2020年辽宁省大连市中考数学试卷
辽宁省大连市2020年中考数学试题(Word版,含答案与解析)
辽宁省大连市2020年中考数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)(共10题;共30分)1.下列四个数中,比-1小的数是( )C. 0D. 1A. -2B. −12【答案】A【考点】有理数大小比较<0<1.【解析】【解答】解:∵-2<-1<-12故答案为:A.【分析】把这些数按从小到大重新排列,即可得出结果.2.如图是由5个相同的小正方体组成的立体图形,它的主视图是( )A. B.C. D.【答案】B【考点】简单组合体的三视图【解析】【解答】解:由图可得,主视图下方是三个小正方形,右上方是一个小正方形.故答案为:B.【分析】主视图是由前向后看在正面所得的投影,据此分析即可判断.3.2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆,数36000用科学记数法表示为( )A. 360×102B. 36×103C. 3.6×104D. 0.36×105【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:36000=3.6×104.故答案为:C.【分析】用科学记数法表示绝对值较大的数,一般表示为a×10n的形式,其中1≤|a|<10,n等于原数的整数位数-1.4.如图,OABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是( )A. 50°B. 60°C. 70°D. 80°【答案】 D【考点】平行线的性质,三角形内角和定理【解析】【解答】解:∵∠C=180°-∠A-∠B=180°-60°-40°=80°,∵DE∥BC,∴∠AED=∠C=80°.故答案为:D.【分析】利用三角形内角和定理先求出∠C的度数,再根据平行线的性质定理得出∠AED=∠C,则∠AED 可求.5.平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是( )A. (3,1)B. (3,-1)C. (-3,1)D. (-3,-1)【答案】B【考点】关于坐标轴对称的点的坐标特征【解析】【解答】解:P(3,1)关于x轴对称的点的坐标是(3,-1).故答案为:B.【分析】关于x轴对称点的坐标特点是横坐标不变,纵坐标互为相反数,据此求解即可.6.下列计算正确的是( )A. a2+a3=a5B. a2·a3=a6C. (a2)3=a6D. (-2a2)3=-6a6【答案】C【考点】同底数幂的乘法,积的乘方,幂的乘方【解析】【解答】解: A、同底数幂相加不能套用同底数幂相乘的运算法则,不符合题意;B、a2·a3=a2+3= a5 , 不符合题意;C、(a2)3=a6,符合题意;D、(-2a2)3=-8a6,不符合题意;故答案为:C.【分析】同底数幂相乘底数不变,指数相加;幂的乘方,底数不变,指数相乘;积的乘方等于乘方的积;据此逐项计算判断即可.7.在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同。
2020年辽宁省大连市中考数学试卷含答案解析
5
这个公司平均每人所创年利润是______万元. 13. 我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田积八
百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的
第 2 页,共 22 页
面积为 864 平方步,宽比长少 12 步,问宽和长各多少步?设矩形的宽为 x 步,根 据题意,可列方程为______. 14. 如图,菱形 ABCD 中,∠ACD=40°,则 ∠ABC=______°.
(1)当点 D 与点 A 重合时,求 t 的值; (2)求 S 关于 t 的函数解析式,并直接写出自变量 t 的取值范围.
D. (2,0)
A. 50°
B. 70°
C. 110°
D. 120°
二、填空题(本大题共 6 小题,共 18.0 分)
11. 不等式 5x+1>3x-1 的解集是______.
12. 某公司有 10 名员工,他们所在部门及相应每人所创年利润如下表所示.
部门
人数
每人所创年利润/万 元
A
1
10
B
2
8
C
7
第 5 页,共 22 页
22. 某化肥厂第一次运输 360 吨化肥,装载了 6 节火车车厢和 15 辆汽车;第二次运输 440 吨化肥,装载了 8 节火车车厢和 10 辆汽车.每节火车车厢与每辆汽车平均各 装多少吨化肥?
23. 甲、乙两个探测气球分别从海拔 5m 和 15m 处同时出发,匀速上升 60min.如图是 甲、乙两个探测气球所在位置的海拔 y(单位:m)与气球上升时间 x(单位:min) 的函数图象. (1)求这两个气球在上升过程中 y 关于 x 的函数解析式; (2)当这两个气球的海拔高度相差 15m 时,求上升的时间.
2020年辽宁省大连市中考数学试卷(附答案解析)
2020年辽宁省大连市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(3分)下列四个数中,比-1小的数是()A. -2B. -1C. 0D. 122.(3分)如图是由5个相同的小正方体组成的立体图形,它的主视图是()3.(3分)2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆.数36000用科学记数法表示为()A. 360xlO2B. 36x10,C. 3.6xlO4D. 0.36xlO54.(3 分)如图,AA3C 中,ZA = 60°, N8 = 40。
,DEI IBC,则 NAEQ 的度数是()5.(3分)平面直角坐标系中,点P(3,l)关于工•轴对称的点的坐标是()A. (3,1)B. (3,-1)C.(-3,1)D. (一3,一1)6.(3分)下列计算正确的是()A. a2B. a1•ci =(/'C. (u2)5 =D. (—2/)' =-6a”7.(3分)在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是(8.(3分)如图,小明在一条东西走向公路的。
处,测得图书馆A在他的北偏东60。
方向,且与他相距200m,则图书馆A到公路的距离"为()9.(3分)抛物线y = a储+以+。
(“<0)与x轴的一个交点坐标为(T.0),对称轴是直线x = l, 其部分图象如图所示,则此抛物线与入轴的另一个交点坐标是()10.(3分)如图,A43c中,ZAC5 = 90。
,ZABC = 40°.将A43C绕点3逆时针旋转得到△ A!BC ,使点。
的对应点。
恰好落在边AB上,则NC4A的度数是()二、填空题(本题共6小题,每小题3分,共18分)11.(3分)不等式5x+l>3x-1的解集是.12.(3分)某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示. wl A I|每人所创年利润/万元A 1 10B 2 8C7 513.(3分)我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田枳八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的面积为 864平方步,宽比长少12步,问宽和长各多少步?设矩形的宽为x步,根据题意,可列方程为14.(3 分)如图,菱形 ABC。
2020年辽宁省大连市中考数学试卷(含答案解析)
2020年辽宁省大连市中考数学试卷副标题得分1.下列四个数中,比−1小的数是()C. 0D. 1A. −2B. −122.如图是由5个相同的小正方体组成的立体图形,它的主视图是()A. B.C. D.3.2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆.数36000用科学记数法表示为()A. 360×102B. 36×103C. 3.6×104D. 0.36×1054.如图,△ABC中,∠A=60°,∠B=40°,DE//BC,则∠AED的度数是()A. 50°B. 60°C. 70°D. 80°5.平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是()A. (3,1)B. (3,−1)C. (−3,1)D. (−3,−1)6.下列计算正确的是()A. a2+a3=a5B. a2⋅a3=a6C. (a2)3=a6D. (−2a2)3=−6a67.在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是()A. 14B. 13C. 37D. 478.如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60°方向,且与他相距200m,则图书馆A到公路的距离AB为()A. 100mB. 100√2mC. 100√3mD. 200√33m 9.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(−1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A. (72,0) B. (3,0) C. (52,0) D. (2,0)10.如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A. 50°B. 70°C. 110°D. 120°11.不等式5x+1>3x−1的解集是______.12.某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.部门人数每人所创年利润/万元A110B28C75这个公司平均每人所创年利润是______万元.13.我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的面积为864平方步,宽比长少12步,问宽和长各多少步?设矩形的宽为x步,根据题意,可列方程为______.14.如图,菱形ABCD中,∠ACD=40°,则∠ABC=______°.15.如图,在平面直角坐标系中,正方形ABCD的顶点A与D在函数y=kx(x>0)的图象上,AC⊥x轴,垂足为C,点B的坐标为(0,2),则k的值为______.16.如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,CE与BD相交于点F.设DE=x,BF=y,当0≤x≤8时,y关于x的函数解析式为______.17.计算(√2+1)(√2−1)+√−83+√9.18.计算x2+4x+4x+2÷x2+2xx−2−1.19.如图,△ABC中,AB=AC,点D,E在边BC上,BD=CE.求证:∠ADE=∠AED.20.某校根据《教育部基础教育课程教材发展中心中小学生阅读指导目录(2020版)》公布的初中段阅读书目,开展了读书活动.六月末,学校对八年级学生在此次活动中的读书量进行了抽样调查,如图是根据调查结果绘制的统计图表的一部分.读书量频数(人)频率1本42本0.33本4本及以上10根据以上信息,解答下列问题:(1)被调查学生中,读书量为1本的学生数为______人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为______%;(2)被调查学生的总人数为______人,其中读书量为2本的学生数为______人;(3)若该校八年级共有550名学生,根据调查结果,估计该校八年级学生读书量为3本的学生人数.21.某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?22.四边形ABCD内接于⊙O,AB是⊙O的直径,AD=CD.(1)如图1,求证∠ABC=2∠ACD;(2)过点D作⊙O的切线,交BC延长线于点P(如图2).若tan∠CAB=5,BC=1,12求PD的长.23.甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.如图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象.(1)求这两个气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.24.如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点D从点B出发,沿边BA→AC以2cm/s的速度向终点C运动,过点D作DE//BC,交边AC(或AB)于点E.设点D的运动时间为t(s),△CDE的面积为S(cm2).(1)当点D与点A重合时,求t的值;(2)求S关于t的函数解析式,并直接写出自变量t的取值范围.25.如图1,△ABC中,点D,E,F分别在边AB,BC,AC上,BE=CE,点G在线段CD上,CG=CA,GF=DE,∠AFG=∠CDE.(1)填空:与∠CAG相等的角是______;(2)用等式表示线段AD与BD的数量关系,并证明;(3)若∠BAC=90°,∠ABC=2∠ACD(如图2),求AC的值.AB26.在平面直角坐标系xOy中,函数F1和F2的图象关于y轴对称,它们与直线x=t(t>0)分别相交于点P,Q.(1)如图,函数F1为y=x+1,当t=2时,PQ的长为______;(2)函数F1为y=3,当PQ=6时,t的值为______;x(3)函数F1为y=ax2+bx+c(a≠0),①当t=√b时,求△OPQ的面积;b②若c>0,函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),当c≤x≤c+1时,设函数F1的最大值和函数F2的最小值的差为h,求h关于c的函数解析式,并直接写出自变量c的取值范围.答案和解析1.【答案】A【解析】解:根据有理数比较大小的方法,可得>−1,1>−1,−2<−1,0>−1,−12∴四个数中,比−1小的数是−2.故选:A.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.【答案】B【解析】解:从正面看,底层是三个小正方形,上层右边的一个小正方形.故选:B.从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图,画出从正面看所得到的图形即可.此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.3.【答案】C【解析】解:36000=3.6×104,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.【答案】D【解析】解:∵∠C=180°−∠A−∠B,∠A=60°,∠B=40°,∴∠C=80°,∵DE//BC,∴∠AED=∠C=80°,故选:D.利用三角形内角和定理求出∠C,再根据平行线的性质求出∠AED即可.本题考查三角形内角和定理,平行线的性质,解题的关键是熟练掌握三角形内角和定理,平行线的性质解决问题,属于中考常考题型.5.【答案】B【解析】解:点P(3,1)关于x轴对称的点的坐标是(3,−1)故选:B.关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.6.【答案】C【解析】解:A.a2与a3不是同类项,所以不能合并,故本选项不合题意;B.a2⋅a3=a5,故本选项不合题意;C.(a2)3=a6,故本选项符合题意;D.(−2a2)3=−8a6,故本选项不合题意.故选:C.分别根据合并同类项法则,同底数幂的乘法法则,幂的乘方运算法则以及积的乘方运算法则逐一判断即可.本题主要考查了同底数幂的乘法,合并同类项以及幂的乘方与积的乘方,熟记相关运算法则是解答本题的关键.7.【答案】D【解析】解:根据题意可得:袋子中有有3个白球,4个红球,共7个,.从袋子中随机摸出一个球,它是红球的概率47故选:D.根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中.事件A出现m种结果,那么事件A的概率P(A)=mn8.【答案】A【解析】解:由题意得,∠AOB=90°−60°=30°,OA=100(m),∴AB=12故选:A.根据题意求出∠AOB,根据直角三角形的性质解答即可.本题考查的是解直角三角形的应用−方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.9.【答案】B【解析】解:设抛物线与x轴交点横坐标分别为x1、x2,且x1<x2,根据两个交点关于对称轴直线x=1对称可知:x1+x2=2,即x2−1=2,得x2=3,∴抛物线与x轴的另一个交点为(3,0),故选:B.根据抛物线的对称性和(−1,0)为x轴上的点,即可求出另一个点的交点坐标.本题考查了抛物线与x轴的交点,要知道抛物线与x轴的两交点关于对称轴对称.10.【答案】D【解析】解:∵∠ACB=90°,∠ABC=40°,∴∠CAB=90°−∠ABC=90°−40°=50°,∵将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,∴∠A′BA=∠ABC=40°,A′B=AB,∴∠BAA′=∠BA′A=1(180°−40°)=70°,2∴∠CAA′=∠CAB+∠BAA′=50°+70°=120°.故选:D.根据旋转可得∠A′BA=∠ABC=40°,A′B=AB,得∠BAA′=70°,根据∠CAA′=∠CAB+∠BAA′,进而可得∠CAA′的度数.本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.11.【答案】x>−1【解析】解:5x+1>3x−1,移项得,5x−3x>−1−1,合并得,2x>−2,即x>−1,故答案为x>−1.先对不等式进行移项,合并同类项,再系数化1即可求得不等式的解集.本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.12.【答案】6.1(10+2×8+7×5)=6.1(万).【解析】解:这个公司平均每人所创年利润是:110故答案为:6.1.直接利用表格中数据,求出10人的总收入进而求出平均收入.此题主要考查了加权平均数,正确利用表格获取正确信息是解题关键.13.【答案】x(x+12)=864【解析】解:∵矩形的宽为x,且宽比长少12,∴矩形的长为(x+12).依题意,得:x(x+12)=864.故答案为:x(x+12)=864.由矩形的宽及长与宽之间的关系可得出矩形的长为(x+12),再利用矩形的面积公式即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程以及数学常识,找准等量关系,正确列出一元二次方程是解题的关键.14.【答案】100【解析】解:∵四边形ABCD是菱形,∴AB//CD,∠BCD=2∠ACD=80°,∴∠ABC+∠BCD=180°,∴∠ABC=180°−80°=100°;故答案为:100.由菱形的性质得出AB//CD,∠BCD=2∠ACD=80°,则∠ABC+∠BCD=180°,即可得出答案.本题考查了菱形的性质、平行线的性质;熟练掌握菱形的性质是解题的关键.15.【答案】8【解析】解:连接BD,与AC交于点O,∵四边形ABCD是正方形,AC⊥x轴,∴BD所在对角线平行于x轴,∵B(0,2),∴OC=2=BO=AO=DO,∴点A的坐标为(2,4),∴k=2×4=8,故答案为:8.连接BD,与AC交于点O,利用正方形的性质得到OA=OB=OC=OD=2,从而得到点A坐标,代入反比例函数表达式即可.本题考查了正方形的性质,反比例函数表达式的求法,解题的关键是利用正方形的性质求出点A的坐标.16.【答案】y=80x+8【解析】解:在矩形中,AD//BC,∴△DEF∽△BCF,∴DEBC =DFBF,∵BD=√BC2+CD2=10,BF=y,DE=x,∴DF=10−y,∴x8=10−yy,化简得:y=80x+8,∴y关于x的函数解析式为:y=80x+8,故答案为:y=80x+8.根据题干条件可证得△DEF∽△BCF,从而得到DEBC =DFBF,由线段比例关系即可求出函数解析式.本题主要考查的是相似三角形的判定与性质定理,难度不大,熟练掌握性质和判定定理是解得本题的关键,注意掌握数形结合思想与函数思想的应用.17.【答案】解:原式=2−1−2+3=2.【解析】原式利用平方差公式,立方根、算术平方根性质计算即可求出值.此题考查了平方差公式,以及实数的运算,熟练掌握公式及运算法则是解本题的关键.18.【答案】解:原式=(x+2)2x+2⋅x−2x(x+2)−1=x−2x−1=x−2−xx=−2x.【解析】直接利用分式的混合运算法则分别化简得出答案.此题主要考查了分式的混合运算,正确化简分式是解题关键.19.【答案】证明:∵AB=AC,∴∠B=∠C(等边对等角),在△ABD和△ACE中,{AB=AC ∠B=∠C BD=CE∴△ABD≌△ACE(SAS),∴AD=AE(全等三角形对应边相等),∴∠ADE =∠AED(等边对等角).【解析】根据等腰三角形等边对等角的性质可以得到∠B =∠C ,然后证明△ABD 和△ACE 全等,根据全等三角形对应边相等有AD =AE ,再根据等边对等角的性质即可证明. 本题考查了全等三角形的判定与性质以及等腰三角形的性质,找出已知边的夹角相等是证明三角形全等的关键,也是本题的突破点.20.【答案】4 20 50 15【解析】解:(1)由图表可知:被调查学生中,读书量为1本的学生数为4人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为20%, 故答案为:4;20; (2)10÷20%=50, 50×0.3=15,∴被调查学生的总人数为50人,其中读书量为2本的学生数为15人, 故答案为:50;15;(3)(50−4−10−15)÷50×550=231, 该校八年级学生读书量为3本的学生有231人. (1)直接根据图表信息可得;(2)用4本及以上对应的频数除以所占百分比可得总人数,再乘以读书量为2本的频率即可;(3)求出读书量为3本的人数,除以样本人数50,再乘以全校总人数550可得结果. 本题考查了频数统计表和扇形统计图,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.21.【答案】解:设每节火车车厢平均装x 吨化肥,每辆汽车平均装y 吨化肥,依题意,得:{6x +15y =3608x +10y =440,解得:{x =50y =4.答:每节火车车厢平均装50吨化肥,每辆汽车平均装4吨化肥.【解析】设每节火车车厢平均装x 吨化肥,每辆汽车平均装y 吨化肥,根据“第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车”,即可得出关于x,y的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.【答案】(1)证明:∵AD=CD,∴∠DAC=∠ACD,∴∠ADC+2∠ACD=180°,又∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∴∠ABC=2∠ACD;(2)解:连接OD交AC于点E,∵PD是⊙O的切线,∴OD⊥DP,∴∠ODP=90°,又∵AD⏜=CD⏜,∴OD⊥AC,AE=EC,∴∠DEC=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ECP=90°,∴四边形DECP为矩形,∴DP=EC,∵tan∠CAB=512,BC=1,∴CBAC =1AC=512,∴AC=125,∴EC =12AC =65, ∴DP =65.【解析】(1)由等腰三角形的性质得出∠DAC =∠ACD ,由圆内接四边形的性质得出∠ABC +∠ADC =180°,则可得出答案;(2)由切线的性质得出∠ODP =90°,由垂径定理得出∠DEC =90°,由圆周角定理∠ACB =90°,可得出四边形DECP 为矩形,则DP =EC ,求出EC 的长,则可得出答案. 本题考查了切线的性质,圆周角定理的应用,圆内接四边形的性质,垂径定理,解直角三角形等知识,熟练切线的性质是解题的关键.23.【答案】解:(1)设甲气球的函数解析式为:y =kx +b ,乙气球的函数解析式为:y =mx +n ,分别将(0,5),(20,25)和(0,15),(20,25)代入, {5=b 25=20k +b ,{15=n 25=20m +n , 解得:{k =1b =5,{m =12n =15,∴甲气球的函数解析式为:y =x +5,乙气球的函数解析式为:y =12x +15;(2)由初始位置可得:当x 大于20时,两个气球的海拔高度可能相差15m , 且此时甲气球海拔更高, ∴x +5−(12x +15)=15, 解得:x =50,∴当这两个气球的海拔高度相差15m 时,上升的时间为50min .【解析】(1)根据图象中坐标,利用待定系数法求解;(2)根据分析可知:当x 大于20时,两个气球的海拔高度可能相差15m ,可得方程x +5−(12x +15)=15,解之即可.本题考查了一次函数的实际应用,解题的关键是结合实际情境分析函数图象.24.【答案】解:(1)∵△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,∴AB =√AC 2+BC 2=√62+82=10(cm), 当点D 与点A 重合时,BD =AB =10cm ,∴t =102=5(s);(2)当0<t <5时,(D 在AB 上), ∵DE//BC , ∴△ADE∽△ABC , ∴DEBC =ADAB =AEAC , ∴DE 8=10−2t 10=6−CE 6,解得:DE =40−8t 5,CE =65t ,∵DE//BC ,∠ACB =90°, ∴∠CED =90°, ∴S =12DE ⋅CE =12×40−8t 5×65t =−2425t 2+245;如图2,当5<t <8时,(D 在AC 上), 则AD =2t −10, ∴CD =16−2t , ∵DE//BC , ∴△ADE∽△ACB , ∴DE CB =AE AB=AD AC,∴DE 8=2t−106, ∴DE =8t−403,∴S =12DE ⋅CD =12×8t−403×(16−2t)=−83t 2+1043t −3203,综上所述,S 关于t 的函数解析式为S ={−2425t 2+245t(0<t <5)−83t 2+1043t −3203(5<t <8).【解析】(1)根据各过各的了即可得到结论;(2)根据相似三角形的判定和性质以及三角形的面积公式即可得到结论.本题考查了函数关系式,相似三角形的判定和性质,勾股定理,正确的理解题意是解题的关键.25.【答案】∠CGA【解析】解:(1)∵CA=CG,∴∠CAG=∠CGA,故答案为:∠CGA;(2)AD=12BD,理由是:如图,在CG上取点M,使GM=AF,连接AM,EM,∵∠CAG=∠CGA,AG=GA,∴△AGM≌△GAF(SAS),∴AM=GF,∠AFG=∠AMG,∵GF=DE,∠AFG=∠CDE,∴AM=DE,∠AMG=∠CDE,∴AM//DE,∴四边形AMED为平行四边形,∴AD=EM,AD//EM,∵BE=CE,即点E为BC中点,∴ME为△BCD的中位线,∴AD=ME=12BD;(3)延长BA至点N,使AD=AN,连接CN,∵∠BAC=∠NAC=90°,∴AC垂直平分DN,∴CD=CN,∴∠ACD=∠ACN,设∠ACD=α=∠ACN,则∠ABC=2α,则∠ANC=90−α,∴∠BCN=180−2α−(90−α)=90−α,∴BN=BC,即△BCN为等腰三角形,设AD=1,则AN=1,BD=2,∴BC=BN=4,AB=3,∴AC=√BC2−AB2=√7,∴ACAB =√73.(1)根据等腰三角形等边对等角回答即可;(2)在CG 上取点M ,使GM =AF ,连接AM ,EM ,证明△AGM≌△GAF ,得到AM =GF ,∠AFG =∠AMG ,从而证明四边形AMED 为平行四边形,得到AD =EM ,AD//EM ,最后利用中位线定理得到结论;(3)延长BA 至点N ,使AD =AN ,连接CN ,证明△BCN 为等腰三角形,设AD =1,可得AB 和BC 的长,利用勾股定理求出AC ,即可得到ACAB 的值.本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,平行四边形的判定和性质,中位线定理,解题的关键是根据题意构造平行四边形,转化已知条件.26.【答案】4 1【解析】解:(1)∵F 1:y =x +1, F 1和F 2关于y 轴对称, ∴F 2:y =−x +1,分别令x =2,则2+1=3,−2+1=−1, ∴P(2,3),Q(2,−1), ∴PQ =3−(−1)=4, 故答案为:4; (2)∵F 1:y =3x , 可得:F 2:y =−3x ,∵x =t ,可得:P(t,3t ),Q(t,−3t),∴PQ =3t −−3t=6t =6,解得:t =1,经检验:t =1是原方程的解, 故答案为:1;(3)①∵F1:y=ax2+bx+c,∴F2:y=ax2−bx+c,∵t=√bb,分别代入F1,F2,可得:P(√bb ,ab+√b+c),Q(√bb,ab−√b+c),∴PQ=|ab +√b+c−(ab−√b+c)|=2√b,∴S△OPQ=12×2√b×√bb=1;②∵函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),而函数F1和F2的图象关于y轴对称,∴函数F1的图象经过A(5,0)和(−1,0),∴设F1:y=a(x+1)(x−5)=ax2−4ax−5a,则F2:y=ax2+4ax−5a,∴F1的图象的对称轴是直线x=2,且c=−5a,∴a=−c5,∵c>0,则a<0,c+1>1,而F2的图象在x>0时,y随x的增大而减小,当0<c<1时,F1的图象y随x的增大而增大,F2的图象y随x的增大而减小,∴当x=c+1时,y=ax2−4ax−5a的最大值为a(c+1)2−4a(c+1)−5a,y=ax2+4ax−5a的最小值为a(c+1)2+4a(c+1)−5a,则ℎ=a(c+1)2−4a(c+1)−5a−[a(c+1)2+4a(c+1)−5a]=−8ac−8a,又∵a=−c5,∴ℎ=85c2+85c;当1≤c≤2时,F1的最大值为4a×(−5a)−(−4a)24a=−9a,F2的图象y随x的增大而减小,∴F2的最小值为:a(c+1)2+4a(c+1)−5a,则ℎ=−9a−[a(c+1)2+4a(c+1)−5a]=−a(c+1)2−4a(c+1)−4a=−ac2−6ac−9a,又∵a=−c5,∴ℎ=15c3+65c2+95c,第19页,共22页第20页,共22页 当c >2时,F 1的图象y 随x 的增大而减小,F 2的图象y 随x 的增大而减小,∴当x =c 时,y =ax 2−4ax −5a 的最大值为ac 2−4ac −5a ,当x =c +1时,y =ax 2+4ax −5a 的最小值为a(c +1)2−4a(c +1)−5a , 则ℎ=ac 2−4ac −5a −[a(c +1)2−4a(c +1)−5a]=3a −2ac ,又∵a =−c 5,∴ℎ=25c 2−35c ; 综上:h 关于x 的解析式为:{ 85c 2+85c(0<c <1)15c 3+65c 2+95c(1≤c ≤2)25c 2−35c(c >2). (1)根据F 1和F 2关于y 轴对称得出F 2的解析式,求出P 、Q 两点坐标,即可得到PQ ;(2)根据F 1和F 2关于y 轴对称得出F 2的解析式,求出P 、Q 两点坐标,根据PQ =6得出方程,解出t 值即可;(3)①根据F 1和F 2关于y 轴对称得出F 2的解析式,将x =√b b代入解析式,求出P 、Q 两点坐标,从而得出△OPQ 的面积;②根据题意得出两个函数的解析式,再分当0<c <1时,当1≤c ≤2时,当c >2时,三种情况,分析两个函数的增减性,得出最值,相减即可.本题是二次函数综合题,考查了一次函数,反比例函数,以及二次函数的图象与性质,二次函数的最值,解题的关键是要理解题意,尤其(3)问中要读懂题干,结合图象进行分析求解.。
辽宁省大连市2020年部编人教版中考数学试题及答案精析(word版).doc
2020年辽宁省大连市中考数学试卷一、选择题:本大题共8小题,每小题3分,共24分1.﹣3的相反数是()A.B.C.3 D.﹣32.在平面直角坐标系中,点(1,5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.方程2x+3=7的解是()A.x=5 B.x=4 C.x=3.5 D.x=24.如图,直线AB∥CD,AE平分∠CAB.AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是()A.40° B.70° C.80° D.140°5.不等式组的解集是()A.x>﹣2 B.x<1 C.﹣1<x<2 D.﹣2<x<16.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A.B.C.D.7.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)8.如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm)()A.40πcm2B.65πcm2C.80πcm2D.105πcm2二、填空题:本大题共8小题,每小题3分,共24分9.因式分解:x2﹣3x=.10.若反比例函数y=的图象经过点(1,﹣6),则k的值为.11.如图,将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.12.下表是某校女子排球队队员的年龄分布年龄/岁13 14 15 16频数 1 1 7 3则该校女子排球队队员的平均年龄是岁.13.如图,在菱形ABCD中,AB=5,AC=8,则菱形的面积是.14.若关于x的方程2x2+x﹣a=0有两个不相等的实数根,则实数a的取值范围是.15.如图,一艘渔船位于灯塔P的北偏东30°方向,距离灯塔18海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东55°方向上的B处,此时渔船与灯塔P的距离约为海里(结果取整数)(参考数据:sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).16.如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是.三、解答题:本大题共4小题,17、18、19各9分20题12分,共39分17.计算:(+1)(﹣1)+(﹣2)0﹣.18.先化简,再求值:(2a+b)2﹣a(4a+3b),其中a=1,b=.19.如图,BD是▱ABCD的对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:AE=CF.20.为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计图表的一部分分组家庭用水量x/吨家庭数/户A 0≤x≤4.0 4B 4.0<x≤6.5 13C 6.5<x≤9.0D 9.0<x≤11.5E 11.5<x≤14.0 6F x>4.0 3根据以上信息,解答下列问题(1)家庭用水量在4.0<x≤6.5范围内的家庭有户,在6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比是%;(2)本次调查的家庭数为户,家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是%;(3)家庭用水量的中位数落在组;(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.四、解答题:本大题共3小题,21、22各9分23题10分,共28分21.A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.22.如图,抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.23.如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC (1)求证:DE与⊙O相切;(2)若BF=2,DF=,求⊙O的半径.五、解答题:本大题共3小题,24题11分,25、26各12分,共35分24.如图1,△ABC中,∠C=90°,线段DE在射线BC上,且DE=AC,线段DE沿射线BC运动,开始时,点D与点B重合,点D到达点C时运动停止,过点D作DF=DB,与射线BA相交于点F,过点E作BC的垂线,与射线BA相交于点G.设BD=x,四边形DEGF与△ABC重叠部分的面积为S,S关于x的函数图象如图2所示(其中0<x≤m,1<x≤m,m<x≤3时,函数的解析式不同)(1)填空:BC的长是;(2)求S关于x的函数关系式,并写出x的取值范围.25.阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).26.如图,在平面直角坐标系xOy中,抛物线y=x2+与y轴相交于点A,点B与点O关于点A对称(1)填空:点B的坐标是;(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.2020年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分1.﹣3的相反数是()A.B.C.3 D.﹣3【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【解答】解:(﹣3)+3=0.故选C.【点评】本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.2.在平面直角坐标系中,点(1,5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点(1,5)所在的象限是第一象限.故选A.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.方程2x+3=7的解是()A.x=5 B.x=4 C.x=3.5 D.x=2【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】方程移项合并,把x系数化为1,即可求出解.【解答】解:2x+3=7,移项合并得:2x=4,解得:x=2,故选D【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.如图,直线AB∥CD,AE平分∠CAB.AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是()A.40° B.70° C.80° D.140°【考点】平行线的性质.【分析】先由平行线性质得出∠ACD与∠BAC互补,并根据已知∠ACD=40°计算出∠BAC的度数,再根据角平分线性质求出∠BAE的度数.【解答】解:∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=∠BAC=×140°=70°,故选B.【点评】本题考查了平行线的性质和角平分线的定义,比较简单;做好本题要熟练掌握两直线平行①内错角相等,②同位角相等,③同旁内角互补;并会书写角平分线定义的三种表达式:若AP平分∠BAC,则①∠BAP=∠PAC,②∠BAP=∠BAC,③∠BAC=2∠BAP.5.不等式组的解集是()A.x>﹣2 B.x<1 C.﹣1<x<2 D.﹣2<x<1【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x>﹣2,解②得x<1,则不等式组的解集是:﹣2<x<1.故选D.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.6.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号的积小于4的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,两次摸出的小球标号的积小于4的有4种情况,∴两次摸出的小球标号的积小于4的概率是:=.故选C.【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x),五月份的产量是100(1+x)2,据此列方程即可.【解答】解:若月平均增长率为x,则该文具店五月份销售铅笔的支数是:100(1+x)2,故选:B.【点评】本题考查数量平均变化率问题,解题的关键是正确列出一元二次方程.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a×(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“﹣”.8.如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm)()A.40πcm2B.65πcm2C.80πcm2D.105πcm2【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为8cm,底面半径为10÷2=5cm,故表面积=πrl+πr2=π×5×8+π×52=65πcm2.故选:B.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.二、填空题:本大题共8小题,每小题3分,共24分9.因式分解:x2﹣3x=x(x﹣3).【考点】因式分解-提公因式法.【专题】因式分解.【分析】确定公因式是x,然后提取公因式即可.【解答】解:x2﹣3x=x(x﹣3).故答案为:x(x﹣3)【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.10.若反比例函数y=的图象经过点(1,﹣6),则k的值为﹣6.【考点】反比例函数图象上点的坐标特征.【分析】直接把点(1,﹣6)代入反比例函数y=,求出k的值即可.【解答】解:∵反比例函数y=的图象经过点(1,﹣6),∴k=1×(﹣6)=﹣6.故答案为:﹣6.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.如图,将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.【考点】旋转的性质.【分析】由旋转的性质得:AB=AD=1,∠BAD=∠CAE=90°,再根据勾股定理即可求出BD.【解答】解:∵将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,∴AB=AD=1,∠BAD=∠CAE=90°,∴BD===.故答案为.【点评】本题考查了旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.也考查了勾股定理,掌握旋转的性质是解决问题的关键.12.下表是某校女子排球队队员的年龄分布年龄/岁13 14 15 16频数 1 1 7 3则该校女子排球队队员的平均年龄是15岁.【考点】加权平均数;频数与频率.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得:(13×1+14×1+15×7+16×3)÷12=15(岁),即该校女子排球队队员的平均年龄为15岁.故答案为:15.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键.13.如图,在菱形ABCD中,AB=5,AC=8,则菱形的面积是24.【考点】菱形的性质.【分析】直接利用菱形的性质结合勾股定理得出BD的长,再利用菱形面积求法得出答案.【解答】解:连接BD,交AC于点O,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=4,∴BO==3,故BD=6,则菱形的面积是:×6×8=24.故答案为:24.【点评】此题主要考查了菱形的性质以及勾股定理,正确求出BD的长是解题关键.14.若关于x的方程2x2+x﹣a=0有两个不相等的实数根,则实数a的取值范围是a>﹣.【考点】根的判别式;解一元一次不等式.【分析】由方程有两个不相等的实数根结合根的判别式,可以得出关于a的一元一次不等式,解不等式即可得出结论.【解答】解:∵关于x的方程2x2+x﹣a=0有两个不相等的实数根,∴△=12﹣4×2×(﹣a)=1+8a>0,解得:a>﹣.故答案为:a>﹣.【点评】本题考查了根的判别式以及解一元一次不等式,解题的关键是找出1+8a>0.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出不等式(不等式组或方程)是关键.15.如图,一艘渔船位于灯塔P的北偏东30°方向,距离灯塔18海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东55°方向上的B处,此时渔船与灯塔P的距离约为11海里(结果取整数)(参考数据:sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).【考点】解直角三角形的应用-方向角问题.【分析】作PC⊥AB于C,先解Rt△PAC,得出PC=PA=9,再解Rt△PBC,得出PB=≈11.【解答】解:如图,作PC⊥AB于C,在Rt△PAC中,∵PA=18,∠A=30°,∴PC=PA=×18=9,在Rt△PBC中,∵PC=9,∠B=55°,∴PB=≈≈11,答:此时渔船与灯塔P的距离约为11海里.故答案为11.【点评】本题考查了解直角三角形的应用﹣方向角问题,含30°角的直角三角形的性质,锐角三角函数定义.解一般三角形的问题可以转化为解直角三角形的问题,解决的方法就是作高线.16.如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是(﹣2,0).【考点】抛物线与x轴的交点.【分析】根据函数值相等两点关于对称轴对称,可得对称轴,根据A、B关于对称轴对称,可得A点坐标.【解答】解:由C(0,c),D(m,c),得函数图象的对称轴是x=,设A点坐标为(x,0),由A、B关于对称轴x=,得=,解得x=﹣2,即A点坐标为(﹣2,0),故答案为:(﹣2,0).【点评】本题考查了抛物线与x轴的交点,利用函数值相等的点关于对称轴对称是解题关键.三、解答题:本大题共4小题,17、18、19各9分20题12分,共39分17.计算:(+1)(﹣1)+(﹣2)0﹣.【考点】实数的运算;零指数幂.【分析】本题涉及平方差公式、零指数幂、三次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(+1)(﹣1)+(﹣2)0﹣=5﹣1+1﹣3=2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握平方差公式、零指数幂、三次根式等考点的运算.18.先化简,再求值:(2a+b)2﹣a(4a+3b),其中a=1,b=.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=4a2+4ab+b2﹣4a2﹣3ab=ab+b2,当a=1,b=时,原式=+2.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.如图,BD是▱ABCD的对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:AE=CF.【考点】平行四边形的性质.【专题】证明题.【分析】根据平行四边形的性质得出AB=CD,AB∥CD,根据平行线的性质得出∠ABE=∠CDF,求出∠AEB=∠CFD=90°,根据AAS推出△ABE≌△CDF,得出对应边相等即可.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF.【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定的应用;证明△ABE≌△CDF是解决问题的关键.20.为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计图表的一部分分组家庭用水量x/吨家庭数/户A 0≤x≤4.0 4B 4.0<x≤6.5 13C 6.5<x≤9.0D 9.0<x≤11.5E 11.5<x≤14.0 6F x>4.0 3根据以上信息,解答下列问题(1)家庭用水量在4.0<x≤6.5范围内的家庭有13户,在6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比是30%;(2)本次调查的家庭数为50户,家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是18%;(3)家庭用水量的中位数落在C组;(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.【考点】扇形统计图;用样本估计总体;频数(率)分布表;中位数.【分析】(1)观察表格和扇形统计图就可以得出结果;(2)利用C组所占百分比及户数可算出调查家庭的总数,从而算出D组的百分比;(3)从第二问知道调查户数为50,则中位数为第25、26户的平均数,由表格可得知落在C组;(4)计算调查户中用水量不超过9.0吨的百分比,再乘以小区内的家庭数就可以算出.【解答】解:(1)观察表格可得4.0<x≤6.5的家庭有13户,6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比为30%;(2)调查的家庭数为:13÷26%=50,6.5<x≤9.0 的家庭数为:50×30%=15,D组9.0<x≤11.5 的家庭数为:50﹣4﹣13﹣6﹣3﹣15=9,9.0<x≤11.5 的百分比是:9÷50×100%=18%;(3)调查的家庭数为50户,则中位数为第25、26户的平均数,从表格观察都落在C组;故答案为:(1)13,30;(2)50,18;(3)C;(4)调查家庭中不超过9.0吨的户数有:4+13+15=32,=128(户),答:该月用水量不超过9.0吨的家庭数为128户.【点评】本题考查了扇形统计图、统计表,解题的关键是要明确题意,找出所求问题需要的条件.四、解答题:本大题共3小题,21、22各9分23题10分,共28分21.A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.【考点】一元一次方程的应用.【专题】应用题.【分析】根据题意,可以设出甲、乙的速度,然后根据题目中的关系,列出相应的方程,本题得以解决.【解答】解:设甲车的速度是x千米/时,乙车的速度为(x+30)千米/时,解得,x=60,则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.【点评】本题考查分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件,发现题目中的数量关系,列出相应的方程.22.如图,抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.【考点】抛物线与x轴的交点;二次函数的性质.【分析】(1)利用坐标轴上点的特点求出A、B、C点的坐标,再用待定系数法求得直线BC的解析式;(2)设点D的横坐标为m,则纵坐标为(m,),E点的坐标为(m,),可得两点间的距离为d=,利用二次函数的最值可得m,可得点D的坐标.【解答】解:(1)∵抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,∴令y=0,可得x=或x=,∴A(,0),B(,0);令x=0,则y=,∴C点坐标为(0,),设直线BC的解析式为:y=kx+b,则有,,解得:,∴直线BC的解析式为:y=x;(2)设点D的横坐标为m,则纵坐标为(m,),∴E点的坐标为(m,m),设DE的长度为d,∵点D是直线BC下方抛物线上一点,则d=m+﹣(m2﹣3m+),整理得,d=﹣m2+m,∵a=﹣1<0,∴当m==时,d===,最大∴D点的坐标为(,).【点评】此题主要考查了二次函数的性质及其图象与坐标轴的交点,设出D的坐标,利用二次函数最值得D点坐标是解答此题的关键.23.如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC (1)求证:DE与⊙O相切;(2)若BF=2,DF=,求⊙O的半径.【考点】切线的判定.【分析】(1)连接OD,由AB是⊙O的直径,得到∠ACB=90°,求得∠A+∠ABC=90°,等量代换得到∠BOD=∠A,推出∠ODE=90°,即可得到结论;(2)连接BD,过D作DH⊥BF于H,由弦且角动量得到∠BDE=∠BCD,推出△ACF与△FDB都是等腰三角形,根据等腰直角三角形的性质得到FH=BH=BF=1,则FH=1,根据勾股定理得到HD==3,然后根据勾股定理列方程即可得到结论.【解答】(1)证明:连接OD,∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∵∠BOD=2∠BCD,∠A=2∠BCD,∴∠BOD=∠A,∵∠AED=∠ABC,∴∠BOD+∠AED=90°,∴∠ODE=90°,即OD⊥DE,∴DE与⊙O相切;(2)解:连接BD,过D作DH⊥BF于H,∵DE与⊙O相切,∴∠BDE=∠BCD,∵∠AED=∠ABC,∴∠AFC=∠DBF,∵∠AFC=∠DFB,∴△ACF与△FDB都是等腰三角形,∴FH=BH=BF=1,则FH=1,∴HD==3,在Rt△ODH中,OH2+DH2=OD2,即(OD﹣1)2+32=OD2,∴OD=5,∴⊙O的半径是5.【点评】本题考查了切线的判定和性质,等腰三角形的判定,直角三角形的性质,勾股定理,正确的作出辅助线是解题的关键.五、解答题:本大题共3小题,24题11分,25、26各12分,共35分24.如图1,△ABC中,∠C=90°,线段DE在射线BC上,且DE=AC,线段DE沿射线BC运动,开始时,点D与点B重合,点D到达点C时运动停止,过点D作DF=DB,与射线BA相交于点F,过点E作BC的垂线,与射线BA相交于点G.设BD=x,四边形DEGF与△ABC重叠部分的面积为S,S关于x的函数图象如图2所示(其中0<x≤m,1<x≤m,m<x≤3时,函数的解析式不同)(1)填空:BC的长是3;(2)求S关于x的函数关系式,并写出x的取值范围.【考点】四边形综合题.【分析】(1)由图象即可解决问题.(2)分三种情形①如图1中,当0≤x≤1时,作DM⊥AB于M,根据S=S△ABC﹣S△BDF﹣S即四边形ECAG可解决.②如图2中,作AN∥DF交BC于N,设BN=AN=x,在RT△ANC中,利用勾股定理求出x,再根据S=S△ABC ﹣S△BDF﹣S即可解决.四边形ECAG③如图3中,根据S=CD•CM,求出CM即可解决问题.【解答】解;(1)由图象可知BC=3.故答案为3.(2)①如图1中,当0≤x≤1时,作DM⊥AB于M,由题意BC=3,AC=2,∠C=90°,∴AB==,∵∠B=∠B,∠DMB=∠C=90°,∴△BMD∽△BCA,∴==,∴DM=,BM=,∵BD=DF,DM⊥BF,∴BM=MF,∴S△BDF=x2,∵EG∥AC,∴=,∴=,∴EG=(x+2),∴S= [2+(x+2)]•(1﹣x),四边形ECAG∴S=S△ABC﹣S△BDF﹣S=3﹣x2﹣[2+(x+2)]•(1﹣x)=﹣x2+x+.四边形ECAG②如图②中,作AN∥DF交BC于N,设BN=AN=x,在RT△ANC中,∵AN2=CN2+AC2,∴x2=22+(3﹣x)2,∴x=,∴当1<x≤时,S=S△ABC﹣S△BDF=3﹣x2,③如图3中,当<x≤3时,∵DM∥AN,∴=,∴=,∴CM=(3﹣x),∴S=CD•CM=(3﹣x)2,综上所述S=.【点评】本题考查四边形综合题、等腰三角形的性质、相似三角形的性质、勾股定理等知识,解题的关键是学会分类讨论,正确画出图形,属于中考压轴题.25.阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).【考点】相似形综合题.【分析】(1)作AF⊥BC,判断出△ABF≌△BAE(AAS),得出BF=AE,即可;(2)先求出tan∠DAE=,再由tan∠F=tan∠DAE,求出CG,最后用△DCG∽△ACE求出AC;(3)构造含30°角的直角三角形,设出DG,在Rt△ABH,Rt△ADN,Rt△ABH中分别用a,k表示出AB=2a(k+1),BH=a(k+1),BC=2BH=2a(k+1),CG=a(2k+1),DN=ka,最后用△NDE∽△GDC,求出AE,EC即可.【解答】证明:(1)如图2,作AF⊥BC,∵BE⊥AD,∴∠AFB=∠BEA,在△ABF和△BAE中,,∴△ABF≌△BAE(AAS),∴BF=AE∵AB=AC,AF⊥BC,∴BF=BC,∴BC=2AE,故答案为AAS(2)如图3,连接AD,作CG⊥AF,在Rt△ABC中,AB=AC,点D是BC中点,∴AD=CD,∵点E是DC中点,∴DE=CD=AD,∴tan∠DAE===,∵AB=AC,∠BAC=90°,点D为BC中点,∴∠ADC=90°,∠ACB=∠DAC=45°,∴∠F+∠CDF=∠ACB=45°,∵∠CDF=∠EAC,∴∠F+∠EAC=45°,∵∠DAE+∠EAC=45°,∴∠F=∠DAE,∴tan∠F=tan∠DAE=,∴,∴CG=×2=1,∵∠ACG=90°,∠ACB=45°,∴∠DCG=45°,∵∠CDF=∠EAC,∴△DCG∽△ACE,∴,∵CD=AC,CE=CD=AC,∴,∴AC=4;∴AB=4;(3)如图4,过点D作DG⊥BC,设DG=a,在Rt△BGD中,∠B=30°,∴BD=2a,BG=a,∵AD=kDB,∴AD=2ka,AB=BD+AD=2a+2ka=2a(k+1),过点A作AH⊥BC,在Rt△ABH中,∠B=30°.∴BH=a(k+1),∵AB=AC,AH⊥BC,∴BC=2BH=2a(k+1),∴CG=BC﹣BG=a(2k+1),过D作DN⊥AC交CA延长线与N,∵∠BAC=120°,∴∠DAN=60°,∴∠ADN=30°,∴AN=ka,DN=ka,∵∠DGC=∠AND=90°,∠AED=∠BCD,∴△NDE∽△GDC.∴,∴,∴NE=3ak(2k+1),∴EC=AC﹣AE=AB﹣AE=2a(k+1)﹣2ak(3k+1)=2a(1﹣3k2),∴=.【点评】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的性质和判定,等腰三角形的性质,等腰直角三角形的性质,中点的定义,解本题的关键是作出辅助线,也是本题的难点.26.如图,在平面直角坐标系xOy中,抛物线y=x2+与y轴相交于点A,点B与点O关于点A对称(1)填空:点B的坐标是(0,);(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.【考点】二次函数综合题.【分析】(1)由抛物线解析式可求得A点坐标,再利用对称可求得B点坐标;(2)可先用k表示出C点坐标,过B作BD⊥l于点D,条件可知P点在x轴上方,设P点纵坐标为y,可表示出PD、PB的长,在Rt△PBD中,利用勾股定理可求得y,则可求出PB的长,此时可得出P点坐标,代入抛物线解析式可判断P点在抛物线上;(3)利用平行线和轴对称的性质可得到∠OBC=∠CBP=∠C′BP=60°,则可求得OC的长,代入抛物线解析式可求得P点坐标.【解答】解:(1)∵抛物线y=x2+与y轴相交于点A,∴A(0,),∵点B与点O关于点A对称,∴BA=OA=,∴OB=,即B点坐标为(0,),故答案为:(0,);(2)∵B点坐标为(0,),∴直线解析式为y=kx+,令y=0可得kx+=0,解得x=﹣,∴OC=﹣,∵PB=PC,∴点P只能在x轴上方,如图1,过B作BD⊥l于点D,设PB=PC=m,则BD=OC=﹣,CD=OB=,∴PD=PC﹣CD=m﹣,在Rt△PBD中,由勾股定理可得PB2=PD2+BD2,即m2=(m﹣)2+(﹣)2,解得m=+,∴PB+,∴P点坐标为(﹣,+),当x=﹣时,代入抛物线解析式可得y=+,∴点P在抛物线上;(3)如图2,连接CC′,∵l∥y轴,∴∠OBC=∠PCB,又PB=PC,∴∠PCB=∠PBC,∴∠PBC=∠OBC,又C、C′关于BP对称,且C′在抛物线的对称轴上,即在y轴上,∴∠PBC=∠PBC′,∴∠OBC=∠CBP=∠C′BP=60°,在Rt△OBC中,OB=,则BC=1∴OC=,即P点的横坐标为,代入抛物线解析式可得y=()2+=1,∴P点坐标为(,1).【点评】本题为二次函数的综合应用,涉及知识点有轴对称的性质、平行线的性质、勾股定理、等腰三角形的性质、二次函数的性质等.在(2)中构造直角三角形,利用勾股定理得到关于PC的长的方程是解题的关键,在(3)中求得∠OBC=∠CBP=∠C′BP=60°是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
辽宁省大连市2020年中考数学试题
到答案.
【详解】
解:A、 a 2 a 3 不能合并,故 A 错误;
B、 a 2 a 3 a 5 ,故 B 错误;
C、 a 2 3 a 6 ,故 C 正确; D、 2a 2 3 8a 6 ,故 D 错误;
故选:C. 【点睛】 本题考查了合并同类项、同底数幂相乘、幂的乘方、积的乘方的运算法则,解题的关键 是熟练掌握运算法则进行判断. 7.在一个不透明的袋子中有 3 个白球、4 个红球,这些球除颜色不同外其他完全相同.从 袋子中随机摸出一个球,它是红球的概率是( )
…………○…………内…………○…………装…………○…………订…………○…………线…………○………… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
A.
7 2
,
0
B. (3, 0 )
2.下列四个数中,比 1 小的数是(
A. 2 【答案】A
B. 1 2
) C.0
D.1
【解析】
【分析】
试卷第 1 页,总 28 页
…………○…………内…………○…………装…………○…………订…………○…………线…………○………… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
2 ∴CAA ' CAB BAA ' 50+70=120 ; 故选:D. 【点睛】 本题考查了旋转的性质,三角形的内角和定理,以及余角的性质,解题的关键是掌握所 学的性质,正确求出 B A A 7 0 .
辽宁省大连市2020年中考数学试卷(I)卷
辽宁省大连市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)-6的倒数是()A .B . -C . 6D . -62. (2分) (2019九下·瑞安月考) 如图所示一个L形的机器零件,这个零件从上面看到的图形是()A .B .C .D .3. (2分)(2020·台州模拟) 新冠肺炎疫情爆发以来,口罩成为需求最为迫切的防护物资.在这个关键时刻,我国某企业利用自身优势转产口罩,这背后不仅体现出企业强烈的社会责任感,更是我国人民团结一心抗击疫情的决心据悉该企业3月份的口罩日产能已达到500万只,预计今后数月内都将保持同样的产能,则3月份(按31天计算)该企业生产的口罩总数量用科学记数法表示为()A . 1.55×107只B . 1.55×108只C . 0.155×109只D . 5×106只4. (2分)(2017·贵港) 若关于x的一元二次方程x2﹣mx﹣2=0的一个根为﹣1,则另一个根为()A . 1B . ﹣1C . 2D . ﹣25. (2分)(2017·兰州模拟) 如图,关于x的二次函数y=x2﹣x+m的图象交x轴的正半轴于A,B两点,交y轴的正半轴于C点,如果x=a时,y<0,那么关于x的一次函数y=(a﹣1)x+m的图象可能是()A .B .C .D .6. (2分)(2017·河北模拟) 若a+b=5,ab=﹣24,则a2+b2的值等于()A . 73B . 49C . 43D . 237. (2分) (2018八上·泗阳期中) 如图,已知,则不一定使△ABD≌△ACD的条件是()A .B .C .D .8. (2分)小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为().A . 4℃B . 9℃C . -1℃D . -9℃9. (2分)如图,一只蚂蚁在如图所示位置向上爬,在树枝上寻觅食物,假定蚂蚁在每一个岔路口都会随机的选择一条路径,那么这只蚂蚁爬到树枝头A和E的概率的大小关系是()A . A的概率大B . E的概率大C . 同样大D . 无法比较10. (2分)(2015·江岸) 如图,在Rt△ACB中,∠C=90°,BE平分∠CBA交AC于点E,过E作ED⊥AB 于D点,当∠A=_____时, ED恰为AB的中垂线.A . 10°B . 15°C . 30°D . 45°二、填空题 (共8题;共8分)11. (1分)(2016·姜堰模拟) 因式分解:x2y﹣9y=________.12. (1分) (2018九上·河南期中) 如图,平行四边形 ABCD 中,A(﹣1,0)、B(0,﹣2),顶点 C、D 在双曲线 y= (x>0)上,边 AD 交 y 轴于点 E,若点 E 恰好是 AD 的中点,则 k=________.13. (1分)某公园正在举行郁金香花展,现从红、黄两种郁金香中,各抽出6株,测得它们离地面的高度分别如下(单位cm):红:54、44、37、36、35、34;黄:48、35、38、36、43、40;已知它们的平均高度均是40cm,请判断哪种颜色的郁金香样本长得整齐?________ .(填“红”或“黄”)14. (1分)已知:AB=3cm,经过A、B两点且半径为3cm的圆有________个.15. (1分) (2019八下·赵县期末) 观察下列等式第1个等式:a1= = -1,第2个等式:a2= = - ,第3个等式:a3= =2- ,第4个等式:a4= = -2按上述规律,第n个等式为an=________,那么a1+a2+…an=________.16. (1分)(2018·吉林模拟) 用一条长40cm的绳子围成一个面积为64cm2的矩形.设矩形的一边长为xcm,则可列方程为________.17. (1分) (2011八下·建平竞赛) 如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,拆痕为EF ,则重叠部分△DEF的边ED的长是________.18. (1分) (2020八上·香坊期末) 在中,,,点在斜边所在的直线上,,线段关于对称的线段为,连接、,则的面积为________.三、解答题 (共8题;共78分)19. (5分)(1)计算:()﹣2+﹣2cos60°;(2)先化简,再求值:(a﹣)÷,其中a=+1.20. (10分) (2016七下·海宁开学考) 按要求完成下列小题:(1)化简:(4x+2y)﹣2(x﹣y)(2)先化简再求值:﹣(a2﹣6ab+9)+2(a2+4ab+4.5),其中a=6,b=﹣.21. (10分)已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A、C的横坐标是一元二次方程x2+2x﹣3=0的两根(AO>OC),直线AB与y轴交于D,D点的坐标为(1)求直线AB的函数表达式;(2)在x轴上找一点E,连接EB,使得以点A、E、B为顶点的三角形与△ABC相似(不包括全等),并求点E 的坐标;(3)在(2)的条件下,点P、Q分别是AB和AE上的动点,连接PQ,点P、Q分别从A、E同时出发,以每秒1个单位长度的速度运动,当点P到达点B时,两点停止运动,设运动时间为t秒,问几秒时以点A、P、Q为顶点的三角形与△AEB相似.22. (5分)如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼,已知点A到MN的距离为15米,BA的延长线与MN相交于点D,且∠BDN=30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音(XRS)的影响.(1)过点A作MN的垂线,垂足为点H,如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排的居民楼,那么此时汽车与点H的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q时,它与这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米)(参考数据:≈1.7)23. (12分) (2018九上·嵩县期末) 为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如图两幅不完整统计图,请根据图中提供的信息解答下列各题.(1) m=________%,这次共抽取了________名学生进行调查;并补全条形图;(2)请你估计该校约有________名学生喜爱打篮球;(3)现学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或画树状图的方法,求抽到一男一女学生的概率是多少?24. (10分)(2019·巴彦模拟) 目前节能灯已基本普及,节能还环保,销量非常好,某商场计划购进甲、乙两种型号节能灯共1200只,这两种节能灯的进价、售价如表所示:进价(元/只)售价(元/只)甲型2530乙型4560(1)商场应如何进货,使进货款恰好为46000元?(2)若商场销售完节能灯后获利不超过进货价的30%,至少购进甲种型号节能灯多少只?25. (6分) (2020七上·无为期末) 如图,将一副三角板,如图放置在桌面上,让三角板OAB的30°角顶点与三角板OCD的直角顶点重合,边OA与OC重合,固定三角板OCD不动,把三角板OAB绕着顶点O顺时针转动,直到边OB落在桌面上为止.(1)如下图,当三角板OAB转动了20°时,求∠BOD的度数;(2)在转动过程中,若∠BOD=20°,在下面两图中分别画出∠AOB的位置,并求出转动了多少度?(3)在转动过程中,∠AOC与∠BOD有怎样的等量关系,请你给出相等关系式,并说明理由;26. (20分)(2019·高台模拟) 如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(-2,0),点C(8,0),与y轴交于点A.(1)求抛物线的解析式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN 面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共78分)19-1、20-1、20-2、21-1、21-2、21-3、22-1、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。
2020年辽宁省大连市初中毕业升学统一考试初中数学
2020年辽宁省大连市初中毕业升学统一考试初中数学数 学〔本试卷共150分,考试时刻120分钟〕请考生预备好圆规,直尺、三角板、运算器等答题工具,祝愿所有考生都能发挥最正确水平。
一、选择题(此题8小题,每题3分,共24分)讲明:将以下各题唯独正确的答案代号A 、B 、C 、D 填到题后的括号内。
1.-8的相反数是 ( ) A .8 B .-8 C .81 D .-81 2.在平面直角坐标系中,点P (-2,3)在 ( )A .第一象限B .第二象限C .第三象限D .第四象限3.在一条东西向的跑道上,小亮先向东走了8米,记作〝+8米〞,又向西走了10米,现在他的位置可记作 ( ) A .+2米 B .-2米 C .+18米 D .-18米4.如图1,在矩形ABCD 中,对角线AC 、BD 相交于点O ,假设O A = 2,那么BD 的长为 ( )A .4B .3C .2D .1 5.以下图形能折成正方体的是 ()DC B A6.如图2,AB 、A C 是⊙O 的两条切线,B 、C 是切点,假设∠A = 70°,那么∠BOC 的度数为 ( )A .130°B .120°C .110°D .100°7.五箱苹果的质量分不为(单位:千克):18,20,21,22,19,那图 1DCBA 图 2C OB A么这五箱苹果质量的平均数和中位数分不为 ( ) A .19和20 B .20和19 C .20和20 D .20和218.如图3,直线b kx y +=通过点A 、B ,那么k 的值为 ( ) A . 3 B .23 C .32 D .23- 二、填空题(此题共7小题,每题3分,共21分) 讲明:将答案直截了当填在题后的横线上。
9.把780 000用科学记数法表示为_______________________. 10.方程022=-x 的解为____________________________. 11.如图4,在△ABC 中,∠C = 90°,AB = 10cm ,54sin =A ,那么BC 的长为_________cm . 12.运算:x x xx 112-⋅-=_____________. 13.如图5,为测量学校旗杆的高度,小东用长为3.2m 的竹竿做测量工具.移动竹竿,全竹竿、旗杆顶端的影子恰好落在地面的同一点,现在,竹竿与这一点相距8m ,与旗杆相距22米,那么旗杆的高为_____________m .14.钟面上分针的长是6cm ,通过10分钟,分针在钟面上扫过的面积是______________cm 2.(结果用含π代数式表示)15.如图6,A 、B 是双曲线xky =的一个分支上的两点,且点B (a ,b ) 在点A 的右侧,那么b 的取值范畴是___________________. 三、解答题(此题共5小题,其中16、17题各9分,18、 19、20题各10分,共48分)16.如图7,在△ABC 中,AB = AC ,点D 、E 分不是AB 、AC 的中点,点F 是BE 、CD 的交点,请写出图中两组全等的三角形,并选出其中一组加以证明. (要求:写出证明过程中的重要依据)图 33-2yxAB O 图 4ABC21Oyx图 7FEDCBA17.解方程:13112=++xx x 18.某学校为丰富大课间自由活动的内容,随机选取本校100名学生进行调查,调查内容是〝你最喜爱的自由活动项目是什么〞,整理收集到的数据,绘制成图8. ⑴学校采纳的调查方式是______________________;⑵求喜爱〝踢毽子〞的学生人数,并中图8中将〝踢毽子〞部分的图形补充完整; ⑶该校共有800名学生,请估量喜爱〝跳绳〞的学生人数.图 819.如图9,在直角坐标系中,图形①与图形②关于点P 成中心对称. ⑴画出对称中心P ,并写出点P 的坐标;⑵将图形②向下平移4个单位,画出平移后的图形③,并判定图形③与图形①的位置关系.(直截了当写出结果)图 920.为丰富学生的校园文化生活,振兴中学举办了一次学生才艺竞赛,三个年级都有男、女各一名选手进入决赛.初一年级选手编号为男1号、女1号,初二年级选手编号为男2号、女2号,初三年级选手编号为男3号、女3号.竞赛规那么是男、女各一名选手组成搭档展现才艺.⑴用列举法讲明所有可能显现搭档的结果;⑵求同一年级男、女选手组成搭档的概率;⑶求高年级男选手与低年级女选手组成搭档的概率.四、解答题(此题共3小题,21、22题各8分,其中23题7分,共23分)21.星期天,小强骑自行车到郊外与同学一起游玩.从家动身2小时到达目的地,游玩3小时后按原路以原速返回,小强离家4小时40分钟后,妈妈驾车沿相同路线迎接小强,图10是他们离家的路程y(千米)与时刻x(时)的函数图象.小强骑车的速度为15千米/时,妈妈驾车的速度为60千米/时.⑴小强家与游玩地的距离是多少?⑵妈妈动身多长时刻与小强相遇?图 1022.某班级为预备元旦联欢会,欲购买价格分不为2元、4元和10元的三种奖品,每种奖品至少购买一件,共买16件,恰好用50元.假设2元的奖品购买a 件. ⑴用含a 的代数式表示另外两种奖品的件数; ⑵请你设计购买方案,并讲明理由.23.如图11-1,小明在研究正方形ABCD 的有关咨询题时,得出:〝在正方形ABCD 中,假如点E 是CD 的中点,点F 是BC 边上的一点,且∠F AE =∠EAD ,那么EF ⊥AE 〞.他又将〝正方形〞改为〝矩形〞、〝菱形〞和〝任意平行四边形〞(如图11-2、11-3、图11-4),其他条件不变,发觉仍旧有〝EF ⊥AE 〞的结论.你同意小明的观点吗?假设同意,请结合图11-4加以证明;假设不同意,请讲明理由. 图11-4图11-3图11-2图11-1ABCDE F A BCDE F ABCDF EF EDC BA五、解答题和附加题(此题共3小题,24、25题各12分,26题10分,共34分,附加题5分,全卷累积不超过150分,建议考生最后答附加题) 24.抛物线22++=x ax y .⑴当a =-1时,求此抛物线的顶点坐标和对称轴; ⑵假设代数式22++-x x 的值为正整数,求x 的值;⑶当1a a =时,抛物线22++=x ax y 与x 轴的正半轴相交于点M (m ,0);当2a a =时,抛物线22++=x ax y 与x 轴的正半轴交于点N (n ,0).假设点M 在点N 的左边,试比较1a 与2a 的大小.25.两个全等的Rt △ABC 和Rt △EDA 如图12放置,点B 、A 、D 在同一直线上. 操作:在图12中,作∠ABC 的平分线BF ,过点D 作DF ⊥BF ,垂足为F ,连结CE . 探究:线段BF 、CE 的关系,并证明你的结论.讲明:假如你无法证明探究所得的结论,能够将〝两个全等的Rt △ABC 和Rt △EDA 〞改为〝两个全等的等腰直角△ABC 和等腰直角△EDA(点C 、A 、E 在同一直线上)〞,其他条件不变,完成你的证明,此证明过程最多得...2.分.. 图12EDCB A26.如图13,直线AB 交x 轴于点A (2,0),交抛物线2ax y =于点B(1,3),点C 到△OAB各顶点的距离相等,直线AC 交y 轴于点D .当x > 0时,在直线OC 和抛物线2ax y =上是否分不存在点P 和点Q ,使四边形DOPQ 为专门的梯形?假设存在,求点P 、Q 的坐标;假设不存在,讲明理由.附加题:在第26题中,抛物线的解析式和点D 的坐标不变(如图14).当x > 0时,在直线kx y =(0 < k < 1)和这条抛物线上,是否分不存在点P 和点Q ,使四边形DOPQ 为以OD 为底的等腰梯形.假设存在,求点P、Q的坐标;假设不存在,讲明理由.图14。
2020年辽宁省大连市初中毕业升学考试初中数学
2020年辽宁省大连市初中毕业升学考试初中数学数学试卷本卷须知:1.请将答案写在答题卡上,写在试卷上无效.2.本试卷总分值150分,考试时刻120分钟.一、选择题〔在每题给出的四个选项中,只有一个正确答案.本大题共有8小题,每题3分,共24分〕1.|-3|等于 〔 〕A .3B .-3C .31D .-31 2.以下运算正确的选项是 〔 〕A .523x x x =+B .x x x =-23C .623x x x =⋅D .x x x =÷233.函数2-=x y 中,自变量x 的取值范畴是 〔 〕A .x < 2B .x ≤2C .x > 2D .x ≥2 4.将一张等边三角形纸片按图①所示的方式对折,再按图②所示的虚线剪去一个小三角形,将余下纸片展开得到的图案是 〔 〕5.以下的调查中,选取的样本具有代表性的有 〔 〕A .为了解某地区居民的防火意识,对该地区的初中生进行调查B .为了解某校1200名学生的视力情形,随机抽取该校120名学生进行调查C .为了解某商场的平均净营业额,选在周末进行调查D .为了解全校学生课外小组的活动情形,对该校的男生进行调查6.如图,等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,∠AEB =60°,AB = AD = 2cm ,那么梯形ABCD 的周长为 〔 〕A .6cmB .8cmC .10cmD .12cm7.以下四个点中,有三个点在同一反比例函数x k y =的图象上,那么不在那个函数图象上的点是 〔 〕A .〔5,1〕B .〔-1,5〕C .〔35,3〕D .〔-3,35-〕 8.图是一个几何体的三视图,其中主视图、左视图差不多上腰为13cm ,底为10cm 的等腰三角形,那么那个几何的侧面积是 〔 〕A .60πcm 2B .65πcm 2C .70πcm 2D .75πcm 2二、填空题〔此题共有9小题,每题3分,共27分〕9.某天最低气温是-5℃,最高气温比最低气温高8℃,那么这天的最高气温是_________℃.10.运算)13)(13(-+=___________.11.如图,直线a ∥b ,∠1 = 70°,那么∠2 = __________.12.如图,某游乐场内滑梯的滑板与地面所成的角∠A = 35°,滑梯的高度BC = 2米,那么滑板AB 的长约为_________米〔精确到0.1〕.13.在某智力竞赛中,小明对一道四选一的选择题所涉及的知识完全不明白,只能靠推测得出结果,那么他答对这道题的概率是_______________.14.假设⊙O 1和⊙O 2外切,O 1O 2 = 10cm ,⊙O 1半径为3cm ,那么⊙O 2半径为___________cm .15.图是某班为贫困地区捐书情形的条形统计图,那么那个班平均每名学生捐书___________册.16.图是一次函数b kx y +=的图象,那么关于x 的不等式0>+b kx 的解集为____________.17.如图,原点O 是△ABC 和△A ′B ′C ′的位似中心,点A 〔1,0〕与点A ′〔-2,0〕是对应点,△ABC 的面积是23,那么△A ′B ′C ′的面积是________________.三、解答题〔此题共有3小题,18题、19题、20题各12分,共36分〕18.如图,在△ABC和△DEF中,AB = DE,BE = CF,∠B =∠1.求证:AC = DF〔要求:写出证明过程中的重要依据〕19.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情形进行调查统计,并绘制了如下图的统计表,依照统计图提供的信息解决以下咨询题:〔1〕这种树苗成活的频率稳固在_________,成活的概率估量值为_______________.〔2〕该地区差不多移植这种树苗5万棵.①估量这种树苗成活___________万棵;②假如该地区打算成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?20.甲、乙两车间生产同一种零件,乙车间比甲车间平均每小时多生产30个,甲车间生产600个零件与乙车间生产900个零件所用时刻相等,设甲车间平均每小时生产x个零件,请按要求解决以下咨询题:〔1〕依照题意,填写下表:车间零件总个数平均每小时生产零件个数所用时刻甲车间600 xx600乙车间900________〔2〕甲、乙两车间平均每小时各生产多少个零件?四、解答题〔此题3小题,其中21、22题各9分,23题10分,共28分〕21.如图,在⊙O 中,AB 是直径,AD 是弦,∠ADE = 60°,∠C = 30°.〔1〕判定直线CD 是否是⊙O 的切线,并讲明理由;〔2〕假设CD = 33 ,求BC 的长.22.如图,直线2--=x y 交x 轴于点A ,交y 轴于点B ,抛物线c bx ax y ++=2的顶点为A ,且通过点B .〔1〕求该抛物线的解析式;〔2〕假设点C 〔m ,29-〕在抛物线上,求m 的值. 23.A 、B 两地的路程为16千米,往返于两地的公交车单程运行40分钟。
2020年辽宁省大连市中考数学试卷及答案解析
第 1 页 共 24 页
2020年辽宁省大连市中考数学试卷
一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)
1.(3分)下列四个数中,比﹣1小的数是( )
A .﹣2
B .−12
C .0
D .1
2.(3分)如图是由5个相同的小正方体组成的立体图形,它的主视图是( )
A .
B .
C .
D .
3.(3分)2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一
颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆.数36000用科学记数法表示为( )
A .360×102
B .36×103
C .3.6×104
D .0.36×105
4.(3分)如图,△ABC 中,∠A =60°,∠B =40°,DE ∥BC ,则∠AED 的度数是( )
A .50°
B .60°
C .70°
D .80°
5.(3分)平面直角坐标系中,点P (3,1)关于x 轴对称的点的坐标是( )
A .(3,1)
B .(3,﹣1)
C .(﹣3,1)
D .(﹣3,﹣1)
6.(3分)下列计算正确的是( )
A .a 2+a 3=a 5
B .a 2•a 3=a 6。
2020年辽宁省大连市中考数学试卷(附答案详解)
2020年辽宁省大连市中考数学试卷1.(2021·山东省·单元测试)下列四个数中,比−1小的数是()C. 0D. 1A. −2B. −122.(2021·天津市市辖区·模拟题)如图是由5个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.3.(2021·江西省上饶市·期中考试)2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆.数36000用科学记数法表示为()A. 360×102B. 36×103C. 3.6×104D. 0.36×1054.(2020·安徽省·单元测试)如图,△ABC中,∠A=60°,∠B=40°,DE//BC,则∠AED的度数是()A. 50°B. 60°C. 70°D. 80°5.(2021·全国·单元测试)平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是()A. (3,1)B. (3,−1)C. (−3,1)D. (−3,−1)6.(2021·江苏省宿迁市·模拟题)下列计算正确的是()A. a2+a3=a5B. a2⋅a3=a6C. (a2)3=a6D. (−2a2)3=−6a67.(2020·福建省厦门市·月考试卷)在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是()A. 14B. 13C. 37D. 478.(2020·河北省石家庄市·期中考试)如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60°方向,且与他相距200m,则图书馆A到公路的距离AB为()A. 100mB. 100√2mC. 100√3mD. 200√33m9.(2021·湖南省·单元测试)抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(−1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A. (72,0)B. (3,0)C. (52,0)D. (2,0)10.(2021·河北省·其他类型)如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A. 50°B. 70°C. 110°D. 120°11.(2021·辽宁省大连市·模拟题)不等式5x+1>3x−1的解集是______.12.(2020·全国·历年真题)某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.每人所创年利润/万部门人数元A110B28C75这个公司平均每人所创年利润是______万元.13.(2020·广东省·单元测试)我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的面积为864平方步,宽比长少12步,问宽和长各多少步?设矩形的宽为x步,根据题意,可列方程为______.14.(2020·陕西省西安市·期中考试)如图,菱形ABCD中,∠ACD=40°,则∠ABC=______°.15.(2021·上海市·单元测试)如图,在平面直角坐标系中,(x>0)的图正方形ABCD的顶点A与D在函数y=kx象上,AC⊥x轴,垂足为C,点B的坐标为(0,2),则k的值为______.16.(2020·全国·历年真题)如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,CE与BD相交于点F.设DE=x,BF=y,当0≤x≤8时,y关于x的函数解析式为______.3+√9.17.(2020·全国·历年真题)计算(√2+1)(√2−1)+√−818.(2020·全国·历年真题)计算x2+4x+4x+2÷x2+2xx−2−1.19.(2021·辽宁省大连市·期末考试)如图,△ABC中,AB=AC,点D,E在边BC上,BD=CE.求证:∠ADE=∠AED.20.(2020·全国·历年真题)某校根据《教育部基础教育课程教材发展中心中小学生阅读指导目录(2020版)》公布的初中段阅读书目,开展了读书活动.六月末,学校对八年级学生在此次活动中的读书量进行了抽样调查,如图是根据调查结果绘制的统计图表的一部分.读书量频数(人)频率根据以上信息,解答下列问题:(1)被调查学生中,读书量为1本的学生数为______人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为______%;(2)被调查学生的总人数为______人,其中读书量为2本的学生数为______人;(3)若该校八年级共有550名学生,根据调查结果,估计该校八年级学生读书量为3本的学生人数.21.(2021·海南省省直辖县级行政区划·单元测试)某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?22.(2021·北京市市辖区·模拟题)四边形ABCD内接于⊙O,AB是⊙O的直径,AD=CD.(1)如图1,求证∠ABC=2∠ACD;(2)过点D作⊙O的切线,交BC延长线于点P(如图2).若tan∠CAB=5,BC=1,12求PD的长.23.(2020·江苏省·期末考试)甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.如图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象.(1)求这两个气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.24.(2020·全国·历年真题)如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点D从点B出发,沿边BA→AC以2cm/s的速度向终点C运动,过点D作DE//BC,交边AC(或AB)于点E.设点D的运动时间为t(s),△CDE的面积为S(cm2).(1)当点D与点A重合时,求t的值;(2)求S关于t的函数解析式,并直接写出自变量t的取值范围.25.(2020·全国·历年真题)如图1,△ABC中,点D,E,F分别在边AB,BC,AC上,BE=CE,点G在线段CD上,CG=CA,GF=DE,∠AFG=∠CDE.(1)填空:与∠CAG相等的角是______;(2)用等式表示线段AD与BD的数量关系,并证明;(3)若∠BAC=90°,∠ABC=2∠ACD(如图2),求AC的值.AB26.(2020·福建省福州市·月考试卷)在平面直角坐标系xOy中,函数F1和F2的图象关于y轴对称,它们与直线x=t(t>0)分别相交于点P,Q.(1)如图,函数F1为y=x+1,当t=2时,PQ的长为______;(2)函数F1为y=3,当PQ=6时,t的值为______;x(3)函数F1为y=ax2+bx+c(a≠0),①当t=√b时,求△OPQ的面积;b②若c>0,函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),当c≤x≤c+1时,设函数F1的最大值和函数F2的最小值的差为h,求h关于c的函数解析式,并直接写出自变量c的取值范围.答案和解析1.【答案】A【知识点】有理数大小比较【解析】解:根据有理数比较大小的方法,可得>−1,1>−1,−2<−1,0>−1,−12∴四个数中,比−1小的数是−2.故选:A.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.【答案】B【知识点】简单组合体的三视图【解析】解:从正面看,底层是三个小正方形,上层右边的一个小正方形.故选:B.从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图,画出从正面看所得到的图形即可.此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.3.【答案】C【知识点】科学记数法-绝对值较大的数【解析】解:36000=3.6×104,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.【答案】D【知识点】三角形内角和定理、平行线的性质【解析】解:∵∠C=180°−∠A−∠B,∠A=60°,∠B=40°,∴∠C=80°,∵DE//BC,∴∠AED=∠C=80°,故选:D.利用三角形内角和定理求出∠C,再根据平行线的性质求出∠AED即可.本题考查三角形内角和定理,平行线的性质,解题的关键是熟练掌握三角形内角和定理,平行线的性质解决问题,属于中考常考题型.5.【答案】B【知识点】轴对称中的坐标变化【解析】解:点P(3,1)关于x轴对称的点的坐标是(3,−1)故选:B.关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.6.【答案】C【知识点】同底数幂的乘法、幂的乘方与积的乘方、合并同类项【解析】解:A.a2与a3不是同类项,所以不能合并,故本选项不合题意;B.a2⋅a3=a5,故本选项不合题意;C.(a2)3=a6,故本选项符合题意;D.(−2a2)3=−8a6,故本选项不合题意.故选:C.分别根据合并同类项法则,同底数幂的乘法法则,幂的乘方运算法则以及积的乘方运算法则逐一判断即可.本题主要考查了同底数幂的乘法,合并同类项以及幂的乘方与积的乘方,熟记相关运算法则是解答本题的关键.7.【答案】D【知识点】概率公式【解析】解:根据题意可得:袋子中有有3个白球,4个红球,共7个,.从袋子中随机摸出一个球,它是红球的概率47故选:D.根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中.事件A出现m种结果,那么事件A的概率P(A)=mn8.【答案】A【知识点】解直角三角形的应用【解析】解:由题意得,∠AOB=90°−60°=30°,OA=100(m),∴AB=12故选:A.根据题意求出∠AOB,根据直角三角形的性质解答即可.本题考查的是解直角三角形的应用−方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.9.【答案】B【知识点】二次函数与一元二次方程、二次函数的性质【解析】【分析】本题考查了抛物线与x轴的交点,要知道抛物线与x轴的两交点关于对称轴对称.根据抛物线的对称性和(−1,0)为x轴上的点,即可求出另一个点的交点坐标.【解答】解:设抛物线与x轴交点横坐标分别为x1、x2,且x1<x2,根据两个交点关于对称轴直线x=1对称可知:x1+x2=2,即x2−1=2,得x2=3,∴抛物线与x轴的另一个交点为(3,0),故选:B.10.【答案】D【知识点】旋转的基本性质【解析】解:∵∠ACB=90°,∠ABC=40°,∴∠CAB=90°−∠ABC=90°−40°=50°,∵将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,∴∠A′BA=∠ABC=40°,A′B=AB,∴∠BAA′=∠BA′A=1(180°−40°)=70°,2∴∠CAA′=∠CAB+∠BAA′=50°+70°=120°.故选:D.根据旋转可得∠A′BA=∠ABC=40°,A′B=AB,得∠BAA′=70°,根据∠CAA′=∠CAB+∠BAA′,进而可得∠CAA′的度数.本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.11.【答案】x>−1【知识点】一元一次不等式的解法【解析】解:5x+1>3x−1,移项得,5x−3x>−1−1,合并得,2x>−2,即x>−1,故答案为x>−1.先对不等式进行移项,合并同类项,再系数化1即可求得不等式的解集.本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.12.【答案】6.1【知识点】加权平均数(10+2×8+7×5)=6.1(万).【解析】解:这个公司平均每人所创年利润是:110故答案为:6.1.直接利用表格中数据,求出10人的总收入进而求出平均收入.此题主要考查了加权平均数,正确利用表格获取正确信息是解题关键.13.【答案】x(x+12)=864【知识点】由实际问题抽象出一元二次方程、数学常识【解析】解:∵矩形的宽为x,且宽比长少12,∴矩形的长为(x+12).依题意,得:x(x+12)=864.故答案为:x(x+12)=864.由矩形的宽及长与宽之间的关系可得出矩形的长为(x+12),再利用矩形的面积公式即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程以及数学常识,找准等量关系,正确列出一元二次方程是解题的关键.14.【答案】100【知识点】菱形的性质【解析】解:∵四边形ABCD是菱形,∴AB//CD,∠BCD=2∠ACD=80°,∴∠ABC+∠BCD=180°,∴∠ABC=180°−80°=100°;故答案为:100.由菱形的性质得出AB//CD,∠BCD=2∠ACD=80°,则∠ABC+∠BCD=180°,即可得出答案.本题考查了菱形的性质、平行线的性质;熟练掌握菱形的性质是解题的关键.15.【答案】8【知识点】反比例函数图象上点的坐标特征、正方形的性质【解析】解:连接BD,与AC交于点O,∵四边形ABCD是正方形,AC⊥x轴,∴BD所在对角线平行于x轴,∵B(0,2),∴OC=2=BO=AO=DO,∴点A的坐标为(2,4),∴k=2×4=8,故答案为:8.连接BD,与AC交于点O,利用正方形的性质得到OA=OB=OC=OD=2,从而得到点A坐标,代入反比例函数表达式即可.本题考查了正方形的性质,反比例函数表达式的求法,解题的关键是利用正方形的性质求出点A的坐标.16.【答案】y=80x+8【知识点】矩形的性质、相似三角形的判定与性质【解析】解:在矩形中,AD//BC,∴△DEF∽△BCF,∴DEBC =DFBF,∵BD=√BC2+CD2=10,BF=y,DE=x,∴DF=10−y,∴x8=10−yy,化简得:y=80x+8,∴y关于x的函数解析式为:y=80x+8,故答案为:y=80x+8.根据题干条件可证得△DEF∽△BCF,从而得到DEBC =DFBF,由线段比例关系即可求出函数解析式.本题主要考查的是相似三角形的判定与性质定理,难度不大,熟练掌握性质和判定定理是解得本题的关键,注意掌握数形结合思想与函数思想的应用.17.【答案】解:原式=2−1−2+3=2.【知识点】平方差公式、实数的运算【解析】原式利用平方差公式,立方根、算术平方根性质计算即可求出值.此题考查了平方差公式,以及实数的运算,熟练掌握公式及运算法则是解本题的关键.18.【答案】解:原式=(x+2)2x+2⋅x−2x(x+2)−1=x−2x−1=x−2−xx=−2x.【知识点】分式的混合运算【解析】直接利用分式的混合运算法则分别化简得出答案.此题主要考查了分式的混合运算,正确化简分式是解题关键.19.【答案】证明:∵AB=AC,∴∠B=∠C(等边对等角),在△ABD和△ACE中,{AB=AC ∠B=∠C BD=CE∴△ABD≌△ACE(SAS),∴AD=AE(全等三角形对应边相等),∴∠ADE=∠AED(等边对等角).【知识点】全等三角形的判定与性质【解析】根据等腰三角形等边对等角的性质可以得到∠B=∠C,然后证明△ABD和△ACE全等,根据全等三角形对应边相等有AD=AE,再根据等边对等角的性质即可证明.本题考查了全等三角形的判定与性质以及等腰三角形的性质,找出已知边的夹角相等是证明三角形全等的关键,也是本题的突破点.20.【答案】4 20 50 15【知识点】扇形统计图、用样本估计总体、频数(率)分布表【解析】解:(1)由图表可知:被调查学生中,读书量为1本的学生数为4人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为20%, 故答案为:4;20; (2)10÷20%=50, 50×0.3=15,∴被调查学生的总人数为50人,其中读书量为2本的学生数为15人, 故答案为:50;15;(3)(50−4−10−15)÷50×550=231, 该校八年级学生读书量为3本的学生有231人. (1)直接根据图表信息可得;(2)用4本及以上对应的频数除以所占百分比可得总人数,再乘以读书量为2本的频率即可;(3)求出读书量为3本的人数,除以样本人数50,再乘以全校总人数550可得结果. 本题考查了频数统计表和扇形统计图,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.21.【答案】解:设每节火车车厢平均装x 吨化肥,每辆汽车平均装y 吨化肥,依题意,得:{6x +15y =3608x +10y =440,解得:{x =50y =4.答:每节火车车厢平均装50吨化肥,每辆汽车平均装4吨化肥.【知识点】二元一次方程组的应用【解析】设每节火车车厢平均装x 吨化肥,每辆汽车平均装y 吨化肥,根据“第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论. 本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.【答案】(1)证明:∵AD =CD ,∴∠DAC =∠ACD , ∴∠ADC +2∠ACD =180°, 又∵四边形ABCD 内接于⊙O ,∴∠ABC+∠ADC=180°,∴∠ABC=2∠ACD;(2)解:连接OD交AC于点E,∵PD是⊙O的切线,∴OD⊥DP,∴∠ODP=90°,又∵AD⏜=CD⏜,∴OD⊥AC,AE=EC,∴∠DEC=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ECP=90°,∴四边形DECP为矩形,∴DP=EC,∵tan∠CAB=512,BC=1,∴CBAC =1AC=512,∴AC=125,∴EC=12AC=65,∴DP=65.【知识点】圆内接四边形的性质、解直角三角形、垂径定理、切线的性质、圆周角定理【解析】(1)由等腰三角形的性质得出∠DAC=∠ACD,由圆内接四边形的性质得出∠ABC+∠ADC=180°,则可得出答案;(2)由切线的性质得出∠ODP=90°,由垂径定理得出∠DEC=90°,由圆周角定理∠ACB =90°,可得出四边形DECP 为矩形,则DP =EC ,求出EC 的长,则可得出答案. 本题考查了切线的性质,圆周角定理的应用,圆内接四边形的性质,垂径定理,解直角三角形等知识,熟练切线的性质是解题的关键.23.【答案】解:(1)设甲气球的函数解析式为:y =kx +b ,乙气球的函数解析式为:y =mx +n ,分别将(0,5),(20,25)和(0,15),(20,25)代入, {5=b 25=20k +b ,{15=n 25=20m +n , 解得:{k =1b =5,{m =12n =15,∴甲气球的函数解析式为:y =x +5,乙气球的函数解析式为:y =12x +15;(2)由初始位置可得:当x 大于20时,两个气球的海拔高度可能相差15m , 且此时甲气球海拔更高, ∴x +5−(12x +15)=15, 解得:x =50,∴当这两个气球的海拔高度相差15m 时,上升的时间为50min .【知识点】一次函数的应用【解析】(1)根据图象中坐标,利用待定系数法求解;(2)根据分析可知:当x 大于20时,两个气球的海拔高度可能相差15m ,可得方程x +5−(12x +15)=15,解之即可.本题考查了一次函数的实际应用,解题的关键是结合实际情境分析函数图象.24.【答案】解:(1)∵△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,∴AB =√AC 2+BC 2=√62+82=10(cm), 当点D 与点A 重合时,BD =AB =10cm , ∴t =102=5(s);(2)当0<t <5时,(D 在AB 上), ∵DE//BC , ∴△ADE∽△ABC ,∴DE BC =AD AB =AEAC , ∴DE 8=10−2t 10=6−CE 6,解得:DE =40−8t 5,CE =65t ,∵DE//BC ,∠ACB =90°, ∴∠CED =90°, ∴S =12DE ⋅CE =12×40−8t 5×65t =−2425t 2+245;如图2,当5<t <8时,(D 在AC 上), 则AD =2t −10, ∴CD =16−2t , ∵DE//BC , ∴△ADE∽△ACB , ∴DECB =AEAB =AD AC,∴DE 8=2t−106, ∴DE =8t−403,∴S =12DE ⋅CD =12×8t−403×(16−2t)=−83t 2+1043t −3203,综上所述,S 关于t 的函数解析式为S ={−2425t 2+245t(0<t <5)−83t 2+1043t −3203(5<t <8).【知识点】函数自变量的取值范围、一元一次方程的应用、函数关系式 【解析】(1)根据各过各的了即可得到结论;(2)根据相似三角形的判定和性质以及三角形的面积公式即可得到结论.本题考查了函数关系式,相似三角形的判定和性质,勾股定理,正确的理解题意是解题的关键.25.【答案】∠CGA【知识点】三角形综合 【解析】解:(1)∵CA =CG , ∴∠CAG =∠CGA , 故答案为:∠CGA ;(2)AD=12BD,理由是:如图,在CG上取点M,使GM=AF,连接AM,EM,∵∠CAG=∠CGA,AG=GA,∴△AGM≌△GAF(SAS),∴AM=GF,∠AFG=∠AMG,∵GF=DE,∠AFG=∠CDE,∴AM=DE,∠AMG=∠CDE,∴AM//DE,∴四边形AMED为平行四边形,∴AD=EM,AD//EM,∵BE=CE,即点E为BC中点,∴ME为△BCD的中位线,∴AD=ME=12BD;(3)延长BA至点N,使AD=AN,连接CN,∵∠BAC=∠NAC=90°,∴AC垂直平分DN,∴CD=CN,∴∠ACD=∠ACN,设∠ACD=α=∠ACN,则∠ABC=2α,则∠ANC=90−α,∴∠BCN=180−2α−(90−α)=90−α,∴BN=BC,即△BCN为等腰三角形,设AD=1,则AN=1,BD=2,∴BC=BN=4,AB=3,∴AC=√BC2−AB2=√7,∴ACAB =√73.第21页,共23页(1)根据等腰三角形等边对等角回答即可;(2)在CG 上取点M ,使GM =AF ,连接AM ,EM ,证明△AGM≌△GAF ,得到AM =GF ,∠AFG =∠AMG ,从而证明四边形AMED 为平行四边形,得到AD =EM ,AD//EM ,最后利用中位线定理得到结论;(3)延长BA 至点N ,使AD =AN ,连接CN ,证明△BCN 为等腰三角形,设AD =1,可得AB 和BC 的长,利用勾股定理求出AC ,即可得到AC AB 的值.本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,平行四边形的判定和性质,中位线定理,解题的关键是根据题意构造平行四边形,转化已知条件. 26.【答案】4 1【知识点】二次函数综合【解析】解:(1)∵F 1:y =x +1,F 1和F 2关于y 轴对称,∴F 2:y =−x +1,分别令x =2,则2+1=3,−2+1=−1,∴P(2,3),Q(2,−1),∴PQ =3−(−1)=4,故答案为:4;(2)∵F 1:y =3x ,可得:F 2:y =−3x ,∵x =t ,可得:P(t,3t ),Q(t,−3t ), ∴PQ =3t −−3t =6t =6, 解得:t =1,经检验:t =1是原方程的解,故答案为:1;(3)①∵F1:y=ax2+bx+c,∴F2:y=ax2−bx+c,∵t=√bb,分别代入F1,F2,可得:P(√bb ,ab+√b+c),Q(√bb,ab−√b+c),∴PQ=|ab +√b+c−(ab−√b+c)|=2√b,∴S△OPQ=12×2√b×√bb=1;②∵函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),而函数F1和F2的图象关于y轴对称,∴函数F1的图象经过A(5,0)和(−1,0),∴设F1:y=a(x+1)(x−5)=ax2−4ax−5a,则F2:y=ax2+4ax−5a,∴F1的图象的对称轴是直线x=2,且c=−5a,∴a=−c5,∵c>0,则a<0,c+1>1,而F2的图象在x>0时,y随x的增大而减小,当0<c<1时,F1的图象y随x的增大而增大,F2的图象y随x的增大而减小,∴当x=c+1时,y=ax2−4ax−5a的最大值为a(c+1)2−4a(c+1)−5a,y=ax2+4ax−5a的最小值为a(c+1)2+4a(c+1)−5a,则ℎ=a(c+1)2−4a(c+1)−5a−[a(c+1)2+4a(c+1)−5a]=−8ac−8a,又∵a=−c5,∴ℎ=85c2+85c;当1≤c≤2时,F1的最大值为4a×(−5a)−(−4a)24a=−9a,F2的图象y随x的增大而减小,∴F2的最小值为:a(c+1)2+4a(c+1)−5a,则ℎ=−9a−[a(c+1)2+4a(c+1)−5a]=−a(c+1)2−4a(c+1)−4a=−ac2−6ac−9a,又∵a=−c5,第22页,共23页第23页,共23页 ∴ℎ=15c 3+65c 2+95c ,当c >2时,F 1的图象y 随x 的增大而减小,F 2的图象y 随x 的增大而减小,∴当x =c 时,y =ax 2−4ax −5a 的最大值为ac 2−4ac −5a ,当x =c +1时,y =ax 2+4ax −5a 的最小值为a(c +1)2−4a(c +1)−5a , 则ℎ=ac 2−4ac −5a −[a(c +1)2−4a(c +1)−5a]=3a −2ac ,又∵a =−c 5,∴ℎ=25c 2−35c ;综上:h 关于x 的解析式为:{ 85c 2+85c(0<c <1)15c 3+65c 2+95c(1≤c ≤2)25c 2−35c(c >2). (1)根据F 1和F 2关于y 轴对称得出F 2的解析式,求出P 、Q 两点坐标,即可得到PQ ;(2)根据F 1和F 2关于y 轴对称得出F 2的解析式,求出P 、Q 两点坐标,根据PQ =6得出方程,解出t 值即可;(3)①根据F 1和F 2关于y 轴对称得出F 2的解析式,将x =√b b代入解析式,求出P 、Q 两点坐标,从而得出△OPQ 的面积;②根据题意得出两个函数的解析式,再分当0<c <1时,当1≤c ≤2时,当c >2时,三种情况,分析两个函数的增减性,得出最值,相减即可.本题是二次函数综合题,考查了一次函数,反比例函数,以及二次函数的图象与性质,二次函数的最值,解题的关键是要理解题意,尤其(3)问中要读懂题干,结合图象进行分析求解.。
辽宁省大连市2020年(春秋版)中考数学试卷(I)卷
辽宁省大连市2020年(春秋版)中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)-4的相反数是()A . 4B .C . -D . -42. (2分) (2019·云南) 要使有意义,则x的取值范围为()A . x≤0B . x≥-1C . x≥0D . x≤-13. (2分)(2019·河池模拟) 下列事件中,是随机事件的是()A . 任意画一个三角形,其内角和为180°B . 经过有交通信号的路口,遇到红灯C . 太阳从东方升起D . 任意一个五边形的外角和等于540°4. (2分) (2018八上·蔡甸月考) 下列图形中,是轴对称图形的是()A .B .C .D .5. (2分)(2019·朝阳) 如图是由5个相同的小立方块搭成的几何体,这个几何体的左视图是()A .B .C .D .6. (2分)(2020·武汉模拟) 将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷2次,2次抛掷所出现的点数之和大于5的概率是()A .B .C .D .7. (2分)(2017·宜春模拟) 在反比例函数y= 的图象的任一支上,y都随x的增大而增大,则k的值可以是()A . ﹣1B . 0C . 1D . 28. (2分) (2020八下·陇县期末) 甲、乙两车在某时间段内速度随时间变化的图象如图所示,下列结论:①乙车前4秒行驶的总路程为48米;②第3秒时,两车行驶的速度相同;③甲在8秒内行驶了256米;④乙车第8秒时的速度为2米/秒.其中正确的是()A . ①②③B . ①②C . ①③④D . ①②④9. (2分)如图,点A、B、C在⊙O上,若∠C=40°,则∠AOB的度数为()A . 20°B . 100°C . 80°D . 40°10. (2分)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第8个图形需要黑色棋子的个数是()A . 48B . 80C . 90D . 86二、填空题 (共6题;共6分)11. (1分)(2020·高新模拟) 若实数a满足=a﹣1,且0<a<,则a=________.12. (1分)(2017·南宁模拟) 某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下:52,60,62,54,58,62.这组数据的中位数是________.13. (1分)(2016·昆明) 计算:﹣ =________.14. (1分) (2020·深圳) 如图,在平面直角坐标系中,ABCO为平行四边形,O(0,0),A(3,1),B(1,2),反比例函数的图象经过 OABC的顶点C,则k=________.15. (1分) (2019九上·瑞安期末) 如图,已知二次函数的图象与y轴交于点A,MN是该抛物线的对称轴,点P在射线MN上,连结PA,过点A作交x轴于点B,过A作于点C,连结PB,在点P的运动过程中,抛物线上存在点Q,使,则点Q的横坐标为________.16. (1分) (2015八下·福清期中) 折叠矩形ABCD,使它的顶点D落在BC边上的F处,如图,AB=6,AD=10,那么CE的长为________.三、解答题 (共8题;共91分)17. (5分)(2020·龙湾模拟) 计算:(1) 20200- +|-4|(2)(a-2)(a+2)-a(a-1)18. (5分) (2020七下·横县期末) 如图,已知AB∥CD,∠B=∠D.BE与DF平行吗?为什么?19. (11分)(2019·赤峰) 赤峰市某中学为庆祝“世界读书日”,响应”书香校园”的号召,开展了“阅读伴我成长”的读书活动.为了解学生在此次活动中的读书情况,从全校学生中随机抽取一部分学生进行调查,将收集到的数据整理并绘制成如图所示不完整的折线统计图和扇形统计图.(1)随机抽取学生共________名,2本所在扇形的圆心角度数是________度,并补全折线统计图________;(2)根据调查情况,学校决定在读书数量为1本和4本的学生中任选两名学生进行交流,请用树状图或列表法求这两名学生读书数量均为4本的概率.20. (15分)(2020·无锡模拟) 如图,在下列8×8的网格中,横、纵坐标均为整点的数叫做格点,△ABC 的顶点的坐标分别为A(3,0)、B(0,4)、C(4,2).(1)直接写出△ABC的形状;(2)①要求在下图中仅用无刻度的直尺作图:将△ABC绕点B逆时针旋转角度2α得到△A1BC1 ,其中α=∠ABC,A、C的对应点分别为A1、C1 ,请你完成作图;②在网格中找一个格点G,使得C1G⊥AB,并直接写出G点的坐标.21. (10分) (2017九上·上城期中) 如图,已知是△ 的外角的平分线,交的延长线于点,延长交△ 的外接圆于点,连接,.(1)求证:.(2)已知,若是△ 外接圆的直径,,求的长.22. (15分) (2020九上·岐山期末) 如图,一次函数y=kx+b(k≠0,k、b为常数)的图象与反比例函数的图象y= 交于A、B两点,且与x轴交于点C,与y轴交于点D,点A的横坐标与点B的纵坐标都是3。
辽宁省大连市2020年部编人教版中考数学试题及答案精析(word版).doc
二、填空题:本大题共8小题,每小题3分,共24分
9.因式分解:x2﹣3x=.
10.若反比例函数y=的图象经过点(1,﹣6),则k的值为.
11.如图,将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则
三、解答题:本大题共4小题,17、18、19各9分20题12分,共39分
17.计算:(+1)(﹣1)+(﹣2)0﹣.
18.先化简,再求值:(2a+b)2﹣a(4a+3b),其中a=1,b=.
19.如图,BD是ABCD的对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:AE=CF.
20.为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘
(2)本次调查的家庭数为户,家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的
百分比是%;
(3)家庭用水量的中位数落在组;
(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.
回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()
A.B.C.D.
7.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五
月份销售铅笔的支数是()
A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)
8.如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm)()
BD=.
12.下表是某校女子排球队队员的年龄分布
年龄/岁
频数
13
2020年辽宁省大连中考数学试卷-答案
2020年辽宁省大连市初中学业水平考试数学答案解析 一、1.【答案】A【解析】解:根据有理数比较大小的方法,可得21--<,01->,112--,11->, ∴四个数中,比1-小的数是2-.故选:A . 【考点】有理数大小比较2.【答案】B【解析】解:从正面看,底层是三个小正方形,上层右边的一个小正方形.故选:B . 【考点】简单组合体的三视图3.【答案】C【解析】解:436000 3.610=⨯,故选:C .【考点】科学记数法—表示较大的数4.【答案】D【解析】解:1806040C A B A B ∠=︒-∠-∠∠=︒∠=︒∵,,,80C ∠=︒∴,DE BC ∵,80AED C ∠=∠=︒∴,故选:D . 【考点】平行线的性质,三角形内角和定理5.【答案】B【解析】解:点()3,1P 关于x 轴对称的点的坐标是()3,1-故选:B .【考点】关于x 轴、y 轴对称的点的坐标6.【答案】C【解析】解:A .2a 与3a 不是同类项,所以不能合并,故本选项不合题意;B .235a a a ⋅=,故本选项不合题意;C .()326a a =,故本选项符合题意; D .()32628a a -=-,故本选项不合题意. 故选:C .【考点】合并同类项,同底数幂的乘法,幂的乘方与积的乘方7.【答案】D【解析】解:根据题意可得:袋子中有3个白球,4个红球,共7个,从袋子中随机摸出一个球,它是红球的概率47. 故选:D .【考点】概率公式8.【答案】A【解析】解:由题意得,906030AOB ∠=︒-︒=︒, ()1100 m 2AB OA ==∴, 故选:A .【考点】解直角三角形的应用—方向角问题9.【答案】B【解析】解:设抛物线与x 轴交点横坐标分别为1x 、2x ,且12x x <,根据两个交点关于对称轴直线1x =对称可知:122x x +=,即212x -=,得23x =,∴抛物线与x 轴的另一个交点为()3,0,故选:B .【考点】二次函数的性质,抛物线与x 轴的交点10.【答案】D【解析】解:9040ACB ABC ∠=︒∠=︒∵,,90904050CAB ABC ∠=︒-∠=︒-︒=︒∴,∵将ABC △绕点B 逆时针旋转得到A BC ''△,使点C 的对应点C '恰好落在边AB 上,40A BA ABC A B AB ''∠=∠==∴,,()118040702BAA BA A ''∠=∠=︒-︒=︒∴, 5070120CAA CAB BAA ''∠=∠+∠=︒+︒=︒∴.故选:D . 【考点】旋转的性质二、11.【答案】1x ->【解析】解:5131x x +->,移项得,5311x x --->,合并得,22x ->,即1x ->,故答案为1x ->.【考点】解一元一次不等式12.【答案】6.1【解析】解:这个公司平均每人所创年利润是:()1102875 6.110+⨯+⨯=(万). 故答案为:6.1.【考点】加权平均数13.【答案】()12864x x +=【解析】解:∵矩形的宽为x ,且宽比长少12, ∴矩形的长为()12x +.依题意,得:()12864x x +=.故答案为:()12864x x +=.【考点】数学常识,由实际问题抽象出一元二次方程14.【答案】100【解析】解:∵四边形ABCD 是菱形,280AB CD BCD ACD ∠=∠=︒ ∴,,180ABC BCD ∠+∠=︒∴,18080100ABC ∠=︒-︒=︒∴;故答案为:100.【考点】菱形的性质15.【答案】8【解析】解:连接BD ,与AC 交于点O ,∵四边形ABCD 是正方形,AC x ⊥轴,BD ∴所在对角线平行于x 轴,()0,2B ∵,2OC BO AO DO ====∴,∴点A 的坐标为()2,4,248k =⨯=∴,故答案为:8.【解析】解:在矩形ABCD 中,AD BC ,DEF BCF ∴△∽△,DE DF BC BF=∴,10BD BF y DE x ====∵,,,10DF y =-∴,108x y y -=∴,化简得:808y x =+, y ∴关于x 的函数解析式为:808y x =+, 故答案为:808y x =+. 【考点】矩形的性质,相似三角形的判定与性质三、17.【答案】解:原式21232=--+=.【考点】实数的运算,平方差公式18.【答案】解:原式()()2222221122x x x x x x x x x x x+----=⋅-=-==-++. 【考点】分式的混合运算19.【答案】证明:AB AC =∵,B C ∠=∠∴(等边对等角), 在ABD △和ACE △中,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩()ABD ACE SAS ∴△≌△,AD AE =∴(全等三角形对应边相等), ADE AED ∠=∠∴(等边对等角). 【考点】全等三角形的判定与性质20.【答案】(1)420(2)5015(3)()504101550550231---÷⨯=,该校八年级学生读书量为3本的学生有231人.【解析】(1)解:由图表可知:被调查学生中,读书量为1本的学生数为4人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为20%,故答案为:4;20;(2)1020%50÷=,500.315⨯=,∴被调查学生的总人数为50人,其中读书量为2本的学生数为15人,故答案为:50;15.(3)具体解题过程参照答案【考点】用样本估计总体,频数(率)分布表,扇形统计图四、21.【答案】解:设每节火车车厢平均装x 吨化肥,每辆汽车平均装y 吨化肥,依题意,得:615360810440x y x y +=⎧⎨+=⎩, 解得:504x y =⎧⎨=⎩. 答:每节火车车厢平均装50吨化肥,每辆汽车平均装4吨化肥. 【考点】二元一次方程组的应用22.【答案】(1)证明:AD CD =∵,DAC ACD ∠=∠∴,2180ADC ACD ∠+∠=︒∴,又∵四边形ABCD 内接于O ,180ABC ADC ∠+∠=︒∴,2ABC ACD ∠=∠∴;(2)解:连接OD 交AC 于点E ,PD ∵是O 的切线,OD DP ⊥∴,90ODP ∠=︒∴,又 AD CD =∵,OD AC AE EC ⊥=∴,,90DEC ∠=︒∴,AB ∵是O 的直径,90ACB ∠=︒∴,90ECP ∠=︒∴,23.【答案】解:(1)设甲气球的函数解析式为:y kx b =+,乙气球的函数解析式为:y mx n =+, 分别将()0,5,()20,25和()0,15,()20,25代入,52520b k b =⎧⎨=+⎩,152520n m n =⎧⎨=+⎩, 解得:15k b =⎧⎨=⎩,1215m n ⎧=⎪⎨⎪=⎩, ∴甲气球的函数解析式为:5y x =+,乙气球的函数解析式为:1152y x =+; (2)由初始位置可得:当x 大于20时,两个气球的海拔高度可能相差15 m ,且此时甲气球海拔更高, 1515152x x ⎛⎫+-+= ⎪⎝⎭∴, 解得:50x =,∴当这两个气球的海拔高度相差15 m 时,上升的时间为50 min .【考点】一次函数的应用五、24.【答案】解:(1)ABC ∵△中,90 6 cm 8 cm ACB AC BC ∠=︒==,,,()10 cm AB ===∴,当点D 与点A 重合时,10 cm BD AB ==,()10 5 s 2t ==∴; (2)当05t <<时,(D 在AB 上),DE BC ∵,ADE ABC ∴△∽△,DE AD AE BC AB AC==∴, 10268106DE t CE --==∴, 解得:408655t DE CE t -==,, 90DE BC ACB ∠=︒ ∵,,90CED ∠=︒∴,211408624242255255t S DE CE t t -=⋅=⨯⨯=-+∴; 如图2,当58t <<时,(D 在AC 上),则210AD t =-,162CD t =-∴,DE BC ∵,ADE ACB ∴△∽△,DE AE AD CB AB AC==∴, 21086DE t -=∴, 8403t DE -=∴, ()2118408104320162223333t S DE CD t t t -=⋅=⨯⨯-=-+-∴,综上所述,S 关于t 的函数解析式为()()22242405255810432058333t t S t t t ⎧-+⎪⎪=⎨⎪-+-⎪⎩<<<<.【考点】一元一次方程的应用,函数关系式,函数自变量的取值范围25.【答案】(1)CGA ∠;解:(2)12AD BD =,理由是: 如图,在CG 上取点M ,使GM AF =,连接AM ,EM , CAG CGA AG GA ∠=∠=∵,,()AGM GAF SAS ∴△≌△,AM GF AFG AMG =∠=∠∴,,GF DE AFG CDE =∠=∠∵,,AM DE AMG CDE =∠=∠∴,,AM DE ∴,∴四边形AMED 为平行四边形,AD EM AD EM = ∴,,BE CE =∵,即点E 为BC 中点,ME ∴为BCD △的中位线,12AD ME BD ==∴; (3)延长BA 至点N ,使AD AN =,连接CN ,90BAC NAC ∠=∠=︒∵,AC ∴垂直平分DN ,CD CN =∴,ACD ACN ∠=∠∴,设ACD ACN α∠==∠,则2ABC α∠=,则90ANC α∠=-,()18029090BCN ααα∠=---=-∴, BN BC =∴,即BCN △为等腰三角形, 设1AD =,则1AN =,2BD =, 43BC BN AB ===∴,,AC ==∴,AC AB =∴【解析】(1)解:(1)CA CG =∵, CAG CGA ∠=∠∴,故答案为:CGA ∠;【考点】三角形综合题26.【答案】(1)4(2)1(3)解:①21F y ax bx c =++∵:, 22F y ax bx c =-+∴:,t =∵1F ,2F ,可得:a a P c Q c b b ⎫⎫++-+⎪⎪⎪⎪⎝⎭⎝⎭,,a a PQ c cb b ⎛⎫=++--+= ⎪⎝⎭∴,112OPQ S =⨯=△∴; ②∵函数1F 和2F 的图象与x 轴正半轴分别交于点()5,0A ,()1,0B ,而函数1F 和2F 的图象关于y 轴对称,∴函数1F 的图象经过()5,0A 和()1,0-,∴设()()211545F y a x x ax ax a =+-=--:,则2245F y ax ax a =+-:,1F ∴的图象的对称轴是直线2x =,且5c a =-,5c a =-∴, 0c ∵>,则0a <,11c +>,而2F 的图象在0x >时,y 随x 的增大而减小,当01c <<时,1F 的图象y 随x 的增大而增大,2F 的图象y 随x 的增大而减小,∴当1x c =+时,245y ax ax a =+-的最大值为()()21415a c a c a +-+-, 245y ax ax a =+-的最小值为()()21415a c a c a +++-,则()()()()221415141588h a c a c a a c a c a ac a ⎡⎤=+-+--+++-=--⎣⎦, 又5c a =-∵, 28855h c c =+∴; 当12c 时,1F 的最大值为()()245494a a a a a⨯---=-,2F 的图象y 随x 的增大而减小, 2F ∴的最小值为:()()21415a c a c a +++-,则()()()()22291415141469h a a c a c a a c a c a ac ac a ⎡⎤=--+++-=-+-+-=---⎣⎦, 又5c a =-∵, 32169555h c c c =++∴, 当2c >时,1F 的图象y 随x 的增大而减小,2F 的图象y 随x 的增大而减小,∴当x c =时,245y ax ax a =--的最大值为245ac ac a --,当1x c =+时,245y ax ax a =--的最小值为()()21415a c a c a +-+-,则()()22451415h ac ac a a c a c a ⎡⎤=---+-+-⎣⎦, 又5c a =-∵, 22h c c =+∴;综上:h 关于x 的解析式为:()()2322880155169125552<<⎧+⎪⎪⎪++⎨⎪⎪+⎪⎩c c c c c c c c c . 【解析】解:(1)11F y x =+∵:,1F 和2F 关于y 轴对称,21F y x =-+∴:,分别令2x =,则213+=,211-+=-,()()2,32,1P Q -∴,,()314PQ =--=,故答案为:4;(2)13F y x=∵:, 可得:23F y x -=:, x t =∵,可得:33,,P t Q t t t -⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,, 3366PQ t t t-=-==∴, 解得:1t =,经检验:1t =是原方程的解,故答案为:1.【考点】二次函数综合题。
辽宁省大连市中考数学真题试题(含解析)
2020年辽宁省大连市中考数学试卷一、选择题(本题共10小題,每小題3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(3分)﹣2的绝对值是()A.2 B.C.﹣D.﹣22.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.(3分)2020年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg,将数58000用科学记数法表示为()A.58×103B.5.8×103C.0.58×105D.5.8x1044.(3分)在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为()A.(3,﹣1)B.(3,3)C.(1,1)D.(5,1)5.(3分)不等式5x+1≥3x﹣1的解集在数轴上表示正确的是()A.B.C.D.6.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.等边三角形C.菱形D.平行四边形7.(3分)计算(﹣2a)3的结果是()A.﹣8a3B.﹣6a3C.6a3D.8a38.(3分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为()A.B.C.D.9.(3分)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕为EF,若AB=4,BC=8.则D′F的长为()A.2B.4 C.3 D.210.(3分)如图,抛物线y=﹣x2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为.二、填空题(本题共6小题,每小題分,共18分)11.(3分)如图AB∥CD,CB∥DE,∠B=50°,则∠D=°.12.(3分)某男子足球队队员的年龄分布如图所示,这些队员年齡的众数是.13.(3分)如图,△ABC是等边三角形,延长BC到点D,使CD=AC,连接AD.若AB=2,则AD的长为.14.(3分)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为.15.(3分)如图,建筑物C上有一杆AB.从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为m(结果取整数,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).16.(3分)甲、乙两人沿同一条直路走步,如果两人分别从这条多路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时x(单位:min)的函数图象,图2是甲、乙两人之间的距离(单位:m)与甲行走时间x(单位;min)的函数图象,则a﹣b=.三、解答题(本题共4小题,17、18、19题各9分,20题12分,共39分)17.(9分)计算:(﹣2)2++618.(9分)计算:÷+19.(9分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.20.(12分)某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分.根据以上信息,解答下列问题(1)被测试男生中,成绩等级为“优秀”的男生人数为人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为%;(2)被测试男生的总人数为人,成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为%;(3)若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数.四、解答题(本共3小,其中21、22题各分,23题10分,共28分)21.(9分)某村2016年的人均收入为20000元,2018年的人均收入为24200元(1)求2016年到2018年该村人均收入的年平均增长率;(2)假设2020年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2020年村该村的人均收入是多少元?22.(9分)如图,在平面直角坐标系xOy中,点A(3,2)在反比例函数y=(x>0)的图象上,点B 在OA的廷长线上,BC⊥x轴,垂足为C,BC与反比例函数的图象相交于点D,连接AC,AD.(1)求该反比例函数的解析式;(2)若S△ACD=,设点C的坐标为(a,0),求线段BD的长.23.(10分)如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径.五、解答题(本题共3小题,其中24题11分,25、26題各12分,共35分)24.(11分)如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=OC,以CO,CD为邻边作▱COED.设点C的坐标为(0,m),▱COED 在x轴下方部分的面积为S.求:(1)线段AB的长;(2)S关于m的函数解析式,并直接写出自变量m的取值范围.25.(12分)阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC上,AD=AB,AB =kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠BAE与∠DAC相等.”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.”……老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值.”(1)求证:∠BAE=∠DAC;(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;(3)直接写出的值(用含k的代数式表示).26.(12分)把函数C1:y=ax2﹣2ax﹣3a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴与x轴交点坐标为(t,0).(1)填空:t的值为(用含m的代数式表示)(2)若a=﹣1,当≤x≤t时,函数C1的最大值为y1,最小值为y2,且y1﹣y2=1,求C2的解析式;(3)当m=0时,C2的图象与x轴相交于A,B两点(点A在点B的右侧).与y轴相交于点D.把线段AD原点O逆时针旋转90°,得到它的对应线段A′D′,若线A′D′与C2的图象有公共点,结合函数图象,求a的取值范围.2020年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题(本题共10小題,每小題3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.【解答】解:﹣2的绝对值是2.故选:A.2.【解答】解:左视图有3列,每列小正方形数目分别为2,1,1.故选:B.3.【解答】解:将数58000用科学记数法表示为5.8×104.故选:D.4.【解答】解:将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(3,1﹣2),即(3,﹣1),故选:A.5.【解答】解:5x+1≥3x﹣1,移项得5x﹣3x≥﹣1﹣1,合并同类项得2x≥﹣2,系数化为1得,x≥﹣1,在数轴上表示为:故选:B.6.【解答】解:A、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;C、菱形既是轴对称图形,又是中心对称图形,故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误.故选:C.7.【解答】解:(﹣2a)3=﹣8a3;故选:A.8.【解答】解:两次摸球的所有的可能性树状图如下:∴P两次都是红球=.故选:D.9.【解答】解:连接AC交EF于点O,如图所示:∵四边形ABCD是矩形,∴AD=BC=8,∠B=∠D=90°,AC===4,∵折叠矩形使C与A重合时,EF⊥AC,AO=CO=AC=2,∴∠AOF=∠D=90°,∠OAF=∠DAC,∴则Rt△FOA∽Rt△ADC,∴=,即:=,解得:AF=5,∴D′F=DF=AD﹣AF=8﹣5=3,故选:C.10.【解答】解:当y=0时,﹣x2+x+2=0,解得:x1=﹣2,x2=4,∴点A的坐标为(﹣2,0);当x=0时,y=﹣x2+x+2=2,∴点C的坐标为(0,2);当y=2时,﹣x2+x+2=2,解得:x1=0,x2=2,∴点D的坐标为(2,2).设直线AD的解析式为y=kx+b(k≠0),将A(﹣2,0),D(2,2)代入y=kx+b,得:,解得:,∴直线AD的解析式为y=x+1.当x=0时,y=x+1=1,∴点E的坐标为(0,1).当y=1时,﹣x2+x+2=1,解得:x1=1﹣,x2=1+,∴点P的坐标为(1﹣,1),点Q的坐标为(1+,1),∴PQ=1+﹣(1﹣)=2.故答案为:2.二、填空题(本题共6小题,每小題分,共18分)11.【解答】解:∵AB∥CD,∴∠B=∠C=50°,∵BC∥DE,∴∠C+∠D=180°,∴∠D=180°﹣50°=130°,故答案为:130.12.【解答】解:观察条形统计图知:为25岁的最多,有8人,故众数为25岁,故答案为:25.13.【解答】解:∵△ABC是等边三角形,∴∠B=∠BAC=∠ACB=60°,∵CD=AC,∴∠CAD=∠D,∵∠ACB=∠CAD+∠D=60°,∴∠CAD=∠D=30°,∴∠BAD=90°,∴AD===2.故答案为2.14.【解答】解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意得:,故答案为.15.【解答】解:在Rt△BCD中,tan∠BDC=,则BC=CD•tan∠BDC=10,在Rt△ACD中,tan∠ADC=,则AC=CD•tan∠ADC≈10×1.33=13.3,∴AB=AC﹣BC=3.3≈3(m),故答案为:3.16.【解答】解:从图1,可见甲的速度为=60,从图2可以看出,当x=时,二人相遇,即:(60+V已)×=120,解得:已的速度V已=80,∵已的速度快,从图2看出已用了b分钟走完全程,甲用了a分钟走完全程,a﹣b==,故答案为.三、解答题(本题共4小题,17、18、19题各9分,20题12分,共39分)17.【解答】解:原式=3+4﹣4+2+6×=3+4﹣4+2+2=7.18.【解答】解:原式=×﹣=﹣=.19.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS)∴AF=DE.20.【解答】解:(1)由统计图表可知,成绩等级为“优秀”的男生人数为15人,被测试男生总数15÷0.3=50(人),成绩等级为“及格”的男生人数占被测试男生总人数的百分比:,故答案为15,90;(2)被测试男生总数15÷0.3=50(人),成绩等级为“不及格”的男生人数占被测试男生总人数的百分比:,故答案为50,10;(3)由(1)(2)可知,优秀30%,及格20%,不及格10%,则良好40%,该校八年级男生成绩等级为“良好”的学生人数180×40%=72(人)答:该校八年级男生成绩等级为“良好”的学生人数72人.四、解答题(本共3小,其中21、22题各分,23题10分,共28分)21.【解答】解:(1)设2016年到2018年该村人均收入的年平均增长率为x,根据题意得:20000(1+x)2=24200,解得:x1=0.1=10%,x2=1.1(不合题意,舍去).答:2016年到2018年该村人均收入的年平均增长率为10%.(2)24200×(1+10%)=26620(元).答:预测2020年村该村的人均收入是26620元.22.【解答】解:(1)∵点A(3,2)在反比例函数y=(x>0)的图象上,∴k=3×2=6,∴反比例函数y=;答:反比例函数的关系式为:y=;(2)过点A作AE⊥OC,垂足为E,连接AC,设直线OA的关系式为y=kx,将A(3,2)代入得,k=,∴直线OA的关系式为y=x,∵点C(a,0),把x=a代入y=x,得:y=a,把x=a代入y=,得:y=,∴B(a,),即BC═a,D(a,),即CD=∵S△ACD=,∴CD•EC=,即,解得:a=6,∴BD=BC﹣CD==3;答:线段BD的长为3.23.【解答】(1)证明:作DF⊥BC于F,连接DB,∵AP是⊙O的切线,∴∠PAC=90°,即∠P+∠ACP=90°,∵AC是⊙O的直径,∴∠ADC=90°,即∠PCA+∠DAC=90°,∴∠P=∠DAC=∠DBC,∵∠APC=∠BCP,∴∠DBC=∠DCB,∴DB=DC,∵DF⊥BC,∴DF是BC的垂直平分线,∴DF经过点O,∵OD=OC,∴∠ODC=∠OCD,∵∠BDC=2∠ODC,∴∠BAC=∠BDC=2∠ODC=2∠OCD;(2)解:∵DF经过点O,DF⊥BC,∴FC=BC=3,在△DEC和△CFD中,,∴△DEC≌△CFD(AAS)∴DE=FC=3,∵∠ADC=90°,DE⊥AC,∴DE2=AE•EC,则EC==,∴AC=2+=,∴⊙O的半径为.五、解答题(本题共3小题,其中24题11分,25、26題各12分,共35分)24.【解答】解:(1)当x=0时,y=3,当y=0时,x=4,∴直线y=﹣x+3与x轴点交A(4,0),与y轴交点B(0,3)∴OA=4,OB=3,∴AB=,因此:线段AB的长为5.(2)当CD∥OA时,如图,∵BD=OC,OC=m,∴BD=m,由△BCD∽△BOA得:,即:,解得:m=;①当0<m≤时,如图1所示:DE=m≤,此时点E在△AOB的内部,S=0 (0<m≤);②当<m≤3时,如图2所示:过点D作DF⊥OB,垂足为F,此时在x轴下方的三角形与△CDF全等,∵△BDF∽△BAO,∴,∴DF=,同理:BF=m,∴CF=2m﹣3,∴S△CDF==(2m﹣3)×=m2﹣4m,即:S=m2﹣4m,(<m≤3)③当m>3时,如图3所示:过点D作DF⊥y轴,DG⊥x轴,垂足为、FG,同理得:DF=,BF=m,∴OF=DG=m﹣3,AG=m﹣4,∴S=S△OGE﹣S△ADG==∴S=,(m>3)答:S=25.【解答】证明:(1)∵AB=AD∴∠ABD=∠ADB∵∠ADB=∠ACB+∠DAC,∠ABD=∠ABC=∠ACB+∠BAE∴∠BAE=∠DAC(2)设∠DAC=α=∠BAE,∠C=β∴∠ABC=∠ADB=α+β∵∠ABC+∠C=α+β+β=α+2β=90°,∠BAE+∠EAC=90°=α+∠EAC ∴∠EAC=2β∵AF平分∠EAC∴∠FAC=∠EAF=β∴∠FAC=∠C,∠ABE=∠BAF=α+β∴AF=FC,AF=BF∴AF=BC=BF∵∠ABE=∠BAF,∠BGA=∠BAC=90°∴△ABG∽△BCA∴∵∠ABE=∠BAF,∠ABE=∠AFB∴△ABF∽△BAD∴,且AB=kBD,AF=BC=BF∴k=,即∴(3)∵∠ABE=∠BAF,∠BAC=∠AGB=90°∴∠ABH=∠C,且∠BAC=∠BAC∴△ABH∽△ACB∴∴AB2=AC×AH设BD=m,AB=km,∵∴BC=2k2m∴AC==km∴AB2=AC×AH(km)2=km×AH∴AH=∴HC=AC﹣AH=km﹣=∴26.【解答】解:(1)C1:y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,顶点(1,﹣4a)围绕点P(m,0)旋转180°的对称点为(2m﹣1,4a),C2:y=﹣a(x﹣2m+1)2+4a,函数的对称轴为:x=2m﹣1,t=2m﹣1,故答案为:2m﹣1;(2)a=﹣1时,C1:y=(x﹣1)2﹣4,①当t<1时,x=时,有最小值y2=,x=t时,有最大值y1=﹣(t﹣1)2+4,则y1﹣y2=﹣(t﹣1)2+4﹣=1,无解;②1≤t时,x=1时,有最大值y1=4,x=时,有最小值y2=﹣(t﹣1)2+4,y1﹣y2=≠1(舍去);③当t时,x=1时,有最大值y1=4,x=t时,有最小值y2=﹣(t﹣1)2+4,y1﹣y2=(t﹣1)2=1,解得:t=0或2(舍去0),故C2:y=(x﹣2)2﹣4=x2﹣4x;(3)m=0,C2:y=﹣a(x+1)2+4a,点A、B、D、A′、D′的坐标分别为(1,0)、(﹣3,0)、(0,3a)、(0,1)、(﹣3a,0),当a>0时,a越大,则OD越大,则点D′越靠左,当C2过点A′时,y=﹣a(0+1)2+4a=1,解得:a=,当C2过点D′时,同理可得:a=1,故:0<a或a≥1;当a<0时,当C2过点D′时,﹣3a=1,解得:a=﹣,故:a≤﹣;综上,故:0<a或a≥1或a≤﹣.。
2020年辽宁省大连市中考数学试题及参考答案(word解析版)
大连市2020年初中毕业升学考试数学试卷(满分150,考试时间120分钟)一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.下列四个数中,比﹣1小的数是()A.﹣2 B.﹣C.0 D.12.如图是由5个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.3.2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆.数36000用科学记数法表示为()A.360×102B.36×103C.3.6×104D.0.36×1054.如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°5.平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)6.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(﹣2a2)3=﹣6a67.在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是()A.B.C.D.8.如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60°方向,且与他相距200m,则图书馆A到公路的距离AB为()A.100m B.100m C.100m D.m9.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A.(,0)B.(3,0)C.(,0)D.(2,0)10.如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°二、填空题(本题共6小题,每小题3分,共18分)11.不等式5x+1>3x﹣1的解集是.12.某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.部门人数每人所创年利润/万元A 1 10B 2 8C 7 5这个公司平均每人所创年利润是万元.13.我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的面积为864平方步,宽比长少12步,问宽和长各多少步?设矩形的宽为x步,根据题意,可列方程为.14.如图,菱形ABCD中,∠ACD=40°,则∠ABC=°.15.如图,在平面直角坐标系中,正方形ABCD的顶点A与D在函数y=(x>0)的图象上,AC⊥x轴,垂足为C,点B的坐标为(0,2),则k的值为.16.如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,CE与BD相交于点F.设DE=x,BF=y,当0≤x≤8时,y关于x的函数解析式为.(第14题图)(第15题图)(第16题图)三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(9分)计算(+1)(﹣1)++.18.(9分)计算﹣1.19.(9分)如图,△ABC中,AB=AC,点D,E在边BC上,BD=CE.求证:∠ADE=∠AED.20.(12分)某校根据《教育部基础教育课程教材发展中心中小学生阅读指导目录(2020版)》公布的初中段阅读书目,开展了读书活动.六月末,学校对八年级学生在此次活动中的读书量进行了抽样调查,如图是根据调查结果绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)被调查学生中,读书量为1本的学生数为 人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为 %;(2)被调查学生的总人数为 人,其中读书量为2本的学生数为 人;(3)若该校八年级共有550名学生,根据调查结果,估计该校八年级学生读书量为3本的学生人数.四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)21.(9分)某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?22.(10分)四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,AD =CD .(1)如图1,求证∠ABC =2∠ACD ;(2)过点D 作⊙O 的切线,交BC 延长线于点P (如图2).若tan ∠CAB =,BC =1,求PD的长.23.(10分)甲、乙两个探测气球分别从海拔5m 和15m 处同时出发,匀速上升60min .如图是甲、乙两个探测气球所在位置的海拔y (单位:m )与气球上升时间x (单位:min )的函数图象.(1)求这两个气球在上升过程中y 关于x 的函数解析式;(2)当这两个气球的海拔高度相差15m 时,求上升的时间.读书量 频数(人) 频率 1本 4 2本 0.3 3本 4本及以上 10五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)24.(11分)如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点D从点B出发,沿边BA →AC以2cm/s的速度向终点C运动,过点D作DE∥BC,交边AC(或AB)于点E.设点D的运动时间为t(s),△CDE的面积为S(cm2).(1)当点D与点A重合时,求t的值;(2)求S关于t的函数解析式,并直接写出自变量t的取值范围.25.(11分)如图1,△ABC中,点D,E,F分别在边AB,BC,AC上,BE=CE,点G在线段CD上,CG=CA,GF=DE,∠AFG=∠CDE.(1)填空:与∠CAG相等的角是;(2)用等式表示线段AD与BD的数量关系,并证明;(3)若∠BAC=90°,∠ABC=2∠ACD(如图2),求的值.26.(12分)在平面直角坐标系xOy中,函数F1和F2的图象关于y轴对称,它们与直线x=t(t>0)分别相交于点P,Q.(1)如图,函数F1为y=x+1,当t=2时,PQ的长为;(2)函数F1为y=,当PQ=6时,t的值为;(3)函数F1为y=ax2+bx+c(a≠0),①当t=时,求△OPQ的面积;②若c>0,函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),当c≤x≤c+1时,设函数F1的最大值和函数F2的最小值的差为h,求h关于c的函数解析式,并直接写出自变量c的取值范围.答案与解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.下列四个数中,比﹣1小的数是()A.﹣2 B.﹣C.0 D.1【知识考点】有理数大小比较.【思路分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解题过程】解:根据有理数比较大小的方法,可得﹣2<﹣1,0>﹣1,﹣>﹣1,1>﹣1,∴四个数中,比﹣1小的数是﹣2.故选:A.【总结归纳】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.如图是由5个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图,画出从正面看所得到的图形即可.【解题过程】解:从正面看,底层是三个小正方形,上层右边的一个小正方形.故选:B.【总结归纳】此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.3.2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆.数36000用科学记数法表示为()A.360×102B.36×103C.3.6×104D.0.36×105【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解题过程】解:36000=3.6×104,故选:C.【总结归纳】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°【知识考点】平行线的性质;三角形内角和定理.【思路分析】利用三角形内角和定理求出∠C,再根据平行线的性质求出∠AED即可.【解题过程】解:∵∠C=180°﹣∠A﹣∠B,∠A=60°,∠B=40°,∴∠C=80°,∵DE∥BC,∴∠AED=∠C=80°,故选:D.【总结归纳】本题考查三角形内角和定理,平行线的性质,解题的关键是熟练掌握三角形内角和定理,平行线的性质解决问题,属于中考常考题型.5.平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)【知识考点】关于x轴、y轴对称的点的坐标.【思路分析】关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解题过程】解:点P(3,1)关于x轴对称的点的坐标是(3,﹣1)故选:B.【总结归纳】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.6.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(﹣2a2)3=﹣6a6【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】分别根据合并同类项法则,同底数幂的乘法法则,幂的乘方运算法则以及积的乘方运算法则逐一判断即可.【解题过程】解:A.a2与a3不是同类项,所以不能合并,故本选项不合题意;B.a2•a3=a5,故本选项不合题意;C.(a2)3=a6,故本选项符合题意;D.(﹣2a2)3=﹣8a6,故本选项不合题意.故选:C.【总结归纳】本题主要考查了同底数幂的乘法,合并同类项以及幂的乘方与积的乘方,熟记相关运算法则是解答本题的关键.7.在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是()A.B.C.D.【知识考点】概率公式.【思路分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.【解题过程】解:根据题意可得:袋子中有3个白球,4个红球,共7个,从袋子中随机摸出一个球,它是红球的概率.故选:D.【总结归纳】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60°方向,且与他相距200m,则图书馆A到公路的距离AB为()A.100m B.100m C.100m D.m【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】根据题意求出∠AOB,根据直角三角形的性质解答即可.【解题过程】解:由题意得,∠AOB=90°﹣60°=30°,∴AB=OA=100(m),故选:A.【总结归纳】本题考查的是解直角三角形的应用﹣方向角问题,掌握方向角的概念、熟记含30度角的直角三角形的性质是解题的关键.9.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A.(,0)B.(3,0)C.(,0)D.(2,0)【知识考点】二次函数的性质;抛物线与x轴的交点.【思路分析】根据抛物线的对称性和(﹣1,0)为x轴上的点,即可求出另一个点的交点坐标.【解题过程】解:设抛物线与x轴交点横坐标分别为x1、x2,且x1<x2,根据两个交点关于对称轴直线x=1对称可知:x1+x2=2,即x2﹣1=2,得x2=3,∴抛物线与x轴的另一个交点为(3,0),故选:B.【总结归纳】本题考查了抛物线与x轴的交点,要知道抛物线与x轴的两交点关于对称轴对称.10.如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°【知识考点】旋转的性质.【思路分析】根据旋转可得∠A′BA=∠ABC=40°,A′B=AB,得∠BAA′=70°,根据∠CAA'=∠CAB+∠BAA′,进而可得∠CAA'的度数.【解题过程】解:∵∠ACB=90°,∠ABC=40°,∴∠CAB=90°﹣∠ABC=90°﹣40°=50°,∵将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,∴∠A′BA=∠ABC=40°,A′B=AB,∴∠BAA′=∠BA′A=(180°﹣40°)=70°,∴∠CAA'=∠CAB+∠BAA′=50°+70°=120°.故选:D.【总结归纳】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.二、填空题(本题共6小题,每小题3分,共18分)11.不等式5x+1>3x﹣1的解集是.【知识考点】解一元一次不等式.【思路分析】先对不等式进行移项,合并同类项,再系数化1即可求得不等式的解集.【解题过程】解:5x+1>3x﹣1,移项得,5x﹣3x>﹣1﹣1,合并得,2x>﹣2,即x>﹣1,故答案为x>﹣1.【总结归纳】本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.12.某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.部门人数每人所创年利润/万元A 1 10B 2 8C 7 5这个公司平均每人所创年利润是万元.【知识考点】加权平均数.【思路分析】直接利用表格中数据,求出10人的总创年利润进而求出平均每人所创年利润.【解题过程】解:这个公司平均每人所创年利润是:(10+2×8+7×5)=6.1(万).故答案为:6.1.【总结归纳】此题主要考查了加权平均数,正确利用表格获取正确信息是解题关键.13.我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的面积为864平方步,宽比长少12步,问宽和长各多少步?设矩形的宽为x步,根据题意,可列方程为.【知识考点】数学常识;由实际问题抽象出一元二次方程.【思路分析】由矩形的宽及长与宽之间的关系可得出矩形的长为(x+12)步,再利用矩形的面积公式即可得出关于x的一元二次方程,此题得解.【解题过程】解:∵矩形的宽为x步,且宽比长少12步,∴矩形的长为(x+12)步.依题意,得:x(x+12)=864.故答案为:x(x+12)=864.【总结归纳】本题考查了由实际问题抽象出一元二次方程以及数学常识,找准等量关系,正确列出一元二次方程是解题的关键.14.如图,菱形ABCD中,∠ACD=40°,则∠ABC=°.【知识考点】菱形的性质.【思路分析】由菱形的性质得出AB∥CD,∠BCD=2∠ACD=80°,则∠ABC+∠BCD=180°,即可得出答案.【解题过程】解:∵四边形ABCD是菱形,∴AB∥CD,∠BCD=2∠ACD=80°,∴∠ABC+∠BCD=180°,∴∠ABC=180°﹣80°=100°;故答案为:100.【总结归纳】本题考查了菱形的性质、平行线的性质;熟练掌握菱形的性质是解题的关键.15.如图,在平面直角坐标系中,正方形ABCD的顶点A与D在函数y=(x>0)的图象上,AC⊥x轴,垂足为C,点B的坐标为(0,2),则k的值为.【知识考点】反比例函数图象上点的坐标特征;正方形的性质.【思路分析】连接BD,与AC交于点O′,利用正方形的性质得到O′A=O′B=O′C=O′D=2,从而得到点A坐标,代入反比例函数表达式即可.【解题过程】解:连接BD,与AC交于点O′,∵四边形ABCD是正方形,AC⊥x轴,∴BD所在对角线平行于x轴,∵B(0,2),∴O′C=2=BO′=AO′=DO′,∴点A的坐标为(2,4),∴k=2×4=8,故答案为:8.【总结归纳】本题考查了正方形的性质,反比例函数表达式的求法,解题的关键是利用正方形的性质求出点A的坐标.16.如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,CE与BD相交于点F.设DE=x,BF=y,当0≤x≤8时,y关于x的函数解析式为.【知识考点】矩形的性质;相似三角形的判定与性质.【思路分析】根据题干条件可证得△DEF∽△BCF,从而得到,由线段比例关系即可求出函数解析式.【解题过程】解:在矩形中,AD∥BC,∴△DEF∽△BCF,∴,∵BD==10,BF=y,DE=x,∴DF=10﹣y,∴,化简得:,∴y关于x的函数解析式为:,故答案为:.【总结归纳】本题主要考查的是相似三角形的判定与性质定理,难度不大,熟练掌握性质和判定定理是解得本题的关键,注意掌握数形结合思想与函数思想的应用.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(9分)计算(+1)(﹣1)++.【知识考点】实数的运算;平方差公式.【思路分析】原式利用平方差公式,立方根、算术平方根性质计算即可求出值.【解题过程】解:原式=2﹣1﹣2+3=2.【总结归纳】此题考查了平方差公式,以及实数的运算,熟练掌握公式及运算法则是解本题的关键.18.(9分)计算﹣1.【知识考点】分式的混合运算.【思路分析】直接利用分式的混合运算法则分别化简得出答案.【解题过程】解:原式=•﹣1=﹣1==﹣.【总结归纳】此题主要考查了分式的混合运算,正确化简分式是解题关键.19.(9分)如图,△ABC中,AB=AC,点D,E在边BC上,BD=CE.求证:∠ADE=∠AED.【知识考点】全等三角形的判定与性质.【思路分析】根据等腰三角形等边对等角的性质可以得到∠B=∠C,然后证明△ABD和△ACE 全等,根据全等三角形对应边相等有AD=AE,再根据等边对等角的性质即可证明.【解题过程】证明:∵AB=AC,∴∠B=∠C(等边对等角),在△ABD和△ACE中,∴△ABD≌△ACE(SAS),∴AD=AE(全等三角形对应边相等),∴∠ADE=∠AED(等边对等角).【总结归纳】本题考查了全等三角形的判定与性质以及等腰三角形的性质,找出已知边的夹角相等是证明三角形全等的关键,也是本题的突破点.20.(12分)某校根据《教育部基础教育课程教材发展中心中小学生阅读指导目录(2020版)》公布的初中段阅读书目,开展了读书活动.六月末,学校对八年级学生在此次活动中的读书量进行了抽样调查,如图是根据调查结果绘制的统计图表的一部分.读书量频数(人)频率1本 42本0.33本4本及以上10根据以上信息,解答下列问题:(1)被调查学生中,读书量为1本的学生数为人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为%;(2)被调查学生的总人数为人,其中读书量为2本的学生数为人;(3)若该校八年级共有550名学生,根据调查结果,估计该校八年级学生读书量为3本的学生人数.【知识考点】用样本估计总体;频数(率)分布表;扇形统计图.【思路分析】(1)直接根据图表信息可得;(2)用4本及以上对应的频数除以所占百分比可得总人数,再乘以读书量为2本的频率即可;(3)求出读书量为3本的人数,除以样本人数50,再乘以全校总人数550可得结果.【解题过程】解:(1)由图表可知:被调查学生中,读书量为1本的学生数为4人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为20%,故答案为:4;20;(2)10÷20%=50人,50×0.3=15人,∴被调查学生的总人数为50人,其中读书量为2本的学生数为15人,故答案为:50;15;(3)(50﹣4﹣10﹣15)÷50×550=231人,该校八年级学生读书量为3本的学生有231人.【总结归纳】本题考查了频数统计表和扇形统计图,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)21.(9分)某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?【知识考点】二元一次方程组的应用.【思路分析】设每节火车车厢平均装x吨化肥,每辆汽车平均装y吨化肥,根据“第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解题过程】解:设每节火车车厢平均装x吨化肥,每辆汽车平均装y吨化肥,依题意,得:,解得:.答:每节火车车厢平均装50吨化肥,每辆汽车平均装4吨化肥.【总结归纳】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.(10分)四边形ABCD内接于⊙O,AB是⊙O的直径,AD=CD.(1)如图1,求证∠ABC=2∠ACD;(2)过点D作⊙O的切线,交BC延长线于点P(如图2).若tan∠CAB=,BC=1,求PD 的长.【知识考点】垂径定理;圆周角定理;圆内接四边形的性质;切线的性质;解直角三角形.【思路分析】(1)由等腰三角形的性质得出∠DAC=∠ACD,由圆内接四边形的性质得出∠ABC+∠ADC=180°,则可得出答案;(2)由切线的性质得出∠ODP=90°,由垂径定理得出∠DEC=90°,由圆周角定理∠ACB=90°,可得出四边形DECP为矩形,则DP=EC,求出EC的长,则可得出答案.【解题过程】(1)证明:∵AD=CD,∴∠DAC=∠ACD,∴∠ADC+2∠ACD=180°,又∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∴∠ABC=2∠ACD;(2)解:连接OD交AC于点E,∵PD是⊙O的切线,∴OD⊥DP,∴∠ODP=90°,又∵=,∴OD⊥AC,AE=EC,∴∠DEC=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ECP=90°,∴四边形DECP为矩形,∴DP=EC,∵tan∠CAB=,BC=1,∴,∴AC=,∴EC=AC=,∴DP=.【总结归纳】本题考查了切线的性质,圆周角定理的应用,圆内接四边形的性质,垂径定理,解直角三角形等知识,熟练切线的性质是解题的关键.23.(10分)甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.如图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象.(1)求这两个气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.【知识考点】一次函数的应用.【思路分析】(1)根据图象中坐标,利用待定系数法求解;(2)根据分析可知:当x大于20时,两个气球的海拔高度可能相差15m,可得方程x+5﹣(x+15)=15,解之即可.【解题过程】解:(1)设甲气球的函数解析式为:y=kx+b,乙气球的函数解析式为:y=mx+n,分别将(0,5),(20,25)和(0,15),(20,25)代入,,,解得:,,∴甲气球的函数解析式为:y=x+5,乙气球的函数解析式为:y=x+15;(2)由初始位置可得:当x大于20时,两个气球的海拔高度可能相差15m,且此时甲气球海拔更高,∴x+5﹣(x+15)=15,解得:x=50,∴当这两个气球的海拔高度相差15m时,上升的时间为50min.【总结归纳】本题考查了一次函数的实际应用,解题的关键是结合实际情境分析函数图象.五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)24.(11分)如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点D从点B出发,沿边BA →AC以2cm/s的速度向终点C运动,过点D作DE∥BC,交边AC(或AB)于点E.设点D的运动时间为t(s),△CDE的面积为S(cm2).(1)当点D与点A重合时,求t的值;(2)求S关于t的函数解析式,并直接写出自变量t的取值范围.【知识考点】函数关系式;函数自变量的取值范围.【思路分析】(1)根据勾股定理即可得到结论;(2)根据相似三角形的判定和性质以及三角形的面积公式即可得到结论.【解题过程】解:(1)∵△ABC中,∠ACB=90°,AC=6cm,BC=8cm,∴AB===10(cm),当点D与点A重合时,BD=AB=10cm,∴t==5(s);(2)当0<t<5时,(D在AB上),∵DE∥BC,∴△ADE∽△ABC,∴,∴==,解得:DE=,CE=t,∵DE∥BC,∠ACB=90°,∴∠CED=90°,∴S=DE•CE=×t=﹣t2+;当t=5时,点D与点A重合,△CDE不存在;如图2,当5<t<8时,(D在AC上),则AD=2t﹣10,∴CD=16﹣2t,∵DE∥BC,∴△ADE∽△ACB,∴==,∴=,∴DE=,∴S=DE•CD=×(16﹣2t)=﹣t2+t﹣,综上所述,S关于t的函数解析式为S=.【总结归纳】本题考查了函数关系式,相似三角形的判定和性质,勾股定理,正确的理解题意是解题的关键.25.(11分)如图1,△ABC中,点D,E,F分别在边AB,BC,AC上,BE=CE,点G在线段CD上,CG=CA,GF=DE,∠AFG=∠CDE.(1)填空:与∠CAG相等的角是;(2)用等式表示线段AD与BD的数量关系,并证明;(3)若∠BAC=90°,∠ABC=2∠ACD(如图2),求的值.【知识考点】三角形综合题.【思路分析】(1)根据等腰三角形等边对等角回答即可;(2)在CG上取点M,使GM=AF,连接AM,EM,证明△AGM≌△GAF,得到AM=GF,∠AFG=∠AMG,从而证明四边形AMED为平行四边形,得到AD=EM,AD∥EM,最后利用中位线定理得到结论;(3)延长BA至点N,使AD=AN,连接CN,证明△BCN为等腰三角形,设AD=1,可得AB 和BC的长,利用勾股定理求出AC,即可得到的值.【解题过程】解:(1)∵CA=CG,∴∠CAG=∠CGA,故答案为:∠CGA;(2)AD=BD,理由是:如图,在CG上取点M,使GM=AF,连接AM,EM,∵∠CAG=∠CGA,AG=GA,∴△AGM≌△GAF(SAS),∴AM=GF,∠AFG=∠AMG,∵GF=DE,∠AFG=∠CDE,∴AM=DE,∠AMG=∠CDE,∴AM∥DE,∴四边形AMED为平行四边形,∴AD=EM,AD∥EM,∵BE=CE,即点E为BC中点,∴ME为△BCD的中位线,∴AD=ME=BD;(3)延长BA至点N,使AD=AN,连接CN,∵∠BAC=∠NAC=90°,∴AC垂直平分DN,∴CD=CN,∴∠ACD=∠ACN,设∠ACD=α=∠ACN,则∠ABC=2α,则∠ANC=90﹣α,∴∠BCN=180﹣2α﹣(90﹣α)=90﹣α,∴BN=BC,即△BCN为等腰三角形,设AD=1,则AN=1,BD=2,∴BC=BN=4,AB=3,∴AC=,∴.【总结归纳】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,平行四边形的判定和性质,中位线定理,解题的关键是根据题意构造平行四边形,转化已知条件.26.(12分)在平面直角坐标系xOy中,函数F1和F2的图象关于y轴对称,它们与直线x=t(t>0)分别相交于点P,Q.(1)如图,函数F1为y=x+1,当t=2时,PQ的长为;(2)函数F1为y=,当PQ=6时,t的值为;(3)函数F1为y=ax2+bx+c(a≠0),①当t=时,求△OPQ的面积;②若c>0,函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),当c≤x≤c+1时,设函数F1的最大值和函数F2的最小值的差为h,求h关于c的函数解析式,并直接写出自变量c的取值范围.【知识考点】二次函数综合题.【思路分析】(1)根据F1和F2关于y轴对称得出F2的解析式,求出P、Q两点坐标,即可得到PQ;(2)根据F1和F2关于y轴对称得出F2的解析式,求出P、Q两点坐标,根据PQ=6得出方程,解出t值即可;(3)①根据F1和F2关于y轴对称得出F2的解析式,将x=代入解析式,求出P、Q两点坐标,从而得出△OPQ的面积;②根据题意得出两个函数的解析式,再分当0<c<1时,当1≤c≤2时,当c>2时,三种情况,分析两个函数的增减性,得出最值,相减即可.【解题过程】解:(1)∵F1:y=x+1,F1和F2关于y轴对称,∴F2:y=﹣x+1,分别令x=2,则2+1=3,﹣2+1=﹣1,∴P(2,3),Q(2,﹣1),∴PQ=3﹣(﹣1)=4,故答案为:4;(2)∵F1:,可得:F2:,∵x=t,可得:P(t,),Q(t,),∴PQ=﹣==6,解得:t=1,经检验:t=1是原方程的解,故答案为:1;(3)①∵F1:y=ax2+bx+c,∴F2:y=ax2﹣bx+c,∵t=,分别代入F1,F2,可得:P(,),Q(,),∴PQ=||=,∴S△OPQ==1;②∵函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),而函数F1和F2的图象关于y轴对称,∴函数F1的图象经过A(5,0)和(﹣1,0),∴设F1:y=a(x+1)(x﹣5)=ax2﹣4ax﹣5a,则F2:y=ax2+4ax﹣5a,∴F1的图象的对称轴是直线x=2,且c=﹣5a,∴a=,∵c>0,则a<0,c+1>1,而F2的图象在x>0时,y随x的增大而减小,当0<c<1时,F1的图象y随x的增大而增大,F2的图象y随x的增大而减小,∴当x=c+1时,y=ax2﹣4ax﹣5a的最大值为a(c+1)2﹣4a(c+1)﹣5a,y=ax2+4ax﹣5a的最小值为a(c+1)2+4a(c+1)﹣5a,则h=a(c+1)2﹣4a(c+1)﹣5a﹣[a(c+1)2+4a(c+1)﹣5a]=﹣8ac﹣8a,又∵a=,∴h=;当1≤c≤2时,F1的最大值为=﹣9a,F2的图象y随x的增大而减小,∴F2的最小值为:a(c+1)2+4a(c+1)﹣5a,则h=﹣9a﹣[a(c+1)2+4a(c+1)﹣5a]=﹣a(c+1)2﹣4a(c+1)﹣4a=﹣ac2﹣6ac﹣9a,又∵a=,∴h=,当c>2时,F1的图象y随x的增大而减小,F2的图象y随x的增大而减小,∴当x=c时,y=ax2﹣4ax﹣5a的最大值为ac2﹣4ac﹣5a,当x=c+1时,y=ax2+4ax﹣5a的最小值为a(c+1)2+4a(c+1)﹣5a,则h=ac2+4ac﹣5a﹣[a(c+1)2+4a(c+1)﹣5a],又∵a=,∴h=2c2+c;综上:h关于x的解析式为:h=.【总结归纳】本题是二次函数综合题,考查了一次函数,反比例函数,以及二次函数的图象与性质,二次函数的最值,解题的关键是要理解题意,尤其(3)问中要读懂题干,结合图象进行分析求解.21。
2020年大连市数学中考试卷初中数学
2020年大连市数学中考试卷初中数学一、选择题〔此题共8小题,每题3分,共24分。
将以下各题的唯独正确的答案代号A 、B 、C 、D 填到题后的括号内〕 1.-2的相反数是〔 〕A .2B .-2C .21D .21-2.在△ABC 中,∠C=90º,AB=13,BC=5,那么sinB 的值是〔 〕A .135B .125 C .512D .1312 3.以下各式正确的选项是〔 〕A .532x x x =+ B .6332x x x =⋅ C .325x x x =÷D .532)(x x =4.小红制作了一个对面图案均相同的正方体礼品盒〔如下图〕,那么那个礼品盒的平面展开图是5.某校初三·一班学生参加体育考试,第一小组学生引体向上的成绩如下表所示:引体向上的个数7 8 9 10 人数2145A .9.5和10B .9和10C .10和9.5D .10和96.如图,两平行直线AB 和CD 被直线MN 所截,交点分不为E 、F ,点G 为射线FD 上的一点,且EF=EG ,假设∠EFG=45º,那么∠BEG 为 〔 〕A .30ºB .45ºC .60ºD .90º7.如图,点A 、B 、C 是方格纸上的格点,假设最小方格的边长为1,那么△ABC 的面积为〔 〕A .6B .8C .12D .168.下表是满足二次函数c bx ax y ++=2的五组数据,1x 是方程02=++c bx ax 的一个解,那么以下选项的正确是〔 〕x1.6 1.82.0 2.2 2.4 y-0.80 -0.54 -0.20 0.220.72A .6.1<<x C .2.20.2<<xD .4.22.2<<x二、填空题〔此题共7小题,每题3分,共21分〕 9.=-14.33 。
10.某地某天的最高气温为+5℃,最低气温比最高气温低8℃,那么这天此地气温t 〔℃〕的取值范畴是 。
2020年辽宁省大连市中考数学试卷(含详细解析)
A. B. C. D.
4.如图, 中, ,则 的度数是()
A. B. C. D.
5.在直角坐标系中,点P(3,1)关于x轴对称点的坐标是( )
(1)求这两个气球在上升过程中y关于x的函数解析式;
(2)当这两个气球的海拔高度相差 时,求上升的时间.
24.如图, 中, ,点D从点B出发,沿边 以 的速度向终点C运动,过点D作 ,交边 (或 )于点E.设点D的运动时间为 , 的面积为 .
(1)当点D与点A重合时,求t的值;
(2)求S关于t的函数解析式,并直接写出自变量t的取值范围.
【详解】
解:根据有理数比较大小的方法,可得
-2<-1,0>-1, >-1,1>-1,
∴四个数中,比-1小的数是-2.
故选:A.
【点睛】
此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.
2.B
【解析】
(2)函数 为 ,当 时,t的值为______;
(3)函数 为 ,
①当 时,求 的面积;
②若 ,函数 和 的图象与x轴正半轴分别交于点 ,当 时,设函数 的最大值和函数 的最小值的差为h,求h关于c的函数解析式,并直接写出自变量c的取值范围.
参考答案
1.A
【解析】
【分析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
辽宁省大连市2020年(春秋版)中考数学试卷(I)卷
辽宁省大连市2020年(春秋版)中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2019·常熟模拟) 下列四个实数中,最大的实数是()A .B .C . 0D .2. (2分)如图是一个包装盒的三视图,则这个包装盒的体积是().A . 1000πcm3.B . 1500πcm3.C . 2000πcm3.D . 4000πcm3 .3. (2分)化简的结果为()A . ﹣x﹣yB . y﹣xC . x﹣yD . x+y4. (2分)(2020·新疆模拟) 下列四个运算中,正确的个数是()① ;② ;③ ;④A . 1个B . 2个C . 3个D . 4个5. (2分) (2018七上·定安期末) 如图,把长方形沿按图那样折叠后,A,B分别落在点G,H处,若∠1=50°,则∠AEF=()A . 110°B . 115°C . 120°D . 125°6. (2分)小明从一副扑克牌中取出3张红桃、2张黑桃共5张牌与弟弟做游戏,把这5张牌背面朝上洗匀后放在桌子上,小明与弟弟同时各抽一张,两人抽到花色相同的概率是()A .B .C .D .7. (2分)(2018·清江浦模拟) 点A在数轴上表示+2,从A点沿数轴向左平移3个单位到点B,则点B所表示的数是()A . ﹣1B . 3C . 5D . ﹣1 或38. (2分)如图,中,,若于于分别为的中点,若,则的长为()A .B .C .D . 无法确定二、填空题 (共8题;共9分)9. (1分)若,,,则 ________;10. (1分)(2018·贵港) 已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是________.11. (1分)一个多边形的每个外角都等于72°,则这个多边形的边数为________.12. (1分)(2018·遵义模拟) 如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E,F分别在BC 和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+ .其中正确的序号是_________.(把你认为正确的都填上)13. (1分)方程x2﹣4x+c=0有两个不相等的实数根,则c的取值范围是________14. (2分)某人买了60分的邮票和80分的邮票共20张,用去了13元2角,则60分的邮票买了________ 枚,80分的邮票买了________ 枚.15. (1分) (2017七上·盂县期末) 如图,OA的方向是北偏东15°,OC的方向是北偏西40°,若∠AOC=∠AOB,则OB的方向是________.16. (1分)在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A,C分别在、轴的正半轴上,以OA为边长作一等边 OAD,顶点D在正方形内部,连接CD并延长CD交边AB于点P,则点P的坐标为________ .三、解答题 (共10题;共110分)17. (10分) (2019八上·陕西期中) 计算:(1)(2)18. (5分)(2019·海州模拟) 解不等式组19. (5分) (2019七下·文登期末) 已知:如图,在中,分别以为边,在外作等边和等边,连接,分别与相交于点,线段与线段交于点 .写出与之间的数量关系,并写出证明过程.20. (10分)(2019·资阳) 为了解“哈啰单车”的使用情况,小月对部分用户的骑行时间t(分)进行了随机抽查,将获得的数据分成四组(A:;B:;C:;D:),并绘制出如图所示的两幅不完整的统计图.(1)求D组所在扇形的圆心角的度数,并补全条形统计图;(2)小月打算在C、D两组中各随机选一名用户进行采访,若这两组中各有两名女士,请用列表或画树状图的方法求出恰好选中一男一女的概率.21. (5分)(2016·呼和浩特) 某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?22. (15分)(2017·昌平模拟) 在平面直角坐标系xOy中,抛物线y=mx2﹣4mx(m≠0)与x轴交于A,B两点(点A在点B的左侧).(1)求点A,B的坐标及抛物线的对称轴;(2)过点B的直线l与y轴交于点C,且tan∠ACB=2,直接写出直线l的表达式;(3)如果点P(x1 , n)和点Q(x2 , n)在函数y=mx2﹣4mx(m≠0)的图象上,PQ=2a且x1>x2 ,求x12+ax2﹣6a+2的值.23. (15分) (2019九上·义乌月考) 如图,在平面直角坐标系中,抛物线与轴交于A、B两点,与轴交于C点,B点与C点是直线与轴、轴的交点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的面积为 平方步,宽比长少 步,问宽和长各多少步?设矩形的宽为 步,根据题意,可列方程为________.
如图,菱形 中, = ,则 =________ .
如图,在平面直角坐标系中,正方形 的顶点 与 在函数 的图象上, 轴,垂足为 ,点 的坐标为 ,则 的值为________.
如图,矩形 中, = , = ,点 在边 上, 与 相交于点 .设 = , = ,当 时, 关于 的函数解析式为________.
三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)
【解答】
从正面看,底层是三个小正方形,上层右边的一个小正方形.
3.
【答案】
C
【考点】
科学记数法--表示较大的数
【解析】
科学记数法的表示形式为 的形式,其中 , 为整数.确定 的值时,要看把原数变成 时,小数点移动了多少位, 的绝对值与小数点移动的位数相同.当原数绝对值 时, 是正数;当原数的绝对值 时, 是负数.
10.如图, 中, = , = .将 绕点 逆时针旋转得到 ,使点 的对应点 恰好落在边 上,则 的度数是()
A. B. C. D.
二、填空题(本题共6小题,每小题3分,共18分)
不等式 的解集是________.
某公司有 名员工,他们所在部门及相应每人所创年利润如下表所示.
部门
人数
每人所创年利润/万元
1.
【答案】
A
【考点】
有理数大小比较
【解析】
有理数大小比较的法则:①正数都大于 ;②负数都小于 ;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【解答】
解:∵ 且 , ,
∴ .
故选 .
2.
【答案】
B
【考点】
简单组合体的三视图
【解析】
从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图,画出从正面看所得到的图形即可.
如图, 中, = , = , = ,点 从点 出发,沿边 以 的速度向终点 运动,过点 作 ,交边 (或 )于点 .设点 的运动时间为 , 的面积为 .
(1)当点 与点 重合时,求 的值;
(2)求 关于 的函数解析式,并直接写出自变量 的取值范围.
如图 , 中,点 , , 分别在边 , , 上, = ,点 在线段 上, = , = , = .
计算 .
计算 .
如图, 中, = ,点 , 在边 上, = .求证: = .
某校根据《教育部基础教育课程教材发展中心中小学生阅读指导目录( 版)》公布的初中段阅读书目,开展了读书活动.六月末,学校对八年级学生在此次活动中的读书量进行了抽样调查,如图是根据调查结果绘制的统计图表的一部分.
读书量
频数(人)
甲、乙两个探测气球分别从海拔 和 处同时出发,匀速上升 .如图是甲、乙两个探测气球所在位置的海拔 (单位: )与气球上升时间 (单位: )的函数图象.
(1)求这两个气球在上升过程中 关于 的函数解析式;
(2)当这两个气球的海拔高度相差 时,求上升的时间.
五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)
A. B. C. D.
8.如图,小明在一条东西走向公路的 处,测得图书馆 在他的北偏东 方向,且与他相距 ,则图书馆 到公路的距离 为()
A. B. C. D.
9.抛物线 = பைடு நூலகம் 轴的一个交点坐标为 ,对称轴是直线 = ,其部分图象如图所示,则此抛物线与 轴的另一个交点坐标是()
A. B. C. D.
2020年辽宁省大连市中考数学试卷
一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)
1.下列四个数中,比 小的数是( )
A. B. C. D.
2.如图是由 个相同的小正方体组成的立体图形,它的主视图是()
A. B.
C. D.
3. 年 月 日,我国成功发射北斗系统第 颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方 公里的天疆.数 用科学记数法表示为()
四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)
某化肥厂第一次运输 吨化肥,装载了 节火车车厢和 辆汽车;第二次运输 吨化肥,装载了 节火车车厢和 辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?
四边形 内接于 , 是 的直径, = .
(1)如图 ,求证 = ;
(2)过点 作 的切线,交 延长线于点 (如图 ).若 , = ,求 的长.
(3)函数 为 = ,
①当 时,求 的面积;
②若 ,函数 和 的图象与 轴正半轴分别交于点 , ,当 时,设函数 的最大值和函数 的最小值的差为 ,求 关于 的函数解析式,并直接写出自变量 的取值范围.
参考答案与试题解析
2020年辽宁省大连市中考数学试卷
一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)
A. B. C. D.
4.如图, 中, = , = , ,则 的度数是()
A. B. C. D.
5.平面直角坐标系中,点 关于 轴对称的点的坐标是()
A. B. C. D.
6.下列计算正确的是()
A. = B. = C. = D. =
7.在一个不透明的袋子中有 个白球、 个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是()
(1)填空:与 相等的角是________;
(2)用等式表示线段 与 的数量关系,并证明;
(3)若 = , = (如图 ),求 的值.
在平面直角坐标系 中,函数 和 的图象关于 轴对称,它们与直线 = 分别相交于点 , .
(1)如图,函数 为 = ,当 = 时, 的长为________;
(2)函数 为 ,当 = 时, 的值为________;
频率
本
本
本
本及以上
根据以上信息,解答下列问题:
(1)被调查学生中,读书量为 本的学生数为________人,读书量达到 本及以上的学生数占被调查学生总人数的百分比为________ ;
(2)被调查学生的总人数为________人,其中读书量为 本的学生数为________人;
(3)若该校八年级共有 名学生,根据调查结果,估计该校八年级学生读书量为 本的学生人数.