spss多元线性回归实例要点

合集下载

SPSS多元回归分析实例

SPSS多元回归分析实例

t i e an dl l t 多元回归分析在大多数的实际问题中,影响因变量的因素不是一个而是多个,我们称这类回问题为多元回归分析。

可以建立因变量y 与各自变量x j (j=1,2,3,…,n)之间的多元线性回归模型:其中:b 0是回归常数;b k (k =1,2,3,…,n)是回归参数;e 是随机误差。

多元回归在病虫预报中的应用实例:某地区病虫测报站用相关系数法选取了以下4个预报因子;x 1为最多连续10天诱蛾量(头);x 2为4月上、中旬百束小谷草把累计落卵量(块);x 3为4月中旬降水量(毫米),x 4为4月中旬雨日(天);预报一代粘虫幼虫发生量y (头/m2)。

分级别数值列成表2-1。

预报量y :每平方米幼虫0~10头为1级,11~20头为2级,21~40头为3级,40头以上为4级。

预报因子:x 1诱蛾量0~300头为l 级,301~600头为2级,601~1000头为3级,1000头以上为4级;x 2卵量0~150块为1级,15l~300块为2级,301~550块为3级,550块以上为4级;x 3降水量0~10.0毫米为1级,10.1~13.2毫米为2级,13.3~17.0毫米为3级,17.0毫米以上为4级;x 4雨日0~2天为1级,3~4天为2级,5天为3级,6天或6天以上为4级。

表2-1x 1x 2x 3x 4y 年 蛾量 级别 卵量 级别 降水量 级别 雨日 级别 幼虫密度级别1960102241121 4.31211011961300144030.111141196269936717.511191196318764675417.14745541965431801 1.9121111966422220101013119678063510311.82322831976115124020.612171197171831460418.444245419728033630413.433226319735722280213.224216219742641330342.243219219751981165271.84532331976461214017.515328319777693640444.7432444197825516510101112数据保存在“DATA6-5.SAV”文件中。

spss多元回归分析案例

spss多元回归分析案例

spss多元回归分析案例SPSS多元回归分析案例。

在统计学中,多元回归分析是一种用于探究多个自变量与因变量之间关系的方法。

通过多元回归分析,我们可以了解不同自变量对因变量的影响程度,以及它们之间的相互作用情况。

在本篇文档中,我将通过一个实际案例来介绍如何使用SPSS软件进行多元回归分析。

案例背景:假设我们是一家电子产品公司的市场营销团队,在推出新产品之前,我们希望了解不同因素对产品销量的影响。

我们收集了一些数据,包括产品的售价、广告投入、竞争对手的售价、季节等因素,以及产品的销量作为因变量。

数据准备:首先,我们需要将数据录入SPSS软件中。

在SPSS中,我们可以通过导入Excel文件的方式将数据导入到软件中,并进行必要的数据清洗和处理。

确保数据的准确性和完整性对于后续的多元回归分析非常重要。

模型建立:接下来,我们需要建立多元回归模型。

在SPSS中,我们可以通过依次选择“分析”-“回归”-“线性回归”来进行多元回归分析。

在“因变量”栏中输入销量,然后将所有自变量依次输入到“自变量”栏中。

在建立模型之前,我们还需要考虑是否需要进行变量转换或交互项的添加,以更好地拟合数据。

模型诊断:建立模型后,我们需要对模型进行诊断,以确保模型的准确性和有效性。

在SPSS中,我们可以通过查看残差的正态性、异方差性以及自相关性来进行模型诊断。

如果模型存在严重的偏差或违反了多元回归分析的假设,我们需要进行相应的修正或改进。

模型解释:最后,我们需要解释多元回归模型的结果。

在SPSS的输出结果中,我们可以看到各个自变量的系数、显著性水平、调整R方等统计指标。

通过这些指标,我们可以了解不同自变量对销量的影响程度,以及它们之间的相互作用情况。

同时,我们还可以进行各种假设检验,来验证模型的有效性和可靠性。

结论:通过以上多元回归分析,我们可以得出不同自变量对产品销量的影响程度,以及它们之间的相互作用情况。

这些结果对于我们制定产品的定价策略、广告投放策略以及市场营销策略都具有重要的指导意义。

基于SPSS多元线性回归分析的案例

基于SPSS多元线性回归分析的案例

农民收入影响因素的多元回归分析自改革开放以来,虽然中国经济平均增长速度为9.5 % ,但二元经济结构给经济发展带来的问题仍然很突出。

农村人口占了中国总人口的70 %多,农业产业结构不合理,经济不发达,以及农民收入增长缓慢等问题势必成为我国经济持续稳定增长的障碍。

正确有效地解决好“三农”问题是中国经济走出困境,实现长期稳定增长的关键。

其中,农民收入增长是核心,也是解决“三农”问题的关键。

本文力图应用适当的多元线性回归模型,对有关农民收入的历史数据和现状进行分析,寻找其根源,探讨影响农民收入的主要因素,并在此基础上对如何增加农民收入提出相应的政策建议。

一、回归模型的建立(1)数据的收集根据实际的调查分析,我们在影响农民收入因素中引入3个解释变量。

即:X2-财政用于农业的支出的比重,X3-乡村从业人员占农村人口的比重,X4 -农作物播种面积1991223.2510.2650.92149585.8 1992233.1910.0551.53149007.1 1993265.679.4951.86147740.7 1994335.169.252.12148240.6 1995411.298.4352.41149879.3 1996460.688.8253.23152380.6 1997477.968.354.93153969.2 1998474.0210.6955.84155705.7 1999466.88.2357.16156372.8 2000466.167.7559.33156299.9 2001469.87.7160.62155707.9 2002468.957.1762.02154635.5 2003476.247.1263.721524152004499.399.6765.64153552.6 2005521.27.2267.59155487.7(1)回归模型的构建Y i=1+2X2+3X3+4X4+u i二、回归模型的分析(1)多重共线性检验系数a(2)模型异方差的检验异方差产生的原因有:数据质量原因、模型设定原因。

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤多元线性回归是一种常用的统计分析方法,用于探究多个自变量对因变量的影响程度。

SPSS(Statistical Package for the Social Sciences)是一款常用的统计软件,可以进行多元线性回归分析,并提供了简便易用的操作界面。

本文将介绍SPSS中进行多元线性回归分析的实例操作步骤,帮助您快速掌握该分析方法的使用。

步骤一:准备数据在进行多元线性回归分析之前,首先需要准备好相关的数据。

数据应包含一个或多个自变量和一个因变量,以便进行回归分析。

数据可以来自实验、调查或其他来源,但应确保数据的质量和可靠性。

步骤二:导入数据在SPSS软件中,打开或创建一个新的数据集,然后将准备好的数据导入到数据集中。

可以通过导入Excel、CSV等格式的文件或手动输入数据的方式进行数据导入。

确保数据被正确地导入到SPSS中,并正确地显示在数据集的各个变量列中。

步骤三:进行多元线性回归分析在SPSS软件中,通过依次点击"分析"-"回归"-"线性",打开线性回归分析对话框。

在对话框中,将因变量和自变量移入相应的输入框中。

可以使用鼠标拖拽或双击变量名称来快速进行变量的移动。

步骤四:设置分析选项在线性回归分析对话框中,可以设置一些分析选项,以满足具体的分析需求。

例如,可以选择是否计算标准化回归权重、残差和预测值,并选择是否进行方差分析和共线性统计检验等。

根据需要,适当调整这些选项。

步骤五:获取多元线性回归分析结果点击对话框中的"确定"按钮后,SPSS将自动进行多元线性回归分析,并生成相应的分析结果。

结果包括回归系数、显著性检验、残差统计和模型拟合度等信息,这些信息可以帮助我们理解自变量对因变量的贡献情况和模型的拟合程度。

步骤六:解读多元线性回归分析结果在获取多元线性回归分析结果之后,需要对结果进行解读,以得出准确的结论。

SPSS多元回归分析报告实例

SPSS多元回归分析报告实例

多元回归分析在大多数的实际问题中,影响因变量的因素不是一个而是多个,我们称这类回问题为多元回归分析。

可以建立因变量y与各自变量x j(j=1,2,3,…,n)之间的多元线性回归模型:其中:b0是回归常数;b k(k=1,2,3,…,n)是回归参数;e是随机误差。

多元回归在病虫预报中的应用实例:某地区病虫测报站用相关系数法选取了以下4个预报因子;x1为最多连续10天诱蛾量(头);x2为4月上、中旬百束小谷草把累计落卵量(块);x3为4月中旬降水量(毫米),x4为4月中旬雨日(天);预报一代粘虫幼虫发生量y(头/m2)。

分级别数值列成表2-1。

预报量y:每平方米幼虫0~10头为1级,11~20头为2级,21~40头为3级,40头以上为4级。

预报因子:x1诱蛾量0~300头为l级,301~600头为2级,601~1000头为3级,1000头以上为4级;x2卵量0~150块为1级,15l~300块为2级,301~550块为3级,550块以上为4级;x3降水量0~10.0毫米为1级,10.1~13.2毫米为2级,13.3~17.0毫米为3级,17.0毫米以上为4级;x4雨日0~2天为1级,3~4天为2级,5天为3级,6天或6天以上为4级。

表2-1x1 x2 x3 x4 y年蛾量级别卵量级别降水量级别雨日级别幼虫密度级别1960 1022 4 112 1 4.3 1 2 1 10 1 1961 300 1 440 3 0.1 1 1 1 4 1 1962 699 3 67 1 7.5 1 1 1 9 1 1963 1876 4 675 4 17.1 4 7 4 55 4 1965 43 1 80 1 1.9 1 2 1 1 1 1966 422 2 20 1 0 1 0 1 3 1 1967 806 3 510 3 11.8 2 3 2 28 3数据保存在“DATA6-5.SAV”文件中。

1)准备分析数据在SPSS数据编辑窗口中,创建“年份”、“蛾量”、“卵量”、“降水量”、“雨日”和“幼虫密度”变量,并输入数据。

【精品】SPSS统计实验报告多元线性回归分析

【精品】SPSS统计实验报告多元线性回归分析

【精品】SPSS统计实验报告多元线性回归分析
本文旨在通过多元线性回归分析,深入研究X、Y、Z三个变量之间的关系,以探究这三个变量对结果的影响。

本实验中样本数量为100人,本文采用SPSS22.0计算软件进行多元线性回归分析,统计计算结果如下:
(一)检验变量X、Y、Z三个变量是否有关:
Sig.=.633。

结果显示,该值大于0.05,表明X、Y、Z三者之间没有显著统计关系;
(二)确定拟合模型:
以X、Y、Z三个变量回归拟合,得出模型为:y=1.746+0.660X+0.783Y+0.430Z。

(三)检验回归模型的有效性:
1. 回归系数的统计量检验
模型的R方为.668,该值表明,X、Y、Z三个自变量可以解释本回归模型的67.0%的变化量;
2.F检验
结果显示,f分数为20.670,Sig.=.000,结果显示,f分数小于阈值0.05,因此可以接受回归模型;
检验结果显示,当其他X、Y、Z三个自变量的条件不变的情况下,X、Y、Z三个自变量对Y的影响是有显著性的。

综上所述,本文使用SPSS22.0计算软件进行多元线性回归分析,探究X、Y、Z三个变量之间的关系。

结果显示,X、Y、Z三者之间没有显著统计关系;拟合模型为:
y=1.746+0.660X+0.783Y+0.430Z;最后,证实X、Y、Z三个自变量对Y的影响是有显著性的。

SPSS中多元回归分析实例解析

SPSS中多元回归分析实例解析

SPSS中多元回归分析实例解析多元回归分析是一种统计方法,用于研究一个因变量与多个自变量之间的关系。

在SPSS中,可以使用该方法来构建、估计和解释多元回归模型。

下面将以一个实例来解析SPSS中的多元回归分析。

假设我们想要研究一个教育投资项目的效果,该项目包括多个自变量,例如教育资金、教育设施、学生人数等,并且我们希望预测该项目对学生学习成绩的影响。

首先,我们需要准备好数据并导入SPSS中。

数据应包含每个教育投资项目的多个观测值,以及与之相关的自变量和因变量。

例如,可以将每个项目作为一个观测值,并将教育资金、教育设施、学生人数等作为自变量,学生学习成绩作为因变量。

在SPSS中,可以通过选择“Analyze”菜单中的“Regression”选项来打开回归分析对话框。

然后,选择“Linear”选项来进行多元回归分析。

接下来,可以将自变量和因变量添加到对话框中。

在自变量列表中,选择教育资金、教育设施、学生人数等自变量,并将它们移动到“Independent(s)”框中。

在因变量框中,选择学生学习成绩。

然后,点击“OK”按钮开始进行分析。

SPSS将输出多元回归的结果。

关键的统计指标包括回归系数、显著性水平和拟合度。

回归系数表示每个自变量对因变量的影响程度,可以根据系数的大小和正负来判断影响的方向。

显著性水平表示自变量对因变量的影响是否显著,一般以p值小于0.05为标准。

拟合度指示了回归模型对数据的拟合程度,常用的指标有R方和调整后的R方。

在多元回归分析中,可以通过检查回归系数的符号和显著性水平来判断自变量对因变量的影响。

如果回归系数为正且显著,表示该自变量对因变量有正向影响;如果回归系数为负且显著,表示该自变量对因变量有负向影响。

此外,还可以使用其他方法来进一步解释和验证回归模型,例如残差分析、模型诊断等。

需要注意的是,在进行多元回归分析时,需要满足一些前提条件,例如自变量之间应该独立、与因变量之间应该是线性关系等。

spss多元回归分析案例

spss多元回归分析案例

spss多元回归分析案例SPSS多元回归分析是一种常用的统计方法,可以通过分析多个自变量对一个或多个因变量的影响程度,帮助研究者理解变量之间的关系以及预测变量之间的变化情况。

以下是一个关于人们消费意愿的多元回归分析的案例。

假设我们想研究人们的消费意愿受到收入水平、年龄和受教育水平的影响程度。

我们收集了100个参与者的数据,包括他们的收入、年龄、受教育水平以及消费意愿。

下面将介绍如何使用SPSS进行多元回归分析。

首先,在SPSS软件中打开数据文件,并选择"回归"菜单下的"线性回归"选项。

然后将因变量(消费意愿)拉入"因变量"框中,将自变量(收入、年龄、受教育水平)拉入"自变量"框中。

其次,点击"统计"按钮,在弹出的对话框中勾选"无多重共线性检验"、"离群值"和"样本相关矩阵"选项,并点击"确定"按钮。

接下来,点击"模型"按钮,在弹出的对话框中选择"全量"和"因素样本相关系数"选项,并点击"确定"按钮。

然后,点击"保存"按钮,在弹出的对话框中输入保存路径和文件名,并勾选"标准化残差"、"标准化预测值"和"离群值的DFITS"选项,并点击"确定"按钮。

最后,点击"OK"按钮开始进行多元回归分析。

在分析结果中,我们可以查看每个自变量的回归系数、标准误、t值以及显著性水平。

还可以查看整体模型的解释力、统计显著性和调整R 平方。

根据分析结果,我们可以得出结论:收入水平、年龄和受教育水平对消费意愿有显著影响。

收入水平对消费意愿的影响最大,其次是受教育水平,年龄对消费意愿的影响较小。

spss多元线性回归实例要点

spss多元线性回归实例要点

SPSS19.0实战之多元线性回归分析(2011-12-09 12:19:11)转载▼分类:软件介绍标签:文化线性回归数据(全国各地区能源消耗量与产量)来源,可点击协会博客数据挖掘栏:国泰安数据服务中心的经济研究数据库。

1.1数据预处理数据预处理包括的内容非常广泛,包括数据清理和描述性数据汇总,数据集成和变换,数据归约,数据离散化等。

本次实习主要涉及的数据预处理只包括数据清理和描述性数据汇总。

一般意义的数据预处理包括缺失值填写和噪声数据的处理。

于此我们只对数据做缺失值填充,但是依然将其统称数据清理。

1.1.1数据导入与定义单击“打开数据文档”,将xls格式的全国各地区能源消耗量与产量的数据导入SPSS中,如图1-1所示。

图1-1 导入数据导入过程中,各个字段的值都被转化为字符串型(String),我们需要手动将相应的字段转回数值型。

单击菜单栏的“ ”-->“ ”将所选的变量改为数值型。

如图1-2所示:图1-2 定义变量数据类型1.1.2数据清理数据清理包括缺失值的填写和还需要使用SPSS分析工具来检查各个变量的数据完整性。

单击“ ”-->“ ”,将检查所输入的数据的缺失值个数以及百分比等。

如图1-3所示:图1-3缺失值分析图1-4 描述性数据汇总得到如表1-2所示的描述性数据汇总。

N 极小值极大值均值标准差方差能源消费总量3 38.50 6175.924 38142034.412煤炭消费量3 28.99 7472.259 55834651.378焦炭消费量30 19 5461 874.61 1053.008 1108824.853原油消费量30 0 5555 1099.01 1273.265 1621202.562图1-5 数据标准化我们还可以通过描述性分析中的“ ”来得到各个变量的众数,均值等,还可以根据这些量绘制直方图。

我们选取个别变量(能源消费总量)的直方图,可以看到我们因变量基本符合正态分布。

线性回归分析的SPSS操作(多元线性回归)

线性回归分析的SPSS操作(多元线性回归)

线性回归分析的SPSS操作本节内容主要介绍如何确定并建立线性回归方程。

包括只有一个自变量的一元线性回归和和含有多个自变量的多元线性回归。

为了确保所建立的回归方程符合线性标准,在进行回归分析之前,我们往往需要对因变量与自变量进行线性检验。

也就是类似于相关分析一章中讲过的借助于散点图对变量间的关系进行粗略的线性检验,这里不再重复。

另外,通过散点图还可以发现数据中的奇异值,对散点图中表示的可能的奇异值需要认真检查这一数据的合理性。

一、一元线性回归分析1.数据以本章第三节例3的数据为例,简单介绍利用SPSS如何进行一元线性回归分析。

数据编辑窗口显示数据输入格式如下图7-8(文件7-6-1.sav):图7-8:回归分析数据输入2.用SPSS进行回归分析,实例操作如下:2.1.回归方程的建立与检验(1)操作①单击主菜单Analyze / Regression / Linear…,进入设置对话框如图7-9所示。

从左边变量表列中把因变量y选入到因变量(Dependent)框中,把自变量x选入到自变量(Independent)框中。

在方法即Method一项上请注意保持系统默认的选项Enter,选择该项表示要求系统在建立回归方程时把所选中的全部自变量都保留在方程中。

所以该方法可命名为强制进入法(在多元回归分析中再具体介绍这一选项的应用)。

具体如下图所示:图7-9 线性回归分析主对话框②请单击Statistics…按钮,可以选择需要输出的一些统计量。

如Regression Coefficients(回归系数)中的Estimates,可以输出回归系数及相关统计量,包括回归系数B、标准误、标准化回归系数BETA、T值及显著性水平等。

Model fit项可输出相关系数R,测定系数R2,调整系数、估计标准误及方差分析表。

上述两项为默认选项,请注意保持选中。

设置如图7-10所示。

设置完成后点击Continue返回主对话框。

图7-10:线性回归分析的Statistics选项图7-11:线性回归分析的Options选项回归方程建立后,除了需要对方程的显著性进行检验外,还需要检验所建立的方程是否违反回归分析的假定,为此需进行多项残差分析。

利用SPSS10进行多元线性回归分析

利用SPSS10进行多元线性回归分析

3 利用SPSS10.0进行多元线性回归分析【例】同上例。

第一步,录入或调入数据。

完全类同于一元线性回归分析,不赘述(图1)。

图1 录入或调入的数据第二步,回归操作。

多元线性分析的详细步骤的基本进程与一元线性回归分析相似,稍有不同。

⑴打开线性回归对话框。

即沿着主菜单的Analyse→Regression→Linear…路径打开Linear Regression选项框(图2)。

⑵将“运输业产值”置于因变量(Dependent)的空白栏,将“工业产值”、“农业产值”和“固定资产投资”置于自变量(Independent(s))的空白栏(图3)。

⑶在统计(Statistics)选项框中,除了选择“Durbin-Watson”外,还应该选择“Part and partial correlations”(部分与偏相关,给出零阶相关系数、偏相关系数和部分相关系数)以及“Collinearity diagnostics(共线性诊断)”。

然后继续。

⑷在Plot选项框中,除了可以选择“Histogram”(直方图)和“Normal probability plot”(正态概率图)外,还可选择“Produce all partial plot(s)”(给出所有自变量与因变量的残差散点图)。

然后继续。

⑸修改显著性水平或置信度,可以进入Save对话框,改变Prediction intervals的Confidence intervals(置信区间);修改逐步回归的F临界值,可以进入Option选项框,改变Stepping method criteria中的F值或者F概率。

如果对此缺乏足够的知识,可由系统默认。

然后继续。

⑹在线性回归对话框中,Method一栏由系统默认为enter(让所有的自变量都参入回归)。

完成上述设置以后,点击“OK”确定(图3),立即可以得到回归结果(Output)。

图2 线性回归对话框图3 设置变量图4 统计选项框的设置图5 图形对话框的设置在Variables Entered/Removed (变量取舍即变量的输入或剔除)表中,给出的采用的变量、剔除的变量和回归方法(enter ),此表中没有剔除变量。

spss多元回归分析案例讲解

spss多元回归分析案例讲解

分析Coefficient表
四、得出各个模型中偏相关系数值: 1、B( 偏回归系数) ( 第2 列) 是控制了其他变量 后得到的。 2、除了两个模型的常数项系数显著性水平 >0.05,不影响。其他的系数的显著性水平为0. 000, 它们都<0. 05, 故属于小概率事件, 即拒 绝回归系数为零的假设, 即每个回归方程都有 意义。
y=-15038.574+1.365X1 +5859.585X219.553X3+154.698X4+539.642X5 注释:X1 初始工资、X2工作种类、X3过去经验、X4受 雇时间、X5受教育程度 注意:B( 偏回归系数) , 有一个缺点就是单位数量级不 一致时, 对它的比较毫无意义。 如:初始工资的单位为1, 而工作种类的单位为1 000 , 显然这时工作种类前面的回归系数可能很小。 故对它需要进行改进, 这就是Beta 系数。把所有 变量都事先进行标准化,消除偏回归系数带来的数 量单位的影响。
举例量474.所给变量共有6个:当前工资、初始 工资、工作种类、过去经验、受雇时间、受 教育程度。 准备建立一个以当前工资为因变量,其他变量 为自变量的回归方程。 判断哪些变量进入方程,并且给出对应系数。
1、选变量
要建立一个模型首先要选择变量,解释变量 和因变量之间要有一定的关系。 方法:散点图直接判断相关性和偏相关性系 数。 所要判断的变量:初始工资、工作种类、过 去经验、受雇时间、受教育程度
分析 ANOVA表
二、判断每一步模型总显著性 1、方差分析表显示了回归拟合过程中每一步的 方差分析结果。 2、F值的Sig.值均<0.001.每个模型都拒绝回归 系数均为0的假设,每个方程都是显著的。也 就是说一个新的变量进入模型后,模型仍然 显著,该模型不剔除某个变量,进入模型的 变量都包括。(逐步回归法)

SPSS中多元回归分析实例解析

SPSS中多元回归分析实例解析

1965 43 1 80 1 1.9 1 2 1 1
1
1966 422 2 20 1 0 1 0 1 3
1
1967 806 3 510 3 11.8 2 3 2 28 3
1976 115 1 240 2 0.6 1 2 1 7
1
1971 718 3 1460 4 18.4 4 4 2 45 4
1972 803 3 630 4 13.4 3 3 2 26 3
某地区病虫测报站用相关系数法选取了以下 4 个预报因子;x1 为最多连续 10 天 诱蛾量(头);x2 为 4 月上、中旬百束小谷草把累计落卵量(块);x3 为 4 月中旬降 水量(毫米),x4 为 4 月中旬雨日(天);预报一代粘虫幼虫发生量 y(头/m2)。 分级别数值列成表 2-1。
预报量 y:每平方米幼虫 0~10 头为 1 级,11~20 头为 2 级,21~40 头为 3 级, 40 头以上为 4 级。
1978 255 1 65 1 0 1 0 1 11 2
数据保存在“DATA6-5.SAV”文件中。
1)准备分析数据
在 SPSS 数据编辑窗口中,创建“年份”、“蛾量”、“卵量”、“降水量”、“雨日”和“幼 虫密度”变量,并输入数据。再创建蛾量、卵量、降水量、雨日和幼虫密度的分 级变量“x1”、“x2”、“x3”、“x4”和“y”,它们对应的分级数值可以在 SPSS 数据编 辑窗口中通过计算产生。编辑后的数据显示如图 2-1。
本例选中“Unstandardized”非标准化预测值。
②“Distances”距离栏选项:
Mahalanobis: 距离。 Cook’s”: Cook 距离。 Leverage values: 杠杆值。
③“Prediction Intervals”预测区间选项:

SPSS多元线性回归分析报告实例操作步骤

SPSS多元线性回归分析报告实例操作步骤

SPSS多元线性回归分析报告实例操作步骤步骤1:导入数据首先,打开SPSS软件,并导入准备进行多元线性回归分析的数据集。

在菜单栏中选择"File",然后选择"Open",在弹出的窗口中选择数据集的位置并点击"Open"按钮。

步骤2:选择变量在SPSS的数据视图中,选择需要用于分析的相关自变量和因变量。

选中的变量将会显示在变量视图中。

确保选择的变量是数值型的,因为多元线性回归只适用于数值型变量。

步骤3:进行多元线性回归分析在菜单栏中选择"Analyze",然后选择"Regression",再选择"Linear"。

这将打开多元线性回归的对话框。

将因变量移动到"Dependent"框中,将自变量移动到"Independent(s)"框中,并点击"OK"按钮。

步骤4:检查多元线性回归的假设在多元线性回归的结果中,需要检查多元线性回归的基本假设。

这些假设包括线性关系、多重共线性、正态分布、独立性和等方差性。

可以通过多元线性回归的结果来进行检查。

步骤5:解读多元线性回归结果多元线性回归的结果会显示在输出窗口的回归系数表中。

可以检查各个自变量的回归系数、标准误差、显著性水平和置信区间。

同时,还可以检查回归模型的显著性和解释力。

步骤6:完成多元线性回归分析报告根据多元线性回归的结果,可以编写一份完整的多元线性回归分析报告。

报告应包括简要介绍、研究问题、分析方法、回归模型的假设、回归结果的解释以及进一步分析的建议等。

下面是一个多元线性回归分析报告的示例:标题:多元线性回归分析报告介绍:本报告基于一份数据集,旨在探究x1、x2和x3对y的影响。

通过多元线性回归分析,我们可以确定各个自变量对因变量的贡献程度,并检验模型的显著性和准确性。

研究问题:本研究旨在探究x1、x2和x3对y的影响。

SPSS--回归-多元线性回归模型案例解析

SPSS--回归-多元线性回归模型案例解析

SPSS--回归-多元线性回归模型案例解析多元线性回归,主要是研究⼀个因变量与多个⾃变量之间的相关关系,跟⼀元回归原理差不多,区别在于影响因素(⾃变量)更多些⽽已,例如:⼀元线性回归⽅程为:毫⽆疑问,多元线性回归⽅程应该为:上图中的 x1, x2, xp分别代表“⾃变量”Xp截⽌,代表有P个⾃变量,如果有“N组样本,那么这个多元线性回归,将会组成⼀个矩阵,如下图所⽰:那么,多元线性回归⽅程矩阵形式为:其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满⾜以下四个条件,多元线性⽅程才有意义(⼀元线性⽅程也⼀样)1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。

2:⽆偏性假设,即指:期望值为03:同共⽅差性假设,即指,所有的随机误差变量⽅差都相等4:独⽴性假设,即指:所有的随机误差变量都相互独⽴,可以⽤协⽅差解释。

今天跟⼤家⼀起讨论⼀下,SPSS---多元线性回归的具体操作过程,下⾯以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。

通过分析汽车特征跟汽车销售量的关系,建⽴拟合多元线性回归模型。

数据如下图所⽰:点击“分析”——回归——线性——进⼊如下图所⽰的界⾯:将“销售量”作为“因变量”拖⼊因变量框内,将“车长,车宽,耗油率,车净重等10个⾃变量拖⼊⾃变量框内,如上图所⽰,在“⽅法”旁边,选择“逐步”,当然,你也可以选择其它的⽅式,如果你选择“进⼊”默认的⽅式,在分析结果中,将会得到如下图所⽰的结果:(所有的⾃变量,都会强⾏进⼊)如果你选择“逐步”这个⽅法,将会得到如下图所⽰的结果:(将会根据预先设定的“F统计量的概率值进⾏筛选,最先进⼊回归⽅程的“⾃变量”应该是跟“因变量”关系最为密切,贡献最⼤的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须⼩于0.05,当概率值⼤于等于0.1时将会被剔除)“选择变量(E)" 框内,我并没有输⼊数据,如果你需要对某个“⾃变量”进⾏条件筛选,可以将那个⾃变量,移⼊“选择变量框”内,有⼀个前提就是:该变量从未在另⼀个⽬标列表中出现!,再点击“规则”设定相应的“筛选条件”即可,如下图所⽰:点击“统计量”弹出如下所⽰的框,如下所⽰:在“回归系数”下⾯勾选“估计,在右侧勾选”模型拟合度“ 和”共线性诊断“ 两个选项,再勾选“个案诊断”再点击“离群值”⼀般默认值为“3”,(设定异常值的依据,只有当残差超过3倍标准差的观测才会被当做异常值)点击继续。

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤SPSS(Statistical Package for the Social Sciences)是一种统计分析软件,广泛应用于社会科学研究领域。

其中,多元线性回归分析是SPSS中常用的一种统计方法,用于探讨多个自变量与一个因变量之间的关系。

本文将演示SPSS中进行多元线性回归分析的操作步骤,帮助读者了解和掌握该方法。

一、数据准备在进行多元线性回归分析之前,首先需要准备好数据。

数据应包含一个或多个因变量和多个自变量,以及相应的观测值。

这些数据可以通过调查问卷、实验设计、观察等方式获得。

确保数据的准确性和完整性对于获得可靠的分析结果至关重要。

二、打开SPSS软件并导入数据1. 启动SPSS软件,点击菜单栏中的“文件(File)”选项;2. 在下拉菜单中选择“打开(Open)”选项;3. 导航到保存数据的文件位置,并选择要导入的数据文件;4. 确保所选的文件类型与数据文件的格式相匹配,点击“打开”按钮;5. 数据文件将被导入到SPSS软件中,显示在数据编辑器窗口中。

三、创建多元线性回归模型1. 点击菜单栏中的“分析(Analyse)”选项;2. 在下拉菜单中选择“回归(Regression)”选项;3. 在弹出的子菜单中选择“线性(Linear)”选项;4. 在“因变量”框中,选中要作为因变量的变量;5. 在“自变量”框中,选中要作为自变量的变量;6. 点击“添加(Add)”按钮,将自变量添加到回归模型中;7. 可以通过“移除(Remove)”按钮来删除已添加的自变量;8. 点击“确定(OK)”按钮,创建多元线性回归模型。

四、进行多元线性回归分析1. 多元线性回归模型创建完成后,SPSS将自动进行回归分析并生成结果;2. 回归结果将显示在“回归系数”、“模型总结”和“模型拟合优度”等不同的输出表中;3. “回归系数”表显示各个自变量的回归系数、标准误差、显著性水平等信息;4. “模型总结”表提供模型中方程的相关统计信息,包括R方值、F 统计量等;5. “模型拟合优度”表显示模型的拟合优度指标,如调整后R方、残差平方和等;6. 可以通过菜单栏中的“图形(Graphs)”选项,绘制回归模型的拟合曲线图、残差图等。

SPSS案例实践笔记:多重线性回归分析数据小兵博客

SPSS案例实践笔记:多重线性回归分析数据小兵博客

SPSS案例实践笔记:多重线性回归分析数据小兵博客当只考察一个自变量对因变量的影响时,我们称之为简单一元线性回归,如果要多考察一些自变量,此时许多人习惯性将之称为多元线性回归,统计学上建议称之为多重线性回归,避免和多元统计方法冲突。

案例背景介绍这是mei国50个州关于犯罪率的一组数据,包括人口、面积、收入、文盲率、高中毕业率、霜冻天数、犯罪率共7个指标,现在我们想考察一下州犯罪率和其他因素间的关系。

SPSS变量视图如下:研究目标是各州的犯罪率(因变量),可能的因素(自变量)是人口、面积、收入、文盲率、高中毕业率、霜冻天数。

因变量犯罪率连续数值变量,有多个自变量,从研究目标和数据类型来看,可选用多重线性回归分析。

线性关系初步判断线性回归要求每个自变量和因变量之间存在线性关系,可以依靠相关分析和散点图来初步判断。

犯罪率与文盲率、霜冻天数、高中毕业率、人口存在较为明显的线性关系,面积和其他变量普遍无关,越冷的地方文盲率越低、高中毕业率越高。

有统计学意义的相关系数依次为:0.703(文盲率)、-0.539(霜冻天数)、-0.488(高中毕业率)、0.344(人口)。

除因变量外其他因素两两间相关系数均在0.7以下,因素间没有强相关关系存在,初步提示共线性问题较弱。

以上分析表明,并不是所有因素都有犯罪率存在明显线性关系,如果我们构建多重线性回归,这可能涉及到自变量筛选的问题,可优先选择逐步回归的方法。

共线性问题共线性问题是由于自变量间存在强相关关系造成的,它的存在对回归是有影响的,现在我们需要观察6个自变量间的共线性问题,最为常见的依据则是关注容忍度Tol和方差膨胀因子VIF。

SPSS在线性回归中可以是输出这两个指标,来看一下具体情况:VIF是T ol的倒数,所以它们两个其实是一回事,我们只需要解读其一即可。

一般认为如果某个自变量的容忍度T ol<0.1,则可能存在严重共线性问题。

反过来就是VIF>10提示存在较为严重共线性问题。

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤在数据分析的领域中,多元线性回归分析是一种强大且常用的工具,它能够帮助我们理解多个自变量与一个因变量之间的线性关系。

下面,我们将通过一个具体的实例来详细介绍 SPSS 中多元线性回归分析的操作步骤。

假设我们正在研究一个人的体重与身高、年龄和每日运动量之间的关系。

首先,打开 SPSS 软件,并将我们收集到的数据输入或导入到软件中。

数据准备阶段是至关重要的。

确保每个变量的数据格式正确,没有缺失值或异常值。

如果存在缺失值,可以根据具体情况选择合适的处理方法,比如删除包含缺失值的样本,或者使用均值、中位数等进行填充。

对于异常值,需要仔细判断其是否为真实的数据错误,如果是,则需要进行修正或删除。

接下来,点击“分析”菜单,选择“回归”,然后再选择“线性”。

在弹出的“线性回归”对话框中,将我们的因变量(体重)选入“因变量”框中,将自变量(身高、年龄、每日运动量)选入“自变量”框中。

然后,我们可以在“方法”选项中选择合适的回归方法。

SPSS 提供了几种常见的方法,如“进入”“逐步”“向后”“向前”等。

“进入”方法会将所有自变量一次性纳入模型;“逐步”方法则会根据一定的准则,逐步选择对因变量有显著影响的自变量进入模型;“向后”和“向前”方法则是基于特定的规则,逐步剔除或纳入自变量。

在这个例子中,我们先选择“进入”方法,以便直观地看到所有自变量对因变量的影响。

接下来,点击“统计”按钮。

在弹出的“线性回归:统计”对话框中,我们通常会勾选“描述性”,以获取自变量和因变量的基本统计信息,如均值、标准差等;勾选“共线性诊断”,用于检查自变量之间是否存在严重的多重共线性问题;勾选“模型拟合度”,以评估回归模型的拟合效果。

然后,点击“绘制”按钮。

在“线性回归:图”对话框中,我们可以选择绘制一些有助于分析的图形,比如“正态概率图”,用于检验残差是否服从正态分布;“残差图”,用于观察残差的分布情况,判断模型是否满足线性回归的假设。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPSS19.0实战之多元线性回归分析
(2011-12-09 12:19:11)
转载▼
分类:软件介绍
标签:
文化
线性回归数据(全国各地区能源消耗量与产量)来源,可点击协会博客数据挖掘栏:国泰安数据服务中心的经济研究数据库。

1.1数据预处理
数据预处理包括的内容非常广泛,包括数据清理和描述性数据汇总,数据集成和变换,数据归约,数据离散化等。

本次实习主要涉及的数据预处理只包括数据清理和描述性数据汇总。

一般意义的数据预处理包括缺失值填写和噪声数据的处理。

于此我们只对数据做缺失值填充,但是依然将其统称数据清理。

1.1.1数据导入与定义
单击“打开数据文档”,将xls格式的全国各地区能源消耗量与产量的数据导入SPSS中,如图1-1所示。

图1-1 导入数据
导入过程中,各个字段的值都被转化为字符串型(String),我们需要手动将相应的字段转回数值型。

单击菜单栏的“ ”-->“ ”将所选的变量改为数值型。

如图1-2所示:
图1-2 定义变量数据类型
1.1.2数据清理
数据清理包括缺失值的填写和还需要使用SPSS分析工具来检查各个变量的数据完整性。

单击“ ”-->“ ”,将检查所输入的数据的缺失值个数以及百分比等。

如图1-3所示:
图1-3缺失值分析
图1-4 描述性数据汇总得到如表1-2所示的描述性数据汇总。

N 极小
值极大值均值标准差方差
能源消
费总量
30 911 26164 9638.50 6175.924 38142034.412
煤炭消
费量
30 332 29001 9728.99 7472.259 55834651.378
焦炭消
费量
30 19 5461 874.61 1053.008 1108824.853
原油消
费量
30 0 5555 1099.01 1273.265 1621202.562
图1-5 数据标准化
我们还可以通过描述性分析中的“ ”来得到各个变量的众数,均值等,还可以根据这些量绘制直方图。

我们选取个别变量(能源消费总量)的直方图,可以看到我们因变量基本符合正态分布。

如图1-6所示:
图1-6能源消费总量
1.2 回归分析
我们本次实验主要考察地区能源消费总额(因变量)与煤炭消费量、焦炭消费量、原油消费量、原煤产量、焦炭产量、原油产量之间的关系。

以下的回归分析所涉及只包括以上几个变量,并使用标准化之后的数据。

1.2.1参数设置
1. 单击菜单栏“ ”-->“ ”-->“ ”,将弹出如图1-7所示的对话框,将通过选择因变量和自变量来构建线性回归模型。

因变量:标准化能源消费总额;自变量:标准化煤炭消费量、标准化焦炭消费量、标准化原油消费量、标准化原煤产量、标准化焦炭产量、标准化原油产量。

自变量方法选择:进入,个案标签使用地名,不使用权重最小二乘法回归分析—即WLS权重为空。

图1-7选择线性回归变量还需要设置统计量的参数,我们选择回归系数中的“ ”和其他项中的“ ”。

选中估计可输出回归系数B及其标准误,t值和p值,还有标准化的回归系数beta。

选中模型拟合度复选框:模型拟合过程中进入、退出的变
量的列表,以及一些有关拟合优度的检验:R,R2和调整的R2, 标准误及方差分析表。

如图1-8所示:
图1-8 设置回归分析统计量
3.在设置绘制选项的时候,我们选择绘制标准化残差图,其中的正态概率图是rankit图。

同时还需要画出残差图,Y轴选择:ZRESID,X轴选择: ZPRED。


图1-9所示:
图1-9设置绘制
左上框中各项的意义分别为:
·“DEPENDNT”因变量
·“ZPRED”标准化预测值
·“ZRESID”标准化残差
·“DRESID”删除残差
·“ADJPRED”调节预测值
·“SRESID”学生化残差
·“SDRESID”学生化删除残差
4. 许多时候我们需要将回归分析的结果存储起来,然后用得到的残差、预测值等做进一步的分析,“保存”按钮就是用来存储中间结果的。

可以存储的有:预测值系列、残差系列、距离(Distances)系列、预测值可信区间系列、波动统计量系列。

本次实验暂时不保存任何项。

5. 设置回归分析的一些选项,有:步进方法标准单选钮组:设置纳入和排除标准,可按P值或F值来设置。

在等式中包含常量复选框:用于决定是否在模型中包括常数项,默认选中。

如图1-10所示:
图1-10 设置选项
1.2.2结果输出与分析
在以上选项设置完毕之后点击确定,SPSS将输出一系列的回归分析结果。

我们来逐一贴出和分析,并根据它得到最后的回归方程以及验证回归模型。

1. 表1-3所示,是回归分析过程中输入、移去模型记录。

具体方法为:enter (进入)
输入/移去的变量
模型输入的变量移去
的变
量方法
1 Zscore(原油产
量), Zscore(原煤
产量), Zscore(焦
炭消费量),
Zscore(原油消费
量), Zscore(煤炭
消费量),
Zscore(焦炭产量)
. 输入
表1-3 输入的变量
2.表1-4所示是模型汇总,R称为多元相关系数,R方(R2)代表着模型的拟
合度。

2.我们可以看到该模型是拟合优度良好。

模型汇总
模型汇总
模型R R 方调整R

标准估计
的误差Sig.
1 .96
2 .925 .905 .30692707 .000
表1-4 模型汇总
3.表1-5所示是离散分析。

,F的值较大,代表着该回归模型是显著。

也称为失拟性检验。

模型平方和df 均方 F
1 回归25.660 6 4.277 45.397
残差2.072 22 .094
总计27.732 28
表1-5 离散分析
4.表1-6所示的是回归方程的系数,根据这些系数我们能够得到完整的多元回归方程。

观测以下的回归值,都是具有统计学意义的。

因而,得到的多元线性回归方程:Y=0.008+1.061x1+0.087 x2+0.157 x3-0.365 x4-0.105 x5-0.017x6
(x1为煤炭消费量,x2为焦炭消费量,x3为原油消费量,x4为原煤产量,x5为原炭产量,x6为原油产量,Y是能源消费总量)
结论:能量消费总量由主要与煤炭消费总量所影响,成正相关;与原煤产量成一定的反比。

系数
图1-11残差图
可以看出各散点随机分布在e=0为中心的横带中,证明了该模型是适合的。

同时我们也发现了两个异常点,就是广东省和四川省,这种离群点是值得进一步研究的。

还有一种残差正态概率图(rankit图)可以直观地判断残差是否符合正态分布。

如图1-12所示:
图1-12 rankit(P-P)图它的直方图如图1-13所示:
图1-13 rankit(直方)图。

相关文档
最新文档