考虑的问题:有关利润问题.不过,这也为我们以后就业做了准备,今天我们就不妨来做一回商家.从问题来看就是求最值问题,而最值问题是二次函数中的问题.因此我们应该先分析题意列出函数关系式.
获利就是指利润,总利润应为每件T恤衫的利润(售价一进价)乘以T恤衫的数量,设销售单价为x元,则降低了(13.5-x)元,每降低1元,可多售出200件,降低了(13.5-x)元,则可多售出200(13.5-x)件,因此共售出500+200(13.5-x)件,若所获利润用y(元)表示,则y=(x-2.5)[500+200(13.5-x)].
经过分析之后,大家就可回答以上问题了.
[生](1)销售量可以表示为500+200(13.5-x)=3200—200x.
(2)销售额可以表示为x(3200-200x)=3200x-200x2.
(3)所获利润可以表示为(3200x-200x2)-2.5(3200-200x)=-200x2+3700x-8000.
(4)设总利润为y元,则
y=-200x2+3700x-8000
=-200(x-218225)4372 . ∵-200<0
∴抛物线有最高点,函数有最大值.
当x =
4
37=9.25元时, y 最大= 218225=9112.5元. 即当销售单价是9.25元时,可以获得最大利润,最大利润是9112.5元.
二、做一做
还记得本章一开始的“种多少棵橙子树”的问题吗?我们得到表示增种橙子树的数量x(棵)与橙子总产量y(个)的二次函数表达式y =(600-5x)(100+x)=-5x 2
+100x+60000.
我们还曾经利用列表的方法得到一个猜测,现在验证一下你的猜测是否正确?你是怎么做的?与同伴进行交流.
[生]因为表达式是二次函数,所以求橙子的总产量y 的最大值即是求函数的最大值. 所以y =-5x 2+100x+60000
=-5(x 2-20x+100-100)+60000
=-5(x-10)2+60500.
当x=10时,y 最大=60500.
[师]回忆一下我们前面的猜测正确吗?
[生]正确.
三、议一议(投影片§2.6 B)
(1)利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系.
(2)增种多少棵橙子树,可以使橙子的总产量在60400个以上?
[生]图象如上图.
(1)当x<10时,橙子的总产量随增种橙子树的增加而增加;当x >10时,橙子的总产量随增种橙子树的增加而减小.
(2)由图可知,增种6棵、7棵、8棵、9棵、10棵、11棵、12棵、13棵或14棵,都可以使橙子总产量在60400个以上.
四、补充例题
投影片:(§2.6 C)
已知——个矩形的周长是24 cm .
(1)写出这个矩形面积S与一边长a的函数关系式.
(2)画出这个函数的图象.
(3)当a长多少时,S最大?
[师]分析:还是有关二次函数的最值问题,所以应先列出二次函数关系式.
[生](1)S=a(12-a)=a2+12a=-(a2-12a+36-36)=-(a-6)2+36.
(2)图象如下:
(3)当a=6时,S最大=36.
Ⅲ.课堂练习
解:设销售单价为;元,销售利润为y元,则
y=(x-20)[400-20(x-30)]
=-20x2+1400x-20000
=-20(x-35)2+4500.
所以当x=35元,即销售单价提高5元时,可在半月内获得最大利润4500元.
Ⅳ.课时小结
本节课经历了探索T恤衫销售中最大利润等问题的过程,体会了二次函数是一类最优化问题的数学模型,并感受了数学的应用价值.
学会了分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题中的最大(小)值,提高解决问题的能力.
Ⅴ.课后作业
习题2.6
Ⅵ.活动与探究
某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40~70元之间.市场调查发现:若每箱以50元销售,平均每天可销售90箱,价格每降低1元,平均每天多销售3箱,价格每升高1元,平均每天少销售3箱.
(1)写出平均每天销售(y)箱与每箱售价x(元)之间的函数关系式.(注明范围)
(2)求出商场平均每天销售这种牛奶的利润W(元)与每箱牛奶的售价x(元)之间的二次函数关系式(每箱的利润=售价-进价).
(3)求出(2)中二次函数图象的顶点坐标,并求当x=40,70时W的值.在坐标系中画出函数图象的草图.
(4)由函数图象可以看出,当牛奶售价为多少时,平均每天的利润最大?最大利润为多
少?
解:(1)当40≤x≤50时,则降价(50-x)元,则可多售出3(50-x),所以y=90+3(50-x)=-3x+240.当50<x≤70时,则升高(x-50)元,则可少售3(x-50)元,所以y=90-3(x-50)=-3x+240.
因此,当40≤x≤70时,y=-3x+240.
(2)当每箱售价为x元时,每箱利润为(x-40)元,平均每天的利润为W=(240-3x)(x-40)=-3x2+360x-9600.
(3)W=-3x2+360x-9600
=-3(x2-120x+3600-3600)-9600
=-3(x-60)2+1200.
所以此二次函数图象的顶点坐标为(60, 1200).
当x=40时,W=-3(40-60)2+1200=0;
当x=70时,W=-3(70-60)2+1200=900.
草图略.
(4)要求最大利润,也就是求函数的最大值,只要知道顶点坐标即可.
由(3)得,当x=60时,W最大=1200
即当牛奶售价为每箱60元时,平均每天的利润最大,最大利润为1200元.
板书设计
§2.6 何时获得最大利润
一、1.有关利润问题(投影片§2.6 A)
2.做一做
3.议一议(投影片§2.6 B)
乙补充例题(投影片§2.6 C)
二、课堂练习
三、课时小结
四、课后作业。