MATLAB神经网络工具箱的详细使用步奏
Matlab深度学习工具箱使用方法
Matlab深度学习工具箱使用方法深度学习作为一种强大的机器学习技术,已经在许多领域展现了出色的性能和应用潜力。
为了帮助广大研究人员和工程师更好地使用深度学习技术,MathWorks公司推出了Matlab深度学习工具箱。
本文将介绍该工具箱的基本使用方法,并结合实例演示其强大的功能。
一、准备工作在使用Matlab深度学习工具箱之前,我们需要进行一些准备工作。
首先,确保你的电脑已经安装了Matlab软件和深度学习工具箱。
其次,如果你希望使用GPU进行运算加速,还需要确保你的电脑上安装了适当的GPU驱动程序。
二、创建深度学习模型在Matlab深度学习工具箱中,我们可以使用各种各样的函数和工具来创建深度学习模型。
首先,我们需要选择适合我们任务的网络结构。
Matlab深度学习工具箱中提供了许多常见的深度学习网络结构,如卷积神经网络(CNN)、循环神经网络(RNN)和生成对抗网络(GAN)等。
我们可以根据具体的任务需求选择合适的网络结构。
接下来,我们需要定义模型的输入和输出。
在Matlab深度学习工具箱中,我们可以使用图像数据存储对象(ImageDatastore)和标签数据存储对象(Datastore)来管理和预处理我们的数据。
同时,我们还可以使用预处理函数来对数据进行增强和归一化等操作,以提高模型的性能。
最后,我们可以使用trainNetwork函数来训练我们的深度学习模型。
在该函数中,我们需要指定训练数据、验证数据、损失函数和优化器等参数。
训练完成后,我们可以使用classify函数对新的数据进行分类预测,或使用predict函数对数据进行其他类型的预测。
三、模型调优与评估在创建深度学习模型之后,我们通常需要对其进行调优和评估。
在Matlab深度学习工具箱中,我们可以使用HyperparameterTuner对象来进行超参数的自动调优。
通过指定待调优的超参数范围和调优目标,我们可以在指定的训练框架中自动寻找最优的超参数组合。
如何进行MATLAB神经网络的训练和预测
如何进行MATLAB神经网络的训练和预测【第一章】MATLAB神经网络的基础知识神经网络是一种模拟人类神经系统运行方式的计算模型,它通过模拟人类的感知、学习和决策过程,可以对复杂的问题进行处理和求解。
在实际应用中,MATLAB是一个常用的工具来进行神经网络的训练和预测。
本章将介绍MATLAB 神经网络的基础知识,包括神经网络的原理、MATLAB的神经网络工具箱以及神经网络训练和预测的一般步骤。
1.1 神经网络的原理神经网络由神经元(neuron)组成,每个神经元接收多个输入并产生一个输出。
神经网络的基本单元是感知器(perceptron),它由权重、偏置和激活函数组成。
权重决定了输入对输出的影响程度,偏置用于调整输出的偏移量,激活函数用于处理神经元的输出。
通过调整权重和偏置,神经网络可以学习和适应不同的输入输出模式。
常见的神经网络包括前馈神经网络(feedforward neural network)、循环神经网络(recurrent neural network)和卷积神经网络(convolutional neural network)。
前馈神经网络是最基本的神经网络类型,信息只能在网络中的一个方向流动,即从输入层到输出层。
循环神经网络具有反馈连接,可以记忆之前的状态信息,适用于序列数据的处理。
卷积神经网络则主要用于图像和语音等二维数据的处理。
1.2 MATLAB神经网络工具箱MATLAB提供了一个神经网络工具箱(Neural Network Toolbox),用于设计、训练和模拟神经网络。
该工具箱包括多种神经网络类型、各种激活函数、训练算法和性能函数等各种功能模块。
使用MATLAB神经网络工具箱可以方便地进行神经网络的建模和仿真。
在MATLAB神经网络工具箱中,神经网络被表示为一个网络对象(network object)。
网络对象由一系列图层(layer)组成,每个图层由若干个神经元组成。
网络对象还包括连接权重矩阵、偏置向量和训练参数等属性。
如何利用Matlab进行神经网络训练
如何利用Matlab进行神经网络训练神经网络训练是机器学习领域中不可或缺的一环,而Matlab作为一种功能强大的数值计算和科学研究工具,提供了丰富的神经网络训练相关函数和工具箱,为我们提供了便利。
本文将介绍如何利用Matlab进行神经网络训练,从基础概念到具体实现的技巧,希望能够给读者一些启发和指导。
一、神经网络概述神经网络是一种由神经元和连接它们的权重构成的模型,其模拟了人类大脑的信息处理方式。
在神经网络中,神经元接收来自输入层或其他神经元的输入,并通过激活函数计算输出。
神经元之间的连接权重决定了信号在网络中的传递和加权。
二、神经网络的训练神经网络的训练是通过调整连接权重,使得网络对给定输入能够产生期望的输出。
训练的目标是最小化网络的误差,并提高网络的泛化能力。
在神经网络训练中,最常用的方法是反向传播算法(Backpropagation),即基于链式法则计算误差对连接权重的偏导数,并利用梯度下降算法进行权重的更新。
三、Matlab中的神经网络工具箱Matlab提供了用于神经网络建模和训练的专用工具箱,包括网络创建与配置、数据预处理、训练算法、性能评估等功能。
在开始使用神经网络工具箱前,需要先安装并加载工具箱,可以通过运行命令"neural network toolbox"进行加载。
四、神经网络的建模和配置在利用Matlab进行神经网络训练前,首先需要对网络进行建模和配置。
首先确定网络的拓扑结构,包括输入层、隐藏层和输出层的神经元数量和连接方式。
可以使用Matlab提供的"feedforwardnet"函数创建前馈神经网络,或者"patternnet"函数创建模式识别神经网络。
然后,需要对网络的参数进行配置,包括激活函数、训练算法、训练参数等。
Matlab提供了多种激活函数和训练算法的选择,可以根据具体任务的需求进行调整。
例如,可以使用sigmoid或ReLU激活函数,可以使用反向传播、Levenberg-Marquardt等训练算法。
matlab神经网络
Matlab神经网络工具箱2010-7-21今天学的是BP神经网络,首先看的是一个关于非线性函数逼近的例子,最后得出一个心得:在使用newff函数生成一个新的网络时,神经元的层数和每一层的神经元数会对结果造成不小的影响,一般都采用[n,1]的建立方法,其中n为隐层的神经元数,1为输出层的神经元数。
然后是做了一个识别系统,算是一个较大的神经网络,具体的代码解释和分析如下:[alphabet,targets]=prprob;[R,Q]=size(alphabet);[S2,Q]=size(targets);S1=10;[R,Q]=size(alphabet);[S2,Q]=size(targets);P=alphabet;net=newff(minmax(P),[S1,S2],{'logsig','logsig'},'traingdx');net.LW{2,1}=net.LW{2,1}*0.01;net.b{2}=net.b{2}+0.01;其中的proprob是matlab自带的一个生成字母表布尔值的函数。
可以具体查看。
T=targets;net.performFcn='sse';net.trainParam.goal=0.1;net.trainParam.show=20;net.trainParam.epochs=5000;net.trainParam.mc=0.95;[net,tr]=train(net,P,T)接下来首先进行无噪声训练。
netn.trainParam.goal=0.6;netn.trainParam.epochs=300;T=[targets targets targets targets];for pass=1:10P=[alphabet,alphabet,(alphabet+randn(R,Q)*0.1),(alphabet+randn(R,Q)*0.2) ];[netn,tr]=train(net,P,T);end接下来是有噪声训练,采用随机数生成影响输入矩阵的方式。
快速入门Matlab神经网络的基本步骤
快速入门Matlab神经网络的基本步骤神经网络是一种模仿人类大脑神经元之间相互连接和信息传递方式的数学模型。
它通过对大量数据的学习和分析,能够模拟和预测一些复杂的问题。
Matlab是一种功能强大的数值计算软件,它提供了丰富的神经网络工具箱,使得神经网络的设计和实现变得简单而高效。
本文将介绍Matlab神经网络的基本步骤,帮助读者快速入门。
第一步:安装和配置Matlab神经网络工具箱首先,确保已经正确安装了Matlab软件。
然后,在Matlab的主界面上找到"Add-Ons",点击进入。
在搜索栏中输入"Neural Network Toolbox",然后点击安装。
安装完成后,重启Matlab软件。
第二步:准备数据集神经网络的训练和测试需要大量的数据集。
在准备数据集时,需要确保数据集的质量和完整性。
一般来说,数据集应该包括输入和输出两部分,且输入和输出的维度需要匹配。
在Matlab中,可以通过导入已有的数据集文件或者手动创建数据集矩阵来准备数据集。
确保数据集是以矩阵的形式存储,且每一行表示一个样本,每一列表示一个特征或者标签。
第三步:创建神经网络模型在Matlab中,可以使用命令创建神经网络模型。
常见的创建方式包括使用神经网络应用程序、使用nprtool命令或者手动编写代码创建。
使用神经网络应用程序是最简单的方式。
在Matlab主界面上找到"Apps",点击进入"Neural Network Designer"。
在应用程序中,可以通过拖拽和调整网络结构、设置神经元的参数等方式创建自定义的神经网络。
使用nprtool命令可以更加灵活地创建神经网络。
在Matlab的命令行窗口中输入"nprtool",打开神经网络模型创建工具。
在工具中,可以根据需要选择不同的网络结构和参数,进行更加精细的控制。
手动编写代码创建神经网络具有最高的灵活性。
使用Matlab进行神经网络优化问题求解的方法
使用Matlab进行神经网络优化问题求解的方法一、引言在当今信息时代,神经网络已经成为解决复杂问题的重要工具。
随着计算能力的提升,神经网络优化问题的求解变得越来越重要。
而Matlab作为一种强大的科学计算软件,能够提供丰富的工具和函数来解决神经网络优化问题。
本文将介绍如何使用Matlab来解决神经网络优化问题。
二、神经网络优化问题的建模在使用Matlab解决神经网络优化问题之前,首先需要对问题进行建模。
通常来说,神经网络优化问题可以分为两类:单目标优化问题和多目标优化问题。
单目标优化问题是指希望优化网络的某个特定输出,常见的问题有回归问题和分类问题。
而多目标优化问题则是希望在多个指标上获得最优解,常见的问题有多目标分类和多目标回归问题。
在建模过程中,需要确定网络的结构和参数。
神经网络的结构通常由输入层、隐藏层和输出层组成。
输入层接受原始数据,隐藏层进行特征提取,输出层给出最终的结果。
而参数则包括权重和偏置,这些参数需要进行调整以达到最优解。
三、使用Matlab解决单目标优化问题1. 数据准备在解决单目标优化问题之前,首先需要准备好数据集。
数据集应该包含输入值和对应的目标值。
2. 网络训练使用Matlab的神经网络工具箱,可以方便地进行网络训练。
首先,需要创建一个神经网络对象,并设置好网络的结构和参数。
然后,使用训练函数对网络进行训练,常见的训练函数有Levenberg-Marquardt算法和梯度下降算法。
通过训练函数,可以不断调整网络的权重和偏置,直到达到最优解。
3. 网络评估训练完网络后,需要对网络进行评估。
可以使用测试数据集来评估网络的性能,通常采用预测误差、准确率等指标来评估网络的表现。
四、使用Matlab解决多目标优化问题解决多目标优化问题与解决单目标优化问题的方法类似,只是目标变成了多个。
可以使用多种方法来解决多目标优化问题,如加权法、约束法和分级法等。
1. 加权法加权法是一种常用的解决多目标优化问题的方法。
MATLAB神经网络工具箱的使用指南
MATLAB神经网络工具箱的使用指南引言:在当今信息时代的浪潮中,神经网络作为一种模仿人类神经系统运行方式的数学计算模型,被广泛应用于各个领域。
而MATLAB神经网络工具箱作为一款功能强大、易于使用的软件工具,成为许多科学家和工程师进行神经网络研究和应用实践的首选。
本文旨在为读者提供MATLAB神经网络工具箱的全面介绍,并指导读者如何利用其进行神经网络的搭建、训练和应用。
一、神经网络基础知识在正式介绍MATLAB神经网络工具箱之前,我们先来了解一些神经网络的基础知识。
神经网络由输入层、隐藏层和输出层组成,其中输入层接收外部输入,隐藏层进行数据转换和处理,输出层输出最终结果。
神经网络模拟人类大脑的工作原理,通过调整神经元之间的连接权重来实现对输入数据的学习和对未知数据的预测。
二、MATLAB神经网络工具箱的使用1. 环境准备在使用MATLAB神经网络工具箱之前,我们需要先安装MATLAB软件,并确保已经安装了神经网络工具箱。
安装完成后,可以通过在命令窗口输入“nntool”命令来打开神经网络工具箱界面。
2. 神经网络搭建在神经网络工具箱中,可以通过图形用户界面进行神经网络的搭建。
点击界面左上角的“New”按钮,选择“Feedforwardnet”或“Patternnet”等网络类型,并设置输入层、隐藏层和输出层的节点数。
接下来,可以通过拖拽节点和连接来构建网络。
此外,还可以使用“Layer”和“Connection”选项卡来对网络的结构和参数进行进一步设置。
3. 数据准备成功搭建神经网络后,我们需要准备用于训练和测试的数据。
MATLAB提供了丰富的数据处理函数,可以将数据从不同格式的文件中导入,或者通过代码生成。
导入数据后,可以使用数据处理工具对数据进行清洗、归一化等预处理操作,以提高神经网络的训练效果。
4. 神经网络训练数据准备完毕后,可以通过神经网络工具箱提供的训练函数对神经网络进行训练。
常用的训练函数包括“trainlm”、“traingd”、“trainrp”等,它们采用不同的优化算法来调整网络中的连接权重。
Matlab中的神经网络建模与训练方法
Matlab中的神经网络建模与训练方法引言神经网络在机器学习和人工智能领域中扮演着重要的角色。
它们被用于各种应用,包括图像识别、语音识别、自然语言处理等。
在神经网络的研究和开发过程中,Matlab是一个非常流行的工具,提供了丰富的功能和库,方便了对神经网络的建模和训练。
本文将详细介绍Matlab中神经网络建模与训练的方法。
1. 神经网络建模神经网络模型的构建是神经网络研究的第一步。
在Matlab中,我们可以使用neural network toolbox来构建神经网络模型。
首先,我们需要定义网络的结构,包括输入层、隐藏层和输出层的节点数量、激活函数等。
接下来,我们可以选择不同类型的网络模型,如前馈神经网络、递归神经网络、卷积神经网络等。
每种网络模型都有不同的特点和适用场景。
一旦定义了网络结构,我们可以使用Matlab中的函数来创建并初始化网络。
常用的函数包括feedforwardnet、fitnet和patternnet等。
通过这些函数,我们可以方便地创建各种类型的神经网络,并设置参数,如学习率、权重衰减等。
2. 数据预处理在进行神经网络建模之前,通常需要进行数据预处理。
数据预处理的目的是将原始数据转化为适合神经网络输入的形式。
在Matlab中,我们可以使用各种函数来实现数据预处理,包括数据平滑、标准化、归一化等。
数据平滑可以减少数据中的噪声,并提高神经网络的泛化能力。
Matlab中提供了smoothdata函数来实现数据平滑处理。
标准化可以将数据转化为均值为0、方差为1的形式,以便神经网络更好地处理。
Matlab中的zscore函数可以方便地实现标准化处理。
归一化可以将数据转化为指定的区间范围内,常用的归一化方法包括min-max scaling和z-score normalization。
3. 神经网络训练神经网络的训练是指通过一定的输入数据和对应的输出结果,调整网络的权重和偏置,以获得更好的模型预测能力。
Matlab中的神经网络工具箱介绍与使用
Matlab中的神经网络工具箱介绍与使用神经网络是一种模拟人脑思维方式的计算模型,它通过由多个神经元组成的网络,学习数据的特征和规律。
在计算机科学领域,神经网络被广泛应用于模式识别、数据挖掘、图像处理等诸多领域。
Matlab作为一种功能强大的科学计算软件,提供了专门用于神经网络设计和实现的工具箱。
本文将介绍Matlab中的神经网络工具箱,并探讨其使用方法。
一、神经网络工具箱的概述Matlab中的神经网络工具箱(Neural Network Toolbox)是一款用于构建和训练神经网络的软件包。
它提供了丰富的函数和工具,可用于创建不同类型的神经网络结构,如前向神经网络、反向传播神经网络、径向基函数神经网络等。
神经网络工具箱还包括了各种训练算法和性能函数,帮助用户对神经网络进行优化和评估。
二、神经网络的构建与训练在使用神经网络工具箱前,我们需要先了解神经网络的基本结构和原理。
神经网络由输入层、隐藏层和输出层组成,每一层都包含多个神经元。
输入层接受外部输入数据,通过权重和偏置项传递给隐藏层,最终输出到输出层,形成网络的输出结果。
构建神经网络的第一步是定义网络的结构,可以使用神经网络工具箱中的函数创建不同层和神经元的结构。
例如,使用feedforwardnet函数可以创建一个前向神经网络,输入参数指定了每个隐藏层的神经元数量。
然后,可以使用train函数对神经网络进行训练。
train函数可以选择不同的训练算法,如标准反向传播算法、Levenberg-Marquardt算法等。
通过设置训练参数,例如训练迭代次数和学习速率等,可以对网络进行优化。
三、神经网络的应用案例神经网络在许多领域都有广泛的应用,下面以图像分类为例,介绍如何使用神经网络工具箱来训练一个图像分类器。
首先,我们需要准备训练数据和测试数据。
训练数据通常包含一组已经标记好的图像和相应的标签。
为了方便处理,我们可以将图像转化为一维向量,并将标签转化为二进制编码。
matlab神经网络工具箱怎么用
matlab神经网络工具箱怎么用标题:Matlab神经网络工具箱的使用方法导言:Matlab神经网络工具箱是一个功能强大的工具,用于建立、训练和评估各种类型的神经网络。
本文将介绍如何使用Matlab神经网络工具箱进行神经网络的建立、训练和评估,帮助您更好地理解和使用这个工具箱。
一、Matlab神经网络工具箱的安装首先,您需要确保已成功安装了Matlab软件。
然后,您可以通过以下步骤来安装Matlab神经网络工具箱:1. 打开Matlab软件。
2. 在工具栏上选择“工具”菜单。
3. 在下拉菜单中选择“添加预定目录”。
4. 在弹出的窗口中,选择“文件夹”选项。
5. 点击“浏览”按钮,并选择包含神经网络工具箱的文件夹。
6. 点击“选择文件夹”按钮,然后点击“添加文件夹”按钮。
7. 点击“关闭”按钮,完成神经网络工具箱的安装。
二、神经网络的建立Matlab神经网络工具箱提供了多种类型的神经网络模型,如前馈神经网络、递归神经网络和自组织神经网络。
下面我们以前馈神经网络为例,介绍神经网络的建立方法:1. 打开Matlab软件,并在命令窗口中输入“nprtool”命令,打开“神经网络模式选择器”窗口。
2. 在“神经网络模式选择器”窗口中,选择“构建”按钮。
3. 在“神经网络模式选择器”窗口中,选择“前馈神经网络”选项,并点击“下一步”按钮。
4. 在“选择网络架构”窗口中,选择神经网络的层数、神经元数量和输入、输出数据的维度。
5. 点击“下一步”按钮,然后点击“完成”按钮,完成神经网络的建立。
三、神经网络的训练神经网络的训练是指通过将已知的输入和输出数据进行反复迭代调整网络参数,从而使网络能够更好地拟合输入输出之间的关系。
下面我们介绍神经网络的训练方法:1.在命令窗口中输入“trainlm”命令,选择Levenberg-Marquardt算法作为训练函数。
2.输入训练数据和目标数据,通过“trains”命令开始训练神经网络。
MATLAB中的神经网络工具箱详解
MATLAB中的神经网络工具箱详解神经网络是一种模拟人脑神经系统工作方式的计算模型,广泛应用于科学、工程和金融等领域。
而在MATLAB软件中,也有专门的神经网络工具箱,提供了丰富的功能和算法,用于实现神经网络的建模、训练和应用。
本文将对MATLAB中的神经网络工具箱进行详细的解析和介绍。
一、神经网络基础知识在深入了解MATLAB神经网络工具箱之前,我们首先来了解一些神经网络的基础知识。
1. 神经元和激活函数神经元是神经网络的基本单位,它接收来自其他神经元的输入,并通过激活函数将输入转化为输出。
在MATLAB中,可以使用`newff`函数创建一个前馈神经网络,可以通过`sim`函数进行网络的模拟和计算。
2. 训练算法神经网络的训练是指通过一系列的输入和输出样本来调整网络的参数,使得网络能够正确地学习和推断。
常用的训练算法包括误差逆传播算法(Backpropagation)、Levenberg-Marquardt算法等。
在MATLAB中,可以使用`train`函数进行网络的训练,可以选择不同的训练算法和参数。
二、MATLAB神经网络工具箱的使用1. 创建神经网络对象在MATLAB中,可以使用`newff`函数创建一个前馈神经网络对象,该函数的参数包括网络的结构、激活函数等。
例如,`net = newff(input, target, hiddenSize)`可以创建一个具有输入层、隐藏层和输出层的神经网络对象。
2. 设置神经网络参数创建神经网络对象后,可以使用`setwb`函数设置网络的权重和偏置值,使用`train`函数设置网络的训练算法和参数。
例如,`setwb(net, weights, biases)`可以设置网络的权重和偏置值。
3. 神经网络的训练神经网络的训练是通过提供一系列的输入和输出样本,调整网络的参数使得网络能够正确地学习和推断。
在MATLAB中,可以使用`train`函数进行网络的训练,该函数的参数包括训练集、目标值、训练算法和其他参数。
MATLAB-神经网络工具箱-PPT
train
net=train(net, P, T)
被训练网络 输入向量 目标向量
net.tranParam.epochs=10 ; %预定的最大训 练次数为10, 感知器经过最多训练10次后停止,
adapt
net=adapt(net, P, T) 自适应训练函数
权值和阀值学习函数
learnp
dW=learnp(W,P,Z,N,A,T,E,D,gW,gA,LP,LS)
两个长度为5的向量构成输入样本矩阵P,行向量T为目标向量。利用PLOTPV画 出这个向量的图像。例如: P = [-0.5 -0.5 +0.3 -0.1 -4; -0.5 +0.5 -0.5 +1.0 5]; T = [1 1 0 0 1]; plotpv(P,T); % plotpv函数利用感知器的输入向量和目标向量来画输入向量的图像
dW:权值或阀值的变化矩阵 W:权值矩阵或阀值向量 P:输入向量 T:目标向量 E:误差向量 其他可以忽略,设为[ ]
learnpn 归一化学习函数
网络仿真函数
sim
a = sim(net, P)
网络输出
输入向量
➢分类结果显示绘图函数
plotpv
plotpv(P,T)
画输入向量的图像
plotpc
plotpc(W,b)
这个感知器正确的区分了我们的新点(用红色表示)作为”zero”类(用圆圈表示), 而不是”one”类(用+号表示),尽管需要比较长的训练时间,这个感知器仍然适当的进 行了学习。最后放大感兴趣的区域
实验一 利用感知器进行分类(2)
Step3 添加神经元的初始化值到分类图
初始化的权值被设为0,因此任何输入都会给出同样的输出,并且分类线不会 出现在这个图中,不用害怕,我们会继续训练这个神经网。 hold on linehandle = plotpc(net.IW{1},net.b{1}); //plotpc函数用来画分类线
Matlab的神经网络工具箱实用指南(2)
多层神经元网络一个网络可以有几层,每一层都有权重矩阵W,偏置向量b和输出向量a。
为了区分这些权重矩阵、输出矩阵等等,在图中的每一层,我们都为感兴趣的变量以上标的形式增加了层数。
你能够看到在下面所示的三层网络图和等式中使用层符号。
上面所示的网络有R1个输入,第一层有S1个神经元,第二层有S2个神经元,以次类推。
一般不同层有不同数量的神经元。
每一个神经元的偏置输入是常量1。
注意中间层的输出就是下一层的输入。
第二层可看作有S1个输入,S2个神经元和S1 xS2 阶权重矩阵W2 的单层网络。
第二层的输入是a1,输出是a2,现在我们已经确定了第二层的所有向量和矩阵,我们就能把它看成一个单层网络了。
其他层也可以照此步骤处理。
多层网络中的层扮演着不同的角色。
给出网络输出的层叫做输出层。
所有其他的层叫做隐层。
上图所示的三层网络有一个输出层(第三层)和两个隐层(第一和第二层)。
有些作者把输入作为第四层,这里不用这种指定。
上面所示的三层网络的简洁画法如下图所示:多层网络的功能非常强大。
举个例子,一个两层的网络,第一层的转移函数是曲线函数,第二层的转移函数是线性函数,通过训练,它能够很好的模拟任何有有限断点的函数。
这种两层网络集中应用于"反向传播网络"。
注意我们把第三层的输出a3标记为y。
我们将使用这种符号来定义这种网络的输出。
4.数据结构这一节将讨论影响网络仿真的输入数据结构的格式。
我们首先讨论静态网络,在讨论动态网络。
我们将关心两种基本的输入向量类型:同步(同时或者无时序)向量和异步向量。
对异步向量来说,向量的顺序是非常重要的。
对同步向量来说,顺序是不重要的,并且如果我们已经有一定数量的并行网络我们就能把一个输入向量输入到其中的任意网络。
静态网络中的同步输入仿真仿真静态网络(没有反馈或者延迟)是网络仿真最简单的一种。
在这种情况中,我们不需要关心向量输入的时间顺序,所以我们可以认为它是同时发生的。
Matlab神经网络工具箱介绍(Neural Network Toolbox)
2020/5/6
10
• <step.3>建立网络
• Network/Data
Manager窗口中New… 打开Create Network or Data,如右图。
• Name:定义网络名为 network1
• 选择Input/Target Data,设置训练函数等参 数。
• View:查看模型
2020/5/6
f ( p)
Forecasting error xn1 t '
2020/5/6
6
• <step.1>数据构造与预处理 •
2020/5/6
7
• <step.2>训练数据导入nntool
• 根据数据的多少,数据文件的格式等获取样本 数据的方法有:
• 1)直接输入数据:通过采用元素列表方式输 入。适用于样本数目较少时。New…按钮
2020/5/6
21
总结
需要注意的是,源文件名及路径名不能是汉 字,否则导致读取文件失败。
本部分介绍了MATLAB 神经网络工具箱的 图形用户界面,为尚不熟悉以MATLAB 编程进 行神经网络设计与仿真的用户提供了一个非常 好的交互式图形界,使得神经网络的设计和仿真 变得轻而易举。
2020/5/6
22
单击Simulate Network按钮,则在Network/ Data Manager窗口的Outputs和Errors区域分 别显示出相应的仿真结果,选中变量名,单击该 窗口的Open按钮,弹出数据窗口,在该窗口可以 查看仿真结果的具体数据,如图 所示。
2020/5/6
19
• <step.6>结果Export和Save
matlab神经网络工具箱简介和函数及示例参考PPT
代码运行结果: 网络训练误差
结论:隐含层节点设为8
BP网络训练步骤
步骤1: 初始化 步骤2:计算网络各层输出矢量 步骤3:计算网络各层反向传播的误差变化,并计算各 层权值的修正值及修正值 步骤4:再次计算权值修正后的误差 平方和 步骤5:检查误差 平方和是否小于 误差期望值,若是, 停止训练,否则继续.
函数类型 输入函数
其它
函数名 称
netsum netprcd concur dotprod
函数用途
输入求和函数 输入求积函数 使权值向量和阈值向量的结构一致 权值求积函数
BP网络的神经网络工具箱函数
函数类型
函数名称 函数用途
前向网络创建 函数
传递函数
学习函数
函数类型 性能函数 显示函数
函数名 函数用途 称
MATLAB的神经网络工具箱函
数
函数类型
通用函数
函数名 函数用途 称
仿真函数 训练函数
学习函数 初始化函数
SIM train trainh adapt learn int intlay
针对给定的输入,得到网络输出 调用其它训练函数,对网络进行训练 对权值和阈值进行训练 自适应函数 网络权值和阈值的学习 对网络进行初始化 对多层网络初始化
说明:
参数TFi可以采用任意的可微传递函数,比如transig, logsig和purelin等; 训练函数可以是任意的BP训练函数,如trainm,trainbfg, trainrp和traingd等。BTF默认采用trainlm是因为函数的速度 很快,但该函数的一个重要缺陷是运行过程会消耗大量的内 存资源。如果计算机内存不够大,不建议用trainlm,而建议 采用训练函数trainbfg或trainrp。虽然这两个函数的运行速度 比较慢,但它们的共同特点是内存占用量小,不至于出现训 练过程死机的情况。
MATLAB神经网络工具箱
MATLAB神经网络工具箱与液位控制BP 模型的设计与仿真随着科学技术的发展,在控制领域中被控对象变得越来越复杂,控制系统呈现出复杂的非线性、时变及不确定性的特点,难于精确建模,有的虽然可以建立粗略的模型,但求解困难。
人工神经网络具有一定的自学习、自适应和非线性映射能力及容错性等优点,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了一条新的途径。
其中,BP 网络,即基于误差反向传播算法的多层前馈神经网络,由于它可以以任意精度逼近任意的连续函数,因此被广泛应用于非线性建模、函数逼近、模式分类、智能控制及预测等领域。
MATLAB神经网络工具箱是以神经网络理论作为背景的专业工具箱,本文针对某发电厂液位控制建立BP 预测模型,利用目前工程领域流行的MATLAB 6.1中提供的神经网络工具箱,对网络模型进行训练和仿真,给出优化的BP 模型实现步骤。
MATLAB及其神经网络工具箱MATLAB是由MATHWORKS公司开发的一个高性能的技术计算语言。
它在一个简单易用的交互式环境中集成了计算、可视化和程序设计等强大的功能。
神经网络工具箱是MATLAB中集成的一个重要工具箱,工具箱中提供了面向不同神经网络模型特别是BP网络模型的丰富多彩的网络学习和训练函数,其中包括了BP算法和各种改进BP算法,为神经网络的仿真分析提供了极大的方便,从而使MATLAB成为目前世界上最为流行的神经仿真平台。
用户只要调用工具箱中相关函数并输入参数,就可以完成相应的训练仿真。
在本文液位控制BP模型的设计与仿真研究中,主要用到以下几个函数及其主要参数:1)Newff格式: net = newff(PR,[S1 S2… S nl],{TF1 TF2… TF nl},BTF,BLF,PF)其中net是神经网络名;S i是第i层神经网络的神经元个数,网络共有nl层;TFi 是第i层网络神经元的转移函数,缺省为tansig; BTF是BP训练函数,缺省为trainlm;BLF 是学习函数,缺省为learngdm;PF是性能函数,缺省为mse。
MATLAB中的循环神经网络实现指南
MATLAB中的循环神经网络实现指南引言:循环神经网络(Recurrent Neural Network)是一类特殊的神经网络结构,具有记忆和上下文依赖的能力,在自然语言处理、时间序列分析等领域有广泛的应用。
在MATLAB中,我们可以利用神经网络工具箱(Neural Network Toolbox)来实现循环神经网络,并通过调整网络结构和参数来获得所需的性能。
本文将详细介绍如何在MATLAB中实现循环神经网络,并提供一些实用的技巧和注意事项。
一、循环神经网络基础1.1 循环神经网络结构循环神经网络由若干个神经元组成,这些神经元之间通过权重进行连接,形成一个有向图结构。
不同于前馈神经网络,循环神经网络中的神经元可以接受自身之前的输出作为输入,因此具备记忆和上下文依赖的能力。
循环神经网络的结构可以通过图形化方式表示,例如循环神经网络解析图(Recurrent Neural Network Diagram)。
1.2 循环神经网络模型常见的循环神经网络模型包括Elman网络、Jordan网络和长短时记忆网络(Long Short-Term Memory, LSTM)。
Elman网络是一种最简单的循环神经网络模型,每个神经元接收上一时刻的自身输出和外部输入作为输入;Jordan网络在Elman网络的基础上,将当前时刻的自身输出也作为输入。
LSTM是一种具备记忆和遗忘机制的循环神经网络模型,能够有效地解决长期依赖问题。
二、MATLAB中的循环神经网络实现2.1 环境准备在实现循环神经网络之前,我们需要做一些准备工作。
首先,确保已经安装了MATLAB以及神经网络工具箱。
其次,准备好数据集,可以是文本数据、时间序列数据等。
需要注意的是,数据集要经过预处理,例如归一化、分词等。
最后,为了提高训练效果,可以考虑使用GPU加速。
2.2 网络建模在MATLAB中,我们可以通过构建网络模型对象来实现循环神经网络。
首先,选择合适的网络模型。
[matlab工具箱]神经网络NeuralNet
[matlab⼯具箱]神经⽹络NeuralNet//⽬的是学习在BP神经⽹络的基础上添加遗传算法,蚁群算法等优化算法来优化⽹络,这是后话。
先简单了解了MATLAB中的神经⽹络⼯具箱,⼯具箱功能还是⾮常强⼤的,已经可以拟合出⾮常多的曲线来分析了。
神经⽹络⼯具箱选择(4种)今天下载了⾃带的example跑了⼀次试⼀下选择隐藏神经元个数训练结束后可以在plot查看各种图表,这⾥只对⼯具箱操作做简单介绍最近⼀段时间在研究如何利⽤预测其销量个数,在⽹上搜索了⼀下,发现了很多模型来预测,⽐如利⽤回归模型、时间序列模型,GM(1,1)模型,可是⾃⼰在结合实际的⼯作内容,发现这⼏种模型预测的精度不是很⾼,于是再在⽹上进⾏搜索,发现神经⽹络模型可以来预测,并且有很多是结合时间序列或者SVM(⽀持向量机)等组合模型来进⾏预测,本⽂结合实际数据,选取了常⽤的BP神经⽹络算法,其算法原理,因⽹上⼀⼤堆,所以在此不必⼀⼀展⽰,并参考了这篇博⽂,运⽤matlab 2016a,给出了下⾯的代码,并最终进⾏了预测clcclear allclose all%bp 神经⽹络的预测代码%载⼊输出和输⼊数据load C:\Users\amzon\Desktop\p.txt;load C:\Users\amzon\Desktop\t.txt;%保存数据到matlab的⼯作路径⾥⾯save p.mat;save t.mat;%注意t必须为⾏向量%赋值给输出p和输⼊tp=p;t=t;%数据的归⼀化处理,利⽤mapminmax函数,使数值归⼀化到[-1.1]之间%该函数使⽤⽅法如下:[y,ps] =mapminmax(x,ymin,ymax),x需归化的数据输⼊,%ymin,ymax为需归化到的范围,不填默认为归化到[-1,1]%返回归化后的值y,以及参数ps,ps在结果反归⼀化中,需要调⽤[p1,ps]=mapminmax(p);[t1,ts]=mapminmax(t);%确定训练数据,测试数据,⼀般是随机的从样本中选取70%的数据作为训练数据%15%的数据作为测试数据,⼀般是使⽤函数dividerand,其⼀般的使⽤⽅法如下:%[trainInd,valInd,testInd] = dividerand(Q,trainRatio,valRatio,testRatio)[trainsample.p,valsample.p,testsample.p] =dividerand(p,0.7,0.15,0.15);[trainsample.t,valsample.t,testsample.t] =dividerand(t,0.7,0.15,0.15);%建⽴反向传播算法的BP神经⽹络,使⽤newff函数,其⼀般的使⽤⽅法如下%net = newff(minmax(p),[隐层的神经元的个数,输出层的神经元的个数],{隐层神经元的传输函数,输出层的传输函数},'反向传播的训练函数'),其中p为输⼊数据,t为输%tf为神经⽹络的传输函数,默认为'tansig'函数为隐层的传输函数,%purelin函数为输出层的传输函数%⼀般在这⾥还有其他的传输的函数⼀般的如下,如果预测出来的效果不是很好,可以调节%TF1 = 'tansig';TF2 = 'logsig';%TF1 = 'logsig';TF2 = 'purelin';%TF1 = 'logsig';TF2 = 'logsig';%TF1 = 'purelin';TF2 = 'purelin';TF1='tansig';TF2='purelin';net=newff(minmax(p),[10,1],{TF1 TF2},'traingdm');%⽹络创建%⽹络参数的设置net.trainParam.epochs=10000;%训练次数设置net.trainParam.goal=1e-7;%训练⽬标设置net.trainParam.lr=0.01;%学习率设置,应设置为较少值,太⼤虽然会在开始加快收敛速度,但临近最佳点时,会产⽣动荡,⽽致使⽆法收敛net.trainParam.mc=0.9;%动量因⼦的设置,默认为0.9net.trainParam.show=25;%显⽰的间隔次数%指定训练参数% net.trainFcn = 'traingd'; %梯度下降算法% net.trainFcn = 'traingdm'; %动量梯度下降算法% net.trainFcn = 'traingda'; %变学习率梯度下降算法% net.trainFcn = 'traingdx'; %变学习率动量梯度下降算法% (⼤型⽹络的⾸选算法)% net.trainFcn = 'trainrp'; % RPROP(弹性BP)算法,内存需求最⼩%共轭梯度算法% net.trainFcn = 'traincgf'; %Fletcher-Reeves修正算法% net.trainFcn = 'traincgp'; %Polak-Ribiere修正算法,内存需求⽐Fletcher-Reeves修正算法略⼤% net.trainFcn = 'traincgb'; % Powell-Beal复位算法,内存需求⽐Polak-Ribiere修正算法略⼤% (⼤型⽹络的⾸选算法)%net.trainFcn = 'trainscg'; % ScaledConjugate Gradient算法,内存需求与Fletcher-Reeves修正算法相同,计算量⽐上⾯三种算法都⼩很多% net.trainFcn = 'trainbfg'; %Quasi-Newton Algorithms - BFGS Algorithm,计算量和内存需求均⽐共轭梯度算法⼤,但收敛⽐较快% net.trainFcn = 'trainoss'; % OneStep Secant Algorithm,计算量和内存需求均⽐BFGS算法⼩,⽐共轭梯度算法略⼤% (中型⽹络的⾸选算法)%net.trainFcn = 'trainlm'; %Levenberg-Marquardt算法,内存需求最⼤,收敛速度最快% net.trainFcn = 'trainbr'; %贝叶斯正则化算法% 有代表性的五种算法为:'traingdx','trainrp','trainscg','trainoss', 'trainlm'%在这⾥⼀般是选取'trainlm'函数来训练,其算对对应的是Levenberg-Marquardt算法net.trainFcn='trainlm';[net,tr]=train(net,trainsample.p,trainsample.t);%计算仿真,其⼀般⽤sim函数[normtrainoutput,trainPerf]=sim(net,trainsample.p,[],[],trainsample.t);%训练的数据,根据BP得到的结果[normvalidateoutput,validatePerf]=sim(net,valsample.p,[],[],valsample.t);%验证的数据,经BP得到的结果[normtestoutput,testPerf]=sim(net,testsample.p,[],[],testsample.t);%测试数据,经BP得到的结果%将所得的结果进⾏反归⼀化,得到其拟合的数据trainoutput=mapminmax('reverse',normtrainoutput,ts);validateoutput=mapminmax('reverse',normvalidateoutput,ts);testoutput=mapminmax('reverse',normtestoutput,ts);%正常输⼊的数据的反归⼀化的处理,得到其正式值trainvalue=mapminmax('reverse',trainsample.t,ts);%正常的验证数据validatevalue=mapminmax('reverse',valsample.t,ts);%正常的验证的数据testvalue=mapminmax('reverse',testsample.t,ts);%正常的测试数据%做预测,输⼊要预测的数据pnewpnew=[313,256,239]';pnewn=mapminmax(pnew);anewn=sim(net,pnewn);anew=mapminmax('reverse',anewn,ts);%绝对误差的计算errors=trainvalue-trainoutput;%plotregression拟合图figure,plotregression(trainvalue,trainoutput)%误差图figure,plot(1:length(errors),errors,'-b')title('误差变化图')%误差值的正态性的检验figure,hist(errors);%频数直⽅图figure,normplot(errors);%Q-Q图[muhat,sigmahat,muci,sigmaci]=normfit(errors);%参数估计均值,⽅差,均值的0.95置信区间,⽅差的0.95置信区间[h1,sig,ci]= ttest(errors,muhat);%假设检验figure, ploterrcorr(errors);%绘制误差的⾃相关图figure, parcorr(errors);%绘制偏相关图运⾏之后的,结果如下:BP神经⽹络的结果分析图训练数据的梯度和均⽅误差之间的关系图验证数据的梯度与学习次数残差的正态的检验图(Q-Q图)在⽹上,发现可以通过神经⽹络⼯具箱这个GUI界⾯来创建神经⽹络,其⼀般的操作步骤如下:1:在输⼊命令⾥⾯输⼊nntool命令,或者在应⽤程序这个选项下找到Netrual Net Fitting 这个应⽤程序,点击打开,就能看见如下界⾯2:输⼊数据和输出数据的导⼊(在本⽂中选取了matlab⾃带的案例数据)3:随机选择三种类型的数据所占的样本量的⽐例,⼀般选取默认即可4:隐层神经元的确定5:训练算法的选取,⼀般是选择默认即可,选择完成后点击<train>按钮即可运⾏程序6:根据得到的结果,⼀般是MSE的值越⼩,R值越接近1,其训练的效果⽐较,并第⼆张图给出了神经⽹络的各参数的设置以及其最终的结果,其拟合图R越接近1,模型拟合的更好最终的结果图7:如果所得到的模型不能满⾜你的需求,则需重复上述的步骤直⾄能够得到你想要的精确度8:将最终的得到的各种数据以及其拟合值进⾏保存,然后查看,就可以得到所要的拟合值最后参考了⽹上和MATLAB的帮助,给出了⼀些与神经⽹络相关的函数,希望能够帮助⼤家。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在输入命令里面输入nntool,就可以开始了。
点击import之后就出现下面的具体的设置神经网络参数的对话界面,这是输入输出数据的对话窗
首先是训练数据的输入
然后点击new,创建一个新的神经网络network1,并设置其输入输出数据,包括名称,神经网络的类型以及隐含层的层数和节点数,还有隐含层及输出层的训练函数等
点击view,可以看到这是神经网络的可视化直观表达
创建好了一个network之后,点击open,可以看到一个神经网络训练,优化等的对话框,选择了输入输出数据后,点击train,神经网络开始训练,如右下方的图,可以显示动态结果
下面三个图形则是点击performance,training state以及regression而出现的
下面就是simulate,输入的数据是用来检验这个网络的数据,output改一个名字,这样就把输出数据和误差都存放起来了
在主界面上点击export就能将得到的out结果输入到matlab中并查看
下图就是输出的两个outputs结果。