土壤水分、空气和热量第五次课

合集下载

第五章 土壤空气与土壤热状况

第五章 土壤空气与土壤热状况

(二)合理灌排,控制水分,调节气热

(一)合理灌溉,节约用水 (二)排除积水、通气增温 (三)通过灌排、通气调温
(三)精耕细作,蓄水保墒,通气调温
耕作不仅可以蓄水保墒,而且可以改善 土壤的通气性和温热状况。经常采用的 耕作措施有: 中耕 深翻 镇压

(四)降低土表蒸发,调节土壤 水气热状况
露水的形成

老师:露水是怎样形成的?并说出理由来。
学生回答到:
地球旋转不停,热得出汗,这就
是露水。
露水的形成
晴朗无云的夜间,地面热量散失很快,地 面气温迅速下降。温度降低,空气含水汽的能 力减小,大气低层的水汽就附在草上、树叶上 等,并凝成细小的水珠,即露水。 增加近地面空气的温度,又使水汽扩散, 露水也很难形成。 露水对农作物很有好处, 露水像雨一样,能滋润土壤起到帮助植物生长 的作用。
三 土壤通气状况与作物生长
(一)影响根系发育

大多数作物在通气良好的土壤中,根系 长、颜色浅、根毛多;缺O2土壤中的根系 则短而粗,颜色暗,根毛大量减少。 根系生长需要氧:氧浓度<9~10%,生 长受阻;<5%时,发育停止。

(二)影响根系吸收功能

通气不良时,根系呼吸作用减弱,吸收养 分和水分的功能降低,特别是抑制对K的 吸收,依次为Ca、Mg、N、P等。
2、土壤空气O2含量

比大气低,主要是因为根系和微生物 的呼吸作用需要消耗O2,OM的分解也会 消耗掉O2。
3、土壤空气相对湿度

比大气高。除表层干燥土壤外,土壤 空气湿度一般都在99%以上,处于水汽 饱和状态,而大气只有在多雨季节才接 近饱和。
4、还原性气体

土壤水分、空气和热量

土壤水分、空气和热量

1cm
19 ℃
(2)导热率的物理意义
导热率大则传热快,得热后迅速下传(失热后迅速补 给),引起的变温小。
导热率小则传热慢,得热后不易下传(失热后补给缓 慢),引起的变温大。
J s-1
1cm2
20 ℃
21 ℃ 21 ℃
1cm
19 ℃
20 ℃ 19.2 ℃
Question:土壤的导热率大小取决于什么? Answer:取决于土壤中的基本组成物质。
固相 50% 矿物质45% 水20-30% 空气
30-20% 孔隙50%
有机质5%
不同土壤组分的热容量
土壤组成物质
粗石英砂 高岭石 石灰 腐殖质 Fe2O3 Al2O3
土壤空气 土壤水分
重量热容量 (Jg-1℃-1)
0.745 0.975 0.895 0.682 0.908 1.996 1.004 4.184
一般作物根系的吸水力平均为1.5MPa。
2、土壤膜状水
土壤膜状水:吸湿水达到最大后,土壤还有剩余的引力吸 附液态水, 在吸湿水的外围形成一层水膜。
膜 状 水 示 意 图
土壤膜状水的有效性:
土壤膜状水
3.1MPa (靠近土壤内层)(无效水)
受到的引力
0.625 MPa (靠近土壤外层)(有效水)
一般作物根系的吸水力平均为1.5MPa。
取容积为1的土壤,设它吸收(放出)的热量为 ⊿Q,引起的温度变化为⊿T ,则根据定义Cv=⊿Q/⊿T, 这就是容积热容量。
转换公式一下:⊿T=⊿Q/Cv, 当不同的物质吸收或放出相同热量时候,热容量越 大的物质,升、降温缓慢, 即温度变化小,反之亦然。
Question:土壤的热容量大小取决于什么?

第四章(2) 土壤水、气、热

第四章(2) 土壤水、气、热
湿土重 = 237.4-93.4 = 144 g 烘干土重 = 213.4-93.4=120 g 容重=烘干土重/土壤体积 =120/100=1.20 含水量=水分重/烘干土重 =(144-120)/120 =200 g/kg
22
四、土壤水分含量的测定
烘干法:经典、准确,标准方法
中子法
TDR法(时域反射仪):电磁测量方法,依据土 壤的介电性质。具有直接、快速、方便的特 点,并可同时测定土壤含盐量。
含水量与水吸力呈负相关 同一含水水量时,吸力:粘土>壤土>砂土 同一水吸力时,含水量:粘土>壤土>砂土

31
水分特征曲线的作用:


吸力与含水量换算 反映土壤持水、供水性能 计算当量孔径,反映土壤中大小孔隙的分布 土壤水分运动参数计算
32
5、当量孔径

与一定土壤水吸力相对应的土壤孔隙直径
2、凋萎系数(萎焉系数) (Wilting Coefficient) 根系因无法吸收水分而发生萎焉时的土壤含水量

是土壤有效水下限 吸力约 15 bar
17
18
水分常数与水分有效性的关系
水分能量 (大气压)
1~2万 31 最 大 吸 湿 量
16~15 凋 萎 系 数
水分常数
6.25 最 大 分 子 持 水 量
2、组成特点

气体 大气 土壤空气
46
3、土壤空气组成变化对土壤和作物的影响

O2要求>10%,过低根系呼吸受阻,影响发 芽出苗
CO2根吸收,提供地上部光合作用,过多 会产生毒害,一般<1%即可 还原性气体过多对作物有毒害作用


47

地理人教版高中必修一(2019年新编)-5-2 土壤 教案

地理人教版高中必修一(2019年新编)-5-2 土壤 教案

第五章植被与土壤5.2 土壤知能素养对标【必备知识一:观察土壤】地理事实1.土壤的概念陆地表层具有一定肥力,能够生长植物的疏松表层,由矿物质、有机质、水分和空气四种物质组成。

2.土壤观察的主要内容—颜色、质地、剖面构造(1)土壤颜色:是土壤最重要的外部特征之一,如黑土、红壤等。

黑土主要分布在我国东北地区,红壤主要分布在我国南方地区。

(2)土壤质地①土壤矿物质颗粒:石砾、砂粒、粉粒、黏粒等。

②土壤质地:不同粒级的矿物质在土壤中所占的相对比例。

③分类:砂土、壤土、黏土。

(3)土壤剖面构造①定义:指从地面垂直向下的土壤纵剖面,由一些形态特征各异的、大致呈水平展布的土层所构成。

②森林土壤剖面:有机层、腐殖质层、淋溶层、淀积层、母质层和母岩层。

③耕作土壤剖面:耕作层、犁底层、自然土层。

核心概念土壤肥力:指土壤能持续不断供给并协调植物生长所需的空气、温度、养分和无毒害物质的能力,是土壤的本质特征和基本属性。

砂土:指土壤颗粒组成中砂粒含量较高的土壤。

壤土:指土壤颗粒组成中黏粒、粉粒、砂粒的比例适中的土壤。

质地介于黏土和砂土之间,兼有黏土和砂土的优点,通气透水、保水保温性能都较好,易培育成高产稳产土壤,也是较理想的农业土壤。

黏土:成分中黏粒占优势,通气、透水性差,保肥性能好,不易耕作。

有机质:指以各种形态存在于土壤中的所有含碳的有机物质,包括土壤中的各种动、植物残体,微生物及其分解和合成的各种有机物质。

腐殖质:土壤有机质的一种,是经微生物分解完全腐烂的动、植物残体。

【必备知识二:土壤的主要形成因素】地理事实1.成土母质(1)意义:岩石的风化产物,是土壤发育的物质基础。

(2)影响:决定了土壤矿物质的成分和养分状况,影响土壤的质地。

2.生物(1)意义:是影响土壤发育的最基本也是最活跃的因素,没有生物的作用,就不可能形成土壤。

(2)影响:植物、动物、微生物的综合作用,加快岩石风化和土壤的形成过程,改善成土母质的性状,促进土壤矿物质颗粒的团聚。

第五节 土壤的水气热条件

第五节 土壤的水气热条件

2.土壤导热率
评价土壤传导热量快慢的指标。指面积
为1m2、相距1m的两截面上温度相差1K时, 每秒中所通过该单元土体的热量焦耳数。 单位:J/(m.K.s)土壤三相组成中,空气 的导热率最小,矿物质的导热率最大, 为土壤空气的100倍。水的导热率介于二 者之间。土壤越紧实,导热率越好。
(三)土壤空气和温度调节
3. 毛管水

靠土壤毛管引力而保持在土壤毛管孔隙 中的水叫毛管水,运动较快,不再受土粒引 力作用,是可以移动的自由水。是植物用水 的主要来源。毛管水所受的毛管引力在 0.625—0.01MPa,小于1.5MPa。
(1)毛管悬着水
指地形部位较高,不受地下水影响的地
区其土壤上层所保持的水分。当毛管悬 着水达到最大值时的土壤含量叫做“田 间持水量”,田间持水量是因土灌溉的 一个重要依据。
(二)、土壤热量
土壤的热量来源太阳辐射、生物热、地热。
1.土壤的热特性 (1)土壤热容量 重量热容量—单位重量土壤升高10K所需 的热量(J/g.K)容积热容量—单位容积土壤 升高10K所需的热量( J/g.K)
土壤热容量的大小
决定于土壤固、气、液,由于固相变化不大,
而空气的热容量很小(水的1/3000),而水 的热容量很大,因此,土壤热容量的大小主 要决定于土壤含水量,土壤含水多,升高10 C所需要的热量大,降低10 C放出的热量也越 多。
二、土壤空气和土壤热量
(一)土壤空气
土壤空气是土壤三相组成之一,也是土 壤肥力因素之一。
1.土壤空气的特点
(1)CO2含量高于大气,O2含量低于大气
(2)常被水汽饱和,相对湿度高 (3)含有一定的还原性气体,H2S、CH4、H2 (4)土壤空气的组成处于变化之中,特别是 O2和CO2

第五章 土壤空气与热状况

第五章 土壤空气与热状况

4、对土壤热特性的影响因素:固、液、气三相物质比例 由下表可见,土壤水分热容量最大,土壤空气最小,而 矿质土粒和土壤有机质介于两者之间,而固体是相对稳 定的,则主要取决于土壤水分和土壤空气的含量。 所以,粘土:水分含量较高,早春季节解冻迟,土壤回 升慢,为冷性土; 砂土:水分含量低,早春土温回升快,为热性土。
三、土壤通气性(soil aeration) 土壤通气性(土壤透气性):指土壤空气与近地层大气进行气
体交换以及土体内部允许气体扩散和流动的性能。
土壤通气性影响多种生物的生命活动,各种有机物质转化的化
学过程,根际呼吸,种子萌发,土壤病虫害的发生。
土壤通气产生的机制:
(一)、土壤空气扩散(Soil air diffusion) 指某种气体成分由于分压梯度与大气不同而产生的移动。它是 土壤空气与大气间进行交换的主要因素,原理服从气体扩散 公式: F=-D· dc/dx F:单位时间气体扩散通过单位面积的数量; Dc/dx:气体浓度梯度或气体分压梯度; D:扩散系数,负号表示其从气体分压高向低扩散。
2、土壤水分调节:
减少土壤水分的损失;增加作物对降雨,灌溉水及土壤中 原有贮水的有效利用,同时包括对多余水分的排除等, 措施如下: (1)控制地表径流,增加土壤水分入渗;

合理耕翻:创造疏松的耕作层,保持土壤适当的透水性 以吸收更多的降雨和减少地表径流损失。 等高种植,建立水平梯田:改造地形,平整土地,减少 水土流失,梯田层层蓄水,坎地节节拦蓄 改良表土质地结构:增加土壤孔隙度,使蓄墒能力增强。
第二节
一、土壤热来源与平衡
土壤热状况
(一)土壤热来源
1、太阳辐射(solar radiation) 与所处的纬度有关,随纬度的提高,接受辐射减少;

第五章土壤水、热、气、肥及其相互关系

第五章土壤水、热、气、肥及其相互关系

1.3.1.1吸湿水: 干燥的土粒由于分子引力和静电引力的 存在而从空气中吸收水份的性质称为吸 湿性,所紧密吸附的水分就称为吸湿水. 特点: <1>.吸湿水的数量与大气温、湿度有关, 大 气温度愈低、湿度愈大, 吸湿量愈大; 也与质地有关,质地愈重,吸湿性愈强,吸 湿量也愈大.


<2>.吸湿水受土粒引力极大{31~10000个大气 压},无溶解力,不导电,在土壤中不能自由运动, 与土粒作整体运动. 同时,植物根系的根吸力一般只有10~20个大 气压,所以吸湿水不能被一般植物吸收利用.

年变化 - (太阳辐射能的季节变化) 呈现两个阶段, 升温阶段, 2~7月; 降温阶段, 8~1月; 最高温7月, 最低温1月. 随土层加深年变幅也减小, 在5~20米处消 失.
影响土温的因素: 一切影响土壤热量收入或支出的因素最终都将 影响土壤温度的高低, 可分为环境因素和土壤 内部因素两大类. 环境因素: a. 土壤所处的纬度 随着纬度的增加, 太阳入射角减小, 单位面积土 壤得到的太阳辐射能减少, 故纬度越高, 土温越 低.
第 五 章 土壤水、热、气、 肥及其相互关系

土壤水、热、气、肥4大因素 :
各有其独立的运动发展变化规律 各自与环境状况息息相关 共存于土壤体系中,相互联系、相 互制约的。
第 一 节

土壤热性质
1- 土壤的热量来源 土壤热量主要来自4个方面,太阳辐射能、地热、 生物热和化学热。 1-1 太阳辐射: 任何物体,温度高于绝对零度 (-273 ℃) 时, 都要以电磁波的方式向外辐射能量。 太阳表面温度高达6000 ℃, 它要以电磁波 的方式向外辐射大量能量, 这种能量是土壤热 量的主要来源, 一般每cm2每分钟可得到1.9 卡 的热量.

土壤水分、空气和热量

土壤水分、空气和热量
园林植物生长与环境
土壤水分、空气和热量
1.1土壤水分

1、吸湿水(紧束缚水)


2、膜状水(松束缚水)
的 类
3、毛管水

4、重力水和地下水土壤ຫໍສະໝຸດ 分、空气和热量1.1土壤水分
1.土粒2.吸湿水 3.膜状水4.移动的毛管水 5.空气孔隙
土壤水分、空气和热量
1.2土壤空气
气体 近地表大气
土壤空气与大气组成差异
O2(%) 20.94
CO2(%) 0.03
N2 (%) 78.05
其它气体(%) 0.98
土壤空气 18.0~20.03 0.15~0.65 78.8~80.24
0.98
1、土壤空气中O2的含量低于大气,而CO2含量高于大气。 2、土壤空气中的水汽含量高于大气。 3、土壤空气中又是含有少量还原性气体。
土壤水分、空气和热量
1.3土壤热量状况
土壤水分、空气和热量
1.3土壤热量状况
图6-5 干燥土壤热传导示意图
图6-6 湿润土壤热传导示意图
园林植物生长与环境

土壤学5→15

土壤学5→15

⼟壤学5→15第五章⼟壤⽔Soil Water第⼀节⼟壤⽔分类型的划分及⼟壤含⽔量的测定Classification and measurement of soil water⼀、⼟壤含⽔量的表⽰⽅法重量含⽔量(Gravimetric Moisture Content) :⼟壤⽔的重量占⼟壤⼲重的百分数。

⼟壤重量含⽔量( %) =(⼟壤⽔重量/ ⼟壤烘⼲重量)X 100(%)=(湿⼟重量—⼲⼟重量” ⼟样烘⼲重量X 100例题:有⼀⼟样湿⼟重140 g,烘⼲重为100 g,求该⼟壤的重量含⽔量(试算)0 m = (140-100)/100 X 100 = 40 %容积含⽔量Volumetric Moisture Content 单位⼟壤总容积中⽔分所占的容积分数。

⼟壤⽔容积含⽔量% =(⼟壤⽔容积/⼟壤总容积)X 100 例题:已知⼀⼟壤的重量含⽔量为20 % ,容重为g/cm-3 , 求该⼟壤的容积含⽔量(试算)0 v = 20 X / 1 = 25 %⼟壤相对含⽔量 ( relative water content ):⼟壤含⽔量占某参照持⽔量的百分数。

⼟壤相对含⽔量=(⼟壤含⽔量/⽥间持⽔量)X 100⼟壤⽔储量( Soil water storage capacity ) :⼀定⾯积和厚度⼟壤中含⽔的绝对数量。

( 1 )⽔深( waterdepthDw ) DwDw =0 v * hh――⼟层厚度优点:与⽓象资料和作物耗⽔量所⽤的⽔分表⽰⽅法⼀致,便于互相⽐较和互相换算。

容积含⽔量换算成⽔深0 v = 50%Dw=( 2)绝对⽔体积( water volume )m3 hm-2 = 10000 ( m2 ) X h (m) X0V= 10000 Dw( Dw ―― m)= 10 Dw( Dw ―― mm)作⽤: 与灌溉⽔量的表⽰⽅法⼀致,便于计算库容和灌⽔量。

例:容重为克/⽴⽅厘⽶的⼟壤,初始含⽔量为10%,⽥间持⽔量为30%,降⾬10mm ,若全部⼊渗,可使多深⼟层达⽥间持⽔量解:先将⼟壤含⽔量⽔W%换算为⽔V%初始含⽔量⽔v%=10%< =12%⽥间持⽔量⽔v%=30%< =36%因: ⽔mm= ⽔v% <⼟层厚度( h)持⽔量的80%,需灌⽔多少(⽅/亩)解:⽥间持⽔量的80%为:30%< 80%=24%30 厘⽶⼟层含⽔达⽥间持⽔量80%时⽔mm=灌⽔量为2/3 < 36=24(⽅/亩)(⼀)⼟壤⽔分类型划分1 、⽔在⼟壤中受到的作⽤⼒重⼒表⾯张⼒——⽑管⼒⼟粒和⼟粒间的粘结⼒和粘着⼒——分⼦引⼒⼤⽓⼆、⼟壤⽔的类型划分及有效性Classification and Availability of soil Water( 1 )重⼒⽔(Gravitational Water) :能在重⼒作⽤下流动的⽔。

土壤学第五章

土壤学第五章

(一ห้องสมุดไป่ตู้、定量测定方法 1、烘干法(标准法) 2、中子仪法 3、时域反射仪(Time Domain Reflectometry TDR)
中子仪测定土壤水分
(二) 土壤水分的定性测定方法
干:不凉手。砂土成自由单粒。壤土和粘 土起灰尘,或成自由的硬块。 潮:手摸有凉感。砂土略有粘结性,壤土 和粘土散成软的团粒。 润:手摸感觉很凉,加水不变色。砂土有 粘结性,壤土和粘土有可塑性。 湿(湿土):在手上留水痕。 透湿:水从土中流出来。
2、土壤水分特征曲线意义:
第一,不同质地土壤达到萎蔫系数和田间 持水量时,但土壤水吸力相似。达到萎 蔫系数时,土壤水吸力为15atm或15bar, pF为4.2;达到田间持水量时,土壤水 吸力为0.3atm或0.3bar;pF为2.8。 第二,不同质地土壤含水量相同时,其吸 水力相差很大。对植物的有效性不同。
第二节 土壤水分含量的表示方法
一、土壤绝对含水量 1、重量百分数: 土壤水分重量占烘干土的百分率。 意义:每百克干土中,所含的水的质量数。
一、土壤绝对含水量
2、土壤容积含水量 (1)单位容积土壤中水所占的容积。 注意:计算的基础是土壤的总容积。 (2)与质量百分数的关系 土壤容积含水量%=土壤重量含水量*容重 (3)意义: 可反映土壤孔隙的充水程度,可计算土壤 的固、液、气相的三相比。
第五章 土壤水、空气和热量
主要教学目标: 1、了解土壤水对园林植物生长的意义; 2、土壤水如何存在于土壤中。 3、如何表示土壤水分含量的高低; 4、如何了解能够被植物吸收利用的水量; 5、怎么测定土壤的水分。 6 、园林土壤的通气性如何?如何影响植物的 生长,如何调节城市土壤的通气性性能。
主要内容
第四节 土壤水分的调节 4、土壤的物理性质:土壤质地、土壤结 构、土壤松紧度、有机质含量都对土壤 水分的入渗、流动、保持、排除以及蒸 发等,产生重要的影响。在一定程度程 度上,决定着土壤的水分状况。与气候 因素相比,土壤物理性质是比较容易改 变的而且是行之有效的。 5、人为影响:主要是通过灌溉、排水等 措施,调节土壤的水分含量。

第四章土壤水空气热量

第四章土壤水空气热量

凋 萎 系 数
最 大 分 子 持 水 量
毛 管 断 裂 含 水 量
田 间 持 水 量
毛 管 持 水 量
饱 和 持 水 量
吸湿水 膜状水
毛管悬着水 毛管上升水
重力水
无效水
有效水
多余水 (旱地)
图3-4 土壤保持水分能量、水分常数与水分有效性的关系
表3-3 土壤质地与有效水最大含量的关系
土壤质地 砂土 砂壤土 轻壤土 中壤土 重壤土 粘土
密度1.2-2.4,冰点是-78 ℃ ,105℃可烘出来。
影响因素:质地、气温、相对湿度。
对植物无效!
土粒
土粒
吸湿水层 膜状水层
吸湿水示意图
土壤质地愈粘重,吸湿系数愈大。
土壤 质地
紫色土 粘土
黄壤 重壤 4.11
潮土 中壤 2.52
砂土 砂土 0.8
吸湿系数 7.53 (%)
有 吸 风干土 湿无 水 烘干土
毛管水的类型
1)悬着毛管水(capillary suspending water) :在地
形部位高,地下水位深的地方,降雨或灌水后,借毛管力保持 的水分,与地下水无直接联系,同下面的干土层有明显的湿润 线分界,好象悬着在上层土壤毛管孔隙中的水。 *田间持水量(field water capacity) :土壤毛管悬着水达 到最多时土壤含水量。 *毛管断裂含水量(capillary disrupting moisture) 当土壤含水量降低到一定程度时,较粗毛管中悬着水的连续状 态出现断裂,蒸发速率明显降低,此时土壤含水量称为毛管断 裂含水量。大约相当于该土壤田间持水量的75%左右。
膜状水示意图
根毛土粒土粒土粒rd D土粒
膜状水移动示意图

土壤水、空气和热量

土壤水、空气和热量

curve)(P68-69自学)
第三节 土壤空气
一、土壤空气组成
土壤空气与大气组成含量的差异
气体 O2(%)
20.94
18.0~20.03
CO2(%)
0.03
0.15~0.65
N2(%)
78.05
78.8~80.24
其它气体(%)
0.98
0.98
近地表大气
土壤空气
土壤空气与近地表大气组成,主要差别: (1)土壤空气中的CO2含量高于大气; (2)土壤空气中的O2含量低于大气; (3)土壤空气中水汽含量一般高于大气; (4)土壤空气中含有较多的还原性气体。
毛管上升水达最大量时的土壤含水量。
毛管上升水受地下水压影响,通常大于田间持水
量。毛管持水量是计算土壤毛管孔隙度的依据。
毛管孔度=毛管持水量 ×容重
通气孔度=总孔度-非活性孔度-毛管孔度
(三)土壤水的有效性(availability)
土壤水的有效性是指土壤水能否被植物吸收利用 及其难易程度。不能被植物吸收利用的水称为无效水 (unavailable water),能被植物吸收利用的水称为有 效水(available water)。有效水的范围是凋萎系数至 田间持水量间的差值,即凋萎系数是土壤有效水的下 限。
二、土壤空气的运动
(一)土壤空气的对流(convection)
指土壤与大气间由总压力梯度推动的气体整体流动,也 称质流。对流由高压区流向低压区。
影响土壤空气对流的因素
(1)气压变化:大气压上升,一部分空气进入土壤孔隙,
大气压下降,土壤空气膨胀,一部分土壤空气进入大气。
(2)温度变化:土壤温度高于大气温度时,土壤中的空气
由重力作用产生的水势。如果土壤水在参照面之 上,则重力势为正,反之,重力势为负。 5、总水势(Ψt)

土壤水分平衡、土壤空气的运动、土壤热量与土壤热性质

土壤水分平衡、土壤空气的运动、土壤热量与土壤热性质

其土壤含水量的变化应等于其来水水增加,负值表示减少。

田间土壤水分收支示意图P 下渗水 D 降水灌溉 I上行水 U根据田间土壤水分示意图,可列出土壤水分平衡的数学表达式:P+l+U=E+T+R+In+D+△W式中:△W 表示计算时段末与时段初土体储水量之差(mm);公式中左侧为水分进入量;而右侧则为水分支出量。

当△W 为零时,说明,土层中水分无增无减,即收支平衡。

植物冠层截流 ln蒸腾、蒸发ET 径流损失 R动,并不断地与大气进行交换。

如果土壤空气和大气不进行交换,土壤空气中的氧气可能会在12~40h消耗殆尽。

土壤空气运动的方式有两种:对流和扩散。

(一)对流定义:是指土壤与大气间由总压力梯度推动的气体的整体流动,也称为质流。

土壤与大气间的对流总是由高压区流向低压区。

低压对流方向:高压总压力梯度的产生:气压变化、温度梯度、表面风力、降雨或灌溉、翻耕。

土壤空气对流方程式:q v = -(k /η) ▽pq v—空气的容积对流量(单位时间通过单位横截面积的空气容积);k —通气孔隙透气率;η —土壤空气的粘度;▽p —土壤空气压力的三维梯度。

空气对流量随着土壤透气率和气压梯度的增大而增大。

(二)扩散定义:在大气和土壤之间CO2和O2浓度的不同形成分压梯度,驱使土壤从大气中吸收O2,同时排出CO2的气体扩散作用,称为土壤呼吸。

是土壤与大气交换的主要机制。

扩散过程气相扩散液相扩散通过充气孔隙扩散保持着大气和土壤间的气体交流作用通过不同厚度水膜的扩散(二)扩散这两种扩散过程都可以用费克(Fick)定律表示:qd = - Ddc/dxqd — 扩散通量(单位时间通过单位面积扩散的质量);“-”— 表示方向D — 在该介质中扩散系数(其量纲为面积/时间);dc/dx — 浓度梯度对于气体来说,其浓度梯度常用分压梯度表示:qd = - (D/B) (dp/dx )B — 偏压与浓度的比扩散系数D值的大小取决于土壤性质,通气孔隙状况及其影响因素(质地、结构、松紧程度、土壤含水量等)(一)土壤热量来源太阳辐射能:土壤热量的最根本来源。

第五章 土壤水、热、气、肥及其相互关系土壤学课件

第五章   土壤水、热、气、肥及其相互关系土壤学课件
<2>.膜状水受固相引力的吸附较弱,一般为 6.25~31个大气压,在土壤中可极缓慢的移 动,(0.2~0.4mm/时 )。
由于速度太慢,远远不能满足植物对水分的需 求,所以仍归为束缚水.并且部分可被植物吸收 利用,另一部分成为无效水.
<3>.膜状水达到最高含量时,称为土壤的最大分 子持水量,其值大小也说明土壤潜在的保持无效 水份的能力.
水: 土温高, 毛管水的运动速度加快, 土壤供水力提
高. 气: 土温高, 水分蒸发加快, 土壤通气性增强, 土体
内氧气含量提高. 肥: 土温高, 微生物活性提高, 有机质分解加快, 有
效养分增多.
5. 土壤温度的农业调节:
调节目的:
a、提高土温, 控制土温在一个恰当的范 围, 以有利于提高土壤肥力, 促进农业 生产.
土壤实际辐射损失热量 == 土壤辐射 一 大气逆辐射
土壤辐射: 地面覆盖 、 地面温度 。 大气逆辐射:大气密度 、 大气温度。
2-3 土壤热容量
指单位体积的土壤, 当温度每增高或降低 土1℃时,所吸收或放出的热量.
表示 : Cv
卡/ Cm3 ·度
表达的意义:
表示土壤稳温性的强弱, 热容量大的土壤, 土温升高1度需较多的热才能升高, 稳温 性强, 反之, 稳温性弱.
2 . 土壤的热性质
土壤的热性质是指土壤对光和热的反 应特点.
包括土壤的吸热性、散热性、热容量、 及导热率.
2-1 土壤吸热性 指土壤对太阳辐射能的吸收能力. 表示方法: 吸收率 = 1 - 反射率
地表反射光强度 反射率 = —————————— ( % )
到达地表辐射强度
影响因素 : 土表颜色 颜色愈深, 吸热性愈强, 反之, 愈弱. 土壤含水量

第05章+土壤物理性质(质地和结构)

第05章+土壤物理性质(质地和结构)
作 措施 耕
生物作用
胶结作用
团粒结构形成机制
冻融交 替
水膜的粘 结作用
胶体的凝聚作用
(1)生物作用
根系的穿插作用: 根系的挤压作用: 使大土团破碎成小土团 使小土团组合为大土团
频繁反复的穿插和挤压,易形成团粒结构。
(2)土壤干湿交替作用
湿润土块在干燥过程中由于胶体失水而收缩 干燥土块因吸水而膨胀 使土体出现裂缝而碎,促进各种结构体的形成。
卡庆斯制:二级
国际制:
根据砂粒(2-0.02毫米)、粉粒(0.02-0.002毫米)和粘粒 (<0.002毫米)三粒级含量的比例,划定12个质地名称,可 从三角图上查质地名称。
查三角图的要点 以粘粒含量为主要标准, <15%者为砂土质地组和壤土质地组; 15%-25%者为粘壤组; >25%者为粘土组。 土壤含粉粒>45 --“粉 质” ; 砂粒含量在55%-85%-“砂质”
常见的土壤粒级制 卡钦斯基制 (1957) 石 砾 粗砂粒 物 理 性 砂 粒 物 理 性 粘 粒 粘 粒 粗粘粒 细粘粒 胶质粘粒 粘 粒 粘 粒 粗粉粒 粉 中粉粒 细粉粒 粒 粉 粒 细砂粒 极细砂粒 细砂粒 中砂粒 美国农部制 (1951) 石 砾 极粗砂粒 粗砂粒 中砂粒 细砂粒 粗砂粒 国际制 (1930) 石 砾
3、壤质土主要特性:

水、气:大小孔隙数量适中,通气透水性良好
• 热:含水量适宜,土温比较稳定 • 肥:养分含量多,保肥性能好 • 耕性:耕性良好,宜耕期长
砂粘适中,消除了砂土类和粘土类的缺点, 是农业生产上质地比较理想的土壤
将砂质土、壤质土、粘质土基本肥力性状比较如下:
(一)砂质土 农民称白土、白塘土,广泛分布于我国北方,它通

《土壤学》第四章 土壤水分、空气与热量状况

《土壤学》第四章  土壤水分、空气与热量状况
(四)水层厚度(水深)mm =土层厚度×水容%
(五)土壤水贮量(方/亩或吨/亩)
=2/3 ×水层厚度
(六)墒情:干墒、黄墒、灰墒、黑墒 干、 润、 潮、 湿
三、土壤水分含量的测定 • (一)烘干法:常用
1、经典烘干法 :恒温箱105-110 ºC烘干称重计算
2、快速烘干法 :红外线烘干法、微波炉烘干法、酒精燃 烧法、电炉法等。
(三)土壤空气对植物抗病性的影响 通气不良产生还原性气体H2S、CH4、
H2、NO等会严重危害作物生长,CO2 过多致使土壤酸度增高,致使霉菌发育, 植株生病
氧扩散率(ODR与不同植物状况之间关系)
植物
茎叶菜 莴苣 菜豆 甜菜 草莓 棉花 柑橘
土壤类型
壤土 粉砂壤土
壤土 壤土 砂壤土 粘壤土 砂壤土
一是受辐射、气温、湿度和风速等气象因素的影响; 二是受土壤含水率的大小和分布的影响
土面蒸发过程区分为三个阶段: 1、大气蒸发控制阶段 2、土壤导水快慢控制阶段
在土壤不是很湿能进入田间时,应及时锄地松土, 减少水分蒸发。 3、水汽扩散阶段
一般情况下,只要土表有1~2mm干土层就能显著降 低蒸发强度。
田间土壤水分收支示意图
总水势(Ψt) Ψt=Ψm+Ψp+Ψs+Ψg
(二)土壤水吸力
指土壤水在承受一定吸力的情况 下所处的能态,简称吸力。
与土水势的意义一致,但只是 基质吸力和溶质吸力的和。
(三)土水势的测定
• 主要有张力计法(测定基质势最 常用)
• 压力膜法 • 冰点下降法 • 水气压法等
张力计法
压力膜法
冰点下降法
中耕
3. 合理灌溉排水,及时增减土壤水分。
变漫灌、畦灌、沟灌等地面灌溉方式为波涌灌、膜 下灌等改良的灌溉方式,有条件的可采用较为先进 的滴灌、喷灌和渗灌

土壤水、空气和热量

土壤水、空气和热量

1、吸湿水
--- 干燥土粒通过分子引力和静电引力的作用,从 空气中吸持汽态水,使之在土粒表面形成一或 数分子层厚的水膜,称为吸湿水。 ---没有溶解溶质的能力,不能呈液态自由移动, 只有加热到105-110°C时,才呈气态扩散。不能 被植物吸收利用。 ---质地粘重、有机质含量高的土壤,吸湿水含量 高。 ---土壤空气湿度达到近100%时,土壤时湿水达到 最大量。此时的含水量称为吸湿系数。
(1)水深(Dw) 指在一定厚度(h)和一定面积土壤中所含水量相当于 同面积水层的厚度。 Dw= θv.h
单位可以用cm或mm,
(2)绝对水体积(容量)
指一定面积一定厚度土壤所含水量的体积,量纲为 L3 。 V方/公顷,
V方/亩
第二节、土壤水的能态
一、土水势
与自然界其它物体一样,土壤水具有不同数量和形 式的能量。
(1)毛管悬着水
降雨或灌溉以后,由于毛管力的作用而保留在土壤 上层的水分,称为毛管悬着水。 毛管悬着水达到最大量时的含水量,称为田间持水 量。 田间持水量是旱地土壤有效水的上限。
(2)毛管上升水
地下水随毛管孔隙上升而被毛管力保持在土壤中的 水份,称为毛管上升水。 当地下水位适当时,毛管上升水是作物所需水份的 重要来源。 毛管上升水达到最大量时的土壤含水量,称为毛管 持水量。
土壤水分特征曲线示意图
不同土壤的水分特征曲线 (低吸力脱湿过程)
五、土壤水分的有效性
土壤水分的有效性指土壤水是否能被植物利用及其 被利用的难易程度。 传统的水分形态学观点认为:旱地土壤水分有效性 的上限是田间持水量,下限是凋萎系数。
土壤水分能量观点认为:土壤水分有效性是一个与大 气条件紧密相连的问题,应该从土壤-植物-大气这个动 态系统来阐明土壤水分的有效性。 只要根系吸收水分的速率能平衡蒸腾损耗水分的速率, 植物就能正常生长,土壤水分就是有效的。 一旦根系吸水速率低于蒸腾速率,植物就失水,并且 迅速凋萎。此时土壤水分就是无效的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章
全球水分循环示意图 (据Botkin DB, 1998)
全球土壤水分状况季节性变化图
第一章
土壤水分类型
固态水
气态水
化合水
化学束缚水
土 壤
结晶水
束缚水 物理束缚水 吸湿水

膜状水

自由水
毛管水 重力水
毛管上升水 毛管悬着水 自由重力水 支持重力水
第一章
固态水
只有当土壤温度到0℃以下,土壤水发 生冻结时才能形成固态水,它不能为植 物所吸收利用;
第一章
➢ 膜状水:被吸附在吸湿水膜外层的水分叫膜状 水。膜状水的形成是在土粒表面形成吸湿水层 以后,尚有剩余的分子引力,吸附动能较小的 液态水分子,当膜状水达到最大数量时的含水 量,称为最大分子持水量;
➢ 凋萎系数:植物无法从土壤中吸收水分而呈现 永久凋萎,此时的土壤含水量就称为凋萎系数。
第一章
自由水
自由水:土壤中不被土粒牢固保持而能够自 由移动的液态水,即超过最大分子持水量时 的水分,这种水能够被植物利用,并参与土 壤中的各种物理化学作用。自由水可以分为 毛管水和重力水两种。
毛管水:土壤中被毛管力吸附存在于土粒之 间所形成的毛细管孔隙中的水分。毛管水是 土壤中最宝贵的水分:具有溶解力,在毛管 水中溶解有各种营养物质;又由于毛管力的 作用,毛管水能较长久的存在于土壤中,为 植物有效水分的基本来源。
土壤温度状况(soil temperature regime) 土壤空气(soil air)
第一章
2.3 土壤水分、空气
土壤颗粒之间、团聚体之间、颗粒与团聚体之间 存在大小不定的孔隙,它们是土壤水分、空气的 通道和储存库。
土壤孔隙 水分、空气
第一章
土壤水分、空气
第一章
土壤水分
土壤水分是土壤的主要组成部分; 是植物生活不可缺少的生存因子; 与可溶性盐构成土壤溶液,成为植物供应养分
第一章
毛管水的出现是一种普遍的毛管现象,毛管现 象由于两种力而产生:
水的表面张力(常显示在液体—空气界处, 由于水分子彼此之间的吸引力大于水分子与 界面上空气分子之间的吸引力,形成一个表 面向内的力)
水分移动时,它与所通过的管壁固体之间的 吸引力。
第一章
土壤孔隙直径大于8mm时,没有毛管现象,孔隙 由8mm向0.1mm过度时,毛管现象逐渐显现出来, 在0.1mm~0.01mm孔隙范围内,毛管作用最明显, 而孔隙小于0.001mm,则孔隙为膜状水所充满不 起毛管作用,称为无效孔隙。
第一章
毛管水依其存在状态可分毛管悬着水和 毛管上升水
毛管悬着水:当降雨或灌溉水进入土壤,在压 力作用下向下渗透,结果一部分流入下层,另 一部分靠毛管力的作用被保持在毛管孔隙中, 叫毛管悬着水;毛管悬着水达到最大时的土壤 含水量称为田间持水量
毛管上升水:地下水沿毛管上升而充满毛管孔 隙中的水分。当土壤毛管上升水到最大数量时 含水量,称毛管持水量。
来。如石膏,芒硝分别在60-65℃与20-25℃的较 低温度下就可被分离出来。
第一章
➢ 物理束缚水:主要是被土壤固体颗粒表面的分 子引力所保持着的水分,依其来源和受束缚力 的大小可分为吸湿水和膜状水。
➢ 吸湿水:即土壤固体颗粒依据其表面分子引力 吸持在颗粒表面的汽态水。
➢ 土壤吸湿水量大小,主要决定于土粒的表面积 大小和相对湿度的高低。土壤质地愈细,比表 面积愈大,吸湿愈强,所以土壤质地粘重,土 壤的吸湿水量就愈高,空气中相对湿度愈大, 吸湿量愈大,土壤保持吸湿水达到的最大量称 为吸湿系数。
土壤水分平衡的数学表达式为:
ΔW = P + I + U - E - T - R - In - D
式中: ΔW表示计算时段末与时段初土体储水量 之差(mm);P表示计算时段内降水量 (mm);I表示计算时段内灌水量(mm);U 表示计算时段内上行水总量(mm);E表示计 算时段内土面蒸发量(mm);T表示计算时段 内植物叶面蒸腾量(mm);R表示计算时段内 地面径流损失量(mm);In表示计算时段内植 物冠层截留量(mm);D表示计算时段内下渗 水量(mm)。
束缚水。束缚水可分为化学束缚水和物理束缚水;
化学束缚水:参与矿物结晶晶格组成,成为土壤矿
物化学组成的部分。依其与矿物结合的情形(牢固 程度),又可再分为化合水和结晶水;
化合水在矿物的结晶格的结合不太牢固,即较低温度下可被分离出
中纬度地区,冬季寒冷,具有季节性固 态水,高纬、高山的永冻土区,水分终 年固态。
第一章
气态水
➢气体状态存在的水分,即水汽。这种水存在于土 壤孔隙之中,也是土壤空气成分之一。气态水的 多少,随土壤的湿度和温度的变化而变化,且不 能被植物所利用。
第一章
束缚水
土壤中被固体颗粒束缚着的不能自由移动的水称为
第一章
重力水
当毛管水达到最大持水量后,若再有水分补给时, 则存在于大孔隙(>8mm)中的水因重力作用下移成 为重力水。重力水的下移主要是在非毛管的大孔 隙及土壤中的裂隙、根孔、动物洞穴中进行;
55%
30% 5%
10%
植被截留 地表径流 地表蒸发 渗入土壤
第一章
土壤水分消耗
土壤水分的消耗主要有土壤蒸发、植物吸收和 蒸腾、水分渗漏和径流损失,其中地面蒸发和 水分渗漏最为重要;
土壤水分的收入与消耗导致的土壤含水量变化 状况即为土壤的水量平衡。
第一章
田间土壤水分平衡
第一章
田间土壤水分平衡
第一章 土壤剖析
第二节 土壤组成 2.3 土壤水分与空气
第一章
教学重点
1. 掌握土壤流体物质组成及其主要诊断特性 2. 理解土壤水类型、土水势及土壤水分状况 3. 了解土壤空气及其运动、土壤热量状况
第一章
关键词
土壤水分(soil water content ) 土壤水势(soil water potential) 土壤水分状况(soil water regime)
的介质; 影响土壤中物质能量的迁移转化过程; 影响土壤形成发育的方向和性质。
第一章
土壤水分
植物从土壤中吸取的水量十分巨大,就多 数农作物而言,每生产一斤干粒实和基杆,要 消耗一百甚至几百斤以上的水。这样大的需水 量,就要求土壤具有不断供给和保存适量水分 的能力
第一章
土壤水分来源
土壤水分主要来源大气降水、灌溉水和地下水。
相关文档
最新文档