初中精选数学北师大版八年级上册全册复习课件
合集下载
北师大版数学八年级上册全册复习优质ppt
线性回归分析
在统计学中,一次函数用于线性回归分析,以探 索变量之间的关系。
05
第五章:整式的乘除与 因式分解
整式的乘法与除法
整式乘法
掌握单项式与单项式、单项式与多项Байду номын сангаас、多项式与多项式的乘法法则,能够熟 练进行整式的乘法运算。
整式除法
理解整式除法的意义,掌握单项式除以单项式、多项式除以单项式的除法法则 ,能够熟练进行整式的除法运算。
否相等或相似。
综合应用
03
在实际问题中,等腰三角形和轴对称常常一起出现,需要综合
运用两者的性质和判定来解决实际问题。
03
第三章:实数
平方根和算术平方根
平方根的定义
一个非负数x的平方根是一个数y,满足y^2=x。正数的 平方根有两个,一正一负,互为相反数。0的平方根是0 。
平方根的性质
一个正数的算术平方根是正的,0的算术平方根是0,负 数没有实数平方根。
的图像。
图像性质
一次函数的图像是一条直线,其 斜率为$k$,与y轴的交点为 $(0,b)$。
增减性
当$k>0$时,函数为增函数;当 $k<0$时,函数为减函数。
一次函数的应用
实际问题建模
利用一次函数可以建立实际问题的数学模型,如 速度、时间、距离等问题。
最优化问题
通过一次函数可以解决最优化问题,如最大值、 最小值等。
北师大版数学八年级上册全册复习 优质
汇报人:可编辑 2023-12-24
目录
• 第一章:全等三角形 • 第二章:轴对称与等腰三角形 • 第三章:实数 • 第四章:一次函数 • 第五章:整式的乘除与因式分解
01
第一章:全等三角形
在统计学中,一次函数用于线性回归分析,以探 索变量之间的关系。
05
第五章:整式的乘除与 因式分解
整式的乘法与除法
整式乘法
掌握单项式与单项式、单项式与多项Байду номын сангаас、多项式与多项式的乘法法则,能够熟 练进行整式的乘法运算。
整式除法
理解整式除法的意义,掌握单项式除以单项式、多项式除以单项式的除法法则 ,能够熟练进行整式的除法运算。
否相等或相似。
综合应用
03
在实际问题中,等腰三角形和轴对称常常一起出现,需要综合
运用两者的性质和判定来解决实际问题。
03
第三章:实数
平方根和算术平方根
平方根的定义
一个非负数x的平方根是一个数y,满足y^2=x。正数的 平方根有两个,一正一负,互为相反数。0的平方根是0 。
平方根的性质
一个正数的算术平方根是正的,0的算术平方根是0,负 数没有实数平方根。
的图像。
图像性质
一次函数的图像是一条直线,其 斜率为$k$,与y轴的交点为 $(0,b)$。
增减性
当$k>0$时,函数为增函数;当 $k<0$时,函数为减函数。
一次函数的应用
实际问题建模
利用一次函数可以建立实际问题的数学模型,如 速度、时间、距离等问题。
最优化问题
通过一次函数可以解决最优化问题,如最大值、 最小值等。
北师大版数学八年级上册全册复习 优质
汇报人:可编辑 2023-12-24
目录
• 第一章:全等三角形 • 第二章:轴对称与等腰三角形 • 第三章:实数 • 第四章:一次函数 • 第五章:整式的乘除与因式分解
01
第一章:全等三角形
北师大版数学八年级上册全册复习优质ppt
代数与几何的综合应用包括一元一次方程、平面直角坐标系、一次函数、三角形、 四边形等知识点,这些知识点相互联系,需要学生系统掌握。
学生需要通过练习大量的题目来巩固所学知识,并提高解题能力和思维能力。
函数与几何的综合应用
函数与几何的综合应用是数学中的重 要知识点,需要学生掌握函数和几何 的基本概念和性质,并能够灵活运用 。
。
方程式复习
总结词
掌握一元一次方程的解法
一元一次方程的标准形式
了解一元一次方程的标准形式,并能 够将其转化为一般形式。
一元一次方程的解法
掌握一元一次方程的解法,包括移项 、合并同类项、系数化为1等步骤。
一元一次方程的应用题
理解一元一次方程在实际问题中的应 用,能够根据实际问题建立一元一次 方程并求解。
理解单项式除以单项式、单项式除以多项 式、多项式除以单项式的运算方法,能够 进行整式的除法运算。
分式复习
01
02
03
04
总结词
掌握分式的约分、通分和四则 运算
分式的约分
了解分式约分的概念和方法, 能够将分式化简为最简形式。
分式的通分
理解分式通分的概念和方法, 能够将分式进行通分。
分式的四则运算
掌握分式的加、减、乘、除运 算,能够进行分式的四则运算
学生需要通过练习大量的题目来巩固 所学知识,并提高解题能力和思维能 力。
函数与几何的综合应用包括一次函数 、反比例函数、二次函数、直角三角 形等知识点,这些知识点相互联系, 需要学生系统掌握。
代数与函数的综合应用
代数与函数的综合应用是数学中的重要 知识点,需要学生掌握代有广泛的应用 ,如路程、速度和时间的关系等。
二次函数复习
二次函数定义
学生需要通过练习大量的题目来巩固所学知识,并提高解题能力和思维能力。
函数与几何的综合应用
函数与几何的综合应用是数学中的重 要知识点,需要学生掌握函数和几何 的基本概念和性质,并能够灵活运用 。
。
方程式复习
总结词
掌握一元一次方程的解法
一元一次方程的标准形式
了解一元一次方程的标准形式,并能 够将其转化为一般形式。
一元一次方程的解法
掌握一元一次方程的解法,包括移项 、合并同类项、系数化为1等步骤。
一元一次方程的应用题
理解一元一次方程在实际问题中的应 用,能够根据实际问题建立一元一次 方程并求解。
理解单项式除以单项式、单项式除以多项 式、多项式除以单项式的运算方法,能够 进行整式的除法运算。
分式复习
01
02
03
04
总结词
掌握分式的约分、通分和四则 运算
分式的约分
了解分式约分的概念和方法, 能够将分式化简为最简形式。
分式的通分
理解分式通分的概念和方法, 能够将分式进行通分。
分式的四则运算
掌握分式的加、减、乘、除运 算,能够进行分式的四则运算
学生需要通过练习大量的题目来巩固 所学知识,并提高解题能力和思维能 力。
函数与几何的综合应用包括一次函数 、反比例函数、二次函数、直角三角 形等知识点,这些知识点相互联系, 需要学生系统掌握。
代数与函数的综合应用
代数与函数的综合应用是数学中的重要 知识点,需要学生掌握代有广泛的应用 ,如路程、速度和时间的关系等。
二次函数复习
二次函数定义
北师大版八年级数学上册-第四章一次函数(同步+复习)精品讲义课件
① ② 一看式:y不能带平方或绝对值。 二看图:左右走时不回头,上下看时不. 判断下列各量之间的关系是否函数关系
① ② ③ ④ 圆的半径r=2 , 圆的面积S与半径r的关系。 长方形的宽一定时,其长与周长。 王成的年龄与身高。 汽车行驶过程中,路程一定,其速度与时间。
① ② 根据变化过程中变量的实际意义确定。 根据纯代数关系式确定:一看分母不为0;二看 根号内非负(开平方被开方数是非负数); 定义:对于自变量在可取值范围内每一个确定的 值a,函数有唯一确定的对应值,这个对应值称 为“当自变量等于a的函数值“。 函数值与自变量的取值是对应的、相互依赖的。 求法:有表查表;有式代入;有图看图。
2.
函数值:
①
② ③
【例4】做一做
1. 求当x=-2时,函数 y=x2-√x2的函数值. 3x 2. 函数y= —— 中,求自变量 x的取值范围。 √x-2 3. 当x取( 意义。 )时,函数y= ————有
√x -2 4x
五. (补充)函数的图象
1. 定义:把一个函数的自变量的每一个值与对应的函数值分别 做为点的横坐标与纵坐标,在平面直角坐标系中描出所有对 应的点,所有这些点组成的图形叫做该函数的图象。 作法:列表(选值计算画表);描点(对应值为点的坐标); 连线(平滑的直线或曲线)。画出的是近似图象。 作用(学会看图象):
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ 一看对应:(变量互求:有关系式用关系式。) 二看趋势:(如何变化) 三看范围:(最大最小局部整体区别看) 四看增减;(上坡下坡) 五看快慢:(陡快缓慢平不变) 六解方程:(组)不等式( 交点-扫描-投影法) 七比大小:(两函数,比大小,找交点,横分段,看变化,求得 解) 八出方案:(寻求生活中最优选择最佳方案) 九取特值:(结合字母常量的几何意义确定常量之间的关系)。 十设坐标:(设横表纵——永远不变的真理)。
① ② ③ ④ 圆的半径r=2 , 圆的面积S与半径r的关系。 长方形的宽一定时,其长与周长。 王成的年龄与身高。 汽车行驶过程中,路程一定,其速度与时间。
① ② 根据变化过程中变量的实际意义确定。 根据纯代数关系式确定:一看分母不为0;二看 根号内非负(开平方被开方数是非负数); 定义:对于自变量在可取值范围内每一个确定的 值a,函数有唯一确定的对应值,这个对应值称 为“当自变量等于a的函数值“。 函数值与自变量的取值是对应的、相互依赖的。 求法:有表查表;有式代入;有图看图。
2.
函数值:
①
② ③
【例4】做一做
1. 求当x=-2时,函数 y=x2-√x2的函数值. 3x 2. 函数y= —— 中,求自变量 x的取值范围。 √x-2 3. 当x取( 意义。 )时,函数y= ————有
√x -2 4x
五. (补充)函数的图象
1. 定义:把一个函数的自变量的每一个值与对应的函数值分别 做为点的横坐标与纵坐标,在平面直角坐标系中描出所有对 应的点,所有这些点组成的图形叫做该函数的图象。 作法:列表(选值计算画表);描点(对应值为点的坐标); 连线(平滑的直线或曲线)。画出的是近似图象。 作用(学会看图象):
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ 一看对应:(变量互求:有关系式用关系式。) 二看趋势:(如何变化) 三看范围:(最大最小局部整体区别看) 四看增减;(上坡下坡) 五看快慢:(陡快缓慢平不变) 六解方程:(组)不等式( 交点-扫描-投影法) 七比大小:(两函数,比大小,找交点,横分段,看变化,求得 解) 八出方案:(寻求生活中最优选择最佳方案) 九取特值:(结合字母常量的几何意义确定常量之间的关系)。 十设坐标:(设横表纵——永远不变的真理)。
北师大版八年级上册数学《求解二元一次方程组》二元一次方程组教学说课复习课件
①
观察系数
2x+5y=9
解:由①×5得
② 15x-20 =10 ③
由②×4得 8x+20 =36
③+④得 23x=46
统一系数
④
加法消元
解得 x=2
把 x=2代入①得 6-4y=2
解得
=1
∴原方程组的解是
x=2
{ y=1
回代求解
写解
最小公倍数
归纳总结
观察系数
未知数的系数相等或互为相反数
加减消元法
观察系数
4x+6x+15=65
x=2+3y
②
解:将②代入①,得2(2+3y)+5y=15
4+6y+5y=15
11y=11
10x=50
x=5
将x=5代入①,得y=15
x=5
所以方程组的解为
y=15
y=1
将y=1代入②,得x=5
x=5
所以方程组的解为
y=1
趁热打铁【1】 用代入消元法解方程组:
(3)解方程组
2x+3y=16 ①
转化 解:由①,得 x = y + 3 .③
代入 把③代入②,得 3(y+3)-8y=14.
思考:把③
代入①可以吗?
求解 解这个方程,得 y=-1.
回代 把y=-1代入③,得 x=2.
x = 2,
写解 所以这个方程组的解是 y =-1.
注意:检验方程组的解
做一做
若方程5x 2m+n + 4y 3m-2n = 9是关于x、y的二元一次方程,求m 、
第五章 二元一次方程组
北师大版八年级上册初二数学全册课件(精心整理汇编)
知1-讲
导引:可以以边长为c的正方形为基础,一在形外补拼(不 重叠)成新的正方形;二在形内叠合成新的正方形.
即S:A两+S条B直=S角C边上
的正方形面积之和等于 斜边上的正方形的面积.
观察所得到的各组数据,你有什么发现? 知1-导
A
a
Bb c
C
SA+SB=SC
a2+b2=c2
猜想:两直角边a、b与斜边c 之间的关系?
知1-讲
勾股定理 (毕达哥拉斯定理)
直角三角形两直角边的平方和等于 斜边的平方.
弦c 股b
知1-讲
议一议 观察下图,判断图中三角形的三边长是否满足a2+b2=c2.
知1-讲
例1 如图是用硬纸板做成的四个两直角边长分别是a, b,斜边长为c的全等的直角三角形和一个边长为 c的正方形,请你将它们拼成一个能说明勾股定 理正确性的图形. (1)画出拼成的这个图形的示意图; (2)说明勾股定理的正确性.
新北师大版八年级上册数学
全册课件
交网本 流络课 使只件 用供来
免源 费于
第一章 勾股定理
1.1 探索勾股定理
第1课时 认识勾股定理
1 课堂讲解 勾股定理
勾股定理与图形的面积
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
相传2500年前,一次毕达哥拉斯去朋友家作客, 发现朋友家用砖铺成的地 面反映直角三角形三边的 某种数量关系,同学们, 我们也来观察下面的图案, 看看你能发现什么?
2
2π,
所以c2=25,a2=16.
根据勾股定理,得
b2=c2-a2=9.
所以
S3
1 2
北师大版八年级数学上册第一章勾股定理复习与小结课件
P
M
教学过程——典例精析
第一章 勾股定理
听一听
典例3 如图,长方形 ABCD 中,AB=3,AD=9,将此长方形折叠,使点 D与点B
重合,折痕为 EF,求△ABE 的面积。
A
B
E
D
F
C
教学过程——典例精析
第一章 勾股定理
听一听
A
解析:折叠问题中,要找到折叠前
后相等的线段或角,注意这些线段
与其他线段的关系,再利用勾股定
D. 若、、是的△ABC的三边,且 − = ,则∠A=90°
第一章 勾股定理
基础训练
第一章 勾股定理
2. 如图是商场的台阶的示意图,已知每级台阶的宽度都是20cm,每级台
阶的高度都是15cm,则连接AB的线段长为( B )
A. 100cm
B. 150cm
C. 200cm
D. 250cm
解:(1)供水站P的位置如图所示.
(2)过B作BM⊥,过A’作A’M⊥BM于M.
B
A
由已知可得A’M=8,BM=2+4=6.
在Rt△AMB中,
A’B2=AM2+BM2=82+62=100
解得A’B=10
5000×10+50000=100000.
故供水站修建完成后共计要花100000元.
∙∙
A’
∙
是直角三角形.
知识梳理
第一章 勾股定理
内容:直角三角形两
直角边的平方和等于
斜边的平方.
探索勾
股定理
表达式:用
和分别表示直角三
角形的两直角边和斜
边,那么
验证方法:面积法
新版北师大版八年级数学上册全册课件共570张PPT
新版北师大版八年级数学上册 全册课件
第一章 勾股定理
1.1 探索勾股定理(第1课时)
一、新课引入
如图,从电线杆离地面8 m处向地面拉一条钢 索,如果这条钢索在地面的固定点距离电线杆底 部6 m,那么需要多长的钢索?
、新课引入
观察下面地板砖示意图:
你发现了什么?
你能发现图中三个正 方形的面积之间存在什么关系
三、归纳小结
你学到了什么?
1、 如果三角形三条边长分别为a,b,c ,且
满足 a 2 b2 c 2,那么这个三角形是直角三角
形. 2、勾股定理判定的应用.
四、强化训练
1、如果三角形的三边长a,b,c满足 _______________,那么这个三角形是直角三角形; 2、写出三组勾股数: _______________________________; 3、一艘帆船在海上航行,由于风向的原因,帆船先 向正东方向航行9千米,然后向正北方向航行40千米, 这时它离开出发点_________千米.
∠A和∠DBC都应为直角.工人师傅量得这个零件各边尺
寸如图2所示,这个零件符合要求吗?
图1
图2
解:∵在Rt△ABD中,AB2+AD2=9+16=25=BD2, ∴△ABD是直角三角形,∠A是直角. ∵在△BCD中,BD2+BC2=25+144=169=CD2, ∴△BCD是直角三角形,∠DBC是直角. 因此,这个零件符合要求.
二、新课讲解
例 我方侦察员小王在距离东西向公路400 m 处侦察,发现一辆敌方汽车在公路上疾驶.他赶紧 拿出红外测距仪,测得汽车与他相距400 m,10 s 后,汽车与他相距500 m,你能帮小王计算敌方汽 车的速度吗?
第一章 勾股定理
1.1 探索勾股定理(第1课时)
一、新课引入
如图,从电线杆离地面8 m处向地面拉一条钢 索,如果这条钢索在地面的固定点距离电线杆底 部6 m,那么需要多长的钢索?
、新课引入
观察下面地板砖示意图:
你发现了什么?
你能发现图中三个正 方形的面积之间存在什么关系
三、归纳小结
你学到了什么?
1、 如果三角形三条边长分别为a,b,c ,且
满足 a 2 b2 c 2,那么这个三角形是直角三角
形. 2、勾股定理判定的应用.
四、强化训练
1、如果三角形的三边长a,b,c满足 _______________,那么这个三角形是直角三角形; 2、写出三组勾股数: _______________________________; 3、一艘帆船在海上航行,由于风向的原因,帆船先 向正东方向航行9千米,然后向正北方向航行40千米, 这时它离开出发点_________千米.
∠A和∠DBC都应为直角.工人师傅量得这个零件各边尺
寸如图2所示,这个零件符合要求吗?
图1
图2
解:∵在Rt△ABD中,AB2+AD2=9+16=25=BD2, ∴△ABD是直角三角形,∠A是直角. ∵在△BCD中,BD2+BC2=25+144=169=CD2, ∴△BCD是直角三角形,∠DBC是直角. 因此,这个零件符合要求.
二、新课讲解
例 我方侦察员小王在距离东西向公路400 m 处侦察,发现一辆敌方汽车在公路上疾驶.他赶紧 拿出红外测距仪,测得汽车与他相距400 m,10 s 后,汽车与他相距500 m,你能帮小王计算敌方汽 车的速度吗?
八年级数学北师大版上册第六章数据的分析复习课件
(有两个数据被遮盖):
平均 众
组员 甲 乙 丙 丁 戊
成绩 数
得分 77 81 ■
80 82 80
■
则被遮盖的两个数据依次是( D )
A.81,80 B.80,82 C.81,82 D.80,80
给出一组数据:5,2,1,5,3,5,2,2,则这
5和2
组数据的众数是________.
1、一个样本的数据按从小到大的顺序排列为:
91
87
95
(1) 如果根据三项成绩的平均成绩确定优胜者 ,那么
甲
________将胜出(填“甲”或“乙”);
(2) 如果按演讲内容占50%, 演讲能力占40%,演讲效果
占10%的比例计算甲、乙的平均成绩,那么谁将胜出?
解:x甲=85×50%+95×40%+96×10%=90.1(分),
x乙=91×50%+87×40%+95×10%=89.8(分).
4次、第9次比第8次命中环数都低,且命中10环
的次数为0,即随着比赛的进行,乙的射击成绩
越来越好.(答案不唯一,合理即可)
谢
谢
一组数据a1+10,a2-10,a3+10,a4-10,a5+10
的平均数为( C
)
A.6 B.8 C.10 D.12
从一组数据中取出 a 个 x 1,b 个 x 2,c 个 x 3 组成一个样本,
那么这个样本的平均数是( B
x 1+x 2+x 3
A.
3
ax 1+bx 2+cx 3
C.
3
)
ax 1+bx 2+cx 3
2
2
2
2
2
+(6-7) +(8-7) +(7-7) +(7-7) +(8-7) +(9
平均 众
组员 甲 乙 丙 丁 戊
成绩 数
得分 77 81 ■
80 82 80
■
则被遮盖的两个数据依次是( D )
A.81,80 B.80,82 C.81,82 D.80,80
给出一组数据:5,2,1,5,3,5,2,2,则这
5和2
组数据的众数是________.
1、一个样本的数据按从小到大的顺序排列为:
91
87
95
(1) 如果根据三项成绩的平均成绩确定优胜者 ,那么
甲
________将胜出(填“甲”或“乙”);
(2) 如果按演讲内容占50%, 演讲能力占40%,演讲效果
占10%的比例计算甲、乙的平均成绩,那么谁将胜出?
解:x甲=85×50%+95×40%+96×10%=90.1(分),
x乙=91×50%+87×40%+95×10%=89.8(分).
4次、第9次比第8次命中环数都低,且命中10环
的次数为0,即随着比赛的进行,乙的射击成绩
越来越好.(答案不唯一,合理即可)
谢
谢
一组数据a1+10,a2-10,a3+10,a4-10,a5+10
的平均数为( C
)
A.6 B.8 C.10 D.12
从一组数据中取出 a 个 x 1,b 个 x 2,c 个 x 3 组成一个样本,
那么这个样本的平均数是( B
x 1+x 2+x 3
A.
3
ax 1+bx 2+cx 3
C.
3
)
ax 1+bx 2+cx 3
2
2
2
2
2
+(6-7) +(8-7) +(7-7) +(7-7) +(8-7) +(9
北师大版数学八年级上册全册复习ppt课件
北师大版八年级上册 期末总复习典型题
CONTEN
目T录
第一章 勾股定理 第二章 实数
第三章 位置与坐标 第四章 一次函数
第五章 二元一次方程组
第六章 数据分析 第七章 平行线的证明
第一章 勾股定理
知识归纳
1.勾股定理
定义:如果直角三角形两直角边分别为 a、b,斜边为 c,那么a2+b2=c2
各种表达形式:在 RБайду номын сангаас△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分
找出格点C,使△ABC是面积为1个平方单位的直角三角形,这样
的点有____6____个.
图1-8 图1-9
[解析] 如图1-9,当∠A为直角时,满足面积为1的点是A1、 A2;当∠B为直角时,满足面积为1的点是B1、B2;当∠C为直角 时,满足面积为1的点是C、C1,所以满足条件的点共有6个.
3.已知三角形的三边为 a=34,b=54,c=1,这个三角形是 直角三角形吗?
6.B、C 是河岸边两点,A 为对岸岸上一点,测得∠ABC=45°, ∠ACB=45°,BC=50 m,则河宽 AD 为( )
B
A.25 2 m B.25 m
50 C. 3 3 m
D.25 3 m
图 1-10
7.如图1-11,已知△ABC中,∠C=90°,BA=15,AC=12,
以直角边BC为直径作半圆,则这个半圆的面积是__8_81_π____.
图1-19
15.一个棱长为6的木箱(如图1-20),一只苍蝇位于左面的壁 上,且到该面上两侧棱距离相等的A处.一只蜘蛛位于右面壁上 ,且到该面与上、下底面两交线的距离相等的B处.已知A到下 底面的距离AA′=4,B到一个侧面的距离BB′=4,则蜘蛛沿这 个立方体木箱的内壁爬向苍蝇的最短路程为多少?
CONTEN
目T录
第一章 勾股定理 第二章 实数
第三章 位置与坐标 第四章 一次函数
第五章 二元一次方程组
第六章 数据分析 第七章 平行线的证明
第一章 勾股定理
知识归纳
1.勾股定理
定义:如果直角三角形两直角边分别为 a、b,斜边为 c,那么a2+b2=c2
各种表达形式:在 RБайду номын сангаас△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分
找出格点C,使△ABC是面积为1个平方单位的直角三角形,这样
的点有____6____个.
图1-8 图1-9
[解析] 如图1-9,当∠A为直角时,满足面积为1的点是A1、 A2;当∠B为直角时,满足面积为1的点是B1、B2;当∠C为直角 时,满足面积为1的点是C、C1,所以满足条件的点共有6个.
3.已知三角形的三边为 a=34,b=54,c=1,这个三角形是 直角三角形吗?
6.B、C 是河岸边两点,A 为对岸岸上一点,测得∠ABC=45°, ∠ACB=45°,BC=50 m,则河宽 AD 为( )
B
A.25 2 m B.25 m
50 C. 3 3 m
D.25 3 m
图 1-10
7.如图1-11,已知△ABC中,∠C=90°,BA=15,AC=12,
以直角边BC为直径作半圆,则这个半圆的面积是__8_81_π____.
图1-19
15.一个棱长为6的木箱(如图1-20),一只苍蝇位于左面的壁 上,且到该面上两侧棱距离相等的A处.一只蜘蛛位于右面壁上 ,且到该面与上、下底面两交线的距离相等的B处.已知A到下 底面的距离AA′=4,B到一个侧面的距离BB′=4,则蜘蛛沿这 个立方体木箱的内壁爬向苍蝇的最短路程为多少?
北师大版数学八年级上册全册复习优质ppt
二次函数
二次函数是函数中的高级形式,需要掌握二次函 数的性质、图像、应用以及与实际问题的联系。
04
难点突破与提升
Chapter
代数难点突破与提升
整式与分式的运算
掌握整式与分式的加减乘除运算,理解其运算规则和技巧。
根式与根式的化简
理解根式的概念,掌握根式的化简方法,如合并同类项、提取公 因式等。
方程与不等式的解法
代数基础知识
代数式
代数式是由数字、字母通 过有限次的加、减、乘、 除、乘方和开方等代数运 算所得的式子。
方程与不等式
方程是含有未知数的等式 ,不等式是含有未知数的 不等关系。
函数
函数是两个变量之间的依 赖关系,一个变量随着另 一个变量的变化而变化。
几何基础知识
直线与角
直线是无限长的,角是两条射线 之间的夹角。
对北师大版数学八年级上册全册 的知识点进行了系例题,通过 解析和讨论,帮助学生掌握解题 方法和技巧。
展望未来
继续深化学习
建议学生在复习的基础上,继续 深化对数学知识的理解和掌握, 为后续的学习打下坚实的基础。
培养数学思维
通过数学学习,培养学生的逻辑 思维能力、抽象思维能力和创新 思维能力,为未来的学习和生活 打下良好的基础。
二元一次方程组
二元一次方程组是代数方程中的 重要形式,需要掌握方程组的解 法、应用以及与实际问题的联系
。
几何重点知识
三角形
三角形是几何中最基本的多边形,需要掌握三角形的性质、分类 、全等判定以及与实际问题的联系。
四边形
四边形是几何中常见的多边形,需要掌握四边形的性质、分类、全 等判定以及与实际问题的联系。
。
05
典型例题解析与练习
二次函数是函数中的高级形式,需要掌握二次函 数的性质、图像、应用以及与实际问题的联系。
04
难点突破与提升
Chapter
代数难点突破与提升
整式与分式的运算
掌握整式与分式的加减乘除运算,理解其运算规则和技巧。
根式与根式的化简
理解根式的概念,掌握根式的化简方法,如合并同类项、提取公 因式等。
方程与不等式的解法
代数基础知识
代数式
代数式是由数字、字母通 过有限次的加、减、乘、 除、乘方和开方等代数运 算所得的式子。
方程与不等式
方程是含有未知数的等式 ,不等式是含有未知数的 不等关系。
函数
函数是两个变量之间的依 赖关系,一个变量随着另 一个变量的变化而变化。
几何基础知识
直线与角
直线是无限长的,角是两条射线 之间的夹角。
对北师大版数学八年级上册全册 的知识点进行了系例题,通过 解析和讨论,帮助学生掌握解题 方法和技巧。
展望未来
继续深化学习
建议学生在复习的基础上,继续 深化对数学知识的理解和掌握, 为后续的学习打下坚实的基础。
培养数学思维
通过数学学习,培养学生的逻辑 思维能力、抽象思维能力和创新 思维能力,为未来的学习和生活 打下良好的基础。
二元一次方程组
二元一次方程组是代数方程中的 重要形式,需要掌握方程组的解 法、应用以及与实际问题的联系
。
几何重点知识
三角形
三角形是几何中最基本的多边形,需要掌握三角形的性质、分类 、全等判定以及与实际问题的联系。
四边形
四边形是几何中常见的多边形,需要掌握四边形的性质、分类、全 等判定以及与实际问题的联系。
。
05
典型例题解析与练习
北师大版数学八年级上册第四章单元复习课课件
3. 甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间 的路程为40 km.他们前进的路程为s(km),甲出发后的时间为t (h),甲、乙前进的路程与时间的函数图象如图Z4-4.根据图象 信息,下列说法不正确的是( B ) A.甲的速度是10 km/h B.乙出发0.5 h后与甲相遇 C.乙的速度是40 km/h D.甲比乙晚到B地2 h
4. 一辆轿车离开某城市的距离y(km)与行驶时间t(h)之间的 关系式为y=kt+30,其图象如图Z4-5,在1 h到 3 h之间,轿车行 驶的路程是___1_2_0____km.
5. 甲、乙两人分别从A,B两地相向而行,他们距B地的距离 s(km)与时间t(h)的关系如图Z4-6,那么乙的速度是 _____3_._6__k_m_/_h____.
8. (202X青岛)为让更多的学生学会游泳,少年宫新建一个游 泳池,其容积为480 m3,该游泳池有甲、乙两个进水口,注水时 每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水 口注水,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次 函数关系,其图象如图Z4-9. (1)根据图象求游泳池的蓄水量y(m3)与注水时间t(h)之间 的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;
解:(1)设y甲=k1x.根据题意,得5k1=100. 解得k1=20.所以y甲=20x. 设y乙=k2x+100.根据题意,得 20k2+100=300.解得k2=10. 所以y乙=10x+100. (2)由图象知,点B满足y=20x=10x+100. 解得x=10,y=200. 所以点B的坐标为(10,200).
解:(1)当x=0时,y=4;当y=0时,x=-2, 则图象如答图Z4-1. (2)由(1)可知A(-2,0), B(0,4). (3)S△AOB= ×2×4=4. (4)当y<0时,x<-2.
北师大版数学八年级上册 第二章 实数 复习课件(共31张PPT)
例4:x取何值时, 4 x 有意义?
4 x 0, x 4
1、基本概念
算术平方根:如果一个正数x的平方等于a,那么这个正数 x叫做a的算术平方根;特别的,0的算术平方根是0; 平方根:如果一个数x的平方等于a,那么这个数x叫做a的 平方根; 立方根:如果一个数x的立方等于a,那么这个数x叫做a的 立方根。
同学们,不管你现在的成绩 怎么样,不管你现在的基础怎么样 ,只要坚定信念,超越自我,你就 有了努力的方向,你就有了奋斗的 目标,你就有了生活的动力,你就 有了成功的希望!
独立
知识的升华
作业
P
1 3 老3师期望:
习 悟 做完题目后,一定要“ ”到点东西,纳入到自
己的认知结构中去.
13. 9( y 3)2 1
解
4
方
解:( y 3)2 1
程:
36
1
y 3
36
y 3 1 6
y 19 或y 17
6
6
14. 2( 7 x 2)3 125 0
3
解: 27(x 2)3 125
3
(x 2)3 125
3
27
2 125
3、绝对值:整数的绝对值是其本身;0的绝对值是0;负数的绝对值是 其相反数。
易错 例1、 5 的相反数是
5
,倒数是
5 5 ,绝对值是
5
。
c 例2、 3.14 的值是(
)
A. 3.14- 2 B. 3.14 C. –3.14
D. 无法确定
常考 例3、已知 2 2x 1 y 22 4 z 0,
(4 4 3 3) 1 (4 4 3 3)
北师大版八年级上册数学全册课件
北师大版八年级上册 数学全册课件
汇报人: 202X-01-01
contents
目录
• 第一章 勾股定理 • 第二章 实数 • 第三章 分式 • 第四章 平行四边形 • 第五章 一次函数
01
第一章 勾股定理
勾股定理的证明
毕达哥拉斯学派
勾股定理最早由古希腊的毕达哥 拉斯学派证明,他们通过观察直 角三角形的三边关系,发现了勾
平方根与算术平方根的区别
平方根包括正负两个解,而算术平方根只取非负 的那个解。
无理数与实数
01
无理数的定义
无理数是不能表示为两个整数之比的数,常见的无理数有无限不循环小
数和无法精确表示的数(如圆的周长与直径之比π)。
02 03
无理数的性质
无理数具有稠密性和连续性,即任意两个无理数之间都存在其他无理数 。此外,无理数在实数集中占据了“无处不在”的位置,即任意两个不 同的无理数之间都存在其他无理数。
一次函数的性质
一次函数图像的斜率为k,截距为b。 当k>0时,函数为增函数;当k<0时 ,函数为减函数。
一次函数的应用
一次函数在生活中的应用
一次函数可以用于描述生活中的许多问题,如速度与时间的 关系、成本与数量的关系等。
一次函数在实际问题中的应用
通过建立数学模型,将实际问题转化为一次函数问题,可以 方便地解决许多实际问题,如最优解问题、预测问题等。
勾股定理和其逆定理是密切相关的, 它们是互为逆命题的两个命题,具有 等价性。
逆定理的应用
勾股定理的逆定理在判断三角形是否 为直角三角形时非常有用,可以通过 检查三边的平方关系来确定。
02
第二章 实数
实数的定义与性质
实数的定义
汇报人: 202X-01-01
contents
目录
• 第一章 勾股定理 • 第二章 实数 • 第三章 分式 • 第四章 平行四边形 • 第五章 一次函数
01
第一章 勾股定理
勾股定理的证明
毕达哥拉斯学派
勾股定理最早由古希腊的毕达哥 拉斯学派证明,他们通过观察直 角三角形的三边关系,发现了勾
平方根与算术平方根的区别
平方根包括正负两个解,而算术平方根只取非负 的那个解。
无理数与实数
01
无理数的定义
无理数是不能表示为两个整数之比的数,常见的无理数有无限不循环小
数和无法精确表示的数(如圆的周长与直径之比π)。
02 03
无理数的性质
无理数具有稠密性和连续性,即任意两个无理数之间都存在其他无理数 。此外,无理数在实数集中占据了“无处不在”的位置,即任意两个不 同的无理数之间都存在其他无理数。
一次函数的性质
一次函数图像的斜率为k,截距为b。 当k>0时,函数为增函数;当k<0时 ,函数为减函数。
一次函数的应用
一次函数在生活中的应用
一次函数可以用于描述生活中的许多问题,如速度与时间的 关系、成本与数量的关系等。
一次函数在实际问题中的应用
通过建立数学模型,将实际问题转化为一次函数问题,可以 方便地解决许多实际问题,如最优解问题、预测问题等。
勾股定理和其逆定理是密切相关的, 它们是互为逆命题的两个命题,具有 等价性。
逆定理的应用
勾股定理的逆定理在判断三角形是否 为直角三角形时非常有用,可以通过 检查三边的平方关系来确定。
02
第二章 实数
实数的定义与性质
实数的定义
北师大版八年级数学上册《勾股定理》复习课教学课件
北师大版八年级数学上册第一章《勾 股定理 》复习 课 课件 北师大版八年级数学上册第一章《勾 股定理 》复习 课 课件
北师大版八年级数学上册第一章《勾 股定理 》复习 课 课件
三、典例分析
例1、(1)已知直角三角形的两条直角边为 6cm和8cm,斜边是___1_0_c_m__, 则斜边上的高是 _4__.8_c_m__。 (2)若直角三角形的三边长分别为3、 6、x, 则x2=___4__5_或_2_7___。(分类思想)
新北师大版
八年级上册第一章 勾股定理复习
一、导课
商高,西周初数学家。商高在公元前 1000年发现勾股定理并完成证明。此发现 早于毕达哥拉斯定理五百到六百年。勾股定 理是中国数学家的独立发现,在中国早有记 载。勾股定理,我们把它称为世界第一定理。 勾股定理是我们数学史的奇迹,我们已经比 较完整地研究了这个先人给我们留下来的宝 贵的财富,这节课,我们将通过回顾与思考 中的几个问题更进一步了解勾股定理的应用。
六、当堂检测
1.在Rt△ABC中,∠C=90°,
2. ①若a=5,b=12,则c=___1_3_______; 3. ②若a=15,c=25,则b=__2_0________; 4. ③若c=61,b=60,则a=__1_1_______; 5.下列各组数中为勾股数的一组是( D )
A、7、12、13;B、1.5、2、2.5 C、3、4、7 D、8、15、17 3. 有一块田地的形状和尺寸如图所示,试求它的面积。
勾股定理的逆定理是判定一 个三角形是否是直角三角形 的一种重要方法,它通过 “数转化为形”来确定三角 形的可能形状,
北师大版八年级数学上册第一章《勾 股定理 》复习 课 课件
北师大版八年级数学上册第一章《勾 股定理 》复习 课 课件
位置与坐标复习北师大版八年级数学上册PPT精品课件
m= 2
,n=
5
。
4、小明将点M关于x轴的对称点误认为是关于y轴的对称点
得到点(-4,-3),则点M关于x轴的对称点是 (4,.3)
5、“怪兽吃豆豆”是一种计算机游戏,如图3的标志表示“怪兽”
先后经过的几个位置,如果用(0,0)表示“怪兽”的第一个位 置,用(7,8)表示“怪兽”的第九个位置,那么用同样的方式
中的像的坐标为( D )
A.(-3,2) B.(1,2)
C.(0,2)
D.(-1,2)
2、点P(1,2)关于x轴对称的点的坐标是(__1_,__-_2;) 关于y轴对称点的坐标是(-1,2);关于原点对称的点 的坐标是(_-_1_,__-_2_);
3、若点A(m,-5)与点B(2,n)关于x轴对称,则
5、点(a,b)关于x轴的对称点为(a,-b),关于y轴对称 的点为 (-a,,b)关于原点对称的点为 (-a,.-b)
当堂训练(10分钟)
1、在平面直角坐标系中,下列各点在第四象限的是(C)
A.(0,-3) B.(-1,-3) C.(3,-1) D.(-1,3)
2、如果点P(m+3,2m+4)在y轴上,那么点P的坐标为
1.点的坐标与距离的关系是:
P(a,b)到x轴的距离为—纵—坐——标的绝对值∣b∣
到y轴的距离为——横——坐标的绝对值∣a∣
到原点by 的∣距a∣离为—P——(aa—2,—b—) b2
“数形结合” 思想
a2 b2
∣b∣
∟ ∟
o
a
2.平行坐标轴的直线上的点的坐标特征 平行于x轴的直线上的点的 _纵__坐_标__ 相等; 平行于y轴的直线上的点的 __横_坐__标_ 相等。
北师大版八年级上册数学《认识二元一次方程组》二元一次方程组说课教学课件复习
请帮下列各等式找到自己的家。
(1)x+y=11 (2)mn+1=2 (3)x2+y=5 (4)3X-π=11
(5) -5x=4y+2
(6)7+a=2b+11c
(7)7Байду номын сангаас+
2 y
=13
二元一次方程 不是二元一次方程
你能自己编一 个二元一次方 程吗?
判断点:1、未知数几个? 2个 判断点:2、每个未知数最高次数是几次? 1次 判断点:3、等式两边是 整式
y=2x x=3
B. y=6
x=2 C.
y=4
x=4 D.
y=2
2.下列各式是二元一次方程的是( A )
程 x 3y 1 的解?
(A)
x
y
2, 3;
(C)
x
y
10, 3;
(B)
x
y
4, 1;
(D)
x
y
5, 2.
答案:B,C,D
练一练:
2.二元一次方程 2x 3y 28 的解有:
(1)
x
y
5,
__6_;
(3)
x 2.5,
y
_1_1_;
x _1_7_,
(2)
y
2;
x 1_0_.5_,
1.什么叫方程? 含有未知数的等式叫做方程. 如: 2x+3=5, x+y=8.
2.什么叫一元一次方程? 在一个方程中,只含有一个未知数,且未知数的指数都是1,
这样的方程叫做一元一次方程.
如: 2x+3=5, y+6=8.
3.解下列方程: (1)3x+2=14 (2)2x-4=14-x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
别为 a、b、c,则 c2= a2+b2 ,a2= c2-b2 ,b2= c2-a2 .
作用:(1)已知直角三角形的两边求第三边;(2)已知直角三角形的一边求 另两边的关系;(3)用于证明平方关系的问题.
2.勾股定理的逆定理
如果三角形的三边长 a、b、c 满足:a2+b2=c2 ,那么这个三角形是
直角三角形.
图1-2
[解析] 要判断公路 AB 段是否需要封锁,则需要比较点 C 到 AB 的距离与 250 m 的大小关系,可以借助勾股定理和三角形的面 积计算点 C 到 AB 的距离.
解:作 CD⊥AB 于 D,因为 BC=400 m,AC=300 m,∠ACB =90°,根据勾股定理,得 AC2+BC2=AB2,即 3002+4002=AB2, 所以 AB=500 m.
考点三 勾股定理的实际应用
例3 如图1-2,在公路AB旁有一座山,现有一C处需要爆破 ,已知点C与公路上的停靠站A的距离为300 m,与公路上另一停 靠站B的距离为400 m,且CA⊥CB,为了安全起见,爆破点C周围 半径250 m范围内不得进入.在进行爆破时,公路AB段是否因有
危险而需要暂时封锁?
由三角形的面积可知:12AB·CD=12BC·AC,所以 500CD= 400×300,所以 CD=240 m.
因为 240<250,即点 C 到 AB 的距离小于 250 m,所以有危险, 公路 AB 段需要暂时封锁.
方法技巧
转化思想是一种重要的数学思想,它的应用十分广泛 ,如通过作高可以将非直角三角形的问题转化为直角 三角形的问题来解决,通过建模可以将实际问题转化 为数学问题来解决等.
CONTEN
目T录
第一章 勾股定理 第二章 实数
第三章 位置与坐标 第四章 一次函数
第五章 二元一次方程组
第六章 数据分析 第七章 平行线的证明
第一章 勾股定理
知识归纳
1.勾股定理
定义:如果直角三角形两直角边分别为 a、b,斜边为 c,那么a2+b2=c2
各种表达形式:在 Rt△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分
考点二 直角三角形的判别
例 2 如图 1-1,在正方形 ABCD 中,F 为 DC 的中点,E 为 BC 上一点,且 EC=14BC,请说明:AF⊥EF.
图 1-1
[解析] 要说明 AF⊥EF,可说明△AEF 是直角三角形,只要根 据勾股定理的逆定理说明 AF2+EF2=AE2 就可以了.
解:连接 AE,设正方形边长为 a,则 DF=FC=a2,EC=a4.
解:按丙生的办法:将长方形ABCD与长方形BEFC展开成长方 形AEFD,如图1-4所示:
则AE=AB+BE=4(cm),EF=3 cm,连接AF,在Rt△AEF中, AF2=AE2+EF2=42+32=25,∴AF=5(cm).连接BF,
∵AF<AB+BF,
∴丙的方法比甲的好.
第一按章丁生|过的关办测法试,将长方形ABCD与正方形CFGD展开成长方形 ABFG,如图1-5所示:
解:(1)当两直角边长分别为 3 和 4 时,第三边长的平方为 32+42=25; (2)当斜边为 4,一直角边为 3 时,第三边长的平方为 42-32=7.
易错警示 应用勾股定理计算时,易出现下列两种错误: (1)忽视勾股定理成立的条件,在非直角三角形中使用 a2+ b2=c2; (2)当题目给出两条边长而没有给出图形时,可能考虑不周 而漏解.
则BF=BC+CF=3+2=5(cm),AB=2 cm,连接AF,在 Rt△ABF中,AF2=BF2+AB2=52+22=29≈5.392,
∴AF=5.39 cm.连接AC, ∵AF<AC+CF,
∴丁的方法比乙的好. 比较丙生与丁生的计算结果,知丙生的说法正确.
图1-4
图1-5
方法技巧
最短路径问题是勾股定理在立体几何中的应用,一般做法 是把长方体(或其他几何体)侧面展开,将立体图形问题转化为 平面图形问题,再根据两点之间线段最短,用勾股定理求解.
在 Rt△ECF 中,有 EF2=a22+a42=156a2. 在 Rt△FDA 中,有 AF2=a22+a2=54a2.
在 Rt△ABE 中,有 Ba2=1265a2,
∴AF2+EF2=AE2.
根据勾股定理的逆定理,得∠AFE=90°,
∴AF⊥EF.
易错警示 根据 a2+b2=c2,判别直角三角形时,容易出现计算一条 短边及最长边的平方和,导致错误.
3.勾股数
满足 a2+b2=c2 的三个 正整数 ,称为勾股数.
考点攻略
考点一 应用勾股定理计算 例1 已知直角三角形的两边长分别为3,4,求第三边长的平方.
[解析] 因习惯了“勾三股四弦五”的说法,即意味着两直角 边为3和4时,斜边长为5.但这一理解的前提是3,4为直角边. 而本题中并未加以任何说明,因而所求的第三边可能为斜边 ,也可能为直角边.
考点四 验证勾股定理 例5 一个直立的火柴盒在桌面上倒下,启迪人们发现了勾
例4 李老师让同学们讨论这样一个问题,如图1-3所示,有 一个长方体盒子,底面正方形的边长为2 cm,高为3 cm,在长
方体盒子下底面的A点处有一只蚂蚁,它想吃到上底面的F点处
的食物,则怎样爬行路程最短?最短路程是多少?
过了一会,李老师问同学们答案,甲生说:先由A点到B点, 再走对角线BF;乙生说:我认为应由A先走对角线AC,再走C到F 点;丙生说:将长方形ABCD与长方形BEFC展开成长方形AEFD, 利用勾股定理求AF的长;丁生说:将长方形ABCD与正方形CFGD 展开成长方形ABFG,利用勾股定理求AF的长.你认为哪位同学
的说法正确?并说明理由.(参考数据:29≈5.392)
图1-3
第[解一析章] |过要关使测蚂试蚁爬行的路程最短,可直接连接AF,再求出AF ,但AF在盒子里面,不符合题目要求.甲生和乙生的方案类似
,只是顺序不同,丙生和丁生的方法类似,只是长方形的长、 宽不同,若在丙、丁的长方形中分别画出甲、乙的路线,则发 现丙生和丁生的办法都符合要求,但究竟哪个路程最短,就需 要计算了.
作用:(1)已知直角三角形的两边求第三边;(2)已知直角三角形的一边求 另两边的关系;(3)用于证明平方关系的问题.
2.勾股定理的逆定理
如果三角形的三边长 a、b、c 满足:a2+b2=c2 ,那么这个三角形是
直角三角形.
图1-2
[解析] 要判断公路 AB 段是否需要封锁,则需要比较点 C 到 AB 的距离与 250 m 的大小关系,可以借助勾股定理和三角形的面 积计算点 C 到 AB 的距离.
解:作 CD⊥AB 于 D,因为 BC=400 m,AC=300 m,∠ACB =90°,根据勾股定理,得 AC2+BC2=AB2,即 3002+4002=AB2, 所以 AB=500 m.
考点三 勾股定理的实际应用
例3 如图1-2,在公路AB旁有一座山,现有一C处需要爆破 ,已知点C与公路上的停靠站A的距离为300 m,与公路上另一停 靠站B的距离为400 m,且CA⊥CB,为了安全起见,爆破点C周围 半径250 m范围内不得进入.在进行爆破时,公路AB段是否因有
危险而需要暂时封锁?
由三角形的面积可知:12AB·CD=12BC·AC,所以 500CD= 400×300,所以 CD=240 m.
因为 240<250,即点 C 到 AB 的距离小于 250 m,所以有危险, 公路 AB 段需要暂时封锁.
方法技巧
转化思想是一种重要的数学思想,它的应用十分广泛 ,如通过作高可以将非直角三角形的问题转化为直角 三角形的问题来解决,通过建模可以将实际问题转化 为数学问题来解决等.
CONTEN
目T录
第一章 勾股定理 第二章 实数
第三章 位置与坐标 第四章 一次函数
第五章 二元一次方程组
第六章 数据分析 第七章 平行线的证明
第一章 勾股定理
知识归纳
1.勾股定理
定义:如果直角三角形两直角边分别为 a、b,斜边为 c,那么a2+b2=c2
各种表达形式:在 Rt△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分
考点二 直角三角形的判别
例 2 如图 1-1,在正方形 ABCD 中,F 为 DC 的中点,E 为 BC 上一点,且 EC=14BC,请说明:AF⊥EF.
图 1-1
[解析] 要说明 AF⊥EF,可说明△AEF 是直角三角形,只要根 据勾股定理的逆定理说明 AF2+EF2=AE2 就可以了.
解:连接 AE,设正方形边长为 a,则 DF=FC=a2,EC=a4.
解:按丙生的办法:将长方形ABCD与长方形BEFC展开成长方 形AEFD,如图1-4所示:
则AE=AB+BE=4(cm),EF=3 cm,连接AF,在Rt△AEF中, AF2=AE2+EF2=42+32=25,∴AF=5(cm).连接BF,
∵AF<AB+BF,
∴丙的方法比甲的好.
第一按章丁生|过的关办测法试,将长方形ABCD与正方形CFGD展开成长方形 ABFG,如图1-5所示:
解:(1)当两直角边长分别为 3 和 4 时,第三边长的平方为 32+42=25; (2)当斜边为 4,一直角边为 3 时,第三边长的平方为 42-32=7.
易错警示 应用勾股定理计算时,易出现下列两种错误: (1)忽视勾股定理成立的条件,在非直角三角形中使用 a2+ b2=c2; (2)当题目给出两条边长而没有给出图形时,可能考虑不周 而漏解.
则BF=BC+CF=3+2=5(cm),AB=2 cm,连接AF,在 Rt△ABF中,AF2=BF2+AB2=52+22=29≈5.392,
∴AF=5.39 cm.连接AC, ∵AF<AC+CF,
∴丁的方法比乙的好. 比较丙生与丁生的计算结果,知丙生的说法正确.
图1-4
图1-5
方法技巧
最短路径问题是勾股定理在立体几何中的应用,一般做法 是把长方体(或其他几何体)侧面展开,将立体图形问题转化为 平面图形问题,再根据两点之间线段最短,用勾股定理求解.
在 Rt△ECF 中,有 EF2=a22+a42=156a2. 在 Rt△FDA 中,有 AF2=a22+a2=54a2.
在 Rt△ABE 中,有 Ba2=1265a2,
∴AF2+EF2=AE2.
根据勾股定理的逆定理,得∠AFE=90°,
∴AF⊥EF.
易错警示 根据 a2+b2=c2,判别直角三角形时,容易出现计算一条 短边及最长边的平方和,导致错误.
3.勾股数
满足 a2+b2=c2 的三个 正整数 ,称为勾股数.
考点攻略
考点一 应用勾股定理计算 例1 已知直角三角形的两边长分别为3,4,求第三边长的平方.
[解析] 因习惯了“勾三股四弦五”的说法,即意味着两直角 边为3和4时,斜边长为5.但这一理解的前提是3,4为直角边. 而本题中并未加以任何说明,因而所求的第三边可能为斜边 ,也可能为直角边.
考点四 验证勾股定理 例5 一个直立的火柴盒在桌面上倒下,启迪人们发现了勾
例4 李老师让同学们讨论这样一个问题,如图1-3所示,有 一个长方体盒子,底面正方形的边长为2 cm,高为3 cm,在长
方体盒子下底面的A点处有一只蚂蚁,它想吃到上底面的F点处
的食物,则怎样爬行路程最短?最短路程是多少?
过了一会,李老师问同学们答案,甲生说:先由A点到B点, 再走对角线BF;乙生说:我认为应由A先走对角线AC,再走C到F 点;丙生说:将长方形ABCD与长方形BEFC展开成长方形AEFD, 利用勾股定理求AF的长;丁生说:将长方形ABCD与正方形CFGD 展开成长方形ABFG,利用勾股定理求AF的长.你认为哪位同学
的说法正确?并说明理由.(参考数据:29≈5.392)
图1-3
第[解一析章] |过要关使测蚂试蚁爬行的路程最短,可直接连接AF,再求出AF ,但AF在盒子里面,不符合题目要求.甲生和乙生的方案类似
,只是顺序不同,丙生和丁生的方法类似,只是长方形的长、 宽不同,若在丙、丁的长方形中分别画出甲、乙的路线,则发 现丙生和丁生的办法都符合要求,但究竟哪个路程最短,就需 要计算了.