matlab车牌号码识别程序代码资料

合集下载

(完整版)基于matlab的车牌识别(含子程序)

(完整版)基于matlab的车牌识别(含子程序)

基于matlab的车牌识别系统一、对车辆图像进行预处理1.载入车牌图像:function [d]=main(jpg)[filename, pathname] = uigetfile({'*.jpg', 'JPEG 文件(*.jpg)'});if(filename == 0), return, endglobal FILENAME %定义全局变量FILENAME = [pathname filename];I=imread(FILENAME);figure(1),imshow(I);title('原图像');%将车牌的原图显示出来结果如下:2.将彩图转换为灰度图并绘制直方图:I1=rgb2gray(I);%将彩图转换为灰度图figure(2),subplot(1,2,1),imshow(I1);title('灰度图像');figure(2),subplot(1,2,2),imhist(I1);title('灰度图直方图');%绘制灰度图的直方图结果如下所示:3. 用roberts算子进行边缘检测:I2=edge(I1,'roberts',0.18,'both');%选择阈值0.18,用roberts算子进行边缘检测figure(3),imshow(I2);title('roberts 算子边缘检测图像');结果如下:4.图像实施腐蚀操作:se=[1;1;1];I3=imerode(I2,se);%对图像实施腐蚀操作,即膨胀的反操作figure(4),imshow(I3);title('腐蚀后图像');5.平滑图像se=strel('rectangle',[25,25]);%构造结构元素以正方形构造一个seI4=imclose(I3,se);% 图像聚类、填充图像figure(5),imshow(I4);title('平滑图像');结果如下所示:6. 删除二值图像的小对象I5=bwareaopen(I4,2000);% 去除聚团灰度值小于2000的部分figure(6),imshow(I5);title('从对象中移除小的对象');结果如下所示:二、车牌定位[y,x,z]=size(I5);%返回I5各维的尺寸,存储在x,y,z中myI=double(I5);%将I5转换成双精度tic %tic表示计时的开始,toc表示计时的结束Blue_y=zeros(y,1);%产生一个y*1的零阵for i=1:yfor j=1:xif(myI(i,j,1)==1)%如果myI(i,j,1)即myI的图像中坐标为(i,j)的点值为1,即该点为车牌背景颜色蓝色 %则Blue_y(i,1)的值加1Blue_y(i,1)= Blue_y(i,1)+1;%蓝色像素点统计endendend[temp MaxY]=max(Blue_y);%Y方向车牌区域确定%temp为向量white_y的元素中的最大值,MaxY为该值的索引PY1=MaxY;while ((Blue_y(PY1,1)>=5)&&(PY1>1))PY1=PY1-1;endPY2=MaxY;while ((Blue_y(PY2,1)>=5)&&(PY2<y))PY2=PY2+1;endIY=I(PY1:PY2,:,:);%x方向车牌区域确定%%%%%% X方向 %%%%%%%%%Blue_x=zeros(1,x);%进一步确定x方向的车牌区域for j=1:xfor i=PY1:PY2if(myI(i,j,1)==1)Blue_x(1,j)= Blue_x(1,j)+1; endendendPX1=1;while ((Blue_x(1,PX1)<3)&&(PX1<x))PX1=PX1+1;endPX2=x;while ((Blue_x(1,PX2)<3)&&(PX2>PX1))PX2=PX2-1;endPX1=PX1-1;%对车牌区域的校正PX2=PX2+1;dw=I(PY1:PY2-8,PX1:PX2,:);t=toc;figure(7),subplot(1,2,1),imshow(IY),title('行方向合理区域');%行方向车牌区域确定figure(7),subplot(1,2,2),imshow(dw),title('定位裁剪后的车牌彩色图像');的车牌区域如下所示:三、字符分割及处理1.车牌的进一步处理对分割出的彩色车牌图像进行灰度转换、二值化、均值滤波、腐蚀膨胀以及字符分割以从车牌图像中分离出组成车牌号码的单个字符图像,对分割出来的字符进行预处理(二值化、归一化),然后分析提取,对分割出的字符图像进行识别给出文本形式的车牌号码。

如何使用Matlab技术进行车牌识别

如何使用Matlab技术进行车牌识别

如何使用Matlab技术进行车牌识别车牌识别技术是一种在现代交通管理、安保等领域应用广泛的技术。

通过使用Matlab软件,我们可以轻松实现车牌识别功能。

本文将介绍如何使用Matlab技术进行车牌识别。

一、图像预处理在进行车牌识别之前,首先需要对图像进行预处理。

图像预处理的目的是提取车牌信息并减小噪声干扰。

在Matlab中,我们可以使用一系列图像处理函数来实现图像预处理,包括图像二值化、边缘检测、形态学操作等。

这些函数可以帮助我们提取车牌轮廓,并去除背景和噪声。

二、车牌定位车牌定位是车牌识别的关键步骤之一。

通过车牌定位,我们可以找到图像中的车牌区域,并将其与其他区域进行区分。

在Matlab中,可以使用图像分割、形态学滤波等技术来实现车牌定位。

这些技术可以帮助我们提取车牌的形状、颜色和纹理等特征,并将其与其他区域进行区分。

三、字符分割一旦我们成功地定位了车牌区域,就需要将车牌中的字符进行分割。

字符分割是车牌识别中的一个重要环节。

通过将车牌中的字符进行分割,我们可以得到单个字符的图像,为后续的字符识别做准备。

在Matlab中,可以使用一系列图像处理函数来实现字符分割,包括边缘检测、连通性分析和投影分析等。

这些函数可以帮助我们将车牌中的字符与其他区域进行分离。

四、字符识别字符识别是车牌识别的核心任务。

通过对字符进行识别,我们可以得到车牌中的文本信息。

在Matlab中,可以使用模式识别、神经网络或者深度学习等技术来实现字符识别。

这些技术可以帮助我们训练一个分类器,将字符图像与对应的字符进行匹配。

通过匹配算法,我们可以得到车牌的文本信息。

五、车牌识别结果展示在进行车牌识别之后,我们可以将识别结果进行展示。

通过将识别结果与原始图像进行对比,我们可以验证车牌识别的准确性。

在Matlab中,可以使用图像绘制函数和文本显示函数来实现车牌识别结果的展示。

通过这些函数,我们可以在原始图像中标注出识别结果,并将结果显示在图像上。

matlab车牌号码识别程序代码资料

matlab车牌号码识别程序代码资料

( 4)字符识别:对分割出来的字符进行预处理(二值化、归一化),然后分析 提取,对分割出的字符图像进行识别给出文本形式的车牌号码。
4 汽车牌照识别系统的 matlab实现 4.1 图像预处理与车牌定位
输入的彩色图像包含大量颜色信息, 会占用较多的存储空间, 且处理时也会 降低系统的执行速度, 因此对图像进行识别等处理时, 常将彩色图像转换为灰度 图像,以加快处理速度。对图像进行灰度化处理、边缘提取、再利用形态学方法 对车牌进行定位。 具体步骤如下: 首先对图像进行灰度转换, 二值化处理然后采 用 4X1的结构元素对图像进行腐蚀,去除图像的噪声。采用 25X25的结构元素, 对图像进行闭合应算使车牌所在的区域形成连通。 在进行形态学滤波去除其它区 域。
Px0=Px1; End
4.3 车牌字符识别
字符识别方法主要有基于模板匹配算法和基于人工神经网络算法。基于模 板匹配算法是首先将分割后的字符二值化 ,并将其尺寸缩放为字符数据库中模板 的大小, 然后与所有模板进行匹配, 最后选取最佳匹配作为结果。 建立数字库对 该方法在车牌识别过程中很重要 , 数字库准确才能保证检测出的数据正确。 基于 人工神经元网络的算法有两种, 一种是先对特征提取待识别字符, 然后用所获得 的特征训练神经网络分配器; 另一种是直接将待处理图像输入网络由网络自动实 现特征提取直至识别结果。 在本程序中用基于人工神经元网络识别车牌字符。 在 车牌字符识别部分 , 字符集中包含约 50个汉字 , 26个大写英文字母及 10个阿拉伯 数字。总的字符样本并不太多。
% 4.2 车牌字符分割
% 确定车牌位置后下一步的任务就是进行字符切分分离出车牌号码的全部字 符图像 。
if isrgb(dw)
I1 = rgb2gray(dw);

车牌识别的matlab程序(程序-讲解-模板)

车牌识别的matlab程序(程序-讲解-模板)

clcclearclose allI=imread('chepai.jpg');subplot(3,2,1);imshow(I), title('原始图像');I_gray=rgb2gray(I);subplot(3,2,2),imshow(I_gray),title('灰度图像');%====================== 形态学预处理======================I_edge=edge(I_gray,'sobel');subplot(3,2,3),imshow(I_edge),title('边缘检测后图像');se=[1;1;1];I_erode=imerode(I_edge,se);subplot(3,2,4),imshow(I_erode),title('腐蚀后边缘图像');se=strel('rectangle',[25,25]);I_close=imclose(I_erode,se); %图像闭合、填充图像subplot(3,2,5),imshow(I_close),title('填充后图像');I_final=bwareaopen(I_close,2000); %去除聚团灰度值小于2000的部分subplot(3,2,6),imshow(I_final),title('形态滤波后图像');%========================== 车牌分割============================= I_new=zeros(size(I_final,1),size(I_final,2));location_of_1=[];for i=1:size(I_final,1) %寻找二值图像中白的点的位置for j=1:size(I_final,2)if I_final(i,j)==1;newlocation=[i,j];location_of_1=[location_of_1;newlocation];endendendmini=inf;maxi=0;for i=1:size(location_of_1,1)%寻找所有白点中,x坐标与y坐标的和最大,最小的两个点的位置temp=location_of_1(i,1)+location_of_1(i,2);if temp<minimini=temp;a=i;endif temp>maximaxi=temp;b=i;endendfirst_point=location_of_1(a,:); %和最小的点为车牌的左上角last_point=location_of_1(b,:); %和最大的点为车牌的右下角x1=first_point(1)+4; %坐标值修正x2=last_point(1)-4;y1=first_point(2)+4;y2=last_point(2)-4;I_plate=I(x1:x2,y1:y2);I_plate=OTSU(I_plate); %以OTSU算法对分割出的车牌进行自适应二值化处理I_plate=bwareaopen(I_plate,50);figure,imshow(I_plate),title('车牌提取') %画出最终车牌%========================= 字符分割============================X=[]; %用来存放水平分割线的横坐标flag=0;for j=1:size(I_plate,2)sum_y=sum(I_plate(:,j));if logical(sum_y)~=flag %列和有变化时,记录下此列X=[X j];flag=logical(sum_y);endendfigurefor n=1:7char=I_plate(:,X(2*n-1):X(2*n)-1); %进行粗分割for i=1:size(char,1) %这两个for循环对分割字符的上下进行裁剪if sum(char(i,:))~=0top=i;breakendendfor i=1:size(char,1)if sum(char(size(char,1)-i,:))~=0bottom=size(char,1)-i;breakendendchar=char(top:bottom,:);subplot(2,4,n);imshow(char);char=imresize(char,[32,16],'nearest'); %归一化为32*16的大小,以便模板匹配eval(strcat('Char_',num2str(n),'=char;')); %将分割的字符放入Char_i中end%========================== 字符识别============================= char=[];store1=strcat('京','津','沪','渝','冀','晋','辽','吉','黑','苏','浙'... %汉字识别,'皖','闽','赣','鲁','豫','鄂','湘','粤','琼','川','贵','云','陕'...,'甘','青','藏','桂','皖','新','宁','港','鲁','蒙');for j=1:34Im=Char_1;Template=imread(strcat('chinese\',num2str(j),'.bmp')); %chinese文件附在最后Template=im2bw(Template);Differ=Im-Template;Compare(j)=sum(sum(abs(Differ)));endindex=find(Compare==(min(Compare)));char=[char store1(index)];store2=strcat('A','B','C','D','E','F','G','H','J','K','L','M','M','N','P','Q','R'...,'S','T','U','V','W','X','Y','Z','0','1','2','3','4','5','6','7','8','9');for i=2:7 %字母数字识别for j=1:35Im=eval(strcat('Char_',num2str(i)));Template=imread(strcat('cha&num\',num2str(j),'.bmp')); %cha&num文件附在最后Template=im2bw(Template);Differ=Im-Template;Compare(j)=sum(sum(abs(Differ)));endindex=find(Compare==(min(Compare)));char=[char store2(index)];endfigure,imshow(I),title(strcat('车牌为:',char))信研-11 XX 2011301XXXXXX模式识别作业—车牌识别1、作业要求:要求:任给一幅符合假定的图片,自动识别出车牌号。

matlab车牌识别课程设计报告

matlab车牌识别课程设计报告

Matlab程序设计任务书目录一.课程设计目的 (3)二.设计原理 (3)三.详细设计步骤 (3)四. 设计结果及分析 (18)五. 总结 (19)六. 设计体会 (20)七. 参考文献 (21)一、课程设计目的车牌定位系统的目的在于正确获取整个图像中车牌的区域,并识别出车牌号。

通过设计实现车牌识别系统,能够提高学生分析问题和解决问题的能力,还能培养一定的科研能力。

二、设计原理:牌照自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。

其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。

某些牌照识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。

一个完整的牌照识别系统应包括车辆检测、图像采集、牌照识别等几部分。

当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。

牌照识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。

三、详细设计步骤:v1.0 可编辑可修改1. 提出总体设计方案:牌照号码、颜色识别为了进行牌照识别,需要以下几个基本的步骤: a.牌照定位,定位图片中的牌照位置; b.牌照字符分割,把牌照中的字符分割出来;c.牌照字符识别,把分割好的字符进行识别,最终组成牌照号码。

牌照识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与牌照识别互相配合、互相验证。

(1)牌照定位:自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。

首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为牌照区域,并将其从图象中分割出来。

流程图:(2)牌照字符分割 :导入原始图像图像预处理增强效果图像边缘提取车牌定位 对图像开闭运算完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别。

基于MATLAB的车牌识别系统的源代码(可以实现)

基于MATLAB的车牌识别系统的源代码(可以实现)

k=input('Enter the file name:','s');%输入车牌照片im=imread(k);imshow(im);im_gray=rgb2gray(im);im_gray=medfilt2(im_gray,[3,3]);%对图像进行中值滤波Image=im2bw(im_gray,0.2);BW=edge(im_gray,'sobel');%找出图像边缘[imx,imy]=size(BW);%计算图像大小msk=[0 0 0 0 0;0 1 1 1 0;0 1 1 1 0;0 1 1 1 0;0 0 0 0 0;];B0=conv2(double(BW),double(msk));%对边缘区域进行加强se=ones(2,80);B1=imdilate(B0,se);%figure;%imshow(B1);B2=imerode(B1,se);%figure;%imshow(B2);se=ones(20,2);B3=imdilate(B2,se);%figure;imshow(B3);B4=imerode(B3,se);%figure;imshow(B4);se=ones(50,2);B5=imdilate(B4,se);%figure;imshow(B5);B6=imerode(B5,se);%figure;imshow(B6);%对边界图进行小区域连通,使车牌区域连通为一个方块[B,L]=bwboundaries(B6,4);imshow(label2rgb(L,@jet,[.5 .5 .5]))%对连通区域进行标记hold onfor k=1:length(B)%用线条给连通区域标上边界线boundary=B{k};plot(boundary(:,2),boundary(:,1),'w','LineWidth',2)endstats=regionprops(L,'Area','Centroid');%找到每个连通域的质心for k=1:length(B)%循环遍历每个连通域的边界boundary=B{k};%获取一条边界上的所有点delta_sq=diff(boundary).^2;perimeter=sum(sqrt(sum(delta_sq,2)));%计算边界周长area=stats(k).Area;%获取边界所围面积metric=27*area/perimeter^2;%计算匹配度metric_string=sprintf('%2.2f',metric);%要显示的匹配度字串if metric>=0.85&&metric<=1.15&&area>1000%截取出匹配度接近1且面积大于1000像素的连通域centroid=stats(k).Centroid;plot(centroid(1),centroid(2),'ko');%提取该连通域所对应在二值图像中的矩形区域goalboundary=boundary;s=min(goalboundary,[],1);e=max(goalboundary,[],1);goal=imcrop(Image,[s(2) s(1) e(2)-s(2) e(1)-s(1)]);endtext(boundary(1,2)-35,boundary(1,1)+13,metric_string,'Color','g','FontSize',14,'FontWeight','bold') ;%显示匹配度字串endgoal=~goal;%对截取图像进行反色处理figure;imshow(goal);[a,b]=size(goal);for i=a/2:-1:1 %从图像水平中轴开始向上扫描,当白点数少于每行总点数的1/10时,停止扫描,并将该行定义为车牌字符区域的上限num=0;for j=1:bif goal(i,j)==1num=num+1;endendif num<(b*0.1)line_up=i;break;endendfor i=a/2:a %从图像水平中轴开始向下扫描,当白点数少于每行总点数的1/10时,停止扫描,并将该行定义为车牌字符区域的下限num=0;for j=1:bif goal(i,j)==1num=num+1;endendif num<(b*0.1)line_down=i;break;endendgoal=goal(line_up:line_down,1:b);%根据之前定义的上下限截取车牌字符区域figure;imshow(goal);%显示车牌字符区域[a,b]=size(goal);row=zeros(18);now=1;flag=0;for j=1:b %对截取出的字符区域进行竖列扫描,并取每列总点数的1/10作为阈值点,当每列的白点数从阈值以上掉落到阈值以下或从阈值以下上升到阈值以上时,记录该列的横坐标num=0;for i=1:aif goal(i,j)==1num=num+1;endendif flag==0if num<0.1*arow(now)=j;now=now+1;flag=1;endelseif num>0.1*arow(now)=j;now=now+1;flag=0;endendendif row(3)-row(2)>10 %判断扫描出的第二块区域(扫描到的第二列与第三列之间)是否包含有效字符,如包含,则将扫描到的第二列定义为字符分割的起始列;否则,则定义第一列为起始列now=2;elsenow=1;endfigure;l1=0;l2=0;for k=1:8m=row(now);n=row(now+1);temp=goal(1:a,m:n);point=0;%扫描每一个字符图片的白点数for i=1:afor j=1:n-mif temp(i,j)==1point=point+1;endendendif point>0.4*a*(n-m)&&n>m %当扫描到的白点数小于总点数的2/5时放弃输出(有可能是车牌上的点状分隔符)l2=l2+1;%l2用来记录识别出的字符数subplot(1,7,l2);x(k)=code(temp);%调用子程序进行字符扫描,并返回字符的ASCII码x(k)=uint8(x(k));if x(k)>0 %当所选区域不为空时进行输出l1=l1+1;%l1用来记录输出的字符数s(l1)=char(x(k));endtemp(32,32)=0;imshow(temp);endnow=now+2;endy=char(s);%将得到的ASCII码重新转换为字符并在屏幕上输出fprintf('\r\n该车辆的车牌号为:\r\n');disp(y);fprintf('\r\n输出的字符数为:%4d\r\n',l1);fprintf('识别出的字符数为:%4d\r\n',l2);。

(完整版)MATLAB车牌识别

(完整版)MATLAB车牌识别

目录1.引言 (2)2.设计概述 (3)2.1车牌识别技术 (3)2.2 车牌识别技术的发展 (3)2.3 车牌识别技术的国内外研究现状 (4)2.4 主要应用领域 (6)3.设计方案 (7)4.车牌识别系统的matlab实现 (8)4.1 图像的读取 (8)4.2 图像预处理 (9)4.2.1灰度变换 (9)4.2.2 图像校正 (10)4.3 牌照分割 (10)4.3.1 图像边缘提取及二值化 (11)4.3.2 BP神经网络 (14)4.4 车牌提取 (15)5.设计结果及分析 (16)5.1程序运行结果 (16)5.2程序结果分析 (17)总结体会 (18)参考文献 (19)附录1 (20)附录2 (28)1.引言伴随着世界各国车辆数量的增加,城市交通状况日益受到人们的重视。

如何有效地进行交通管理,越来越成为各国政府的相关部门所关注的焦点。

针对这一问题,人们运行先进的信息处理技术、导航定位技术、无线通信技术、自动控制技术、图像处理和识别技术及计算机网络技术等科学技术,相继研发了各种交通道路监视管理系统、车辆控制系统及公共交通系统。

这些系统将车辆和道路综合起来进行考虑,运行各种先进的技术解决道路交通的问题,统称为智能交通系统( Intelligent Transportation System,简称ITS)。

ITS 是20世纪90年代兴起的新一代交通运输系统。

它可以加强道路、车辆、驾驶员和管理人员的联系,实现道路交通管理自动化和车辆行驶的智能化,增强交通安全,减少交通堵塞,提高运输效率,减少环境污染,节约能源,提高经济活力。

智能交通系统以车辆的自动检测作为信息的来源,因而对车牌照等相关信息的自动采集和处理的一门新的交通信息获取技术——车牌识别(License Plate Recognition ,LPR) 技术逐渐发展起来,成为信息处理技术的一项重要研究课题。

车牌自动识别是智能交通管理系统中的关键技术之一。

基于Matlab的车牌识别(完整版)

基于Matlab的车牌识别(完整版)

基于Matlab的车牌识别摘要:车牌识别技术是智能交通系统的重要组成部分,在近年来得到了很大的发展。

本文从预处理、边缘检测、车牌定位、字符分割、字符识别五个方面,具体介绍了车牌自动识别的原理。

并用MATLAB软件编程来实现每一个部分,最后识别出汽车车牌。

一、设计原理车辆车牌识别系统的基本工作原理为:将摄像头拍摄到的包含车辆车牌的图像通过视频卡输入到计算机中进行预处理,再由检索模块对车牌进行搜索、检测、定位,并分割出包含车牌字符的矩形区域,然后对车牌字符进行二值化并将其分割为单个字符,然后输入JPEG或BMP格式的数字,输出则为车牌号码的数字。

车牌自动识别是一项利用车辆的动态视频或静态图像进行车牌号码、车牌颜色自动识别的模式识别技术。

其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。

某些车牌识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。

一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分。

当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。

车牌识别单元对图像进行处理,定位出车牌位置,再将车牌中的字符分割出来进行识别,然后组成车牌号码输出。

二、设计步骤总体步骤为:基本的步骤:a.车牌定位,定位图片中的车牌位置;b.车牌字符分割,把车牌中的字符分割出来;c.车牌字符识别,把分割好的字符进行识别,最终组成车牌号码。

车牌识别过程中,车牌颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。

(1)车牌定位:自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定车牌区域是整个识别过程的关键。

首先对采集到的视频图像进行大范围相关搜索,找到符合汽车车牌特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为车牌区域,并将其从图象中分割出来。

车牌识别的matlab程序-(详细注释,并有使用注意点)

车牌识别的matlab程序-(详细注释,并有使用注意点)

附录车牌识别程序clear ;close all;%Step1 获取图像装入待处理彩色图像并显示原始图像Scolor = imread('3.jpg');%imread函数读取图像文件%将彩色图像转换为黑白并显示Sgray = rgb2gray(Scolor);%rgb2gray转换成灰度图figure,imshow(Scolor),title('原始彩色图像');%figure命令同时显示两幅图figure,imshow(Sgray),title('原始黑白图像');%Step2 图像预处理对Sgray 原始黑白图像进行开操作得到图像背景s=strel('disk',13);%strel函数Bgray=imopen(Sgray,s);%打开sgray s图像figure,imshow(Bgray);title('背景图像');%输出背景图像%用原始图像与背景图像作减法,增强图像Egray=imsubtract(Sgray,Bgray);%两幅图相减figure,imshow(Egray);title('增强黑白图像');%输出黑白图像%Step3 取得最佳阈值,将图像二值化fmax1=double(max(max(Egray)));%egray的最大值并输出双精度型fmin1=double(min(min(Egray)));%egray的最小值并输出双精度型level=(fmax1-(fmax1-fmin1)/3)/255;%获得最佳阈值bw22=im2bw(Egray,level);%转换图像为二进制图像bw2=double(bw22);%Step4 对得到二值图像作开闭操作进行滤波figure,imshow(bw2);title('图像二值化');%得到二值图像grd=edge(bw2,'canny')%用canny算子识别强度图像中的边界figure,imshow(grd);title('图像边缘提取');%输出图像边缘bg1=imclose(grd,strel('rectangle',[5,19]));%取矩形框的闭运算figure,imshow(bg1);title('图像闭运算[5,19]');%输出闭运算的图像bg3=imopen(bg1,strel('rectangle',[5,19]));%取矩形框的开运算figure,imshow(bg3);title('图像开运算[5,19]');%输出开运算的图像bg2=imopen(bg3,strel('rectangle',[19,1]));%取矩形框的开运算figure,imshow(bg2);title('图像开运算[19,1]');%输出开运算的图像%Step5 对二值图像进行区域提取,并计算区域特征参数。

基于MATLAB图像处理的汽车牌照识别系统

基于MATLAB图像处理的汽车牌照识别系统

基于MATLAB 图像处理的汽车牌照识别系统仇成群(盐城师范学院,江苏盐城224002)汽车牌照识别系统是建设智能交通系统不可或缺的部分。

基于MATLAB 图像处理的汽车牌照识别系统是通过引入数字摄像技术和计算机信息管理技术,采用先进的图像处理、模式识别和人工智能技术,通过对图像的采集和处理,获得更多的信息,从而达到更高的智能化管理程度。

车牌识别系统整个处理过程分为预处理、边缘提取、车牌定位、字符分割、字符识别五大模块,用MATLAB 软件编程来实现每一个部分处理工程,最后识别出汽车牌照[1-4]。

1MATLAB 及其图像处理工具概述MATLAB 是MATrix LABoratory (矩阵实验室)的缩写,是Math Works 公司开发的一种功能强、效率高、简单易学的数学软件。

MATLAB 的图像处理工具箱,功能十分强大,支持的图像文件格式丰富,如*.BMP 、*.JPG 、*.JPEG 、*.GIF 、*.TIF 、*.TIFF 、*.PNG 、*.PCX 、*.XWD 、*.HDF 、*.ICO 、*.CUR 等。

MATLAB 7.1提供了20多类图像处理函数,几乎涵盖了图像处理的所有技术方法,是学习和研究图像处理的人员难得的宝贵资料和加工工具箱。

这些函数按其功能可分为:图像显示、图像文件I/O 、图像算术运算、几何变换、图像登记、像素值与统计、图像分析、图像增强、线性滤波、线性二元滤波设计、图像去模糊、图像变换、邻域与块处理、灰度与二值图像的形态学运算、基于边缘的处理、色彩映射表操作、色彩空间变换、图像类型与类型转换。

MATLAB 还着重在图形用户界面(GUI )的制作上作了很大的改善,对这方面有特殊要求的用户也可以得到满足。

本文将给出MATLAB 的图像处理工具箱中的图像处理函数实现图像处理与分析的应用技术实例。

2基于MATLAB 图像处理的汽车牌照识别系统2.1系统组成基于MATLAB 图像处理的汽车牌照识别系统主要包括车牌定位、字符车牌分割和车牌字符识别三个关键环节。

基于Matlab的车牌识别课程设计报告

基于Matlab的车牌识别课程设计报告

导入原始 图像
图像预处理 增强效果图
进行边缘 提取
车牌具体 位置定位
对车牌进 行处理
输出 结果
对分割的字 符进行识别
字符特征 提取
对字符进 行归一化
对字符进行 分割
图1 牌照识别系统原理图
该系统是计算机 图像处理与字符识别技术在 智能化交通管理系统中的应用 ,它 主 要 由 牌 照 图 像 的 采 集 和 预 处 理 、牌 照 区 域 的 定 位 和 提 取 、牌 照 字 符 的 分 割 和 识 别 等几个部分组成,如图1 所示。其基本工作过程如下:
对比以上几幅图片,图 12 的边缘已经模糊掉了。图 11 中包含的噪声太多, 图 13 未经滤波直接提取出的边缘图像最清晰,所包含的有用信息最多。
(二)、牌照的定位和分割
牌照的定位和分 割是牌照识别系统的关键技 术之一,其主要目的是在经图象预 处 理 后 的 原 始 灰 度 图 象 中 确 定 牌 照 的 具 体 位 置 ,并 将 包 含 牌 照 字 符 的 一 块 子 图 象 从 整个图象中分割出来,供字符识别子系 统识别之用,分割的准确与否直接关系到整 个 牌 照 字 符 识 别 系 统 的 识 别 率 。根 据 其 灰 度 值 与 周 边 区 域 有 明 显 的 不 同 ,在 其 边 缘 形成了灰度突变的边界,这样就便于通过边缘检测来对图象进行分割。
牌 区 域 , 确 定 车 牌 底 色 蓝 色 RGB对 应 的 各 自 灰 度 范 围 , 然 后 行 方 向 统 计 在 此 颜 色 范
围 内 的 像 素 点 数 量 ,设 定 合 理 的 阈 值 ,确 定 车 牌 在 行 方 向 的 合 理 区 域 。然 后 ,在 分
割出的行区域内,统计列方向蓝色像素点的数量,最终确定完整的车牌区域。

Matlab环境下基于神经网络的车牌识别

Matlab环境下基于神经网络的车牌识别

西安电子科技大学硕士学位论文Matlab环境下基于神经网络的车牌识别姓名:周科伟申请学位级别:硕士专业:交通信息工程及控制指导教师:张向东20090101第四章Ma:tlab环境下的编程实现43B2--net.b{2,1);W3--net.LW{3,2);B3---net.b{3,1);同时,我们编写Matlab程序将这些权值和偏置矩阵保存为二进制文件,以后就可以直接读取这些二进制文件进行分类识别计算了。

接下来,我们把待识别的字符输入到Matlab中:A=imread(’recog.bmp’,'bmp’);经过重塑矩阵形状:AA---reshape(A,700,1);接下来关键的一步就是与K-L矩阵进行乘法运算,得到输入到神经网络分类器的32维列向量:test=X(:,:)峰im2double(AA);然后输入到神经网络分类器,与刚才保存的权值和偏置矩阵进行矩阵运算:resultl=logsig(Wl宰test+B1);result2=logsig(W2枣resultl+B2);result3=purelin(W3木result2+B3);最终得到的result3的值为0一l之间的浮点数,表示与分类器相应的字符的相近程度,是该字符的条件下,越接近于1,说明识别效果越好。

不是该字符的条件下,越接近于0,说明识别效果越好。

4.4.2汉字的识别汉字识别一直以来是车牌识别系统的一大难点,因为汉字字符较为复杂,且车牌中的汉字字符受噪声干扰情况更加严重,在预处理后,图像信息更加不清楚,往往给识别造成极大困难。

本课题中,主要利用汉字字符独有的字符特征和一些先验知识,进行了了比较好地解决。

汉字大多数都是有左右或者上下结构的,特别是在车牌号码中可能出现的这31个字符中,绝大多数都可以分为左右或者上下结构,都是有偏旁部首的车牌号码中,有些省的简称具有相同的偏旁部首,比如“湘’’、“浙"、“沪”、“津”等都是“宁"旁的,“京"和“琼”中可有“京",等等。

基于MATLAB的车辆识别研究

基于MATLAB的车辆识别研究

基于MATLAB的车牌识别研究摘要随着我国公路事业的发展,人工管理方式已经不能满足如今实际的需要。

车牌识别技术是计算机视频图像识别技术在车辆牌照识别中的一种应用,是现代智能交通系统(Intelligent Traffic System,简称ITS)中的重要组成部分之一。

车牌识别系统(vehicle license plate recognition system,简称LPR)使车辆管理更加智能化、数字化,有效提升了交通管理的效率。

对于交通管理、治安处罚等工作的智能化起着十分重要的作用。

它可广泛应用于交通流量检测,交通控制与诱导,机场、港口、小区的车辆管理,不停车自动收费,闯红灯等违章车辆监控以及车辆安全防盗等领域,具有广阔的应用前景。

而牌照作为机动车辆管理的唯一标识符号,使得车辆牌照识别系统的研究在机动车管理方面具有重要的实际意义。

本文通过对题目的研究,设计了一个基于Matlab软件的车牌识别程序,可实现图像预处理、车牌定位、字符分割,然后通过神经网络对车牌进行字符识别,从图像中提取车牌中的字母和数字,从而得到文本形式的车牌号码。

其中,图像预处理是通过图像灰度化及Roberts算子进行边缘检测完成。

车牌定位是通过数学形态法来确定,然后再通过车牌彩色信息的彩色分割法来完成车牌的切割。

字符分割是将车牌部分进行二值化后,进行垂直投影以及对投影部分扫描得到。

通过用该算法对三个问题中的照片和视频进行处理,可识别车辆牌照:问题1:image_1.jpg中牌照信息肉眼可识别为渝A•7Y618,但本算法未将汉字识别;image_2.jpg中牌照信息肉眼可识别为渝B•PY287,但本算法未将汉字识别,未将数字完整识别;image_3.jpg中牌照信息肉眼可识别为渝B•XW192,但本算法未能识别;问题2:image_4.jpg中牌照信息肉眼可识别为渝B•SU298,但本算法未能识别;image_5.jpg中牌照信息未能识别;问题3:video.avi中肇事车辆牌照信息未能识别。

车牌识别matlab代码

车牌识别matlab代码

close allclc[fn,pn,fi]=uigetfile('ChePaiKu\*.jpg','选择图片');YuanShi=imread([pn fn]);%输入原始图像figure(1);subplot(3,2,1),imshow(YuanShi),title('原始图像');%%%%%%%%%%1、图像预处理%%%%%%%%%%%YuanShiHuiDu=rgb2gray(YuanShi);%转化为灰度图像subplot(3,2,2),imshow(YuanShiHuiDu),title('灰度图像');BianYuan=edge(YuanShiHuiDu,'robert',0.09,'both');%Robert算子边缘检测subplot(3,2,3),imshow(BianYuan),title('Robert算子边缘检测后图像');se1=[1;1;1]; %线型结构元素FuShi=imerode(BianYuan,se1); %腐蚀图像subplot(3,2,4),imshow(FuShi),title('腐蚀后边缘图像');se2=strel('rectangle',[30,30]); %矩形结构元素TianChong=imclose(FuShi,se2);%图像聚类、填充图像subplot(3,2,5),imshow(TianChong),title('填充后图像');YuanShiLvBo=bwareaopen(TianChong,2000);%从对象中移除面积小于2000的小对象figure(2);subplot(2,2,1),imshow(YuanShiLvBo),title('形态滤波后图像');%%%%%%%%%%2、车牌定位%%%%%%%%%%%[y,x]=size(YuanShiLvBo);%size函数将数组的行数返回到第一个输出变量,将数组的列数返回到第二个输出变量YuCuDingWei=double(YuanShiLvBo);%%%%%%%%%%2.1、车牌粗定位之一确定行的起始位置和终止位置%%%%%%%%%%%Y1=zeros(y,1);%产生y行1列全零数组for i=1:yfor j=1:xif(YuCuDingWei(i,j)==1)Y1(i,1)= Y1(i,1)+1;%白色像素点统计endendend[temp,MaxY]=max(Y1);%Y方向车牌区域确定。

数字图像处理车牌识别课程设计matlab实现附源代码

数字图像处理车牌识别课程设计matlab实现附源代码

精品实验项目字符识别预处理的设计与实现专业:电子信息工程*名:**学号:**********指导老师:***目录一、实验类型:设计性实验 (3)二、实验目的 (3)三、实验设备:扫描仪、安装有MATLAB软件的计算机 (3)四、实验内容及原理 (3)(1)字符图像的获取 (3)(2)字符图像预处理 (3)(3)字符图像分割 (3)(4)函数的作用 (4)五、实验步骤 (8)1.载入车牌图像: (8)2.将彩图转换为灰度图并绘制直方图: (9)3. 用roberts算子进行边缘检测: (10)4.图像实施腐蚀操作: (10)5.平滑图像 (11)6. 删除二值图像的小对象 (12)7.车牌定位 (12)8.字符分割与识别 (14)9.车牌识别: (20)六、思考题 (27)一、实验类型:设计性实验二、实验目的1. 掌握图像的获取、预处理和分割的原理及MATLAB实现方法。

2. 掌握使用扫描仪和计算机获取数字图像的方法,理解扫描仪的原理。

3. 自学一种字符图像的分割算法并用MA TLAB编程实现该算法。

三、实验设备:扫描仪、安装有MATLAB软件的计算机四、实验内容及原理(1)字符图像的获取用扫描仪获取图像是字符图像处理常用的数字化过程的方法之一。

以办公设备中常用的台式扫描仪为例,其主要性能指标有x、y方向的分辨率、色彩分辨率(色彩位数)、扫描幅面和接口方式等,这些指标都可以从扫描仪的说明手册中获得。

分辨率的单位是dpi(Dot Per Inch),意思是每英寸的像素点数。

扫描仪工作时,首先由可移动带状光源将光线照在欲输入的图稿上,并沿y方向扫描稿件,产生表示图像特征的反射光或透射光。

照射到原稿上的光线经反射后穿过一个很窄的缝隙,形成沿x方向的光带,经光学系统采集和过滤成RGB三色光带分别照射到RGB分量的CCD上,CCD将光信号转换为模拟电信号。

内部电路的A/D变换器将模拟电信号转变为数字电子信号输送给计算机。

基于MATLAB平台下的车牌识别系统设计

基于MATLAB平台下的车牌识别系统设计

3、实验改进
3、实验改进
根据实验结果,我们发现车牌定位和字符分割模块是影响系统性能的关键因 素。因此,我们计划从以下两个方面进行改进:
3、实验改进
1、针对车牌定位模块,尝试引入更多的特征提取方法,以便更准确地定位车 牌区域;
2、针对字符分割模块,研究更为稳健的连通域分析方法,减少误分割和漏分 割。
三、实验结果与分析
1、实验设置
1、实验设置
为了评估车牌识别系统的性能,我们构建了一个包含200张车牌图像的数据集, 其中包含了不同的光照条件、车牌位置和尺寸。评估指标主要包括准确率、召回 率和运行时间。
2、实验结果分析
2、实验结果分析
经过大量实验,我们得到了以下结果: 1、车牌定位模块的准确率为95%,召回率为90%;
1、需求分析
3、适应性:系统应能适应不同的环境条件,包括不同的光照条件、车牌位置 和车牌尺寸等;
1、需求分析
4、可靠性:系统应具备一定的可靠性,能够稳定运行,保证识别结果的准确 性。
2、总体设计
2、总体设计
在总体设计阶段,我们将车牌识别系统分解为以下几个模块: 1、车牌定位模块:该模块主要负责寻找并定位车牌区域,排除其他干扰因素;
基于MATLAB平台下的车牌识别 系统设计
01 一、引言
目录
02
二、车牌识别系统设 计
03 三、实验结果与分析
04 四、结论与展望
05 参考内容
一、引言
一、引言
随着社会的快速发展和科技的不断进步,智能化交通管理成为了研究的热点。 车牌识别系统作为智能化交通管理的重要组成部分,能够自动识别车辆身份,提 高交通监管能力和服务质量。本次演示将基于MATLAB平台,设计一套车牌识别系 统,旨在提高车牌识别的准确性和效率,为智能交通管理提供有力支持。

-基于matlab的车牌识别系统的设计(附程序+详解注释)

-基于matlab的车牌识别系统的设计(附程序+详解注释)

焦作大学毕业设计(论文)说明书作者:学号:学院(系):信息工程学院专业:通信技术题目:基于matlab的车牌识别系统的设计主题:指导教师:职称:讲师2012年12月摘要汽车车牌的识别系统是现代智能交通管理的重要组成部分之一。

车牌识别系统使车辆管理更智能化,数字化,有效的提升了交通管理的方便性和有效性。

车牌识别系统主要包括了图像采集、图像预处理、车牌定位、字符分割、字符识别等五大核心部分。

本文主要介绍图像预处理、车牌定位、字符分割三个模块的实现方法。

本文的图像预处理模块是将图像灰度化和用Roberts算子进行边缘检测的步骤。

车牌定位和分割采用的是利用数学形态法来确定车牌位置,再利用车牌彩色信息的彩色分割法来完成车牌部位分割。

字符的分割采用的方法是以二值化后的车牌部分进行垂直投影,然后在对垂直投影进行扫描,从而完成字符的分割。

本文即是针对其核心部分进行阐述并使用MATLAB软件环境中进行字符分割的仿真实验。

关键词:MATLAB、图像预处理、车牌定位、字符分割ABSTRACTVehicle license plate recognition system is one important of the modern intelligent traffic management. License plate recognition system to make more intelligent vehicle management, digital, Effective traffic management to enhance the convenience and effectiveness. License plate recognition system includes image acquisition, image preprocessing, license plate localization, character segmentation, character recognition and other five core parts. In this paper, preprocessing, license plate localization, character segmentation method for the realization of three modules.This is the image preprocessing module and the use of the image grayscale Roberts edge detection operator steps. License plate location and segmentation using mathematical morphology method is used to determine the license plate location,Re-use license plate color segmentation method of color information to complete the license plate area segmentation. Character segmentation approach is based on the license plate after thebinary part of the vertical projection, Then scan in the vertical projection, thus completing the character segmentation. This article is described for the core part and use the MATLAB software environment, the simulation experiments for character segmentation.Keywords: MATLAB software, image preprocessing, license plate localization, character segmentation .目录1. 绪论 (1)1.1 本课题的研究背景 (1)1.2 本课题的研究目的及意义 (2)1.3 国内外发展状况 (3)1.4 主要应用领域 (5)1.5 设计原理 (6)2. MATLAB简介 (7)2.1 MATLAB发展历史 (7)2.2 MATLAB的语言特点 (7)3.工作流程 (9)3.1 系统框架结构和工作流程 (9)4.各模块的实现 (11)4.1设计方案 (11)4.2图像预处理 (11)4.2.1图像灰度化 (11)4.2.2图像的边缘检测 (12)4.3车牌定位和分割 (14)4.3.1车牌的定位 (15)4.3.2车牌的分割 (16)4.3.3对定位后的彩色车牌的进一步处理 (17)4.4字符的分割和归一化处理 (17)4.4.1字符的分割 (18)4.4.2字符的归一化处理 (19)4.5 字符的识别 (19)5.实验结果和分析 (22)6.实验总结 (24)致谢 (25)参考文献 (26)程序附录 (27)第一章绪论1.1 本课题的研究背景现代社会已进入信息时代,随着计算机技术、通信技术和计算机网络技术的发展,自动化信息处理能力和水平不断提高,作为现代社会主要交通工具之一的汽车在人们的生产生活的各个领域得到大量使用,对他的信息进行自动采集和管理具有十分重要的意义,成为信息处理技术的一项重要研究课题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于matlab的汽车牌照识别程序摘要:本次作业的任务是设计一个基于matlab的汽车牌照识别程序,能够实现车牌图像预处理,车牌定位,字符分割,然后通过神经网络对车牌进行字符识别,最终从一幅图像中提取车牌中的字母和数字,给出文本形式的车牌号码。

关键词:车牌识别,matlab,神经网络1 引言随着我国交通运输的不断发展,智能交通系统(Intelligent Traffic System,简称ITS)的推广变的越来越重要,而作为ITS的一个重要组成部分,车辆牌照识别系统(vehicle license plate recognition system,简称LPR)对于交通管理、治安处罚等工作的智能化起着十分重要的作用。

它可广泛应用于交通流量检测,交通控制于诱导,机场,港口,小区的车辆管理,不停车自动收费,闯红灯等违章车辆监控以及车辆安全防盗等领域,具有广阔的应用前景。

由于牌照是机动车辆管理的唯一标识符号,因此,车辆牌照识别系统的研究在机动车管理方面具有十分重要的实际意义。

2 车辆牌照识别系统工作原理车辆牌照识别系统的基本工作原理为:将摄像头拍摄到的包含车辆牌照的图像通过视频卡输入到计算机中进行预处理,再由检索模块对牌照进行搜索、检测、定位,并分割出包含牌照字符的矩形区域,然后对牌照字符进行二值化并将其分割为单个字符,然后输入JPEG或BMP格式的数字,输出则为车牌号码的数字。

3 车辆牌照识别系统组成(1)图像预处理:对汽车图像进行图像转换、图像增强和边缘检测等。

(2)车牌定位:从预处理后的汽车图像中分割出车牌图像。

即在一幅车辆图像中找到车牌所在的位置。

(3)字符分割:对车牌图像进行几何校正、去噪、二值化以及字符分割以从车牌图像中分离出组成车牌号码的单个字符图像(4)字符识别:对分割出来的字符进行预处理(二值化、归一化),然后分析提取,对分割出的字符图像进行识别给出文本形式的车牌号码。

4 汽车牌照识别系统的matlab实现4.1 图像预处理与车牌定位输入的彩色图像包含大量颜色信息,会占用较多的存储空间,且处理时也会降低系统的执行速度,因此对图像进行识别等处理时,常将彩色图像转换为灰度图像,以加快处理速度。

对图像进行灰度化处理、边缘提取、再利用形态学方法对车牌进行定位。

具体步骤如下:首先对图像进行灰度转换,二值化处理然后采用4X1的结构元素对图像进行腐蚀,去除图像的噪声。

采用25X25的结构元素,对图像进行闭合应算使车牌所在的区域形成连通。

在进行形态学滤波去除其它区域。

I=imread('DSC01344.jpg');%读取图像figure(); subplot(3,2,1),imshow(I), title('原始图像');I1=rgb2gray(I);%转化为灰度图像subplot(3,2,2),imshow(I1),title('灰度图像');I2=edge(I1,'robert',0.09,'both');%采用robert算子进行边缘检测subplot(3,2,3),imshow(I2),title('边缘检测后图像');se=[1;1;1]; %线型结构元素I3=imerode(I2,se); %腐蚀图像subplot(3,2,4),imshow(I3),title('腐蚀后边缘图像');se=strel('rectangle',[25,25]); 矩形结构元素I4=imclose(I3,se);%图像聚类、填充图像subplot(3,2,5),imshow(I4),title('填充后图像');subplot(3,2,6),imshow(I5),title('形态滤波后图像');[y,x,z]=size(I5);I6=double(I5);Y1=zeros(y,1);for i=1:yfor j=1:xif(I6(i,j,1)==1)Y1(i,1)= Y1(i,1)+1;endendend[temp MaxY]=max(Y1);figure();subplot(3,2,1),plot(0:y-1,Y1),title('行方向像素点灰度值累计和'),xlabel('行值'),ylabel('像素');%%%%%%%求的车牌的行起始位置和终止位置%%%%%%%%%PY1=MaxY;while ((Y1(PY1,1)>=50)&&(PY1>1))PY1=PY1-1;endPY2=MaxY;while ((Y1(PY2,1)>=50)&&(PY2<y))PY2=PY2+1;endIY=I(PY1:PY2,:,:);X1=zeros(1,x);for j=1:xfor i=PY1:PY2if(I6(i,j,1)==1)X1(1,j)= X1(1,j)+1;endendendsubplot(3,2,2),plot(0:x-1,X1),title('列方向像素点灰度值累计和'),xlabel('列值'),ylabel('像数');%%%%%%%求的车牌的列起始位置和终止位置%%%%%%%%%PX1=1;while ((X1(1,PX1)<3)&&(PX1<x))PX1=PX1+1;endPX2=x;while ((X1(1,PX2)<3)&&(PX2>PX1))PX2=PX2-1;endPX1=PX1-1;PX2=PX2+1;%分割出车牌图像%dw=I(PY1:PY2,PX1:PX2,:);subplot(3,2,3),imshow(dw),title('定位剪切后的彩色车牌图像')% 4.2 车牌字符分割% 确定车牌位置后下一步的任务就是进行字符切分分离出车牌号码的全部字符图像。

if isrgb(dw)I1 = rgb2gray(dw); %将RGB图像转化为灰度图像else I1=dw;endg_max=double(max(max(I1)));g_min=double(min(min(I1)));T=round(g_max-(g_max-g_min)/3); % T 为二值化的阈值[m,n]=size(I1);% d:二值图像%h=graythresh(I1);I1=im2bw(I1,T/256);subplot(3,2,4);imshow(I1),title('二值化车牌图像');I2=bwareaopen(I1,20);subplot(3,2,5);imshow(I2),title('形态学滤波后的二值化图像');[y1,x1,z1]=size(I2);I3=double(I2);TT=1;%%%%%%%去除图像顶端和底端的不感兴趣区域%%%%%Y1=zeros(y1,1);for i=1:y1for j=1:x1if(I3(i,j,1)==1)Y1(i,1)= Y1(i,1)+1 ;endendendPy1=1;Py0=1;while ((Y1(Py0,1)<20)&&(Py0<y1))Py0=Py0+1;endPy1=Py0;while((Y1(Py1,1)>=20)&&(Py1<y1))Py1=Py1+1;endI2=I2(Py0:Py1,:,:);subplot(3,2,6);imshow(I2),title('目标车牌区域');%%%%%% 分割字符按行积累量%%%%%%%X1=zeros(1,x1);for j=1:x1for i=1:y1if(I3(i,j,1)==1)X1(1,j)= X1(1,j)+1;endendendfigure(5);plot(0:x1-1,X1),title('列方向像素点灰度值累计和'),xlabel('列值'),ylabel('累计像素量');Px0=1;Px1=1;%%%%%%%%%%%%分割字符%%%%%%%%%%%%%%%%%% for i=1:7while ((X1(1,Px0)<3)&&(Px0<x1))Px0=Px0+1;endPx1=Px0;while (((X1(1,Px1)>=3)&&(Px1<x1))||((Px1-Px0)<10))Px1=Px1+1;endZ=I2(:,Px0:Px1,:);switch strcat('Z',num2str(i))case 'Z1'PIN0=Z;case 'Z2'PIN1=Z;case 'Z3'PIN2=Z;case 'Z4'PIN3=Z;case 'Z5'PIN4=Z;case 'Z6'PIN5=Z;otherwisePIN6=Z;endfigure(3);subplot(1,7,i);imshow(Z);Px0=Px1;End4.3 车牌字符识别字符识别方法主要有基于模板匹配算法和基于人工神经网络算法。

基于模板匹配算法是首先将分割后的字符二值化,并将其尺寸缩放为字符数据库中模板的大小,然后与所有模板进行匹配,最后选取最佳匹配作为结果。

建立数字库对该方法在车牌识别过程中很重要, 数字库准确才能保证检测出的数据正确。

基于人工神经元网络的算法有两种,一种是先对特征提取待识别字符,然后用所获得的特征训练神经网络分配器;另一种是直接将待处理图像输入网络由网络自动实现特征提取直至识别结果。

在本程序中用基于人工神经元网络识别车牌字符。

在车牌字符识别部分, 字符集中包含约50个汉字, 26个大写英文字母及10个阿拉伯数字。

总的字符样本并不太多。

4.3.1 构造训练样本如下图所示的数字和字母,将样本进行归一化为50X20大小,再将图像按列转换成一个1000X1的行向量,将上述18个图像的样本排列在一起构成1000X18的矩阵样本,尽可能多的采集汽车图像提取车牌,部分切分出车牌字符,构造出更多1000X18的矩形样本,用构造好的样本库对神经网络进行训练。

function inpt = pretreatment(I)%YUCHULI Summary of this function goes here% Detailed explanation goes hereif isrgb(I)I1 = rgb2gray(I);elseI1=I;endI1=imresize(I1,[50 20]);%将图片统一划为50*20大小I1=im2bw(I1,0.9);[m,n]=size(I1);inpt=zeros(1,m*n);%%%%%%将图像按列转换成一个行向量for j=1:nfor i=1:minpt(1,m*(j-1)+i)=I1(i,j);endend4.3.2 构造输入样本,按同样的方法,将前面分割出的样本归一化。

相关文档
最新文档