费马定理

合集下载

费马大定理公式

费马大定理公式

储备公式1.费马大定理(Fermat Last Theore m ):当2n >时,nnnx y z +=无0xyz ≠的整数解; 当3n =时,333x y z +=无0xyz ≠的整数解; 当4n =时,444x y z +=无0xyz ≠的整数解; 当5n =时,555x y z +=无0xyz ≠的整数解; 当7n =时,777x y z +=无0xyz ≠的整数解;(2)n n n x y z n +=>2.商高方程222x y z +=满足(,)(,)(,)1x y y z z x ===,,x y 奇偶性不同的全体本原解为:22222;;x pq y p q z p q ==-=+其中,p q 满足下面的条件: 0;(,)1;,p q p q p q >>=奇偶性不同3.Fermat 无穷递降法4.4n =时,Fermat 大定理证明过程当4n =时,444x y z +=无0xyz ≠的整数解;原理:无穷递降法和毕达哥拉斯三元数组证明:用反证法。

若有正整数解,那么在所有正整数解中,必有一组解 假如存在,,x y z 满足444x y z +=,且满足(,)(,)(,)1x y y z z x === 初等数论(P99)定理4:不定方程:442x y z +=无0xyz ≠的解。

证:用反证法。

假若方程有正整数解,那么在全体正整数解中,必有一组解000,,x y z ,使得0z 取得最小值。

我们要找出一组正整数解111,,x y z ,满足10z z <,得出矛盾。

(1)必有00(,)1x y =。

若不然,就有素数00|,|p x p y 。

由此及式442x y z +=推出42200|,|p z p z 。

因此,2000000,,x p y p z p 也是方程的正整数解,这和0z 的最小性矛盾。

因此,22000,,x y z 是方程的本原解,00,x y 必为一奇一偶,不妨设02|y ,以及00(,)1z y =(2)2210000(,)1g z y z y =-+=。

费马大定理数学方法

费马大定理数学方法

费马大定理数学方法费马大定理是数学中最具有名气的定理之一,它是指将整数n表示为两个平方数之和,即n=x^2+y^2,当且仅当n的所有形如4k+3的质因子的指数都是偶数。

在更广泛的背景下,费马大定理是一个在数论相关领域中具有重要意义的定理。

它的证明过程涉及到许多著名的数学方法,下面我们就来介绍一下这些方法。

1.质因数分解费马大定理证明的第一步是进行质因数分解。

出于简化的考虑,我们可以考虑证明针对质数的费马大定理,即p=x^2+y^2需要满足条件2k。

我们可以将这个问题转化成:当p=x^2+y^2时,x和y是否是p的二次剩余。

在费马定理中,我们可以用模p的剩余系来表示x和y的取值,即x=a mod p,y=b mod p。

2.勒让德符号勒让德符号可以描述一个数对模p的剩余系中是一个二次剩余还是一个非二次剩余。

具体来说,它的定义如下:当a是p的二次剩余时,第二个条件成立,此时勒让德符号等于1;当a不是p的二次剩余时,第一个条件成立,此时勒让德符号等于-1。

3.欧拉实体和欧拉定理欧拉实体是指对于两个整数a和n,如果它们互质(gcd(a,n)=1),则a^φ(n)=1(mod n),其中φ(n)表示小于等于n且与n互质的数的个数。

欧拉定理是由欧拉实体通过费马小定理所导出的,具体表述如下:如果a和n互质,且n是素数,则a^(n-1)=1(mod n)。

在费马大定理的证明中,欧拉实体和欧拉定理都是重要的工具。

4.高斯和平方剩余定理高斯是通过他的研究工作,最终将二次剩余问题归结为某类特殊整数模意义下的情况。

一般而言,对给定模数p,高斯定义如下:高斯提出的平方剩余定理的表示形式如下:其中p是质数,a是模p的剩余系中的元素。

5.狄利克雷和现代类域论方法费马大定理的证明经历了许多历史性的步骤,先后使用了代数学、几何学和解析结构的方法。

狄利克雷是费马大定理证明中使用的最著名的数论家之一,他为证明费马大定理建立了一套关于无限集合的理论框架,这个理论框架成为现代类域论。

世界数学难题——费马大定理

世界数学难题——费马大定理

世界数学难题——费马大定理费马大定理简介:当整数n > 2时,关于x, y, z的不定方程x^n + y^n = z^n.((x , y) = (x , z) = (y , z) = 1[n是一个奇素数]x>0,y>0,z>0)无整数解。

这个定理,本来又称费马最后定理,由17世纪法国数学家费马提出,而当时人们称之为“定理”,并不是真的相信费马已经证明了它。

虽然费马宣称他已找到一个绝妙证明,但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁•怀尔斯和他的学生理查•泰勒于1995年成功证明。

证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。

而安德鲁•怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。

[编辑本段]理论发展1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。

关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。

”(拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。

数学家们的有关工作丰富了数论的内容,推动了数论的发展。

对很多不同的n,费马定理早被证明了。

但数学家对一般情况在首二百年内仍一筹莫展。

1908年,德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。

费马 大小定理

费马 大小定理

费马小定理(Fermat Theory)是数论中的一个重要定理,其内容为:假如p是质数,且(a,p)=1,那么 a(p-1)≡1(mod p)。

即:假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p的余数恒等于1。

费马大定理,又被称为“费马最后的定理”,由法国数学家费马提出。

它断言当整数n >2时,关于x, y, z的方程 x^n + y^n = z^n 没有正整数解。

被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1995年被英国数学家安德鲁·怀尔斯证明。

德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。

在一战之后,马克大幅贬值,该定理的魅力也大大地下降。

费马定理-

费马定理-

费马定理费马定理是一种数学结论,它是由法国数学家费马在17世纪提出的。

这个定理的内容是:对于任何大于2的正整数n和整数a,方程x^n+y^n=z^n+ a 没有正整数解。

虽然这个结论是相当简单的,但它曾经困扰了数学家们几个世纪之久,直到20世纪才有完整的证明。

费马定理是众所周知的,以至于许多人认为他真的证明了它。

实际上,费马没有给出任何证明。

他仅仅在自己的笔记中写下了这个结论,并附上了一个注释,声称他已经找到了一个非常漂亮的证明,但是无法将它容纳在笔记中。

这个注释使得许多数学家尝试证明这个结论,但是很快就被发现了一个难题,那就是证明了费马定理对于很多其他问题没有太大的用处。

因此,很少有人真的对这个问题进行了认真的研究,一直到20世纪。

在20世纪初期,一些数学家开始通过研究这个问题来发现更多的数学知识。

其中最出色的是比利时数学家André Weil和法国数学家Pierre de Fermat. 他们开始研究高维数学问题(即n>2),寻找一种方法来证明费马定理。

在这个过程中,Weil用了一种叫做代数几何的方法,而Fermat则使用了数学分析的思维方式。

最终,Fermat定理的证明由英国数学家安德鲁·怀尔斯(Andrew Wiles)在1994年提出。

这个证明是一个巨大的成就,因为它不仅证明了费马定理,而且还利用了许多其他数学领域的想法来完成。

例如,该证明使用了代数几何、概率论、数学分析和拓扑学等多个领域的知识。

这个证明不仅真正解决了费马定理,而且创造了一种新的数学分支——所谓的整体代数几何。

总之,费马定理是一项具有重大意义的数学成果。

它的意义远远超过了证明它本身;它也是一种具有启示性的方法,在解决其他数学问题上也可能具有指导意义。

虽然费马定理的证明花费了许多年时间和精力,但它最终证明了数学是一种美妙的创造力,它可以产生出无穷的美丽和价值。

费马小定理讲解

费马小定理讲解

费马小定理讲解费马小定理是数论中的一条重要定理,它由法国数学家费尔马在17世纪提出,并由欧拉进行证明。

这个定理的内容是关于模运算的性质,它可以在很多数论问题中发挥重要作用。

费马小定理的表述是:如果p是一个质数,a是任意整数,且a不是p的倍数,那么a的p-1次方与p相除的余数等于1。

换句话说,a的p-1次方模p的余数等于1。

例如,我们可以取p=7,a=3,根据费马小定理,3的6次方模7的余数等于1。

我们可以计算一下,3的6次方等于729,而729除以7的余数确实是1。

费马小定理有许多重要的应用。

首先,它可以用来判断一个数是否是质数。

如果对于给定的数n,对于所有不是n的倍数的a,a的n-1次方模n的余数都等于1,那么我们可以认为n是一个质数。

因为如果n是合数,那么一定存在一个不是n的倍数的a,使得a的n-1次方模n的余数不等于1。

费马小定理可以用来求解模方程。

例如,我们可以考虑求解x的2次方模p的余数等于a的问题。

根据费马小定理,我们知道x的p-1次方模p的余数等于1,所以x的2次方模p的余数等于a,可以转化成求解x的p-1次方模p的余数等于a的问题。

费马小定理还可以用来简化大数的幂运算。

例如,我们可以考虑计算2的100次方模7的余数。

根据费马小定理,2的6次方模7的余数等于1,所以2的100次方模7的余数等于2的(6*16+4)次方模7的余数,即2的4次方模7的余数,等于16。

费马小定理的证明较为复杂,这里就不展开了。

但是可以看出,费马小定理在数论中具有重要的地位,它为我们解决很多问题提供了有力的工具。

无论是在判断质数还是在求解模方程,费马小定理都能发挥重要的作用。

因此,我们在学习数论的过程中,不可忽视费马小定理的重要性。

费马大定理全章知识点归纳总结

费马大定理全章知识点归纳总结

费马大定理全章知识点归纳总结费马大定理,又称费马最后定理,是世界数学史上的一个重要问题。

本文将对费马大定理的全章知识点进行归纳总结。

问题背景费马大定理最早由法国数学家费尔马在17世纪提出,其表述是:对于大于2的整数n,不存在满足a^n+b^n=c^n的整数解,其中a、b、c是大于0的整数。

这个问题成为数学界的一个谜题,持续困扰着数学家们几个世纪。

重要概念在了解费马大定理前,我们需要了解一些相关的重要概念。

1. 整数:整数是数学中的基本概念,包括正整数、负整数和零。

2. 指数:指数是数学中表示乘方运算的数字。

在费马大定理中,指数n大于2。

3. 不可约整数:一个整数如果不能写成两个较小整数的乘积形式,就称为不可约整数。

不可约整数在证明费马大定理时经常用到。

知识点归纳1. 费马最小定理:费马最小定理是费马大定理的一个特例。

该定理表明,如果p是一个素数,a是任意一个整数,且a不是p的倍数,那么a^(p-1) ≡ 1 (mod p)。

这个定理在证明费马大定理时具有重要作用。

2. 模运算:模运算是指对一个整数进行除法操作,取其余数的运算。

在费马大定理的证明中,模运算经常用到。

3. 费马大定理证明的历程:费马大定理的证明历程非常复杂,涉及到许多数论、代数和几何等数学领域。

目前最为著名的证明是英国数学家安德鲁·怀尔斯证明,他借助现代代数学和模形式理论的工具成功解决了费马大定理。

4. 应用和影响:费马大定理的解决对数学领域产生了深远影响。

它促进了数论、代数和几何等数学领域的深入研究,推动了数学理论的发展。

总结费马大定理是数学史上一个具有重大影响的难题。

通过了解费马最小定理、模运算以及费马大定理的证明历程,我们可以更好地理解这一定理的重要性和影响。

费马大定理的解决不仅推动了数学理论的发展,也为数学家们提供了更多的研究方向和思路。

费马大定理—数学史上著名的定理

费马大定理—数学史上著名的定理
费马大定理
— 数学史上著名的定理
中文名: 外文名: 费马大定理 Fermat’ s Last Theorem
别 称: 表达式:
费马最后的定理 x n y n z n (n 2时, 无正整数解)
提出者: 皮耶 • 德 • 费马(法国) 提出时间: 1637年左右 证明者: 安德鲁 • 怀尔斯(英国) 证明时间: 1995年彻底证明
历史研究
莫德尔猜想
1922年,英国数学家莫德尔提出一个著名猜想,人们叫 做莫德尔猜想。按其最初形式,这个猜想是说,任一不可约、 有理系数的二元多项式,当它的 “亏格” 大于或等于 2 时,最 多只有有限个解。记这个多项式为f ( x , y ),猜想便表示:最 多存在有限对数偶 xi , yi Q ,使得 f ( xi , yi ) 0。后来,人们 把猜想扩充到定义在任意数域上的多项式,并且随着抽象 代数几何的出现,又重新用代数曲线来叙述这个猜想了。 ( n 1)( n 2) n n 而费马多项式 x y 1没有奇点,其亏格为 。 2 当 n ≥ 4 时,费马多项式满足猜想的条件。因此,如 果莫德尔猜想成立,那么费马大定理中的方程 x n y n z n 本质上最多有有限多个整数解。
历史研究
接力证明
1844年,库默尔提出了 “理想数” 概念,他证明了:对于 所有小于100的素指数 n ,费马大定理成立,此一研究告一阶 段。但对一般情况,在猜想提出的头两百年内数学家们仍对 费马大定理一筹莫展。 1847年,巴黎科学院上演戏剧性一幕,当时著名数学家 拉梅和柯西先后宣布自己基本证明费马大定理,拉梅还声称 证明引用了刘维尔复数系中的唯一因子分解定理,刘维尔 则说这一定理源自欧拉和高斯的思想。大数学家都被扯 入其中,似乎结论十分可靠。就在此时刘维尔宣读了 德国数学家库默尔的来信,明确指出证明中的复数 系的唯一因子分解定理并不普遍成立,于是拉梅 和柯西的证明都是错的。

高数费马定理

高数费马定理

高数费马定理是一条非常重要的数学定理,它被广泛应用于数学、物理、工程等领域。

本文将从费马定理的定义、应用、证明等方面进行阐述。

一、费马定理的定义费马定理是数学中的一条基本定理,它是指:对于任意给定的整数n>2,不存在正整数x、y、z,使得x^n+y^n=z^n成立。

也就是说,不能找到三个正整数使得其中两个数的n次方之和等于另一个数的n次方。

二、费马定理的应用费马定理在密码学和网络安全中有广泛的应用。

在RSA加密算法中,费马定理是其基础之一。

RSA加密算法是一种公钥加密算法,它利用了费马定理的性质,保证加密数据的安全性。

此外,费马定理还被用于破解密码,通过对密码进行暴力破解,可以验证费马定理的正确性。

三、费马定理的证明费马定理的证明是一项非常困难的数学问题,直到20世纪才由英国数学家安德鲁·怀尔斯(Andrew Wiles)给出了完整的证明。

怀尔斯的证明使用了很多高深的数学知识,包括代数几何、模形式等。

怀尔斯的证明被认为是20世纪最伟大的数学成就之一。

四、费马定理的历史费马定理最初是由法国数学家费马在16世纪提出的。

费马自称有证明,但他并没有公开发表证明。

直到300年后,数学家们才开始认真地研究费马定理,但一直没有找到合适的证明方法。

直到怀尔斯的证明,才最终解决了这个问题。

五、费马定理的启示费马定理的证明过程充分体现了数学的美妙和深奥。

费马定理的证明也告诉我们,数学是需要不断探索和创新的领域,需要不断地学习和思考。

同时,费马定理也启示我们,有时候一个看似简单的问题,背后可能隐藏着极为复杂的数学知识和技巧。

综上所述,费马定理是一条非常重要的数学定理,它在密码学、网络安全等领域有广泛的应用。

虽然费马定理的证明非常困难,但它的证明过程充分体现了数学的美妙和深奥,也启示我们要不断探索和创新。

费马大定理

费马大定理

费马大定理(Fermat's last theorem)现代表述为:当n>2时,方程xn+yn=zn没有正整数解。

费马大定理的提出涉及到两位相隔1400年的数学家,一位是古希腊的丢番图,一位是法国的费马。

丢番图活动于公元250年左右,他以著作《算术》闻名于世,不定方程研究是他的主要成就之一。

他求解了他这样表述的不定方程(《算术》第2卷第8题):将一个已知的平方数分为两个平方数。

(1)现在人们常把这一表述视为求出不定方程x2+y2=z2 (2)的正整数解。

因而,现在一般地,对于整系数的不定方程,如果只要求整数解,就把这类方程称为丢番图方程。

有时把不定方程称为丢番图方程。

关于二次不定方程(1)的求解问题解决后,一个自然的想法是问未知数指数增大时会怎么样。

费马提出了这一数学问题。

费马生前很少发表作品,一些数学成果常写在他给朋友的信中,有的见解就写在所读的书页的空白处。

他去世后,才由后人收集整理出版。

1637年前后,费马在读巴歇校订注释的丢番图的《算术》第2卷第8题,即前引表述(1)时,在书的空白处写道:“另一方面,将一个立方数分成两个立方数,一个四次幂分为两个四次幂,或者一般地将一个高于二次的幂分为两个同次的幂,这是不可能的。

关于此,我已发现一种美妙的证法,可惜这里空白的地方太小,写不下。

” (3)费马去世后,人们在整理他的遗物时发现了这一段话,却没有找到证明,这更引起了数学界的兴趣。

后来,表述(3)被理解为:当整数n>2时,方程xn+yn=zn (4)没有正整数解。

欧拉、勒让德、高斯等大数学家都试证过这一命题,但都没有证明出来,问题表述的简单和证明的困难,吸引了更多的人投入证明工作。

这一命题就被称为费马猜想,又叫做费马问题,但更多地被叫做“费马最后定理”,在我国,则一般称之为费马大定理。

“费马最后定理”的来历可能是:费马一生提出过许多数论命题,后来经过数学界的不懈努力,到1840年前后,除了一个被反驳以外,大多数都被证明,只剩下这个费马猜想没有被证明,因此称之为“最后定理”。

费马最终定理

费马最终定理

费马最终定理费马最终定理是数学界最为著名的问题之一,它是由17世纪法国数学家费马所提出的一道数学难题。

费马最终定理的核心内容是:对于任意大于2的正整数n,不存在正整数x、y、z,使得x^n+y^n=z^n 成立。

这个问题在数学界中被称为费马大定理,或费马最后定理,是数学史上最长的一道未解决问题之一。

费马最终定理的历史可以追溯到17世纪,当时费马提出了这个问题,并在自己的笔记中写下了他的证明,但他却没有公开发表这个证明。

随后,这个问题成为了数学史上最为著名的未解决问题之一,许多数学家都试图证明这个问题,但一直没有成功。

直到20世纪,英国数学家安德鲁·怀尔斯发表了一篇论文,他在论文中提出了一种新的证明方法。

这种方法被称为“椭圆曲线方法”,它利用了椭圆曲线的一些性质来证明费马最终定理。

怀尔斯的证明方法受到了广泛的赞誉,但是它仍然存在一些问题,因为这个问题的证明涉及到了很多高级数学知识和技能。

随后,许多数学家都尝试使用怀尔斯的方法来证明费马最终定理,其中最为著名的是法国数学家皮埃尔·德费尔马特。

德费尔马特使用了一种新的技术来证明这个问题,他将费马最终定理与另一个问题联系在了一起,这个问题被称为“塔特定理”。

通过将这两个问题联系在一起,德费尔马特最终成功地证明了费马最终定理,这个问题被解决了近四百年。

费马最终定理的证明过程非常复杂,它需要运用到很多高级数学知识和技能。

但是,这个问题的解决对于数学界来说具有非常重要的意义。

它证明了数学是一门无限深奥的学科,它的发展需要数学家们不断地探索和创新。

同时,费马最终定理的解决也对其他学科的发展产生了很大的影响,例如密码学、计算机科学等。

除了数学家之外,费马最终定理的解决也对普通人产生了很大的启示。

它告诉我们,无论面对多么困难的问题,我们都应该坚持不懈地去探索和寻找答案。

同时,它也告诉我们,只要我们付出足够的努力和时间,我们就有可能解决看似无解的难题。

关于费马大定理

关于费马大定理

关于费马大定理费马在数论方面的有几个猜想,除了他关于素数的猜想,费马大定理是费马的所有猜想中最困难、最有影响的一个,从1637年提出直到1994年有怀尔斯(A.Wiles )解决,整整经历了357年,费马大定理的证明是20世纪诸多重大数学成就之一。

1. 什么是费马大定理?费马大定理又称费马最后一个定理(Fermat ’ Last Theorem ),简记成FLT ,据说是由于到19世纪初期,除了这个定理以外,费马的所有其他猜想均以被解决而得名。

1637年费马在阅读古希腊数学家丢番图著的《算术》的拉丁文译本中第二卷第八个命题:“把一个平方数写成两个平方数之和”时,在书的填白处写道:“相反,不能把一个立方数写成两个立方数之和,也不能把一个四次方表成两个四次方之和,一般地,每个幂次大于2的方幂数均不能表成两个同样方幂次之和,我对此已经找到了一个真正奇妙的证明,但空白的地方太小写不下。

”这就是数学史上著名的费马大定理,用现代术语可表述如下:对每个正整数3≥n ,方程n n n z y x =+均没有正整数解),,(z y x 使得0≠xyz 。

对于2=n 的情况,早在三千多年前,即公元前1100年,我国西周的商高就提出了“勾3股4弦5”的结论,在几何上讲,这是勾股定理的特例,从代数角度看,就是方程222z y x =+有一组整数解)5,4,3(。

费马大定理一提出就立即引起了数学界的兴趣,特别是数学家们都在寻找他说的“奇妙证明”。

多数数学家对此说持怀疑态度。

至少可以说,方程n n n z y x =+对于费马并不是典型的,他所研究的绝大多数方程的指数均小于等于4。

此外,他在与朋友的通信中只叙述了3=n 的情形。

对4=n 时,他采用无穷下降(推)的技巧给出了证明。

虽然后人一直未找到他的证明细节,但对此却确信无疑,因为这可由费马的另一个定理推出。

这个定理是:“三边为整数的直角三角形的面积不能为平方数”。

而后者的证明,费马写在空白处。

费马大定理

费马大定理

奖励 德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人, 德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人, 吸引了不少人尝试并递交他们的“证明” 吸引了不少人尝试并递交他们的“证明”。在一战之后,马克大幅贬值,该定理的魅力也大大地 下降。 莫德尔猜想 1983年,联邦德国数学家伐尔廷斯证明了莫德尔猜想,从而翻开了费马大定理研究的新篇 1983年,联邦德国数学家伐尔廷斯证明了莫德尔猜想,从而翻开了费马大定理研究的新篇 章.获得1982年菲尔兹奖 章.获得1982年菲尔兹奖 伐尔廷斯于1954年 伐尔廷斯于1954年7月28日生于联邦德国的杰尔森柯琛,并在那里渡过了学生时代,而后就 28日生于联邦德国的杰尔森柯琛,并在那里渡过了学生时代,而后就 学于内斯涛德教授门下学习数学.1978年获得博士学位.他作过研究员、助教,现在是乌珀塔尔 学于内斯涛德教授门下学习数学.1978年获得博士学位.他作过研究员、助教,现在是乌珀塔尔 的教授.他在数学上的兴趣开始于交换代数,以后转向代数几何. 1922年,英国数学家莫德尔提出一个著名猜想,人们叫做莫德尔猜想.按其最初形式,这个 1922年,英国数学家莫德尔提出一个著名猜想,人们叫做莫德尔猜想.按其最初形式,这个 猜想是说,任一不可约、有理系数的二元多项式,当它的“亏格”大于或等于2 猜想是说,任一不可约、有理系数的二元多项式,当它的“亏格”大于或等于2时,最多只有有 限个解.记这个多项式为f(x,y),猜想便表示:最多存在有限对数偶xi,yi∈Q,使得f(xi, 限个解.记这个多项式为f(x,y),猜想便表示:最多存在有限对数偶xi,yi∈Q,使得f(xi, yi)=0. yi)=0. 后来,人们把猜想扩充到定义在任意数域上的多项式,并且随着抽象代数几何的出现,又重 新用代数曲线来叙述这个猜想了.因此,伐尔廷斯实际上证明的是:任意定义在数域K 新用代数曲线来叙述这个猜想了.因此,伐尔廷斯实际上证明的是:任意定义在数域K上,亏格 大于或等于2的代数曲线最多只有有限个K 大于或等于2的代数曲线最多只有有限个K一点. 数学家对这个猜想给出各种评论,总的看来是消极的. 1979年利奔波姆说:“可以有充分 1979年利奔波姆说:“ 理由认为,莫德尔猜想的获证似乎还是遥远的事.” 理由认为,莫德尔猜想的获证似乎还是遥远的事.” 对于“猜想” 1980年威尔批评说:“ 对于“猜想”,1980年威尔批评说:“数学家常常自言自语道:要是某某东西成立的话, ‘这就太棒了’(或者‘这就太顺利了’).有时不用费多少事就能够证实他的推测,有时则很快 这就太棒了’ 或者‘这就太顺利了’ 否定了它.但是,如果经过一段时间的努力还是不能证实他的预测,那么他就要说到‘猜想’这 否定了它.但是,如果经过一段时间的努力还是不能证实他的预测,那么他就要说到‘猜想’ 个词,既便这个东西对他来说毫无重要性可言.绝大多数情形都是没有经过深思熟虑的。”因此, 个词,既便这个东西对他来说毫无重要性可言.绝大多数情形都是没有经过深思熟虑的。” 对莫德尔猜想,他指出:我们稍许来看一下“莫德尔猜想” 对莫德尔猜想,他指出:我们稍许来看一下“莫德尔猜想”.它所涉及的是一个算术家几乎不会 不提出的问题;因而人们得不到对这个问题应该去押对还是押错的任何严肃的启示.

费马大定理

费马大定理

费马大定理(Fermat's last theorem)现代表述为:当n>2时,方程xn+yn=zn没有正整数解。

费马大定理的提出涉及到两位相隔1400年的数学家,一位是古希腊的丢番图,一位是法国的费马。

丢番图活动于公元250年左右,他以著作《算术》闻名于世,不定方程研究是他的主要成就之一。

他求解了他这样表述的不定方程(《算术》第2卷第8题):将一个已知的平方数分为两个平方数。

(1)现在人们常把这一表述视为求出不定方程x2+y2=z2 (2)的正整数解。

因而,现在一般地,对于整系数的不定方程,如果只要求整数解,就把这类方程称为丢番图方程。

有时把不定方程称为丢番图方程。

关于二次不定方程(1)的求解问题解决后,一个自然的想法是问未知数指数增大时会怎么样。

费马提出了这一数学问题。

费马生前很少发表作品,一些数学成果常写在他给朋友的信中,有的见解就写在所读的书页的空白处。

他去世后,才由后人收集整理出版。

1637年前后,费马在读巴歇校订注释的丢番图的《算术》第2卷第8题,即前引表述(1)时,在书的空白处写道:“另一方面,将一个立方数分成两个立方数,一个四次幂分为两个四次幂,或者一般地将一个高于二次的幂分为两个同次的幂,这是不可能的。

关于此,我已发现一种美妙的证法,可惜这里空白的地方太小,写不下。

” (3)费马去世后,人们在整理他的遗物时发现了这一段话,却没有找到证明,这更引起了数学界的兴趣。

后来,表述(3)被理解为:当整数n>2时,方程xn+yn=zn (4)没有正整数解。

欧拉、勒让德、高斯等大数学家都试证过这一命题,但都没有证明出来,问题表述的简单和证明的困难,吸引了更多的人投入证明工作。

这一命题就被称为费马猜想,又叫做费马问题,但更多地被叫做“费马最后定理”,在我国,则一般称之为费马大定理。

“费马最后定理”的来历可能是:费马一生提出过许多数论命题,后来经过数学界的不懈努力,到1840年前后,除了一个被反驳以外,大多数都被证明,只剩下这个费马猜想没有被证明,因此称之为“最后定理”。

费马定理

费马定理

定理及其证明费马定理:设)(f x 在c 的某邻域)(δδ+-c c ,内有定义,而且在这个领域上有)()(c f x f ≤(其中)c (f 为局部最大值)或者)()(c f x f ≥(其中)c (f 为局部最小值),当)(f x 在c 处可导时,则有0)c ('=f .证明:因为假设)c ('f 存在,由定义可得左导数)('-x f 和右导数)(f 'c +均存在且满足:)(f )()('''-c c f c f ==+当c x <时,0)()(≥--c x c f x f ,所以0)(f )(lim )(f '≥--=-→c x c x f c c x当c >x 时,0)()(≤--c x c f x f ,所以0)(f )(lim)(f '≤--=+→c x c x f c cx 所以0)c ('=f以上是对于)()(c f x f ≤这种情况进行的证明,同理也可证明)()(c f x f ≥这种情形 罗尔定理:设)(f x 在[]b ,a 上连续,在()b ,a 上可导,若)()a (b f f =,则必有一点()b a ,c ∈使得0)c ('=f .证明:分两种情况,若)(f x 为常值,结论显然成立.若)(f x 不为常值,根据最大、最小值定理(有界闭区间[]b ,a 上的连续函数)(f x 具有最大值和最小值)可知,)(f x 必在()b ,a 内某一点c 处达到最大值或最小值,再有费马定理可得,0)c ('=f .拉格朗日中值定理:设)(f x 在[]b ,a 上连续,在()b ,a 上可导,则一定有一点()b ,a ∈ξ使ab a f --=)(f )b ()(f 'ξ.证明:分两种情况,若)(f x 恒为常数,则0)x ('=f 在()b ,a 上处处成立,则定理结论明显成立.若)(f x 在[]b ,a 不恒为常数时,由于)(f x 在[]b ,a 上连续,由闭区间连续函数的性质,)(f x 必在[]b ,a 上达到其最大值M 和最小值m ,有一种特殊情况)()a (b f f =时,定理成立,这就是上面所证明过的罗尔定理.考虑一般情形,)()a (b f f ≠.做辅助函数x )(f )b ()(f )x (ab a f x ---=ϕ.由连续函数的性质及导数运算法则,可得)x (ϕ在[]b ,a 上连续,在()b ,a 上可导,且()a ab b a bf ϕϕ=--=)(f )a ()b (,这就是说)x (ϕ满足刚刚的特殊情况,因此在()b ,a 内至少有一点ξ,使得()0)(f )b (f )(''=---=ab a f ξξϕ.即()ab a f --=)(f )b (f 'ξ.定理得证. 柯西中值定理:若)(f x 和)(g x 在[]b ,a 上连续,在()b ,a 上可导,且0)x (g '≠,则一定存在()b ,a ∈ξ使()()()()ξξ''g )(f )b (g f a g b a f =--. 证明:首先能肯定)()a (g b g ≠,因为如果)()a (g b g =,那么由拉格朗日中值定理,)x (g '在()b ,a 内存在零点,因此与假设矛盾. 还是做辅助函数()()()()()a g a g b a f x F ----=x g g )(f )b ()(f )x (.由()()b F F =a ,再由拉格朗日中值定理,可以证明定理成立.泰勒中值定理:若)(f x 在0x =点的某个邻域内有直到1n +阶连续导数,那么在此邻域内有()()()()()()()x R x n f x f f f x n nn +++++=!0...!20x 00f 2'''.其中()()()()11n x !1+++=n n n f x R ξ.ξ是介于0与x 之间的某个值.证明:做辅助函数()()()()()()()()()()n n t x n t f t x t f t x t f t f x f -------+=!...!2t 2'''ϕ.由假设容易看出()t ϕ在[]x ,0或[]0,x 上连续,且()()x R n 0=ϕ,()0x =ϕ,()()()()()[]()()()()()()()()()()()()()()()⎥⎦⎤⎢⎣⎡-----------⎥⎦⎤⎢⎣⎡------=-+11n 2'''''2''''''''!1!...!2...f -!2-f n n n t x n t f t x n t f t x t f t x t f t x t t x t f t f t x t f t t ϕ化简后有()()()()n 1n '!-t x n t f t -=+ϕ.在引进一个辅助函数()()1t +-=n t x ψ.对函数()t ϕ和()t ψ利用柯西中值定理得到()()()()()()ξψξϕψψϕϕ''00x =--x ,ξ是介于0与x 之间的某个值,此时有()()x R n 0=ϕ,()0x =ϕ,()()()()n x n f ξξξϕ-=+!-1n ',()1n x 0+=ψ,()0x =ψ,()()()nx ξξψ-+=1n -',代入上式,即得()()()()11n x !1+++=n n n f x R ξ.定理证明完毕.这是函数()x f 在0x =点的泰勒公式,同理推导可得()x f 在0x x =点附近的泰勒公式()()()()()()()()()()x R x x n x f x x x f x x x f x f x n n o n +-++-+-+=0200''00'0!...!2f .其中()()()()()101n !1++-+=n n x x n f x R ξ.ξ是介于0x 与x 之间的某个值.定理间关系:罗尔定理,拉格朗日定理,柯西定理以及泰勒公式是微分学的基本定理。

费马 定理

费马 定理

费马定理
费马定理,也称为费马大定理或费马最后定理,是法国数学家皮埃尔·德·费马在17世纪提出的一个数论问题。

该定理的原始陈述是:对于任何大于2的整数n,不可能找到三个正整数a、b、c使得a^n + b^n = c^n成立。

费马在其手稿中提出了这个猜想,并表示自己有证明,但未给出具体证明。

这个猜想在数学界引起了长期的关注和研究,成为数论中的一个重要问题。

直到1994年,英国数学家安德鲁·怀尔斯证明了费马定理的一个特例,即当n大于2时,方程a^n + b^n = c^n没有正整数解。

这一证明被广泛认可并获得了费尔马奖。

然而,怀尔斯的证明并不能推广到一般情况,即对于所有大于2的整数n。

至今,费马定理在一般情况下仍然是一个未解决的问题。

数学家们一直在寻找一个通用的证明方法,但目前还没有找到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

费马原理
定义:
最小光程原理。

光波在两点之间传递时,自动选取费时最少的路径。

应用学科:
费马原理是几何光学中的一条重要原理,由此原理可证明光在均匀介质中传播时遵从的直线传播定律、反射和折射定律,以及傍轴条件下透镜的等光程性等。

光的可逆性原理是几何光学中的一条普遍原理,该原理说,若光线在介质中沿某一路径传播,当光线反向时,必沿同一路径逆向传播。

费马原理规定了光线传播的唯一可实现的路径,不论光线正向传播还是逆向传播,必沿同一路径。

因而借助于费马原理可说明光的可逆性原理的正确性。

光在任意介质中从一点传播到另一点时,沿所需时间最短的路径传播。

地震学中的费马原理
地震波沿射线传播的旅行时和沿其他路径传播的旅行时相比为最小,亦是波沿旅行时最小的路径传播。

光学中的费马原理
光线在两点间的实际路径是使所需的传播时间为极值的路径[1]。

在大部分情况下,此极值为最小值,但
有时为最大值,有时为恒定值。

费马原理详解
光在任意介质中从一点传播到另一点时,沿所需时间最短的路径传播。

又称最小时间原理或极短光程原理,
法国数学家费马于1657年首先提出。

设介质折射率n在空间作连续变化,光传播路程ds 所需时间为式中c为真空中的光速。

光沿ACB曲线从A点传播到B点所需时间为费马原理指出了光传播的实际路径,这是一条所需时间τ为极小值的路径。

实际上τ除取极小值外,还可取极大值或稳定值,总之,τ应取极值。

光在介质中传播时,光传播的几何路程与介质折射率之乘积称为光程。

上式中的积分就是光沿ACB曲线从A点传到B点的总光程。

故费马原理也可表述为:光传播的实际路径是使光程取极值(极小值、极大值或稳定值)。

光程取极值的条件为光程的一级变分等于零,即此即费马原理的数学表达式。

费马原理是几何光学中的一条重要原理,由此原理可证明光在均匀介质中传播时遵从的直线传播定律、反射和折射定律,以及傍轴条件下透镜的等光程性等。

光的可逆性原理是几何光学中的一条普遍原理,该原理说,若光线在介质中沿某一路径传播,当光线反向时,必沿同一路径逆向传播。

费马原理规定了光线传播的唯一可实现的路径,不论光线正向传播还是逆向传播,必沿同一路径。

因而借助于费马原理可说明光的可逆性原理的正确性。

费马原理对折射定律的证明
假设光从介质n1入射到介质n2。

在两个介质的交界面上取一条直线为x轴,法线为y 轴,在入射光线上任取一点A(x1, y1),光线与两介质交界面的交点为B(x, 0),在折射光线上任取一点C(x2, y2)。

相关文档
最新文档