最新高中物理动量守恒定律
高中物理【动量守恒定律】知识点、规律总结
考点一 动量守恒定律的理解及应用
多维探究
1.动量守恒定律的五个特性
矢量性 动量守恒定律的表达式为矢量方程,解题应选取统一的正方向
相对性 各物体的速度必须是相对同一参考系的速度(一般是相对于地面)
动量是一个瞬时量,表达式中的 p1、p2……必须是系统中各物体在相互作用 同时性 前同一时刻的动量,p1′、p2′……必须是系统中各物体在相互作用后同一时刻
2.反冲 (1)定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量, 这种现象叫反冲运动. (2)特点:系统内各物体间的相互作用的内力_远__大__于___系统受到的外力.实例:发射 炮弹、爆竹爆炸、发射火箭等. (3)规律:遵从动量守恒定律. 3.爆炸问题 爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且_远__大__于___系统所受 的外力,所以系统动量_守__恒___.
考点二 动量守恒定律的三个应用实例
多维探究
第 1 维度:碰撞问题
1.碰撞现象满足的规律
(1)动量守恒定律.
(2)机械能不增加.
(3)速度要合理.
①若碰前两物体同向运动,则应有 v 后>v 前,碰后原来在前面的物体速度一 前′≥v 后′.
②碰前两物体相向运动,碰后两物体的运动方向不可能都不改变.
【总结提升】 (1)动量守恒定律的研究对象都是相互作用的物体组成的系统.系统 的动量是否守恒,与选择哪几个物体作为系统和分析哪一段运动过程有直接关系.
(2)分析系统内物体受力时,要弄清哪些是系统的内力,哪些是系统外的物体对系统 的作用力.
(3)系统中各物体的速度是否是相对地面的速度,若不是,则应转换成相对于地面的 速度.
两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒,在
新教材人教版高中物理选择性必修第一册 1-3动量守恒定律 教学课件
第十六页,共二十二页。
5.(单选)如图所示,弹簧的一端固定在竖直墙上,质量为M的光滑弧形槽静止在光滑水平面上,底部与水平面相切,一个
新课讲解 一、相互作用的两个物体的动量改变
1.试用牛顿运动定律推导两物体碰撞前后的总动量的关系
m2
m1
m2 m1
m2
F2
F1
A
B
A
a2
v2 v2 Δt
a2
F2 m2
F1
F2
a1
F1 m1
m1a1 m2a2
m1 B
a1
v1 v1 Δt
m1v1 + m2v2 m1v1 + m2v2
第四页,共二十二页。
Δp 0
第六页,共二十二页。
二、对动量守恒定律的理解?
3、条件: (1)系统不受外力;(理想条件)
(2)系统受到外力,但外力的合力为零;(实际条件)
(3)系统所受外力合力不为零,但系统内力远大于外力,外力相对来说可以忽略 不计,因而系统动量近似守恒;(近似条件)
(4)系统总的来看虽不符合以上三条中的任何一条,但在某一方向上符合以上三条
光滑
观看视频,你有何感想?
第五页,共二十二页。
二、对动量守恒定律的理解?
1、内容: 如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。
这就是动量守恒定律。
2、公式: m1v1 + m2v2 m1v1 + m2v2 Δp1 Δp2
m1Δv1 m2Δv2 p p
p p
第十三页,共二十二页。
2.(单选)木块a和b用一根轻弹簧连接起来,放在光滑水平面上,a紧靠在墙壁
上,在b上施加向左的水平力使弹簧压缩,如图所示,当撤去外力后,下列说法
高中物理动量守恒定律知识点总结
高中物理动量守恒定律知识点总结
高中物理中,动量守恒定律是一个重要的概念,它表明在一个封闭系统中,如果没有
外力作用,系统的总动量将保持不变。
以下是关于动量守恒定律的知识点总结:
1. 动量的定义:动量是物体的质量与速度的乘积,用符号p表示,p = mv。
其中m是物体的质量,v是物体的速度。
2. 动量守恒定律的表述:在一个封闭系统中,如果没有外力作用,系统的总动量将保
持不变。
即Σpi = Σpf,其中Σpi表示系统的初始总动量,Σpf表示系统的最终总动量。
3. 弹性碰撞:在碰撞过程中,物体的总动能和总动量都守恒。
即碰撞前后物体的总动
量和总动能的和是相等的。
4. 完全非弹性碰撞:在碰撞过程中,物体之间会发生黏合或形变,使得总动能不守恒,但总动量仍然守恒。
5. 不同物体间的碰撞:当两个物体碰撞时,根据动量守恒定律可以推导出碰撞前后物
体的速度关系。
6. 动量的方向:动量是一个矢量量,具有大小和方向,通常使用向右为正,向左为负
的坐标系来表示。
7. 动量的变化:外力可以改变物体的动量,根据牛顿第二定律(F = ma),可以推导出物体的动量变化率等于物体所受外力的大小和方向。
8. 动量守恒定律的应用:动量守恒定律可用于解决各种碰撞问题,如弹性碰撞、完全
非弹性碰撞、两个物体间的碰撞等。
以上是关于高中物理动量守恒定律的知识点总结,希望对你有帮助!。
新教材-人教版高中物理选择性必修第一册 第一章 动量守恒定律 知识点考点重点难点提炼汇总
第一章 动量守恒定律1、2 动量 动量定理 .................................................................................................. - 1 - 3 动量守恒定律............................................................................................................ - 9 - 4 实验:验证动量守恒定律 ...................................................................................... - 17 - 5 弹性碰撞和非弹性碰撞 .......................................................................................... - 24 -1、2 动量 动量定理一、动量1.动量(1)定义:物理学中把物体的质量m 跟运动速度v 的乘积m v 叫作动量.(2)定义式:p =m v .(3)单位:在国际单位制中,动量的单位是千克米每秒,符号为kg·m/s.(4)矢量:由于速度是矢量,所以动量是矢量,它的方向与速度的方向相同.2.用动量概念表示牛顿第二定律(1)公式表示:F =Δp Δt .(2)意义:物体所受到的合外力等于它动量的变化率.二、动量定理 1.冲量(1)定义:物理学中把力与力的作用时间的乘积叫作力的冲量.(2)公式:I =F Δt =F (t ′-t ).(3)矢量:冲量是矢量,它的方向跟力的方向相同.(4)物理意义:冲量是反映力的作用对时间的累积效应的物理量,力越大,作用时间越长,冲量就越大. 2.动量定理(1)内容:物体在一个过程中所受力的冲量等于它在这个过程始末的动量变化量.(2)公式表示⎩⎨⎧I =p ′-p F (t ′-t )=m v ′-m v (3)意义:冲量是物体动量变化的量度,合外力的冲量等于物体动量的变化量.考点一 动量1.(1)定义:物体的质量m和其运动速度v的乘积称为物体的动量,记作p=m v.①动量是动力学中反映物体运动状态的物理量,是状态量.②在谈及动量时,必须明确是哪个物体在哪个时刻或哪个状态所具有的动量.(2)单位:动量的单位由质量和速度的单位共同决定.在国际单位制中,动量的单位是千克米每秒,符号为kg·m/s.(3)矢量性:动量是矢量,它的方向与物体的速度方向相同,遵循矢量运算法则.2.动量与动能的区别与联系3.动量的变化量(1)p′,初动量为p,则Δp=p′-p=m v′-m v=mΔv.(2)动量的变化量Δp也是矢量,其方向与速度的改变量Δv的方向相同.(3)动量变化量Δp的计算方法①若物体做直线运动,只需选定正方向,与正方向相同的动量取正,反之取负.Δp=p′-p,若Δp是正值,就说明Δp的方向与所选正方向相同;若Δp是负值,则说明Δp的方向与所选正方向相反.②若初、末状态动量不在一条直线上,可按平行四边形定则求得Δp的大小和方向,这时Δp、p为邻边,p′为平行四边形的对角线.如图所示.动量为矢量,动量变化遵守矢量运算法则.【例1】质量为m=0.1 kg的橡皮泥,从高h=5 m处自由落下(g取10 m/s2),橡皮泥落到地面上静止,求:(1)橡皮泥从开始下落到与地面接触前这段时间内动量的变化;(2)橡皮泥与地面作用的这段时间内动量的变化;(3)橡皮泥从静止开始下落到停止在地面上这段时间内动量的变化.【审题指导】【解析】取竖直向下的方向为正方向.(1)橡皮泥从静止开始下落时的动量p1=0;下落5 m与地面接触前的瞬时速度v=2gh=10 m/s,方向向下,这时动量p2=m v=0.1×10 kg·m/s=1 kg·m/s,为正.则这段时间内动量的变化Δp=p2-p1=(1-0) kg·m/s=1 kg·m/s,是正值,说明动量变化的方向向下.(2)橡皮泥与地面接触前瞬时动量p1′=1 kg·m/s,方向向下,为正,当与地面作用后静止时的动量p2′=0.则这段时间内动量的变化Δp′=p2′-p1′=(0-1) kg·m/s=-1 kg·m/s,是负值,说明动量变化的方向向上.(3)橡皮泥从静止开始下落时的动量p1=0,落到地面后的动量p2′=0.则这段时间内动量的变化Δp″=p2′-p1=0,即这段时间内橡皮泥的动量变化为零.【答案】(1)大小为1 kg·m/s,方向向下(2)大小为1 kg·m/s,方向向上(3)0考点二冲量1.冲量(1)定义:物理学中把力与力的作用时间的乘积叫作力的冲量.(2)公式:通常用符号I表示冲量,即I=FΔt.(3)单位:在国际单位制中,冲量的单位是N·s.动量与冲量的单位关系是:1 N·s=1 kg·m/s.(4)对冲量的理解①时间性:冲量不仅与力有关,还与力的作用时间有关,恒力的冲量等于力与力作用时间的乘积,此公式I=Ft只适用于恒力.向变化的力来说,冲量的方向与相应时间内动量的变化量的方向一致,冲量的运算应遵循平行四边形定则.③绝对性:由于力和时间都跟参考系的选择无关,所以力的冲量也跟参考系的选择无关.④过程性:冲量是描述力F对时间t的累积效果的物理量,是过程量,必须明确是哪个力在哪段时间内对哪个物体的冲量.2.冲量与功的区别(1)冲量是矢量,功是标量.(2)由I=Ft可知,有力作用,这个力一定会有冲量,因为时间t不可能为零.但是由功的定义式W=F·s cosθ可知,有力作用,这个力却不一定做功.例如:在斜面上下滑的物体,斜面对物体的支持力有冲量的作用,但支持力对物体不做功;做匀速圆周运动的物体,向心力对物体有冲量的作用,但向心力对物体不做功;处于水平面上静止的物体,重力不做功,但在一段时间内重力的冲量不为零.(3)冲量是力在时间上的积累,而功是力在空间上的积累.这两种积累作用可以在“F-t”图像和“F-s”图像上用面积表示.如图所示.图甲中的曲线是作用在某一物体上的力F随时间t变化的曲线,图中阴影部分的面积就表示力F在时间Δt=t2-t1内的冲量.图乙中阴影部分的面积表示力F做的功.【例2】质量为2 kg的物体静止在足够大的水平面上,物体与地面间的动摩擦因数为0.2,最大静摩擦力和滑动摩擦力大小视为相等.从t=0时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F的作用,F随时间t的变化规律如图所示.重力加速度g取10 m/s2,则物体在t=0到t=12 s这段时间内合外力的冲量是多少?【审题指导】关键词信息物体与地面间的动摩擦因数为0.2物体受摩擦力物体受到方向不变、大小呈周期性变化的水平拉力F,F随时间t的变化规律如图所示图线的面积等于力F的冲量大小f=μmg=0.2×2×10 N=4 N则摩擦力的冲量为I f=-ft=-4×12 N·s=-48 N·s 力F的冲量等于F-t图线的面积则I F=(F1t1+F2t2)×2=(4×3+8×3)×2 N·s=72 N·s 则合外力的冲量I=I f+I F=(-48+72) N·s=24 N·s. 【答案】24 N·s冲量计算注意问题(1)冲量是矢量,在计算过程中要注意正方向的选取,在同一直线上的矢量合成转化为代数运算,较为简单.(2)不在同一直线上的冲量计算要应用平行四边形定则或三角形定则.(3)要明确F-t图像面积的意义,且要知道t轴以上与以下的面积意义不同,两者表示方向相反.考点三动量定理1.对动量定理的理解(1)动量定理反映了合外力的冲量与动量变化量之间的因果关系,即合外力的冲量是原因,物体的动量变化量是结果.力的冲量,可以是各力冲量的矢量和,也可以是外力在不同阶段冲量的矢量和.(3)动量定理表达式I=p′-p是个矢量式,式中的“=”表示合外力的冲量与动量的变化量等大、同向,但某时刻的合外力的冲量可以与动量的方向同向,也可以反向,还可以成某一角度.(4)动量定理具有普遍性,其研究对象可以是单个物体,也可以是物体系统,不论物体的运动轨迹是直线还是曲线,作用力不论是恒力还是变力,几个力作用的时间不论是相同还是不同,动量定理都适用.2.动量定理的应用(1)定性分析有关现象①物体的动量变化量一定时,力的作用时间越短,力就越大;力的作用时间越长,力就越小.例如:车床冲压工件时,缩短力的作用时间,产生很大的作用力;而在搬运玻璃等易碎物品时,包装箱内放些碎纸、刨花、塑料等,是为了延长作用时间,减小作用力.因为越坚固,发生碰撞时,作用时间将会越短,由I=FΔt可知,碰撞时的相互作用力会很大,损坏会更严重.②作用力一定时,力的作用时间越长,动量变化量越大;力的作用时间越短,动量变化量越小.例如:自由下落的物体,下落时间越长,速度变化越大,动量变化越大,反之,动量变化越小.(2)定量计算有关物理量①两种类型a .已知动量或动量的变化量求合外力的冲量,即 p 、p ′或Δp ――→I =ΔpIb .已知合外力的冲量求动量或动量的变化量,即I ――→Δp =p ′-p =IΔp 或p 、p ′应用I =Δp 求平均力,可以先求该力作用下物体的动量变化,Δp 等效代换变力冲量I ,进而求平均力F =Δp Δt .a .选定研究对象,明确运动过程.b .进行受力分析和运动的初、末状态分析.c .选定正方向,根据动量定理列方程求解.【例3】 杂技表演时,常可看见有人用铁锤猛击放在“大力士”身上的条石,石裂而人不伤,试分析其中道理.【审题指导】【解析】 设条石的质量为M ,铁锤的质量为m .取铁锤为研究对象,设铁锤打击条石前速度大小为v ,反弹速度大小为v ′,根据动量定理得(F -mg )Δt =m v ′-m (-v ),F =m (v +v ′)Δt+mg .Δt 极短,条石受到的铁锤对它的打击力F ′=F 很大,铁锤可以击断条石.对条石下的人而言,原来受到的压力为Mg ,铁锤打击条石时将对人产生一附加压力,根据牛顿第三定律,条石受到的冲量F ′Δt =F Δt =m (v +v ′)+mg Δt ,条石因此产生的动量变化量Δp =m (v +v ′)+mg Δt ,因人体腹部柔软,缓冲时间t较长,人体受到的附加压力大小为F 1=Δp t =m (v +v ′)t+mg Δt t ,可知附加压力并不大.【答案】 见解析应用动量定理的四点注意事项(1)明确物体受到冲量作用的结果是导致物体动量的变化.冲量和动量都是矢量,它们的加、减运算都遵循平行四边形定则.(2)列方程前首先要选取正方向,与规定的正方向一致的力或动量取正值,反之取负值,而不能只关注力或动量数值的大小.(3)分析速度时一定要选取同一个参考系,未加说明时一般是选地面为参考系,同一道题目中一般不要选取不同的参考系.(4)公式中的冲量应是合外力的冲量,求动量的变化量时要严格按公式,且要注意是末动量减去初动量.动量定理与牛顿定律的综合应用1.动量定理与牛顿定律(1)力F的大小等于动量对时间的变化率.在质量一定的问题中,反映的是力越大,运动状态改变越快,即产生的加速度越大.(2)动量定理与牛顿第二定律在实质上虽然是一致的,但是牛顿第二定律适用于解决恒力问题,而动量定理不但适用于恒力还适用于变力,所以动量定理在解决变力作用问题上更方便.但是要注意,通过动量定理得到的力,是作用过程的平均作用力.2.综合应用动量定理与牛顿定律解题该类问题除要明确研究对象的初、末状态外,还要对合理选取的研究对象进行受力分析,应用动量定理和牛顿第二定律列式求解.【典例】一枚竖直向上发射的火箭,除燃料外火箭的质量m火箭=6 000 kg,火箭喷气的速度为1 000 m/s,在开始时每秒大约要喷出多少质量的气体才能托起火箭?如果要使火箭开始时有19.6 m/s2向上的加速度,则每秒要喷出多少气体?【解析】火箭向下喷出的气体对火箭有一个向上的反作用力,正是这个力支持着火箭,根据牛顿第三定律,也就知道喷出气体的受力,再根据动量定理就可求得结果.设火箭每秒喷出的气体质量为m,根据动量定理可得Ft=m v2-m v1=m(v2-v1),其中F=m火箭g,v2-v1=1 000 m/s,得m=Ftv2-v1=m火箭gtv2-v1=58.8 kg.当火箭以19.6 m/s2的加速度向上运动时,由牛顿第二定律得F′-m火箭g=m 火箭a,设此时每秒喷出的气体质量为m′,根据动量定理有F′t=m′v2-m′v1,得m′=F′tv2-v1=m火箭(g+a)tv2-v1=176.4 kg.【答案】58.8 kg176.4 kg应用动量定理解题时所选研究对象一般是动量发生变化的物体,此题中是“喷出的气体”,再结合牛顿运动定律求解.3动量守恒定律一、动量守恒定律1.系统、内力和外力(1)系统:两个或两个以上的物体组成的研究对象称为一个力学系统,简称系统.(2)内力:系统中物体间的作用力称为内力.(3)外力:系统以外的物体施加给系统内物体的力称为外力.二、动量守恒定律的普适性1.动量守恒定律与牛顿运动定律用牛顿运动定律解决问题要涉及整个过程中的力.动量守恒定律只涉及过程始末两个状态,与过程中力的细节无关.这样,问题往往能大大简化.动量守恒定律并不是由牛顿运动定律推导出来的,它是自然界普遍适用的自然规律.而牛顿运动定律适用范围有局限性.(1)相互作用的物体无论是低速还是高速运动,无论是宏观物体还是微观粒子,动量守恒定律均适用.(2)高速(接近光速)、微观(小到分子、原子的尺度)领域,牛顿运动定律不再适用,而动量守恒定律仍然正确.考点一应用动量守恒定律解决问题的基本思路和一般方法1.分析题意,明确研究对象在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体总称为系统.对于比较复杂的物理过程,要采用程序法对全过程进行分段分析,要明确在哪些阶段中,哪些物体发生相互作用,从而确定所研究的系统是由哪些物体组成的.2.要对各阶段所选系统内的物体进行受力分析弄清哪些是系统内部物体之间相互作用的内力,哪些是系统外物体对系统内物体作用的外力.在受力分析的基础上根据动量守恒定律条件,判断能否应用动量守恒.3.明确所研究的相互作用过程,确定过程的始、末状态即系统内各个物体的初动量和末动量的值或表达式.【注意】在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系.4.确定好正方向建立动量守恒方程求解【例1】(多选)如图所示,A、B两物体质量之比m A m B=32,原来静止在平板小车C上,A、B间有一根被压缩的弹簧,水平地面光滑.当弹簧突然释放后,则()A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成的系统动量守恒B.若A、B与平板车上表面间的动摩擦因数相同,A、B、C组成的系统动量守恒C.若A、B所受的摩擦力大小相等,A、B组成的系统动量守恒D.若A、B所受的摩擦力大小相等,A、B、C组成的系统动量守恒在多个物体组成的系统中,动量是否守恒与研究对象的选择有关.系统可按解决问题的需要灵活选取.【审题指导】要判断A、B组成的系统是否动量守恒,要先分析A、B组成的系统受到的合外力与A、B之间相互作用的内力;看合外力是否为零,或者内力是否远远大于合外力.【解析】如果物体A、B与平板车上表面间的动摩擦因数相同,弹簧释放后,A、B分别相对小车向左、向右滑动,它们所受的滑动摩擦力F A向右,F B向左,由于m A m B=32,所以F A F B=32,则A、B组成的系统所受的外力之和不为零,故其动量不守恒,选项A错;对A、B、C组成的系统,A、B与C 间的摩擦力为内力,该系统所受的外力的合力为零,故该系统的动量守恒,选项B、D均正确;若A、B所受的摩擦力大小相等,则A、B组成的系统的外力之和为零,故其动量守恒,选项C正确.【答案】BCD考点二多个物体组成的系统动量守恒问题多个物体相互作用时,物理过程往往比较复杂,分析此类问题时应注意:(1)正确进行研究对象的选取,有时需应用整体动量守恒,有时只需应用部分物体动量守恒.研究对象的选取,一是取决于系统是否满足动量守恒的条件,二是根据所研究问题的需要.(2)正确进行过程的选取和分析,通常对全程进行分段分析,并找出联系各阶段的状态量.列式时有时需分过程多次应用动量守恒,有时只需针对初、末状态建立动量守恒的关系式.【例3】质量为M=2 kg的小平板车静止在光滑水平面上,车的一端静止着质量为m A=2 kg的物体A(可视为质点),如图所示.一颗质量为m B=20 g的子弹以600 m/s的水平速度射穿A后,速度变为100 m/s,最后物体A仍静止在车上,求平板车最后的速度是多大.【审题指导】1.子弹与物体A能否组成系统?水平方向动量是否守恒?2.子弹射穿物体A后,物体A与小车是否可以组成系统?水平方向动量是否守恒?3.子弹、物体A和小车能否组成系统?该系统在水平方向动量是否守恒?【解析】解法一:子弹射穿A的过程极短,因此在射穿过程中车对A的摩擦力及子弹的重力作用可忽略,即认为子弹和A组成的系统水平方向动量守恒;同时,由于作用时间极短,可认为A的位置没有发生变化.设子弹击穿A后的速度为v′,由动量守恒定律m B v0=m B v′+m A v A,得v A=m B(v0-v′)m A=0.02×(600-100)2m/s=5 m/s.A获得速度v A后相对车滑动,由于A与车间有摩擦,最后A相对车静止,以共同速度v运动,对于A与车组成的系统,水平方向动量守恒,因此有m A v A=(m A+M)v,故v=m A v Am A+M=2×52+2m/s=2.5 m/s.解法二:因地面光滑,子弹、物体A、车三者组成的系统在水平方向不受外力,水平方向动量守恒,最后A与车速度相同.对于三者组成的系统,由动量守恒定律得m B v0=m B v′+(m A+M)v,得v=m B(v0-v′)m A+M=0.02×(600-100)2+2m/s=2.5 m/s.【答案】 2.5 m/s考点三碰撞、爆炸问题的处理方法碰撞和爆炸现象很多,如交通事故中人被车撞了、两车相撞、球与球之间相撞等,那么它们有什么特点呢?我们可以从以下几个方面分析:(1)过程的特点①相互作用时间很短.②在相互作用过程中,相互作用力先是急剧增大,然后再急剧减小,平均作用力很大,远远大于外力,因此作用过程的动量可看成守恒.(2)位移的特点碰撞、爆炸、打击过程是在一瞬间发生的,时间极短,所以在物体发生碰撞、爆炸、打击的瞬间可忽略物体的位移.可以认为物体在碰撞、爆炸、打击前后在同一位置.(3)能量的特点爆炸过程系统的动能增加,碰撞、打击过程系统的动能不会增加,可能减少,也可能不变.【例4】以初速度v0与水平方向成60°角斜向上抛出的手榴弹,到达最高点时炸成质量分别是m和2m的两块弹片.其中质量较大的一块弹片沿着原来的水平方向以2v0的速度飞行.求:(1)质量较小的另一块弹片速度的大小和方向;(2)爆炸过程中有多少化学能转化为弹片的动能.【审题指导】1.手榴弹在空中受到的合力是否为零?2.手榴弹在爆炸过程中,各弹片组成的系统动量是否守恒,为什么?3.在爆炸时,化学能的减少量与弹片动能的增加量有什么关系?【解析】(1)斜抛的手榴弹在水平方向上做匀速直线运动,在最高点处爆炸前的速度v=v0cos60°=12v0,设v的方向为正方向,如图所示,由动量守恒定律得3m v=2m v1+m v2,其中爆炸后大块弹片速度v1=2v0,小块弹片的速度v2为待求量,解得v2=-2.5v0,“-”号表示v2的方向与爆炸前速度方向相反.(2)爆炸过程中转化为动能的化学能等于系统动能的增量.ΔE k=12×2m v21+12m v22-12(3m)v2=6.75m v20.【答案】(1)大小为2.5v0,方向与原来的速度方向相反(2)6.75m v20考点四动量守恒定律和机械能守恒定律的比较和综合应用动量守恒定律和机械能守恒定律的比较定律名称项目动量守恒定律机械能守恒定律相同点研究对象研究对象都是相互作用的物体组成的系统研究过程研究的都是某一运动过程不同点守恒条件系统不受外力或所受外力的矢量和为零系统只有重力或弹力做功表达式p1+p2=p1′+p2′E k1+E p1=E k2+E p2表达式的矢量式标量式矢标性某一方向上应用情况可在某一方向独立使用不能在某一方向独立使用运算法则用矢量法则进行合成或分解代数运算光滑圆槽顶端由静止滑下.在槽被固定和可沿着光滑平面自由滑动两种情况下,木块从槽口滑出时的速度大小之比为多少?【审题指导】槽被固定时,木块的机械能守恒;槽不被固定时,木块和槽组成的系统的机械能守恒,且水平方向上动量守恒.【解析】圆槽固定时,木块下滑过程中只有重力做功,木块的机械能守恒.木块在最高处的势能全部转化为滑出槽口时的动能.设木块滑出槽口时的速度为v1,由mgR=12m v21①木块滑出槽口时的速度:v1=2gR②圆槽可动时,在木块开始下滑到脱离槽口的过程中,木块和槽所组成的系统水平方向不受外力,水平方向动量守恒.设木块滑出槽口时的速度为v2,槽的速度为u,则:m v2-Mu=0③又木块下滑时,只有重力做功,机械能守恒,木块在最高处的重力势能转化为木块滑出槽口时的动能和圆槽的动能,即mgR=12m v22+12Mu2④联立③④两式解得木块滑出槽口的速度:v2=2MgRm+M⑤两种情况下木块滑出槽口的速度之比:v1 v2=2gR2MgR/(m+M)=m+MM.【答案】m+MM多运动过程中的动量守恒包含两个及两个以上物理过程的动量守恒问题,应根据具体情况来划分过程,在每个过程中合理选取研究对象,要注意两个过程之间的衔接条件,如问题不涉及或不需要知道两个过程之间的中间状态,应优先考虑取“大过程”求解.(1)对于由多个物体组成的系统,在不同的过程中往往需要选取不同的物体组成的不同系统.(2)要善于寻找物理过程之间的相互联系,即衔接条件.【典例】如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg.开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C 向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C碰撞.求A与C发生碰撞后瞬间A的速度大小.【解析】因碰撞时间极短,A与C碰撞过程动量守恒,设碰后瞬间A的速度为v A,C的速度为v C,以向右为正方向,由动量守恒定律得m A v0=m A v A+m C v C A与B在摩擦力作用下达到共同速度,设共同速度为v AB,由动量守恒定律得m A v A+m B v0=(m A+m B)v ABA与B达到共同速度后恰好不再与C碰撞,应满足v AB=v C联立以上各式,代入数据得v A=2 m/s.【答案】 2 m/s动量守恒定律的研究对象是系统,为了满足守恒条件,系统的划分非常重要,往往通过适当变换划入系统的物体,可以找到满足守恒条件的系统.在选择研究对象时,应将运动过程的分析与系统的选择统一考虑.类题试解如图所示,质量为m的子弹,以速度v水平射入用轻绳悬挂在空中的木块,木块的质量为m′,绳长为l,子弹停留在木块中,求子弹射入木块后的瞬间绳子张力的大小.【解析】 在子弹射入木块的这一瞬间,系统动量守恒.取向左为正方向,由动量守恒定律有0+m v =(m +m ′)v ′,解得v ′=m v m +m ′. 随着整体以速度v ′向左摆动做圆周运动.在圆周运动的最低点,整体只受重力(m +m ′)g 和绳子的拉力F 作用,由牛顿第二定律有(取向上为正方向)F -(m +m ′)g =(m +m ′)v ′2l .将v ′代入即得F =(m +m ′)g +m 2v 2(m +m ′)l. 【答案】 (m +m ′)g +m 2v 2(m +m ′)l4 实验:验证动量守恒定律一、实验思路两个物体在发生碰撞时,作用时间很短,相互作用力很大,如果把这两个物体看作一个系统,虽然物体还受到重力、支持力、摩擦力、空气阻力等外力的作用,但是有些力的矢量和为0,有些力与系统内两物体的相互作用力相比很小.因此,在可以忽略这些外力的情况下,碰撞满足动量守恒定律的条件.我们研究最简单的情况:两物体碰撞前沿同一直线运动,碰撞后仍沿这条直线运动.应该尽量创设实验条件,使系统所受外力的矢量和近似为0.二、物理量的测量确定研究对象后,还需要明确所需测量的物理量和实验器材.根据动量的定义,很自然地想到,需要测量物体的质量以及两个物体发生碰撞前后各自的速度.物体的质量可用天平直接测量.速度的测量可以有不同的方式,根据所选择的具体实验方案来确定.三、数据分析根据选定的实验方案设计实验数据记录表格.选取质量不同的两个物体进行碰撞,测出物体的质量(m1,m2)和碰撞前后的速度(v1,v′1,v2,v′2),分别计算出两物体碰撞前后的总动量,并检验碰撞前后总动量的关系是否满足动量守恒定律,即m1v′1+m2v′2=m1v1+m2v2四、参考案例参考案例1:研究气垫导轨上滑块碰撞时的动量守恒(1)实验器材:气垫导轨、光电计时器、天平、滑块(两个)、弹簧片、胶布、撞针、橡皮泥等.(2)实验步骤:接通电源,利用光电计时器测出两滑块在各种情况下碰撞前后的速度(例如:①改变滑块的质量;②改变滑块初速度的大小和方向),验证一维碰撞中的不变量.(3)实验方法①质量的测量:用天平测出两滑块的质量.②速度的测量:挡光板的宽度设为Δx,滑块通过光电门所用时间为Δt,则滑块相当于在Δx的位移上运动了时间Δt,所以滑块做匀速直线运动的速度v=Δx Δt.(4)数据处理将实验中测得的物理量填入相应的表格中,注意规定正方向,物体运动的速度方向与正方向相反时为负值.通过研究以上实验数据,找到碰撞前、后的“不变量”.考点一利用气垫导轨验证动量守恒定律[实验器材]气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等.[实验步骤]本方案优点:气垫导轨阻力很小,光电门计时准确,能较准确地验证动量守恒定律.。
动量守恒定律 (共19张PPT)
A
总
结
F外 0
F x =0
F y =0
5、斜面B置于光滑水平面上,物体A沿 光滑斜面滑下,则AB组成的系统动量守 恒吗? 光滑
x
光滑
F外 0
F x =0
F y 0
空中爆炸
F外 0
但是F 内 ?
F x 0
F y 0
F
外
3. 成立条件
(1) 系统不受外力或所受外力的矢量和为零。
4、动量的变化P
1、表达式:
P2
P1
△P
P=P2-P1 =mv2-mv1=m(v2-v1)
2、运算:
(1)成θ角,平行四边形定则 (2)在一条直线上,确定正方向后,用正 负表示方向,就转化为代数运算
3、方向:与速度变化量的方向相同。
预 学
理解三个概念:
(请自主阅读教材P12)
1. 系统:相互作用的 两个或多个物体 组成的整体。系统可按 解决问题的需要灵活选取。
这个系统的总动量保持不变。
m11 m2 2 m11 m2 2
二、动量守恒定律成立的条件 1. 系统不受力,或者 F外合 = 0 2. F内 >> F外合
3. 若系统在某一方向上满足上述 1 或 2,则在该方向上系
统的总动量守恒。
三、应用动量守恒定律解决问题的基本步骤
定系统
判条件
2. 动量守恒定律是一个 独立的实验定律 ,它适用于目前为 止物理学研究的 一切 领域。
3. 与牛顿运动定律相比较,动量守恒定律解决问题优越性表 现在哪里? 动量守恒定律只涉及始末两个状态,与过程中力的 细节无关,往往能使问题大大简化。
课 堂 总 结
最新高中物理动量守恒定律教学设计及反思(六篇)
最新高中物理动量守恒定律教学设计及反思(六篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如报告总结、合同协议、心得体会、演讲致辞、策划方案、职场文书、党团资料、教案资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as report summaries, contract agreements, insights, speeches, planning plans, workplace documents, party and youth organization materials, lesson plans, essay compilations, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!最新高中物理动量守恒定律教学设计及反思(六篇)无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。
高中物理动量守恒定律
一、概念复习
1、动量:p = mv
2、冲量:I=F·t
3、动量定理:即 p ′ — p=I
4、动量守恒定律 如果一个系统不受外力,或者所受外力之和为零 (两个物体)m1v1+m2v2=m1v/1+m2v/2
动量守恒定律成立的三个条件:
(1) 系统不受外力或者所受外力之和为零 (2) 若系统所受合外力不为零,但在内力远大于外
m2 m2
V0
m1
m2
V1ˊ
V2ˊ
V2
2m1 m1 m2
V0
m1
m2
碰撞问题的解应同时遵守三个原则:
(1)系统动量守恒的原则:P′=P (2)空间可行性原则
(63. )反不冲违运背动能:量一守个恒静的止原的则物体:在EK内′≤力E作K 用下分裂为两个部分,
一部分向某个方向运动,另一部分必然向相反的方向运动。这个
现象叫做反冲。
二、应用动量定理或动量守恒定律 解题的一般步骤
• 1.选取研究对象和系统,确定物理过程(是解 题关键所在),根据是否满足动量守恒的条件选 择用动量守恒定律还是动量定理; 2.选取正方向(或建立坐标系)和参考系(一 般以地面为参考系); 3.写出初末状态的动量(注意:一般以相对地面 速度),或应用动量定理时的冲量;
例7、带有1/4光滑圆弧轨道质量为M的滑车静止于光
滑水平面上,如图示,一质量为m的小球以速度v0水 平冲上滑车,当小球上行再返回并脱离滑车时,以下
说法正确的是: ( B C D )
A.小球一定水平向左作平抛运动
B.小球可能水平向左作平抛运动
v0
C.小球可能作自由落体运动
m
M
D.小球可能水平向右作平抛运动
高中物理动量守恒定律知识点总结高中物理动量守恒定律
高中物理动量守恒定律知识点总结|高中物理动量守恒定律一、动量守恒定律1、动量守恒定律的条件:系统所受的总冲量为零(不受力、所受外力的矢量和为零或外力的作用远小于系统内物体间的相互作用力),即系统所受外力的矢量和为零。
(碰撞、爆炸、反冲)注意:内力的冲量对系统动量是否守恒没有影响,但可改变系统内物体的动量。
内力的冲量是系统内物体间动量传递的原因,而外力的冲量是改变系统总动量的原因。
2、动量守恒定律的表达式m1v1+m2v2=m1v1/+m2v2/(规定正方向)△p1=—△p2/3、某一方向动量守恒的条件:系统所受外力矢量和不为零,但在某一方向上的力为零,则系统在这个方向上的动量守恒。
必须注意区别总动量守恒与某一方向动量守恒。
二、碰撞1、完全非弹性碰撞:获得共同速度,动能损失最多动量守恒。
2、弹性碰撞:动量守恒,碰撞前后动能相等。
特例1:A、B两物体发生弹性碰撞,设碰前A初速度为v0,B静止,则碰后速度,vB=.特例2:对于一维弹性碰撞,若两个物体质量相等,则碰撞后两个物体互换速度(即碰后A的速度等于碰前B的速度,碰后B的速度等于碰前A的速度)3、一般碰撞:有完整的压缩阶段,只有部分恢复阶段,动量守恒,动能减小。
4、人船模型——两个原来静止的物体(人和船)发生相互作用时,不受其它外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv=MV(注意:几何关系)冲量与动量(物体的受力与动量的变化)1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}9.物体m1以v1初速度与静止的物体m2发生弹性正碰:v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}要重视实验物理学是一门以实验为基础的科学,许多物理概念、物理规律都是从自然现象的实验中总结出来的。
2024-2025学年高中物理第16章动量守恒定律2动量和动量定理教案新人教版选修3-5
9.动量守恒的推导:动量守恒的推导可以通过系统的总动量在相互作用过程中的不变性来进行。假设系统由两个物体组成,分别为物体1和物体2,物体1的动量为p1 = m1v1,物体2的动量为p2 = m2v2。在相互作用过程中,物体1对物体2的作用力与物体2对物体1的作用力大小相等、方向相反,即F12 = -F21。根据动量定理,物体1的动量变化量为Δp1 = F12Δt,物体2的动量变化量为Δp2 = F21Δt。将两个动量变化量相加,得到系统总动量的变化量为Δp1 + Δp2 = 0,即系统总动量保持不变。
重点难点及解决办法
重点:
1.动量定理的数学表达式及含义
2.动量定理在实际问题中的应用
难点:
1.动量定理的数学推导过程
2.动量定理在复杂情境中的应用
解决办法:
1.通过物理实验和动画演示,帮助学生直观理解动量定理的物理意义,引导学生动手操作,加深对动量定理的理解。
2.分步骤讲解动量定理的数学推导过程,通过例题演示动量定理在实际问题中的应用,引导学生逐步掌握动量定理的解题方法。
3.提供丰富的练习题,涵盖不同难度的题目,让学生在练习中巩固动量定理的知识,培养学生的解题能力。
4.组织小组讨论,鼓励学生分享解题心得,培养学生的合作交流能力。
教学资源
1.软硬件资源:多媒体教室、物理实验室、计算机、投影仪、白板、教学模型等。
2.课程平台:学校教学管理系统、物理教学资源库等。
3.信息化资源:动量和动量定理相关的教学视频、动画、PPT课件、练习题等。
高中物理--动量守恒定律
题型探究
题型1 动量大小的计算及方向的判断
【例1】一个物体的质量为2 kg ,此物体竖直落下,以
10 m/s的速度碰到水泥地面上,随后又以8 m/s的速
度被反弹起.若取竖直向上为正方向,则小球与地面
5.如图2所示, 木块A静置在光滑的水平面上,其曲面
部分MN光滑,水平部分NP粗糙,现有一物体
B自M点由静止下滑,设NP足够长,则下列说法中
正确的是
( BC )
图2 A.A、B最终以同一速度(不为零) B.A、B C.A先做加速运动, D.A先做加速运动,后做匀速运动 解析 系统在水平方向上不受外力,所以系统在水
2.同时性:动量是一个瞬时量,动量守恒指的是系统任 一瞬时的动量守恒,列方程m1v1+m2v2=m1v1′+m2v2′ 时,等号左侧是作用前(或某一时刻)各物体的动量和, 等号右侧的是作用后(或另一时刻)各物体的动量和, 不同时刻的动量不能相加.
3.相对性:由于动量大小与参考系的选取有关,因此 应用动量守恒定律时,应注意各物体的速度必须 是相对于地面的速度.
1.当物体的速度大小不变,方向变化时,动量一定改
变,动能却不变,如匀速圆周运动.
2.在谈及动量时,必须明确是物体在哪个时刻或哪
个状态所具有的动量. 3.物体动量的变化率 p 等于它所受的力,这是牛
t
顿第二定律的另一种表达形式.
热点二、应用动量守恒定律解题时要注意“四性”
1.矢量性:对于作用前后物体的运动方向都在同一直线 上的问题,应选取统一的正方向,凡是与选取正方向 相同的动量为正,相反为负.若方向未知,可设为与正 方向相同列动量守恒方程,通过解得结果的正负判定 未知量的方向.
动量守恒定律(高三)
动量守恒定律一、动量守恒定律1、内容:相互作用的物体,如果不受外力或所受外力的合力为零,它们的总动量保持不变,即作用前的总动量与作用后的总动量相等.2、动量守恒定律适用的条件①系统不受外力或所受合外力为零.②当内力远大于外力时.③某一方向不受外力或所受合外力为零,或该方向上内力远大于外力时,该方向的动量守恒.3、常见的表达式①p/=p,其中p/、p分别表示系统的末动量和初动量,表示系统作用前的总动量等于作用后的总动量。
②Δp=0 ,表示系统总动量的增量等于零。
③Δp1=-Δp2,其中Δp1、Δp2分别表示系统内两个物体初、末动量的变化量,表示两个物体组成的系统,各自动量的增量大小相等、方向相反。
其中①的形式最常见,具体来说有以下几种形式A、m1v l+m2v2=m1v/l+m2v/2,各个动量必须相对同一个参照物,适用于作用前后都运动的两个物体组成的系统。
B、0= m1v l+m2v2,适用于原来静止的两个物体组成的系统。
C、m1v l+m2v2=(m1+m2)v,适用于两物体作用后结合在一起或具有共同的速度。
【例1】由动量定理和牛顿第三定律推出动量守恒定律(以两个物体为例)解析:设两物体质量分别为m1、m2,作用前后的速度分别为v1、v2与v1/、v2/.在Δt 时间内m1、m2所受外力为F l、F2,内力:第1个对第2个物体作用力为f12,其反作用力为f21.根据动量定理:对m1:(F l十f21)Δt=m1 v1/—m1 v1对m2:(F2十f12)Δt= m2 v2/一m2 v2根据牛顿第三定律f12= f21又由于F l十F2=0所以m1 v1/—m1 v1=m2 v2/一m2 v2整理得:m1 v1+m2 v2 =m1 v1/+m2 v2/二、对动量守恒定律的理解(1)动量守恒定律是说系统内部物体间的相互作用只能改变每个物体的动量,而不能改变系统的总动量,在系统运动变化过程中的任一时刻,单个物体的动量可以不同,但系统的总动量相同。
2025年物理动量守恒知识点详解
2025年物理动量守恒知识点详解在物理学的广袤天地中,动量守恒定律宛如一颗璀璨的明珠,闪耀着智慧的光芒。
它不仅是解决物理问题的有力工具,更深刻地揭示了自然界中物体相互作用的本质规律。
让我们一同走进 2025 年对动量守恒知识点的详解之旅。
一、动量守恒定律的基本概念动量,简单来说,就是物体的质量与速度的乘积。
用公式表示就是:p = mv ,其中 p 表示动量,m 是物体的质量,v 是物体的速度。
而动量守恒定律指的是:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。
想象一下,在一个没有摩擦力和其他外力干扰的理想环境中,两个小球相互碰撞。
碰撞前它们各自有着特定的动量,碰撞后,尽管速度可能发生了变化,但整个系统的总动量依然保持不变。
二、动量守恒定律的表达式常见的表达式有两种形式:m1v1 + m2v2 = m1v1' + m2v2' (这是两个物体组成的系统在相互作用前后的动量表达式)∑pi =∑pf (其中∑pi 表示系统初态的总动量,∑pf 表示系统末态的总动量)这里需要注意的是,速度的方向要在计算中明确考虑,通常规定一个正方向,与正方向相同的速度取正值,相反的取负值。
三、动量守恒定律的适用条件不是所有的情况都能运用动量守恒定律,它有着严格的适用条件。
首先,系统不受外力或者所受外力的合力为零。
但实际问题中,外力的合力虽不为零,但外力比起内力小得多,在这种情况下,外力可以忽略不计,系统的动量也近似守恒。
例如,爆炸过程中,内力远远大于外力,在极短的时间内,可以认为系统的动量守恒。
其次,当系统在某一方向上不受外力或所受外力的合力为零,那么在这个方向上,系统的动量守恒。
四、动量守恒定律的解题步骤当我们面对具体的物理问题,运用动量守恒定律来求解时,一般遵循以下几个步骤:第一步,明确研究对象。
确定我们要研究的是哪一个系统,是几个物体组成的系统,还是某个物体与地球组成的系统等等。
第二步,分析受力情况。
高中物理动量守恒定律知识点总结
高中物理动量守恒定律知识点总结动量守恒定律知识点总结一、概念:1. 动量守恒定律是物理中的一条重要定律,它指的是物体在受外力作用无限小的时间内,受力前后物体的动量保持不变,总动量(又称质量动量)的和等于零。
2. 动量守恒定律又叫恒动量定理,意思是说不论外力如何作用,在一定情况下,受力物体的动量变化不了。
二、形式:1. 动量守恒定律可分两种形式:(1)开普勒形式:受力前后,物体的总动量(又称质量动量)的和等于零;(2)动能守恒形式:受力前后,物体的总动能(又称质量动能)的和等于零。
三、应用范围:1. 无重力场:由动量守恒定律可知,在无重力系统下,物体之间可受外力,但总动量offset保持恒定;2. 等重力场:在等重力系统下,动量守恒定律成为动量守恒+势能守恒定律;3. 非等重力场:在非等重力系统下,动量守恒定律成为动量守恒+动能守恒定律+势能守恒定律。
四、关键点:1. 动量守恒定律表明,受力前后,物体的总动量(又称质量动量)的和等于零;2. 在无重力系统下,物体之间可受外力,但总动量offset保持恒定;3. 在等重力系统下,动量守恒定律成为动量守恒+势能守恒定律;4. 在非等重力系统下,动量守恒定律成为动量守恒+动能守恒定律+势能守恒定律。
五、问题求解:1. 曲线运动:利用动量守恒定律可求得曲线运动物体的总动量,在实际运动中,依据动量守恒定律可以推导出速度;2. 相撞运动:利用动量守恒定律,可求得相撞物体的总动量,也可以求出速度;3. 气体压缩系统:利用动量守恒定律,可求得气体的总动量,进而求出压力的变化。
六、解答范例:假设实验室中有两个物体,物体A和物体B,它们在外力的作用下发生碰撞。
根据动量守恒定律,我们可以得出结论:在碰撞中,物体A和物体B会互相影响,但它们之间的总动量是不变的。
也就是说,在碰撞之前,它们的总动量为mA*V1 + mB*V2,在碰撞之后,它们的总动量仍为mA*V1 + mB*V2。
动量守恒定律的公式
动量守恒定律的公式动量守恒定律是物理学中一个非常重要的定律,它的公式表达也有着独特的魅力和广泛的应用。
咱先来说说动量守恒定律的公式是啥。
简单来讲,就是在一个不受外力或者所受外力之和为零的系统中,系统的总动量保持不变。
用公式来表示就是:m1v1 + m2v2 = m1v1' + m2v2' (这里的 m 表示质量,v 表示速度)。
记得有一次,我在课堂上讲这个公式,有个学生就一脸懵地问我:“老师,这公式到底咋用啊?感觉好抽象!”我笑着对他说:“别着急,咱们来个实际的例子。
”想象一下,在一个光滑的冰面上,有两个小朋友在玩耍。
一个小朋友小明体重 40 千克,他正以 3 米每秒的速度向前滑行。
另一个小朋友小红体重 30 千克,以 2 米每秒的速度朝着相反的方向滑行。
突然,他们俩撞在了一起。
那这时候会发生啥呢?咱们就用动量守恒定律的公式来算算。
小明的动量是 40×3 = 120 千克·米每秒,小红的动量是 30×(-2) = -60 千克·米每秒(因为速度方向相反,所以是负数)。
总动量就是 120 + (-60) = 60 千克·米每秒。
撞在一起之后,假设他们俩变成了一个整体,共同以速度 v 向前运动。
根据动量守恒定律,总动量不变,还是 60 千克·米每秒。
而他们的总质量变成了 40 + 30 = 70 千克。
所以 70×v = 60,算出来 v 约等于0.86 米每秒。
通过这个例子,是不是对这个公式有点感觉啦?其实在生活中,动量守恒定律的应用可多了去了。
比如说,打台球的时候,当一个球撞击另一个球,在没有摩擦力和其他外力干扰的情况下,两个球组成的系统动量就是守恒的。
还有啊,火箭发射也是利用了动量守恒定律。
火箭向后喷射出大量高速的气体,产生了一个向后的动量,而火箭本身就会获得一个向前的动量,从而实现升空。
再比如,两辆汽车在公路上发生碰撞,如果把这两辆汽车看作一个系统,在碰撞瞬间,如果忽略地面摩擦力等外力的影响,它们的总动量也是守恒的。
动量守恒定律的内容、表达式、守恒条件
动量守恒定律的内容、表达式、守恒条件的基本内容及其应用一、动量守恒定律的基本内容动量守恒定律是物理学中最基本的守恒定律之一。
它指出,在一个孤立系统中,如果没有外力作用,系统的总动量保持不变。
动量是物体质量与速度的乘积,是一个矢量量,具有大小和方向。
动量守恒定律可以通过牛顿第三定律推导出来。
牛顿第三定律表明,两个物体之间的作用力和反作用力大小相等,方向相反。
因此,在没有外力作用的情况下,系统内各物体的动量变化相互抵消,总动量保持不变。
动量守恒定律不仅适用于宏观物体的运动,还适用于微观粒子的运动。
在微观世界中,粒子的碰撞和相互作用同样遵循动量守恒定律。
例如,在粒子加速器中,科学家们通过观察粒子碰撞前后的动量变化,验证了动量守恒定律的普遍性。
二、动量守恒定律的数学表达式动量守恒定律的数学表达式可以表示为:其中,$\sum \vec{p}_{\text{初}}$表示系统初始时刻的总动量,$\sum\vec{p}_{\text{末}}$表示系统末状态的总动量。
对于一个由两个物体组成的系统,动量守恒定律可以具体表示为:其中,$m_1$和$m_2$分别是两个物体的质量,$\vec{v}_1$和$\vec{v}_2$是初始速度,$\vec{v}_1'$和$\vec{v}_2'$是末速度。
在多体系统中,动量守恒定律同样适用。
对于一个由多个物体组成的系统,总动量的表达式为:其中,$n$表示系统中物体的数量,$m_i$和$\vec{v}_i$分别是第$i$个物体的质量和速度。
三、动量守恒定律的适用条件动量守恒定律适用于以下几种情况:1. 系统不受外力:如果系统不受任何外力作用,系统的总动量保持不变。
这是动量守恒定律最基本的适用条件。
2. 系统所受外力之和为零:即使系统受到外力作用,但如果这些外力的合力为零,系统的总动量仍然保持不变。
3. 内力远大于外力:在一些特殊情况下,如碰撞和爆炸,系统内的相互作用力(内力)远大于外力,此时可以近似认为系统的总动量守恒。
2024年高中物理新教材同步 选择性必修第一册 第1章 3 动量守恒定律
3动量守恒定律[学习目标] 1.会根据动量定理、牛顿第三定律推导动量守恒定律(重点)。
2.知道系统、内力、外力的概念。
3.理解并掌握动量守恒定律的内容、公式及成立条件(重点)。
4.能在具体问题中判断动量是否守恒,能熟练运用动量守恒定律解释相关现象和解决相关问题(重难点)。
一、动量守恒定律的理解相互作用的两个物体的动量改变如图所示,在光滑水平桌面上沿同一方向做匀速运动的两个物体,质量为m2的B物体追上质量为m1的A物体,并发生碰撞,设A、B两物体碰前速度分别为v1、v2(v2>v1),碰后速度分别为v1′、v2′,碰撞时间很短,设为Δt。
设B对A的作用力是F1,A对B的作用力是F2。
请用所学知识证明碰撞前后两物体总动量之和相等。
答案根据动量定理:对A:F1Δt=m1v1′-m1v1①对B:F2Δt=m2v2′-m2v2②由牛顿第三定律得F1=-F2③由①②③得两物体总动量关系为:m1v1′+m2v2′=m1v1+m2v2。
1.系统、内力与外力(1)系统:两个(或多个)相互作用的物体构成的整体叫作一个力学系统,简称系统。
(2)内力:系统中物体间的作用力。
(3)外力:系统以外的物体施加给系统内物体的力。
2.动量守恒定律(1)内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。
(2)表达式:m1v1+m2v2=m1v1′+m2v2′(作用前后总动量相等)。
(3)适用条件:系统不受外力或者所受外力的矢量和为零。
(4)普适性:动量守恒定律既适用于低速物体,也适用于高速(接近光速)物体.既适用于宏观领域,也适用于微观领域。
光滑的地面上,A、B两完全相同的小车用一根轻弹簧相连。
用手缓慢向中间推两小车使弹簧压缩。
当A、B两小车同时释放后:两辆小车分别向左、向右运动,它们都获得了动量,它们的总动量是否增加了?答案两辆小车分别向左、向右运动,它们同时获得了动量,但两辆小车的动量的方向相反,动量的矢量和仍然为0,故系统的总动量没有增加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量守恒定律考测点导航1.动量:运动物体的质量和速度的乘积叫做动量,即p mv =;它的单位是kg m/s g ;它是矢量,方向与速度的方向相同;它是状态量,描述物体运动状态的物理量,两个动量相同必须是大小相等,方向相同。
2.冲量:力和力的作用时间的乘积叫做冲量,即I Ft =(适用于恒力冲量的计算);它的单位是Ns g ;它是矢量,方向与力的方向相同;它是过程量,描述物体运动过程的物理量。
3.动量定理⑴内容:物体所受的合外力冲量等于它的动量的变化。
⑵公式:,Ft p p =-或,Ft mv mv =- ⑶应用:①应用动量定理解释有关现象②应用动量定理解决有关问题⑷注意:①动量定理主要用来解决一维问题,解题时必须先规定正方向,公式中各矢量的方向用正、负号来体现。
②动量定理不仅适用于恒力作用,也适用于变力作用。
③动量定理对于短时间作用(如碰撞、打击等)更能显示它的优越性。
④由动量定理可得到P F t ∆=∆,这是牛顿第二定律的另一种表达形式:作用力F 等于物体的动量变化率P t∆∆ 易错现象1.不注意动量、冲量、力、速度、动量的变化量等都是矢量,它们之间的方向关系易弄错。
2.易滥用公式I Ft =计算变力冲量3.在竖直方向上应用动量定理时易忽略重力4.动量守恒定律1. 定律内容:相互作用的几个物体组成的系统,如果不受外力作用,或者它们受到的外力之和为零,则系统的总动量保持不变.2. 数学表达式:''11221122m v m v m v m v +=+3. 动量守恒定律的适用条件 :(1)系统不受外力或受到的外力之和为零(∑F合=0);(2)系统所受的外力远小于内力(F 外=F 内),则系统动量近似守恒; (3)系统某一方向不受外力作用或所受外力之和为零,则系统在该方向上动量守恒(分方向动量守恒).4. 动量恒定律的“五性”: (1)系统性:应用动量守恒定律时,应明确研究对象是一个至少由两个相互作用的物体组成的系统,同时应确保整个系统的初、末状态的质量相等. (2)矢量性:系统在相互作用前后,各物体动量的矢量和保持不变.当各速度在同一直线上时,应选定正方向,将矢量运算简化为代数运算。
(3)同时性:12,v v 应是作用前同一时刻的速度,''12,v v 应是作用后同—时刻的速度. (4)相对性:列动量守恒的方程时,所有动量都必须相对同一惯性参考系,通常选取地球作参考系. (5)普适性:它不但适用于宏观低速运动的物体,而且还适用于微观高速运动的粒子.它与牛顿运动定律相比,适用范围要广泛得多,又因动量守恒定律不考虑物体间的作用细节,在解决问题上比牛顿运动定律更简捷.例:在距地面高为h ,同时以相等初速V 0分别平抛,竖直上抛,竖直下抛一质量相等的物体m ,当它们从抛出到落地时,比较它们的动量的增量△P ,有[ ]A .平抛过程较大B .竖直上抛过程较大C .竖直下抛过程较大D .三者一样大【错解分析】 错解一:根据机械能守恒定律,抛出时初速度大小相等,落地时末速度大小也相等,它们的初态动量P 1= mv 0。
是相等的,它们的末态动量P 2= mv 也是相等的,所以△P = P 2-P 1则一定相等。
选D 。
错解二:从同一高度以相等的初速度抛出后落地,不论是平抛、竖直上抛或竖直下抛,因为动量增量相等所用时间也相同,所以冲量也相同,所以动量的改变量也相同,所以选D 。
错解一主要是因为没有真正理解动量是矢量,动量的增量△P=P 2=P 1也是矢量的差值,矢量的加减法运算遵从矢量的平行四边形法则,而不能用求代数差代替。
平抛运动的初动量沿水平方向,末动量沿斜向下方;竖直上抛的初动量为竖直向上,末动量为竖直向下,而竖直下抛的初末动量均为竖直向下。
这样分析,动量的增量△P 就不一样了。
方向,而动量是矢量,有方向。
从运动合成的角度可知,平抛运动可由一个水平匀速运动和一个竖直自由落体运动合成得来。
它下落的时间由为初速不为零,加速度为g的匀加速度直线运动。
竖直下抛落地时间t3<t1,所以第二种解法是错误的。
【正确解答】 1.由动量变化图5-2中可知,△P2最大,即竖直上抛过程动量增量最大,所以应选B。
【小结】对于动量变化问题,一般要注意两点:(1)动量是矢量,用初、末状态的动量之差求动量变化,一定要注意用矢量的运算法则,即平行四边形法则。
(2) 由于矢量的减法较为复杂,如本题解答中的第一种解法,因此对于初、末状态动量不在一条直线上的情况,通常采用动量定理,利用合外力的冲量计算动量变化。
如本题解答中的第二种解法,但要注意,利用动量定理求动量变化时,要求合外力一定为恒力。
易错现象1.用动量守恒定律解题时,有时易忽视动量守恒条件的条件,乱代公式。
2.用动量守恒定律解题时,有时不注意动量守恒定律的系统性,出现系统的初、末状态的质量不相等.3.用动量守恒定律解题时,有时不注意动量守恒定律的相对性,表达式中的各个速度不是相对同一个参照系。
例:向空中发射一物体.不计空气阻力,当物体的速度恰好沿水平方向时,物体炸裂为a,b 两块.若质量较大的a块的速度方向仍沿原来的方向则 [ ]A.b的速度方向一定与原速度方向相反B.从炸裂到落地这段时间里,a飞行的水平距离一定比b的大C.a,b一定同时到达地面D.炸裂的过程中,a、b中受到的爆炸力的冲量大小一定相等【错解分析】错解一:因为在炸裂中分成两块的物体一个向前,另一个必向后,所以选A。
错解二:因为不知道a与b的速度谁大,所以不能确定是否同时到达地面,也不能确定水平距离谁的大,所以不选B,C。
错解三:在炸裂过程中,因为a的质量较大,所以a受的冲量较大,所以D不对。
错解一中的认识是一种凭感觉判断,而不是建立在全面分析的基础上。
事实是由于没有讲明a的速度大小。
所以,若要满足动量守恒,(m A+m B)v=m A v A+m B v B,v B的方向也可能与v A 同向。
错解二是因为没有掌握力的独立原理和运动独立性原理。
把水平方向运动的快慢与竖直方向的运动混为一谈。
错解三的主要错误在于对于冲量的概念没有很好理解。
【正确解答】物体炸裂过程发生在物体沿水平方向运动时,由于物体沿水平方向不受外力,所以沿水平方向动量守恒,根据动量守恒定律有:(m A+m B)v = m A v A+m B v B当v A与原来速度v同向时,v B可能与v A反向,也可能与v A同向,第二种情况是由于v A的大小没有确定,题目只讲的质量较大,但若v A很小,则m A v A还可能小于原动量(m A+m B)v。
这时,v B的方向会与v A方向一致,即与原来方向相同所以A不对。
a,b两块在水平飞行的同时,竖直方向做自由落体运动即做平抛运选项C 是正确的由于水平飞行距离x = v·t,a、b两块炸裂后的速度v A、v B不一定相等,而落地时间t又相等,所以水平飞行距离无法比较大小,所以B不对。
根据牛顿第三定律,a,b所受爆炸力F A=-F B,力的作用时间相等,所以冲量I=F·t 的大小一定相等。
所以D是正确的。
此题的正确答案是:C,D。
【小结】对于物理问题的解答,首先要搞清问题的物理情景,抓住过程的特点(物体沿水平方向飞行时炸成两块,且a仍沿原来方向运动),进而结合过程特点(沿水平方向物体不受外力),运动相应的物理规律(沿水平方向动量守恒)进行分析、判断。
解答物理问题应该有根有据,切忌“想当然”地作出判断。
5.碰撞现象1.碰撞指的是物体间相互作用持续很短,而物体间相互作用力很大的现象.在碰撞过程中,内力远大于外力,所以可用动量守恒定律处理碰撞问题.中学物理只研究碰撞前后动量在同一直线上的正碰情况.(1)弹性碰撞的特点是物体在碰撞过程中发生的形变完全恢复,系统碰撞前后的总动能相等.(2) 非弹性碰撞的特点是发生的形变不能完全恢复,系统碰撞前后的总动能减少。
其中完全非弹性碰撞的特点是发生的形变不恢复,相碰后两物体不分开,且以同一速度运动,机械能损失最大.2.反冲现象是指在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化的现象.喷气式飞机、火箭都是利用反冲运动的实例.显然,在反冲现象里系统的动量是守恒的.3.爆炸现象:在爆炸瞬间由于爆炸内力非常大,在爆炸前后瞬间系统的动量是守恒的4.碰撞、爆炸的比较:(1)爆炸、碰撞类问题的共同特点是物体间的相互作用突然发生,相互作用的力为变力,作用时间很短,作用力很大,且远大于系统受的外力,故可用动量守恒定律来处理.(2)在爆炸过程中,有其他形式的能转化为动能,系统的动能爆炸后会增加,在碰撞过程中,系统的总动能不可能增加,一般有所减少而转化为内能.(3)由于爆炸、碰撞类问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,可以把作用过程作为一个理想化过程(简化)处理.即作用后还从作用前瞬间的位置以新的动量开始运动.甲乙例:静止在湖面的小船上有两个人分别向相反方向抛出质量相同的小球,甲向左抛,乙向右抛,如图所示,甲先抛,乙后抛,抛出后两小球相对岸的速率相等,则下列说法中正确的是()A、两球抛出后,船往左以一定速度运动,乙球受到的冲量大一些B、两球抛出后,船往右以一定速度运动,甲球受到的冲量大一些C、两球抛出后,船的速度为零,甲球受到的冲量大一些D、两球抛出后,船的速度为零,两球所受到的冲量相等解:.C易错现象1.运用动量守恒定律解决碰撞问题时,不注意结果的合理性。
结果要符合物理情景,符合能量守恒定律,能量不能凭空产生。
2.运用动量守恒定律解决碰撞问题时,不注意动量的矢量性。
解题时动量的方向性要特别注意,在一条直线上的碰撞,我们总是规定某一方向上动量为正,则另一相反方向动量为负。
3.运用动量守恒定律解决碰撞问题时,不注意分析题意。
解题时要通过题给条件,挖掘解题所必须的隐含条件。