2018年重庆市初中数学竞赛决赛试题(A卷)(含答案)
2018年全国初中数学联合竞赛试题(含解答)
2018年全国初中数学联合竞赛试题(含解答)2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准。
第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次。
如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数。
第一试一、选择题(本题满分42分,每小题7分)1.已知$x,y,z$满足$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,则$\frac{y+2z}{3x-y-z}$的值为()A) 1.(B) $\frac{5}{3}$。
(C) $-\frac{1}{3}$。
(D) $-\frac{3}{5}$.答】B.解:由$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,得$5x-3y=3xz-3xz^2$,即$y=\frac{5}{3}x-\frac{3}{3}z+\frac{3}{3}xz^2$,所以$\frac{y+2z}{3x-y-z}=\frac{\frac{5}{3}x+\frac{1}{3}z}{\frac{4}{3}x-\frac{2}{3}z}=\frac{5}{3}$,故选(B)。
注:本题也可用特殊值法来判断。
2.当$x$分别取值$1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{2006}, \frac{1}{2007}$时,计算$\frac{1}{2007}+\frac{x}{21+x^2}$代数式的值,将所得的结果相加,其和等于()A) $-1$。
(B) $1$。
(C) $0$。
(D) $2007$.答】C.解:$\frac{1}{2007}+\frac{x}{21+x^2}=\frac{1}{21}\left(\frac{21}{ 2007}+\frac{21x}{21+x^2}\right)=\frac{1}{21}\left(\frac{1}{1+x ^{-2}}\right)$,所以当$x=1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{200 6},\frac{1}{2007}$时,计算所得的代数式的值之和为$0$,故选(C)。
2018年全国初中数学联赛试题参考答案和评分标准(A卷和B卷)
6.设 M A.60. 【答】B. 因为 M
1 1 1 1 1 ,则 的整数部分是 2018 2019 2020 2050 M
二、填空题: (本题满分 28 分,每小题 7 分) CE AB 于 E ,F 为 AD 的中点, 1. 如图, 在平行四边形 ABCD 中,BC 2 AB , 若 AEF 48 , 则 B _______. 【答】 84 . F A 设 BC 的中点为 G ,连结 FG 交 CE 于 H ,由题设条件知 FGCD 为菱形. 由 AB // FG // DC 及 F 为 AD 的中点,知 H 为 CE 的中点. 又 CE AB ,所以 CE FG ,所以 FH 垂直平分 CE ,故 E H DFC GFC EFG AEF 48 . B G 所以 B FGC 180 2 48 84 . 2.若实数 x, y 满足 x 3 y 3 【答】3.
2 2
即 (a b) 2[(a b) 4ab] (a b)[(a b) 3ab] 0 , 又 a b 2 ,所以 2 2[4 4ab] 2[4 3ab] 0 ,解得 ab 1.所以 a b (a b) 2ab 6 ,
a2 ) .设 B( x1 ,0) , C ( x2 ,0) ,二次函数的图象的对称轴与 x 轴的交点为 D ,则 2
BC | x1 x2 | ( x1 x2 ) 2 4 x1 x2 4a 2 4
(完整版)2018年重庆市中考数学试卷(A卷)答案及解析(可编辑)
2018年重庆市中考数学试卷(A 卷)答案及解析一、选择题 (本大题12个小题,每小题4分,共48分。
)1.2的相反数是 A .2-B .12-C.12D .2【答案】A【解析】根据一个数的相反数就是在这个数的前面添加上“-”即可求解 【点评】本题考查了相反数的定义,属于中考中的简单题2.下列图形中一定是轴对称图形的是A.B.C.D.【答案】D【解析】A40°的直角三角形不是对称图形;B 两个角是直角的四边形不一定是轴对称图形;C 平行四边形是中心对称图形不是轴对称图形;D 矩形是轴对称图形,有两条对称轴【点评】此题主要考查基本几何图形中的轴对称图形和中心对称图形,难度系数不大,考生主要注意看清楚题目要求。
3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是 A.企业男员工 B.企业年满50岁及以上的员工 C.用企业人员名册,随机抽取三分之一的员工 D.企业新进员工【答案】C【解析】A 调查对象只涉及到男性员工;B 调查对象只涉及到即将退休的员工;D 调查对象只涉及到新进员工【点评】此题主要考查考生对抽样调查中科学选取样本的理解,属于中考当中的简单题。
4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A .12B .14C .16D .18 【答案】C 【解析】40°直角三角形四边形平行四边形矩形∵第1个图案中的三角形个数为:2+2=2×2=4;第2个图案中的三角形个数为:2+2+2=2×3=6;第3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。
2018年重庆市中考数学试卷(a卷)(答案+解析)
2018年重庆市中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面。
都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.(4分)2的相反数是()A.﹣2 B.﹣12C.12D.22.(4分)下列图形中一定是轴对称图形的是()A.B.C.D.直角三角形四边形平行四边形矩形3.(4分)为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工4.(4分)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.185.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm6.(4分)下列命题正确的是()A.平行四边形的对角线互相垂直平分B.矩形的对角线互相垂直平分C.菱形的对角线互相平分且相等D.正方形的对角线互相垂直平分7.(4分)估计(2√30﹣√24)•√16的值应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间8.(4分)按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=﹣4,y=﹣2 C.x=2,y=4 D.x=4,y=29.(4分)如图,已知AB 是⊙O 的直径,点P 在BA 的延长线上,PD 与⊙O 相切于点D ,过点B 作PD 的垂线交PD 的延长线于点C ,若⊙O 的半径为4,BC =6,则P A 的长为( )A .4B .2√3C .3D .2.510.(4分)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E 点处测得旗杆顶端的仰角∠AED =58°,升旗台底部到教学楼底部的距离DE =7米,升旗台坡面CD 的坡度i =1:0.75,坡长CD =2米,若旗杆底部到坡面CD 的水平距离BC =1米,则旗杆AB 的高度约为( )(参考数据:sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.6)A .12.6米B .13.1米C .14.7米D .16.3米11.(4分)如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数y =k x(k >0,x >0)的图象上,横坐标分别为1,4,对角线BD ∥x 轴.若菱形ABCD 的面积为452,则k 的值为( )A .54B .154C .4D .512.(4分)若数a 使关于x 的不等式组{x−12<1+x35x −2≥x +a有且只有四个整数解,且使关于y 的方程y+ay−1+2a1−y=2的解为非负数,则符合条件的所有整数a 的和为( )A .﹣3B .﹣2C .1D .2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的的横线上。
2018年重庆市初一数学竞赛试卷
2018年重庆市初一数学竞赛试卷(满分120分,时间120分)一、填空题:(每小题4分,共32分) 1.计算:=+-⨯---)221(213122 ; 2.计算:2002)200211()411()311()211(-⨯⨯-⨯-⨯-⨯ ; 3.分解因式:(x-3)(x-5)-3= ; 4.方程312=--x x 的解是 ; 5.四个连续正整数的倒数之和等于2019则这四个正整数分别是 ; 6.在长度分别为1cm,2cm,3cm,…,6cm 的6条线段落中,任取其中三条构成一个三角形,那么最多可以构成不同的三角形 个。
7.符号[x]表示不超过x 的最大整数,{x}表示x 的正的小数部分,那么方程2[x]+5{x}+3=0的解为 。
二、选择题:(每小题4分,共32分) 1、如果x<-2,则x +-11等于( )(A )x+2 (B)-(x+2) (C)x (D)-x2、已知2)(,111mnn m n m n m -+=-则的值为( ) (A )0 (B )1 (C )2 (D )3 3、任意两个质数的和一定是( )(A )偶数 (B )质数 (C )合数 (D )不能确定4、已知ΔABC 中,∠C=32°,∠A 、∠B 的外角平分线分别交对边的延长线于D 、E 两点,且AC=AD ,则∠E=( )(A )10° (B )16° (C )20° (D )24°5、已知的值为则1,013422+=+-a a a a ( ) (A )21 (B )52 (C )91 (D )716、已知m,n 为自然数,且294m=n 3,则m 的最小值是( )(A )2942 (B )756 (C )252 (D )504 7、如图,P 是等边三角形ABC 内一点,∠APB 、∠BPC 、∠CPA 的度数比为5∶6∶7,以AP 为边作正ΔAPD ,连接DC ,则ΔPDC 的三个内角度数比为( )(A )2∶3∶4 (B )3∶4∶5 (C )4∶5∶6 (D )5∶6∶78、把1、2、……、2000这2000个自然数任意排列为19993221200021,,,,a a a a a a a a a -+++-- 使得的和最大,则这个最大值为( )(A)2002000 (B )2001999 (C )1999999 (D )2000000 三、解答题:(16分)某校初二年级有A 、B 、C 三个课外活动小组,各组人数相等,但A 中的女生比B 中的女生多4名,B 中的女生比C 中的女生多1名.如果从A 调10人去B 中,再从B 调10人去C 中,最后从C 调10人回A 中,结果各组的女生人数都相等.已知从C 调入A 的学生中只有2名女生.问分别从A,B 调出的人数中各有几名女生?四、解答题:(20分)如图,ΔABC 中,D 是AB 的中点,AE=2EC ,BE 、CD 交于点P ,已知ΔABC 的面积是12平方单位。
【精品】2018年重庆市初一数学竞赛试卷
4. 方程 x 2x 1 3 的解是
;
5. 四个连续正整数的倒数之和等于 19 则这四个正整数分别是
;
20
6. 在长度分别为 1cm,2cm,3cm, … ,6cm 的 6 条线段落中,任取其中三条构成一个三角形,
那么最多可以构成不同的三角形
个。
7. 符号 [x] 表示不超过 x 的最大整数, {x} 表示 x 的正的小数部分, 那么方程 2[x]+5{x}+3=0
则这个最大值为(
)
(A)2002000
( B) 2001999
三、解答题:( 16 分)
( C) 1999999
( D) 2000000
某校初二年级有 A、 B、 C三个课外活动小组,各组人数相等,但 A 中的女生比 B 中的
女生多 4 名 ,B 中的女生比 C中的女生多 1 名 . 如果从 A 调 10 人去 B 中, 再从 B 调 10 人
A
D
E
F
B
C
五、解答题:( 20 分)
某校初一年级招收新生共甲、乙、丙三个班,新年联欢会上,不同班级但相互认识的
同学互送贺年片一张。已知甲班人数为
50 人,乙班、丙班分别收到来自甲班的贺年片数
不超过本班人数的一半,而乙班收到来自丙班的贺年片不超过
15 张。问本年级中,在其
它两班都没有熟人(熟人指认识的人)的学生不少于多少人?
)
( A) 1 2
( B) 2 5
( C) 1 9
( D) 1 7
6、已知 m,n 为自然数,且 294m=n3, 则 m的最小值是(
)
-1-
( A) 2942
( B) 756 ( C)252 ( D) 504
重庆市2018年初中学业水平A测试数学含答案
重庆市2018年初中毕业生学业水平暨普通高中招生考试数学试题(A 卷)参考公式:抛物线y =ax 2+bx +c (a ≠0)的顶点坐标为(-b 2a ,4ac -b 24a ),对称轴为x =-b 2a. 一、选择题(本大题12个小题,每小题4分,共48分) 1. 2的相反数是( )A. -2B. -12C. 12 D. 22. 下列图形中一定是轴对称图形的是( )3. 为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是( ) A. 企业男员工B. 企业年满50岁及以上的员工C. 用企业人员名册,随机抽取三分之一的员工D. 企业新进员工4. 把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )第4题图A. 12B. 14C. 16D. 185. 要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5 cm,6 cm和9 cm,另一个三角形的最短边长为2.5 cm,则它的最长边为()A. 3 cmB. 4 cmC. 4.5 cmD. 5 cm6. 下列命题正确的是()A. 平行四边形的对角线互相垂直平分B. 矩形的对角线互相垂直平分C. 菱形的对角线互相平分且相等D. 正方形的对角线互相垂直平分7. 估计(230-24)·16的值应在()A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间8. 按如图所示的运算程序,能使输出的结果为12的是()第8题图A. x=3,y=3B. x=-4,y=-2C. x=2,y=4D. x=4,y=29. 如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C.若⊙O的半径为4,BC=6,则P A的长为()A. 4B. 2 3C. 3D. 2.510. 如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台坡面CD的坡度i=1∶0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,则旗杆AB的高度约为() (参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)A. 12.6米B. 13.1米C. 14.7米D. 16.3米第9题图第 10题图 第11题图11. 如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数y =kx (k >0,x >0)的图象上,横坐标分别为1,4,对角线BD ∥x 轴.若菱形ABCD 的面积为452,则k 的值为( )A. 54B. 154C. 4D. 5 12. 若数a 使关于x 的不等式组⎩⎪⎨⎪⎧x -12<1+x 35x -2≥x +a ,有且只有四个整数解,且使关于y 的方程y +a y -1+2a 1-y=2的解为非负数,则符合条件的所有整数a 的和为( )A. -3B. -2C. 1D. 2二、填空题(本大题6个小题,每小题4分,共24分) 13. 计算:|-2|+(π-3)0= .14. 如图,在矩形ABCD中,AB=3,AD=2,以点A为圆心,AD长为半径画弧,交AB于点E,图中阴影部分的面积是(结果保留π).第1 4题图第15题图15. 春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为.16. 如图,把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,得到∠AGE=30°,若AE=EG=23厘米,则△ABC的边BC的长为厘米.第16题图 第17题图17. A ,B 两地相距的路程为240千米,甲、乙两车沿同一线路从A 地出发到B 地,分别以一定的速度匀速行驶.甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B 地.甲、乙两车相距的路程y (千米)与甲车行驶时间x (小时)之间的关系如图所示,求乙车修好时,甲车距B 地还有 千米.18. 为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中的A ,B ,C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是 .(商品的利润率=商品的售价-商品的成本价商品的成本价×100%)三、解答题(本大题2个小题,每小题8分,共16分)19. 如图,直线AB∥CD,BC平分∠ABD,∠1=54°,求∠2的度数.第19题图20. 某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:第20题图(1)请将条形统计图补全;(2)获得一等奖的同学中有14来自七年级,有14来自八年级,其他同学均来自九年级.现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.四、解答题(本大题5个小题,每小题10分,共50分)21. 计算:(1)a(a+2b)-(a+b)(a-b);(2)⎝ ⎛⎭⎪⎫x +2x -3+x +2÷x 2-4x +4x -3.22. 如图,在平面直角坐标系中,直线y =-x +3过点A (5,m )且与y 轴交于点B ,把点A 向左平移2个单位,再向上平移4个单位,得到点C .过点C 且与y =2x 平行的直线交y 轴于点D .(1)求直线CD 的解析式;(2)直线AB 与CD 交于点E ,将直线CD 沿EB 方向平移,平移到经过点B 的位置结束,求直线CD 在平移过程中与x 轴交点的横坐标的取值范围.第22题图23. 在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1∶2,且里程数之比为2∶1,为加快美丽乡村建设,政府决定加大投入,经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.24. 如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=2CG.25. 对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n 为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=m33.求满足D(m)是完全平方数的所有m.五、解答题(本大题1个小题,共12分)26. 如图,在平面直角坐标系中,点A在抛物线y=-x2+4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).(1)求线段AB 的长;(2)点P 为线段AB 上方抛物线上的任意一点,过点P 作AB 的垂线交AB 于点H ,点F 为y 轴上一点,当△PBE 的面积最大时,求PH +HF +12FO 的最小值;(3)在(2)中,PH +HF +12FO 取得最小值时,将△CFH 绕点C 顺时针旋转60°后得到△CF ′H ′,过点F ′作CF ′的垂线与直线AB 交于点Q ,点R 为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S ,使以点D ,Q ,R ,S 为顶点的四边形为菱形,若存在,请直接写出点S 的坐标,若不存在,请说明理由.2018年重庆中考数学试题(A卷)解析1. A【解析】在这个数前面加上负号,就是它的相反数.2. D【解析】×××3. C【解析】A、B、D中调查范围,不具有普遍性,对抽取的对象划定了范围,因而不具有代表性.C 是从企业名册中随机抽取三分之一的员工进行调查就具有代表性.4. C【解析】∵图①中三角形个数为:4=2×(1+1);图②中三角形个数为:6=2×(2+1);图③中三角形个数为:8=2×(3+1);…图中三角形个数为:2(n+1);∴图⑦中三角形个数为:2×(7+1)=16.5. C【解析】两个三角形的形状相同,则两个三角形相似,由相似三角形对应边成比例便可解答.设新三角形的最长边为x cm,由题意得,52.5=9x,解得x=4.5 cm.本题利用实际问题中制作形状相同的三角形框架一事考查了学生对所学相似三角形的应用,侧重考查了学生的准确理解数学概念,应用数学知识的能力,让大家体会到数学知识与生活实际的紧密联系,与实际结合学好数学,活学活用.让学生在明确知识对象的基础上,依据特定的性质解决数学问题.6. D【解析】A.平行四边形的对角线能互相平分,不一定垂直,选项错误;B.矩形的对角线互相平分且相等,不一定垂直,选项错误;C.菱形的对角线互相垂直平分,不一定相等,选项错误;D.正方形的对角线相等且互相垂直平分,选项正确.7. B 【解析】先化简计算,再进行估算.原式=25-2=2(5-1),∵2<5<2.5,∴1<5-1<1.5,∴2<2(5-1)<3.8. C 【解析】A.当x =3,y =3时,满足y ≥0,则输出结果为:x 2+2y =32+2×3=15,选项错误;B.当x =-4,y =-2时,不满足y ≥0,则输出结果为:x 2-2y =(-4)2-2×(-2)=20,选项错误;C.当x =2,y =4时,满足y ≥0,则输出结果为:x 2+2y =22+2×4=12,选项正确;D.当x =4,y =2时,满足y ≥0,则输出结果为:x 2+2y =42+2×2=20,选项错误.第9题解图9. A 【解析】如解图,连接OD ,∵PD 是⊙O 的切线,∴OD ⊥PC ,∵PC ⊥BC ,∴OD ∥BC ,∴△OPD ∽△BPC ,∴OP BP =OD BC ,即P A +4P A +8=46,解得P A =4.10. B 【解析】如解图,过点B 作BF ⊥DE 于F ,过点C 作CG ⊥DE 于点G ,则FG =BC =1米,第10题解图∵i CD =1∶0.75,∴CG DG =10.75,设CG =x 米,则DG =0.75x 米,∴x 2+(0.75x )2=CD 2=4,解得x =1.6,∴BF =CG =1.6米,DG =1.2米,∴EF =DE +DG +FG =9.2米,在Rt △AEF 中,得AF =EF ·tan58°=14.72米,∴AB =AF -BF =14.72-1.6≈13.1米.11. D 【解析】∵A 、B 的横坐标分别是1和4,∴12BD =4-1=3,则BD =6,∵菱形ABCD 的面积为452,∴12AC ·BD =452,即12AC ·6=452,∴AC =152,设A 、B 点坐标分别为A (1,k ),B (4,k 4),∵AC =2|y A -y B |,∴2(k -k 4)=152,解得k =5.难点突破 本题难点在于将反比例函数的比例系数与菱形的面积联系起来,突破的方法是将反比例函数图象上的两个点A 与B 的坐标与菱形ABCD 的对角线的关系联系起来就可解决问题.12. C 【解析】解不等式组得,⎩⎪⎨⎪⎧x <5x ≥a +24,∵原不等式组有且只有四个整数解,∴0<a +24≤1,解得-2<a ≤2;解分式方程得y =2-a ,∵分式方程的解为非负数,∴2-a ≥0,且2-a ≠1,解得a ≤2且a ≠1,综上有,-2<a ≤2,且a ≠1,∵a 为整数,∴a =-1或0或2,∴-1+0+2=1.难点突破 本题有两个难点:一是由不等式组的解情况确定a 的取值范围;二是由分式方程的解的情况确定a 的取值范围.第一个难点突破方法是确定不等式组满足条件的不等式解集中a 的代数式的上下限中取不取等号;第二个难点突破方法是不要忘记分式方程的增根的验证.13. 3 【解析】根据绝对值的计算法则与零指数幂法则进行计算便可.原式=2+1=3.14. 6-π 【解析】用矩形面积减去扇形面积便可得阴影部分的面积.S 阴影=S 矩形ABCD -S 扇形AED =3×2-90π×22360=6-π.15. 23.4 【解析】把这5天的游客数量由小到大排列为:21.9,22.4,23.4,24.9,25.4,位于最中间的一个数为23.4,故中位数为23.4.第16题解图16. 6+43 【解析】如解图,过点E 作EH ⊥AG 于点H ,则CG =AG =2GH =2EG·cos 30°=2×23×32=6,由折叠知BE =AE =23,∴ BC =BE +EG +CG =23+23+6=43+6(厘米).17. 90 【解析】由题意与函数图象可知,甲车先行40分钟即23h ,所行路程为30千米,因此甲车的速度为30÷23=45 km /h ,乙车的初始速度为45×2=10+(2-23)V 乙,得V 乙=60 km /h ,因此乙车故障后速度为60-10=50 km /h ,设乙车在发生故障前行使了x 小时,修好车后行驶了y 小时,由题意得,⎩⎪⎨⎪⎧60x +50y =24045(x +y +23+13)=240,解得⎩⎪⎨⎪⎧x =73y =2,∴乙车修好后甲车距B 地的距离为:45×2=90 km . 18. 8∶9 【解析】设甲、乙两种袋装粗粮各为x 袋和y 袋,由题意知,甲粗粮每袋成本价为58.5÷(1+30%)=45元/袋,∴1千克B 粗粮和1千克C 粗粮的成本价为:45-3×6=27元,∴乙种粗粮的成本价为:1×6+2×27=60元/袋,则30%×45x +20%×60y 45x +60y=24%,化简得270x =240y ,∴x :y =8∶9.19. 解:∵AB ∥CD ,∠1=54°, ∴∠ABC =∠1=54°,(2分) ∵BC 平分∠ABD ,∴∠DBC =∠ABC =54°,(5分)∴∠BDC =180°-∠CBD -∠BCD =72°, ∵∠2=∠BDC , ∴∠2=72°.(8分)20. 解:(1)补全统计图如解图①;第20题解图①(4分)(2)由(1)中的数据知,七年级获得一等奖人数:4×14=1(人),八年级获得一等奖人数:4×14=1(人),九年级获得一等奖人数:4-1-1=2(人), 画树状图分析如下设七年级获得一等奖人为甲,八年级获得一等奖人为乙,九年级获得一等奖人为丙和丁.第20题解图②由上可知共有12种等可能的结果,其中既有七年级又有九年级的有4种结果, ∴P (既有七年级又有九年级同学)=412=13.(8分)21. (1)解:原式=a 2+2ab -a 2+b 2 (3分) =2ab +b 2.(5分)(2)解:原式=(x +2x -3+x 2-x -6x -3)·(x -3)(x -2)2=x 2-4x -3·x -3(x -2)2(7分) =(x +2)(x -2)x -3·x -3(x -2)2(9分)=x +2x -2.(10分)22. 解:(1)∵直线y =-x +3过点A (5,m ), ∴m =-5+3=-2, ∴点A 的坐标为(5,-2),由平移可得点C 的坐标为C (3,2),(2分) 设直线CD 的解析式为y =kx +b (k ≠0), ∵直线CD 与直线y =2x 平行, ∴k =2,(3分)∵点C (3,2)在直线CD 上, ∴2×3+b =2, 解得b =-4,∴直线CD 的解析式为y =2x -4;(5分) (2)∵直线y =-x +3与y 轴的交点为点B , ∴点B 的坐标为B (0,3),∵直线CD 经过点E 时的解析式为y =2x -4, ∴此时直线CD 与x 轴的交点为(2,0),(6分)设直线CD 平移到经过点B (0,3)时的解析式为y =2x +b , ∴3=2×0+b ,解得b =3,∴此时直线CD 的解析式为y =2x +3,∴平移后的直线CD 与x 轴的交点为(-32,0),(8分)∴直线CD 沿EB 方向平移,平移到经过点B 的位置时,直线CD 在平移过程中与x 轴交点的横坐标的取值范围为:-32≤x ≤2.(10分)23. 解:(1)设今年1至5月道路硬化的里程数为x 千米,根据题意得,x ≥4(50-x ), 解得x ≥40,(2分)答:今年1至5月道路硬化的里程数至少是40千米;(4分)(2)因为2017年道路硬化与道路拓宽的里程共45千米,它们之比为2∶1,则道路硬化为45×23=30(千米),道路拓宽为45×13=15(千米),设2017年道路硬化的经费为m 万元/千米,则道路拓宽的经费为2m 万元/千米.根据题意得,30m +15×2m =780,解得m =13,∴2017年道路硬化的经费为13万元/千米,道路拓宽的经费为26万元/千米.(5分) 根据题意得,13(1+a %)×40(1+5a %)+26(1+5a %)×10(1+8a %)=780(1+10a %),(8分) 令a %=t ,原方程可化为:520(1+t )(1+5t )+260(1+5t )(1+8t )=780(1+10t ), 整理得10t 2-t =0, 解得,t =0(舍去)或t =0.1, ∴a =10.答:a 的值为10.(10分)24. (1)解:∵AH =3,HE =1,AB =AE , ∴AB =AE =AH +HE =4, ∵BG ⊥AE , ∴∠AHB =90°, ∴AB 2=AH 2+HB 2,∴BH =AB 2-AH 2=42-32=7; ∴S △ABE =12AE ·BH =12×4×7=27;(4分)(2)证明:∵四边形ABCD 为平行四边形, ∴AD ∥BC ,AD =BC ,∠F AO =∠ECO , ∵点O 为AC 的中点, ∴AO =CO .在△AOF 和△COE 中,∵∠F AO =∠ECO ,AO =CO ,∠AOF =∠COE , ∴△AOF ≌△COE ,∴AF =CE , ∴DF =BE .(6分)如解图,过点A 作AM ⊥BE 交BC 于点M ,交BG 于点Q ,过点G 作GN ⊥BC 交BC 于点N .第24题解图∴∠AMB=∠AME=∠GNC=∠GNB=90°,∴∠AHB=∠AMB,∵∠AQH=∠BQM,∴∠QAH=∠GBM,∵AB=AE,AM⊥BE,∴∠BAM=∠QAH,BM=ME,∴∠BAM=∠EAM=∠GBN,∵∠ACB=45°,AM⊥BE,∴∠CAM=∠ACB=45°.∵∠BAG=45°+∠BAM,∠BGA=45°+∠GBN,∴∠BAG=∠BGA.∴AB=GB.∵AB=AE,∴AE=BG.(8分)在△AME和△BNG中,∠AME=∠BNG,∠EAM=∠GBN,AE=BG,∴△AME≌△BNG,∴ME=NG,∴BE=2ME=2NG,在Rt△GNC中,∵∠ACB=45°,∴CG=2NG,∴2CG=2NG,即BE=2NG=2CG,∴DF=BE=2CG.(10分)25.解:(1)4158,6237,9900等.(2分)设任意一个“极数”n的千位数字为x,百位数字为y(其中1≤x≤9,0≤y≤9且x,y为整数),则十位上的数字为9-x,个位上的数字为9-y,则这个数可以表示为:n=1000x+100y+10(9-x)+9-y,化简,得n=990x+99y+99=99(10x+y+1),∵1≤x≤9,0≤y≤9且x,y为整数,∴10x+y+1为整数,∴任意一个“极数”n都是99的倍数;(4分)(2)由(1)可知,设任意一个“极数”m的千位数字为x,百位数字为y(其中1≤x≤9,0≤y≤9,且x,y为整数),则数m可表示为:m=990x+99y+99,∴D(m)=m33=3(10x+y+1).(5分)∵1≤x≤9,0≤y≤9,∴11≤10x+y+1≤100,∴33≤3(10x+y+1)≤300,∵D(m)为完全平方数且D(m)是3的倍数,∴D(m)=36或81或144或225.(6分)当D(m)=36时,得10x+y=11,解得x=1,y=1,此时,m=1188;当D(m)=81时,得10x+y=26,解得x=2,y=6,此时,m=2673;当D(m)=144时,得10x+y=47,解得x=4,y=7,此时,m=4752;当D(m)=225时,得10x+y=74,解得x=7,y=4,此时,m=7425. 综上,满足条件的m为1188,2673,4752,7425.(10分)26.解:(1)抛物线的对称轴为x=-42×(-1)=2,令x=1,得y=3,∴点A的坐标为(1,3),由抛物线的对称性可得,点B的坐标为(3,3),∴线段AB的长为2;(3分)第26题解图①(2)如解图①,过点E 作EN ⊥PH ,交PH 的延长线于点N ,PN 交BE 于点M .∵点E (1,1),点B (3,3),∴直线BE 的解析式为y =x ,设点P 的坐标为(t ,-t 2+4t )(1<t <3),则点M 的坐标为(t ,t ).则S △PBM +S △PEM =12PM ·BH +12PM ·EN =12PM ·(BH +EN ) =12(-t 2+4t -t )×(3-1) =-t 2+3t .当t =32时,△PBE 面积取得最大值,此时点P 的坐标为(32,154),点H 的坐标为(32,3), ∴PH =34,(5分)第26题解图②如解图②,过原点O 在y 轴左侧作射线OJ ,使∠COJ =30°,过点H 作HG ⊥OJ ,垂足为G ,HG 与y轴的交点为K ,当点F 与点K 重合时,12FO +HF 取得最小值. 此时12FO +HF =12OK +KH =KG +KH =HG . ∵∠GOK =30°,∴∠OKG =∠CKH =60°,在Rt △CHK 中,CH =32,∠CKH =60°, ∴∠CHK =30°,∴CK =CH ·tan30°=32,KH =2CK =3, ∴OK =3-32, 在Rt △GOK 中,KG =12OK =12×(3-32)=6-34, ∴HG =KG +KH =6-34+3=6+334, ∴PH +HF +12FO 的最小值为PH +HG =34+6+334=9+334;(8分) (3)点S 的坐标为(5,3)或(-1,3+10)或(-1,3-10)或(-1,8).(12分)。
2018年全国初中数学联赛试题参考答案和评分标准 精品
2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题:(本题满分42分,每小题7分) 1.已知2012,b =,2c =,那么,,a b c 的大小关系是 ( )A. a b c <<B. a c b <<C. b a c <<D.b c a << 【答】C.因为11a =,1b=110a b<<,故b a <.又2)1)c a -=-=1),而221)30-=->1,故c a >.因此b a c <<.2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( ) A .3. B .4. C .5. D .6. 【答】B.方程即22()234x y y ++=,显然x y +必须是偶数,所以可设2x y t +=,则原方程变为22217t y +=,它的整数解为2,3,t y =±⎧⎨=±⎩从而可求得原方程的整数解为(,)x y =(7,3)-,(1,3),(7,3)-,(1,3)--,共4组.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( )ABCD【答】D.过点C 作CP//BG ,交DE 于点P.因为BC =CE =1,所以CP 是△BEG 的中位线,所以P 为EG 的中点.又因为AD =CE =1,AD//CE ,所以△ADF ≌△ECF ,所以CF =DF ,又CP//FG ,所以FG 是△DCP 的中位线,所以G 为DP 的中点.因此DG =GP =PE =13DE. 连接BD ,易知∠BDC =∠EDC =45°,所以∠BDE =90°. 又BDBG==. 4.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( )EC AA .18-. B .0. C .1. D .98. 【答】B.442222222219()2122()48a ab b a b a b ab a b ab ab ++=+-+=-+=--+.因为222||1ab a b ≤+=,所以1122ab -≤≤,从而311444ab -≤-≤,故2190()416ab ≤-≤,因此219902()488ab ≤--+≤,即44908a ab b ≤++≤.因此44a ab b ++的最小值为0,当a b ==a b ==时取得. 5.若方程22320x px p +--=的两个不相等的实数根12,x x 满足232311224()x x x x +=-+,则实数p的所有可能的值之和为 ( )A .0.B .34-.C .1-.D .54-. 【答】 B.由一元二次方程的根与系数的关系可得122x x p +=-,1232x x p ⋅=--,所以2222121212()2464x x x x x x p p +=+-⋅=++,332212121212()[()3]2(496)x x x x x x x x p p p +=++-⋅=-++.又由232311224()x x x x +=-+得223312124()x x x x +=-+,所以2246442(496)p p p p p ++=+++,所以(43)(1)0p p p ++=,所以12330,,14p p p ==-=-. 代入检验可知:1230,4p p ==-均满足题意,31p =-不满足题意. 因此,实数p 的所有可能的值之和为12330()44p p +=+-=-.6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a c b d +=+.这样的四位数共有 ( )A .36个.B .40个.C .44个.D .48个. 【答】C.根据使用的不同数字的个数分类考虑:(1)只用1个数字,组成的四位数可以是1111,2222,3333,4444,共有4个.(2)使用2个不同的数字,使用的数字有6种可能(1、2,1、3,1、4,2、3,2、4,3、4).如果使用的数字是1、2,组成的四位数可以是1122,1221,2112,2211,共有4个;同样地,如果使用的数字是另外5种情况,组成的四位数也各有4个.因此,这样的四位数共有6×4=24个.(3)使用3个不同的数字,只能是1、2、2、3或2、3、3、4,组成的四位数可以是1232,2123,2321,3212,2343,3234,3432,4323,共有8个.(4)使用4个不同的数字1,2,3,4,组成的四位数可以是1243,1342,2134,2431,3124,3421,4213,4312,共有8个.因此,满足要求的四位数共有4+24+8+8=44个. 二、填空题:(本题满分28分,每小题7分) 1.已知互不相等的实数,,a b c 满足111a b c t b c a+=+=+=,则t =_________. 【答】 1±.由1a t b +=得1b t a =-,代入1b t c +=得11t t a c +=-,整理得2(1)()0ct ac t a c -++-= ① 又由1c t a+=可得1ac at +=,代入①式得22()0ct at a c -+-=,即2()(1)0c a t --=,又c a ≠,所以210t -=,所以1t =±.验证可知:11,1a b c a a -==-时1t =;11,1a b c a a+=-=-+时1t =-.因此,1t =±. 2.使得521m⨯+是完全平方数的整数m 的个数为 . 【答】 1.设2521mn ⨯+=(其中n 为正整数),则2521(1)(1)m n n n ⨯=-=+-,显然n 为奇数,设21n k =-(其中k 是正整数),则524(1)m k k ⨯=-,即252(1)m k k -⨯=-.显然1k >,此时k 和1k -互质,所以252,11,m k k -⎧=⨯⎨-=⎩或25,12,m k k -=⎧⎨-=⎩或22,15,m k k -⎧=⎨-=⎩解得5,4k m ==. 因此,满足要求的整数m 只有1个.3.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BCAP= . 【答】设D 为BC 的中点,在△ABC 外作∠CAE =20°,则∠BAE =60°. 作CE ⊥AE ,PF ⊥AE ,则易证△ACE ≌△ACD ,所以CE =CD =12BC. 又PF =PA sin ∠BAE =PA sin 60,PF =CE=12BC ,因此BCAP4.已知实数,,a b c 满足1abc =-,4a b c ++=,22243131319a b c a a b b c c ++=------,则222a b c ++= .【答】332. 因为22313(3)(1)(1)(1)a a a a abc a bc a a bc b c a b c --=-+=+-=--+=--,所以EB2131(1)(1)a a abc =----. 同理可得2131(1)(1)b b b a c =----,2131(1)(1)c c c a b =----. 结合22243131319a b c a a b b c c ++=------可得1114(1)(1)(1)(1)(1)(1)9b c a c a b ++=------,所以4(1)(1)(1)(1)(1)(1)9a b c a b c ---=-+-+-. 结合1abc =-,4a b c ++=,可得14ab bc ac ++=-. 因此,222233()2()2a b c a b c ab bc ac ++=++-++=.实际上,满足条件的,,a b c 可以分别为11,,422-.第二试 (A )一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积. 解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则30a b c ++=.显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值. 由a b c ≤<及30a b c ++=得303a b c c =++<,所以10c >. 由a b c +>及30a b c ++=得302a b c c =++>,所以15c <.又因为c 为整数,所以1114c ≤≤. ……………………5分 根据勾股定理可得222a b c +=,把30c a b =--代入,化简得30()4500ab a b -++=,所以22(30)(30)450235a b --==⨯⨯, ……………………10分因为,a b 均为整数且a b ≤,所以只可能是22305,3023,a b ⎧-=⎪⎨-=⨯⎪⎩解得5,12.a b =⎧⎨=⎩……………………15分 所以,直角三角形的斜边长13c =,三角形的外接圆的面积为1694π. ……………………20分 二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,A D ⊥OP 于点D .证明:2AD BD CD =⋅.证明:连接OA ,OB ,OC.∵OA ⊥AP ,A D ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅. ……………………5分 又由切割线定理可得2PA PB PC =⋅,∴P B PC PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆,……………………10分∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PB D ∽△COD , ……………………20分∴PD BD CD OD=,∴2AD PD OD BD CD =⋅=⋅. ……………………25分 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,PA 是△ABC 的外接圆的切线.设M 3(0,)2-,若AM//BC ,求抛物线的解析式.解 易求得点P 23(3,)2b bc +,点C (0,)c .设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m . 显然,12,x x 是一元二次方程2106x bx c -++=的两根,所以13x b =,23x b =+AB 的中点E 的坐标为(3,0)b ,所以AE……………………5分因为PA 为⊙D 的切线,所以PA ⊥AD ,又A E ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即223)()||2b c m =+⋅,又易知0m <,所以可得6m =-. ……………………10分 又由DA =DC 得22DA DC =,即2222(30)()m b m c +=-+-,把6m =-代入后可解得6c =-(另一解0c =舍去). ……………………15分又因为AM//BC ,所以OA OMOB OC =3||2|6|-=-. ……………………20分 把6c =-代入解得52b =(另一解52b =-舍去). 因此,抛物线的解析式为215662y x x =-+-. ……………………25分第二试 (B )一.(本题满分20分)已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积. 解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则60a b c ++=. 显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值.由a b c ≤<及60a b c ++=得603a b c c =++<,所以20c >.由a b c +>及60a b c ++=得602a b c c =++>,所以30c <.又因为c 为整数,所以2129c ≤≤. ……………………5分 根据勾股定理可得222a b c +=,把60c a b =--代入,化简得60()18000ab a b -++=,所以322(60)(60)1800235a b --==⨯⨯, ……………………10分因为,a b 均为整数且a b ≤,所以只可能是326025,6035,a b ⎧-=⨯⎪⎨-=⨯⎪⎩或2226025,6023,a b ⎧-=⨯⎪⎨-=⨯⎪⎩ 解得20,15,a b =⎧⎨=⎩或10,24.a b =⎧⎨=⎩……………………15分当20,15a b ==时,25c =,三角形的外接圆的面积为6254π; 当10,24a b ==时,26c =,三角形的外接圆的面积为169π. ……………………20分 二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,A D ⊥OP 于点D ,△ADC 的外接圆与BC 的另一个交点为E.证明:∠BAE =∠ACB.证明:连接OA ,OB ,OC ,BD.∵OA ⊥AP ,A D ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅. ……………………5分 又由切割线定理可得2PA PB PC =⋅,∴P B PC PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆,……………………10分∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PB D ∽△COD , ∴PD BDCD OD=, ……………………15分∴2BD CD PD OD AD ⋅=⋅=,∴BD ADAD CD=. 又∠BDA =∠BDP +90°=∠ODC +90°=∠ADC ,∴△BDA ∽△ADC , ……………………20分 ∴∠BAD =∠ACD ,∴AB 是△ADC 的外接圆的切线,∴∠BAE =∠ACB. ……………………25分三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(B )卷第一题相同. 二.(本题满分25分)题目和解答与(B )卷第二题相同. 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,PA 是△ABC 的外接圆的切线.将抛物线向左平移1)个单位,得到的新抛物线与原抛物线交于点Q ,且∠QBO =∠OBC.求抛物线的解析式.解 抛物线的方程即2213(3)62b y x bc =--++,所以点P 23(3,)2b b c +,点C (0,)c . 设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m . 显然,12,x x 是一元二次方程2106x bx c -++=的两根,所以13x b =,23x b =+AB 的中点E 的坐标为(3,0)b ,所以AE因为PA 为⊙D 的切线,所以PA ⊥AD ,又A E ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即223)()||2b c m =+⋅,又易知0m <,所以可得6m =-. ……………………5分 又由DA =DC 得22DA DC =,即2222(30)()m b m c +=-+-,把6m =-代入后可解得6c =-(另一解0c =舍去). ……………………10分将抛物线2213(3)662b y x b =--+-向左平移1)个单位后,得到的新抛物线为2213(324)662b y x b =--++-.易求得两抛物线的交点为Q 23(312102)2b b +-+. ……………………15分 由∠QBO =∠OBC 可得tan ∠QBO =tan ∠OBC.作QN ⊥AB ,垂足为N ,则N (312b +-,又233(x b b =+=,所以tan ∠QBO =QN BN2310212b +=12=111)]22==⋅. ……………………20分又tan ∠OBC =OCOB 1(2b ==⋅,所以111)](22b ⋅=⋅-. 解得4b =(另一解45)03b =<,舍去).因此,抛物线的解析式为21466y x x =-+-. ……………………25分。
2018年重庆市中考数学试卷(a卷)答案及解析(word版)
2018年重庆市中考数学试卷(A 卷)(含答案解析)一、选择题 (本大题12个小题,每小题4分,共48分。
)1.2的相反数是 A .2- B .12-C.12D .2【答案】A【解析】根据一个数的相反数就是在这个数的前面添加上“-”即可求解 【点评】本题考查了相反数的定义,属于中考中的简单题2.下列图形中一定是轴对称图形的是A.40°直角三角形B.四边形C. 平行四边形D.矩形【答案】D【解析】A40°的直角三角形不是对称图形;B 两个角是直角的四边形不一定是轴对称图形;C 平行四边形是中心对称图形不是轴对称图形;D 矩形是轴对称图形,有两条对称轴【点评】此题主要考查基本几何图形中的轴对称图形和中心对称图形,难度系数不大,考生主要注意看清楚题目要求。
3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是 A.企业男员工 B.企业年满50岁及以上的员工 C.用企业人员名册,随机抽取三分之一的员工 D.企业新进员工【答案】C【解析】A 调查对象只涉及到男性员工;B 调查对象只涉及到即将退休的员工;D 调查对象只涉及到新进员工【点评】此题主要考查考生对抽样调查中科学选取样本的理解,属于中考当中的简单题。
4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A .12B .14C .16D .18【答案】C 【解析】∵第1个图案中的三角形个数为:2+2=2×2=4;第2个图案中的三角形个数为:2+2+2=2×3=6;第3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。
2018年初中数学联赛试题及答案
2018年初中数学联赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.设二次函数2222a ax x y ++=的图象的顶点为A ,与x 轴的交点为C B ,.当△ABC 为等边三角形时,其边长为 ( )A.6.B.22.C.32.D.23. 【答】C.由题设知)2,(2a a A --.设)0,(1x B ,)0,(2x C ,二次函数的图象的对称轴与x 轴的交点为D ,则222212212122444)(||a a a x x x x x x BC =⨯-=-+=-=.又BC AD 23=,则22223|2|a a ⋅=-,解得62=a 或02=a (舍去).所以,△ABC 的边长3222==a BC .2.如图,在矩形ABCD 中,BAD ∠的平分线交BD 于点E ,1AB =,15CAE ∠=︒,则BE =( ). B.22. C.12-.1.【答】D.延长AE 交BC 于点F ,过点E 作BC 的垂线,垂足为H .由已知得︒=∠=∠=∠=∠45HEF AFB FAD BAF ,1==AB BF , ︒=∠=∠30ACB EBH .设x BE =,则2xHE HF ==,23x BH =. 因为HF BH BF +=,所以2231xx +=,解得13-=x .所以 13-=BE .3.设q p ,均为大于3的素数,则使2245q pq p ++为完全平方数的素数对),(q p 的个数为( ) A.1. B.2. C.3. D.4.【答】B.设22245m q pq p =++(m 为自然数),则22)2(m pq q p =++,即pq q p m q p m =++--)2)(2(.由于q p ,为素数,且q q p m p q p m >++>++2,2,所以21m p q --=,2m p q pq ++=,从而0142=---q p pq ,即9)2)(4(=--q p ,所以(,)(5,11)p q =或(7,5).所以,满足条件的素数对),(q p 的个数为2.4.若实数b a ,满足2=-b a ,4)1()1(22=+--ab b a ,则=-55b a ( )A.46.B.64.C.82.D.128. 【答】C.由条件4)1()1(22=+--ab b a 得04223322=-+----b a ab b a b a ,即 0]3))[((]4)[(2)(22=+--++---ab b a b a ab b a b a ,又2=-b a ,所以0]34[2]44[22=+++-ab ab ,解得1=ab .所以222()26a b a b ab +=-+=,332()[()3]14a b a b a b ab -=--+=,82)())((22332255=---+=-b a b a b a b a b a .5.对任意的整数y x ,,定义xy y x y x -+=@,则使得(@)@(@)@x y z y z x +(@)@z x y +0=的整数组),,(z y x 的个数为 ( )A.1.B.2.C.3.D.4.【答】D.z xy y x z xy y x z xy y x z y x )()(@)(@)@(-+-+-+=-+=xyz zx yz xy z y x +---++=,由对称性,同样可得xyz zx yz xy z y x x z y +---++=@)@(,xyz zx yz xy z y x y x z +---++=@)@(.所以,由已知可得 0=+---++xyz zx yz xy z y x ,即1)1)(1)(1(-=---z y x . 所以,z y x ,,为整数时,只能有以下几种情况:⎪⎩⎪⎨⎧-=-=-=-,11,11,11z y x 或⎪⎩⎪⎨⎧=--=-=-,11,11,11z y x 或⎪⎩⎪⎨⎧=-=--=-,11,11,11z y x 或⎪⎩⎪⎨⎧-=--=--=-,11,11,11z y x 所以,)0,2,2(),,(=z y x 或)2,0,2(或)2,2,0(或)0,0,0(,故共有4个符合要求的整数组.6.设20501202012019120181++++=M ,则M1的整数部分是 ( ) A.60. B.61. C.62. D.63.【答】B.因为3320181⨯<M ,所以335613320181=>M . 又)205012032120311()203012019120181(+++++++= M83230134520205011320301=⨯+⨯>, 所以13451185611345832301=<M ,故M1的整数部分为61.二、填空题:(本题满分28分,每小题7分)1.如图,在平行四边形ABCD 中,AB BC 2=,AB CE ⊥于E ,F 为AD 的中点,若︒=∠48AEF ,则=∠B _______.【答】84︒. 设BC 的中点为G ,连结FG 交CE 于H ,由题设条件知FGCD 为菱形. 由DC FG AB ////及F 为AD 的中点,知H 为CE 的中点. 又AB CE ⊥,所以FG CE ⊥,所以FH 垂直平分CE ,故 ︒=∠=∠=∠=∠48AEF EFG GFC DFC . 所以︒=︒⨯-︒=∠=∠84482180FGC B .2.若实数y x ,满足2154133=+++)(y x y x ,则y x +的最大值为 . 【答】3.由2154133=+++)(y x y x 可得22115()()()42x y x xy y x y +-+++=,即 22115()()42x y x xy y +-++=. ①令k y x =+,注意到2222131()04244y x xy y x y -++=-++>,故0>=+k y x .又因为22211()344x xy y x y xy -++=+-+,故由①式可得3115342k xyk k -+=,所以kk k xy 3215413-+=. 于是,y x ,可看作关于t 的一元二次方程032154132=-++-kk k kt t 的两根,所以 3211542()403k k k k+-∆=--⋅≥, 化简得 0303≤-+k k ,即0)103)(3(2≤++-k k k ,所以30≤<k . 故y x +的最大值为3.B3.没有重复数字且不为5的倍数的五位数的个数为 . 【答】21504.显然首位数字不能为0,末位不能为0和5.当首位数字不为5时,则首位只能选0,5之外的8个数.相应地个位数只能选除0,5及万位数之外的7个数,千位上只能选万位和个位之外的8个数,百位上只能选剩下的7个数,十位上只能选剩下的6个数.所以,此时满足条件的五位数的个数为1881667878=⨯⨯⨯⨯个.当首位数字为5时,则个位有8个数可选,依次千位有8个数可选,百位有7个数可选, 十位有6个数可选.所以,此时满足条件的五位数的个数为26886788=⨯⨯⨯个.所以,满足条件的五位数的个数为21504268818816=+(个).4.已知实数c b a ,,满足0a b c ++=,2221a b c ++=,则=++abcc b a 555 .【答】52. 由已知条件可得21)]()[(212222-=++-++=++c b a c b a ca bc ab ,abc c b a 3333=++,所以 555c b a ++)]()()([))((332332332333222b a c c a b c b a c b a c b a +++++-++++= 2222223[()()()]abc a b a b a c a c b c b c =-+++++)(3222222a c b b c a c b a abc +++=abc abc abc ca bc ab abc abc 25213)(3=-=+++=.所以 25555=++abc c b a .第一试(B)一、选择题:(本题满分42分,每小题7分) 1.满足1)1(22=-++x x x 的整数x 的个数为 ( )A.1.B.2.C.3.D.4. 【答】C.当02=+x 且012≠-+x x 时,2-=x . 当112=-+x x 时,2-=x 或1=x . 当112-=-+x x 且2+x 为偶数时,0=x . 所以,满足条件的整数x 有3个.2.已知123123,,()x x x x x x <<为关于x 的方程323(2)0x x a x a -++-=的三个实数根,则22211234x x x x -++= ( )A.5.B.6.C.7.D.8.【答】A.方程即0)2)(1(2=+--a x x x ,它的一个实数根为1,另外两个实数根之和为2,其中必有一根小于1,另一根大于1,于是2,1312=+=x x x ,故2221123313113114()()412()41x x x x x x x x x x x x -++=+-++=-++312()15x x =++=.3.已知点E ,F 分别在正方形ABCD 的边CD ,AD 上,CE CD 4=,FBC EFB ∠=∠,则 =∠ABF tan ( )A.21. B.53. C.22. D.23. 【答】B.不妨设4=CD ,则3,1==DE CE .设x DF =,则x AF -=4,92+=x EF .作EF BH ⊥于点H .因为AFB FBC EFB ∠=∠=∠,BHF BAF ∠=︒=∠90,BF 公共,所以△BAF ≌△BHF ,所以4==BA BH .由BCE DEF BEF ABF ABCD S S S S S ∆∆∆∆+++=四边形得14213219421)4(421422⋅⋅+⋅⋅++⋅⋅+-⋅⋅=x x x , 解得58=x .所以5124=-=x AF ,53tan ==∠AB AF ABF .4.=( )A.0.B.1.C.2.D.3.【答】B.令y =0y ≥,且29x y =-=1y =或6y =,从而可得8x =-或27x =.检验可知:8x =-是增根,舍去;27x =是原方程的实数根. 所以,原方程只有1个实数根.5.设c b a ,,为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组),,(c b a 的个数为 ( )A.4.B.5.C.6.D.7. 【答】B.由已知得, 20182017=+bc a ,20182017=+ac b ,20182017=+ab c ,两两作差,可得0)20171)((=--c b a ,0)20171)((=--a c b ,0)20171)((=--b a c .E由0)20171)((=--c b a ,可得 b a =或20171=c . (1)当c b a ==时,有020*******=-+a a ,解得1=a 或20172018-=a . (2)当c b a ≠=时,解得20171==b a , 201712018-=c . (3)当b a ≠时,20171=c ,此时有:201712018,20171-==b a ,或20171,201712018=-=b a . 故这样的三元数组),,(c b a 共有5个.6.已知实数b a ,满足15323=+-a a a ,55323=+-b b b ,则=+b a ( ) A.2. B.3. C.4. D.5.【答】A.有已知条件可得 2)1(2)1(3-=-+-a a ,2)1(2)1(3=-+-b b ,两式相加得33(1)2(1)(1)2(1)0a a b b -+-+-+-=,因式分解得22(2)[(1)(1)(1)(1)2]0a b a a b b +-----+-+=. 因为02)1(43)]1(21)1[(2)1()1)(1()1(2222>+-+---=+-+----b b a b b a a , 所以 02=-+b a ,因此 2=+b a .二、填空题:(本题满分28分,每小题7分)1.已知r q p ,,为素数,且pqr 整除1-++rp qr pq ,则=++r q p _______. 【答】10. 设11111pq qr rp k pqr p q r pqr++-==++-,由题意知k 是正整数,又2,,≥r q p ,所以23<k ,从而1=k ,即有pqr rp qr pq =-++1,于是可知r q p ,,互不相等.当r q p <<≤2时, qr rp qr pq pqr 31<-++=,所以3<q ,故2=q .于是222qr qr q r =++1-,故3)2)(2(=--r q ,所以32,12=-=-r q ,即5,3==r q ,所以,)5,3,2(),,(=r q p .再由r q p ,,的对称性知,所有可能的数组(,,)p q r 共有6组,即(2,3,5),)3,5,2(,)5,2,3(,)2,5,3(,)3,2,5(,)2,3,5(.于是10=++r q p .2.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为 . 【答】8.设这两个数为)(,22n m n m >,则 100022-=+n m n m ,即2(1)(1)1001m n --=.又100110011143791117713=⨯=⨯=⨯=⨯,所以 2(1,1)m n --=(1001,1)或(143,7)或(91,11)或(77,13),验证可知只有)7,143()1,1(2=--n m 满足条件,此时8,1442==n m .3.已知D 是△ABC 内一点,E 是AC 的中点,6AB =,10BC =,BCD BAD ∠=∠,ABD EDC ∠=∠,则=DE .【答】4.延长CD 至F ,使DC DF =,则AF DE //且AF DE 21=,所以ABD EDC AFD ∠=∠=∠,故D B F A ,,,四点共圆,于是BCD BAD BFD ∠=∠=∠,所以10==BC BF ,且FC BD ⊥,故90FAB FDB ∠=∠=︒.又6=AB ,故861022=-=AF ,所以421==AF DE .4.已知二次函数)504()12(2222++++++=n m x n m x y 的图象在x 轴的上方,则满足条件的正整数对),(n m 的个数为 .【答】15.因为二次函数的图象在x 轴的上方,所以0)504(4)]12(2[222<++-++=∆n m n m ,整理得49424<++n m mn ,即251)12)(1(<++n m .因为n m ,为正整数,所以25)12)(1(≤++n m . 又21≥+m ,所以22512<+n ,故5≤n . 当1=n 时,3251≤+m ,故322≤m ,符合条件的正整数对),(n m 有7个;当2=n 时,51≤+m ,故4≤m ,符合条件的正整数对),(n m 有4个;当3=n 时,7251≤+m ,故718≤m ,符合条件的正整数对),(n m 有2个; 当4=n 时,9251≤+m ,故917≤m ,符合条件的正整数对),(n m 有1个;当5=n 时,11251≤+m ,故1114≤m ,符合条件的正整数对),(n m 有1个.综合可知:符合条件的正整数对),(n m 有7+4+2+1+1=15个.第二试 (A )一、(本题满分20分)设d c b a ,,,为四个不同的实数,若b a ,为方程011102=--d cx x 的根,d c ,为方程011102=--b ax x 的根,求d c b a +++的值.解 由韦达定理得10a b c +=,10c d a +=,两式相加得)(10c a d c b a +=+++.……………………5分因为a 是方程011102=--d cx x 的根,所以011102=--d ac a ,又c a d -=10,所以010111102=-+-ac c a a . ① ……………………10分类似可得 010111102=-+-ac a c c . ② ……………………15分 ①-②得 0)121)((=-+-c a c a .因为c a ≠,所以121=+c a ,所以1210)(10=+=+++c a d c b a . ……………………20分二、(本题满分25分)如图,在扇形OAB 中,︒=∠90AOB ,12=OA ,点C 在OA 上,4=AC ,点D 为OB 的中点,点E 为弧AB 上的动点,OE 与CD 的交点为F .(1)当四边形ODEC 的面积S 最大时,求EF ;(2)求DE CE 2+的最小值.解 (1)分别过E O ,作CD 的垂线,垂足为N M ,. 由8,6==OC OD ,得10=CD .所以)(21EN OM CD S S S ECD OCD +⋅=+=∆∆ 6012102121=⨯⨯=⋅≤OE CD , ……………………5分 当DC OE ⊥时,S 取得最大值60.此时,536108612=⨯-=-=OF OE EF . ……………………10分 (2)延长OB 至点G ,使12==OB BG ,连结GE GC ,. 因为21==OG OE OE OD ,EOG DOE ∠=∠,所以△ODE ∽△OEG ,所以21=EG DE ,故DE EG 2=.……………………20分所以108824222=+=≥+=+CG EG CE DE CE ,当G E C ,,三点共线时等号成立.故DE CE 2+的最小值为108. ……………………25分C三、(本题满分25分)求所有的正整数n m ,,使得22233)(n m n m n m +-+是非负整数.解 记22233)(n m n m n m S +-+=,则22222)(3)()(]3))[((nm mn n m mn n m n m n m mn n m n m S +-+-+=+--++=. 因为n m ,为正整数,故可令pqn m mn =+,q p ,为正整数,且1),(=q p . 于是 22223)(3)(pq pq n m p q p q n m S +-+=--+=.因为S 为非负整数,所以2|q p ,又1),(=q p ,故1=p ,即mn n m |)(+. ①……………………10分所以nm mn n n m n +-=+2是整数,所以2|)(n n m +,故n m n +≥2,即n m n ≥-2. 又由0≥S ,知02233≥-+n m n m . ② 所以n m m n m m n m n 2223223)(≥-=-≥,所以m n ≥.由对称性,同理可得n m ≥,故n m =. ……………………20分 把n m =代入①,得m |2,则2≥m .把n m =代入②,得0243≥-m m ,即2≤m . 故2=m .所以,满足条件的正整数n m ,为2=m ,2=n . ……………………25分第二试 (B )一、(本题满分20分)若实数c b a ,,满足59)515151)((=-++-++-+++b a c a c b c b a c b a ,求)111)((cb ac b a ++++的值.解 记x c b a =++,y ca bc ab =++,z abc =,则)616161()515151)((cx b x a x x b a c a c b c b a c b a -+-+-=-++-++-+++abc x ca bc ab x c b a x ca bc ab x c b a x x 216)(36)(6)](36)(123[232-+++++-+++++-=23(936)536216x x y x xy z-+=-+-, ……………………10分结合已知条件可得23(936)95362165x x y x xy z -+=-+-,整理得z xy 227=.所以 227)111)((==++++z xy c b a c b a . ……………………20分二、(本题满分25分)如图,点E 在四边形ABCD 的边AB 上,△ABC 和△CDE 都是等腰直角三角形,AC AB =,DC DE =.(1)证明:BC AD //;(2)设AC 与DE 交于点P ,如果︒=∠30ACE ,求PEDP. 解 (1)由题意知45ACB DCE ∠=∠=︒,BC =,EC =,所以DCA ECB ∠=∠,AC DCBC EC=,所以△ADC ∽△BEC ,故DAC ∠= 45EBC ∠=︒,所以ACB DAC ∠=∠,所以BC AD //.……………………10分(2)设x AE =,因为︒=∠30ACE ,可得x AC 3=,2CE x =,DE DC ==.因为90EAP CDP ∠=∠=︒,EPA CPD ∠=∠,所以△APE ∽△DPC ,故可得DPC APE S S ∆∆=21. ……………………15分 又223x S S S ACE APE EPC ==+∆∆∆,2x S S S CDE DPC EPC ==+∆∆∆,于是可得 2)32(x S DPC -=∆,2)13(x S EPC -=∆. ……………………20分所以2131332-=--==∆∆EPC DPC S S PE DP . ……………………25分 三、(本题满分25分)设x 是一个四位数,x 的各位数字之和为m ,1+x 的各位数字之和为n ,并且m 与n 的最大公约数是一个大于2的素数.求x .解 设abcd x =,由题设知m 与n 的最大公约数),(n m 为大于2的素数.若9≠d ,则1+=m n ,所以(,)1m n =,矛盾,故9=d . ……………………5分 若9≠c ,则891-=-+=m m n ,故(,)(,8)m n m =,它不可能是大于2的素数,矛盾,故9=c .……………………10分若9=b ,显然9≠a ,所以269991-=---+=m m n ,故(,)(,26)13m n m ==,但此时可得13≥n ,363926>≥+=n m ,矛盾. ……………………15分若9≠b ,则17991-=--+=m m n ,故(,)m n (,17)17m ==,只可能34,17==m n . ……………………20分 于是可得8899=x 或9799. ……………………25分。
2018年重庆市中考数学试卷(a卷)(带解析)
装混合粗粮.其中,甲种粗粮每袋装有 3 千克 A 粗粮,1 千克 B 粗粮,1 千克 C
粗粮;乙种粗粮每袋装有 1 千克 A 粗粮,2 千克 B 粗粮,2 千克 C 粗粮.甲、乙
两种袋装粗粮每袋成本价分别为袋中的 A,B,C 三种粗粮的成本价之和.已知 A
粗粮每千克成本价为 6 元,甲种粗粮每袋售价为 58.5 元,利润率为 30%,乙种
∴AE=
设点 B 的坐标为(4,y),则 A 点坐标为(1,y+ )
∵点 A、B 同在 y= 图象上
∴4y=1•(y+ )
∴y=
∴B 点坐标为(4, ) ∴k=5 故选:D.
12.(4 分)若数 a 使关于 x 的不等式组
有且只有四个整数解,且使
关于 y 的方程
=2 的解为非负数,则符合条件的所有整数 a 的和为( )
4.(4 分)把三角形按如图所示的规律拼图案,其中第①个图案中有 4 个三角形, 第②个图案中有 6 个角形第③个图案中有 8 个三角形,…,按此规律排列下去, 则第⑦个图案中三角形的个数为( )
A.12 B.14 C.16 D.18 【考点】38:规律型:图形的变化类.菁优网版权所有 【解答】解:∵第①个图案中三角形个数 4=2+2×1, 第②个图案中三角形个数 6=2+2×2, 第③个图案中三角形个数 8=2+2×3, …… ∴第⑦个图案中三角形的个数为 2+2×7=16,
6.(4 分)下列命题正确的是( ) A.平行四边形的对角线互相垂直平分 B.矩形的对角线互相垂直平分 C.菱形的对角线互相平分且相等 D.正方形的对角线互相垂直平分 【考点】O1:命题与定理.菁优网版权所有 【解答】解:A、平行四边形的对角线互相垂直平分,是假命题; B、矩形的对角线互相垂直平分,是假命题; C、菱形的对角线互相平分且相等,是假命题; D、正方形的对角线互相垂直平分,是真命题; 故选:D.
2018年重庆市中学考试数学精彩试题(A卷)及问题详解(word版)
2018年市中考数学试卷(A 卷)答案及解析一、选择题 (本大题12个小题,每小题4分,共48分。
)1.2的相反数是 A .2-B .12-C .12D .2【答案】A【解析】根据一个数的相反数就是在这个数的前面添加上“-”即可求解 【点评】本题考查了相反数的定义,属于中考中的简单题2.下列图形中一定是轴对称图形的是A.B.C.D.【答案】D【解析】A40°的直角三角形不是对称图形;B 两个角是直角的四边形不一定是轴对称图形;C 平行四边形是中心对称图形不是轴对称图形;D 矩形是轴对称图形,有两条对称轴【点评】此题主要考查基本几何图形中的轴对称图形和中心对称图形,难度系数不大,考生主要注意看清楚题目要求。
3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是 A.企业男员工 B.企业年满50岁及以上的员工 C.用企业人员名册,随机抽取三分之一的员工 D.企业新进员工【答案】C【解析】A 调查对象只涉及到男性员工;B 调查对象只涉及到即将退休的员工;D 调查对象只涉及到新进员工【点评】此题主要考查考生对抽样调查中科学选取样本的理解,属于中考当中的简单题。
4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A .12B .14C .16D .18 【答案】C 【解析】∵第1个图案中的三角形个数为:2+2=2×2=4;40°直角三角形四边形平行四边形矩形第2个图案中的三角形个数为:2+2+2=2×3=6;第3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。
2018年重庆市初中数学竞赛初赛试题(A卷)
2018年重庆市初中数学竞赛初赛试题(A 卷)(本卷共三个大题,考试时间120分钟,满分120分)一、选择题:(第小题5分,共35分)1.计算:-22-3×(-1)×(-4)的结果为( )A .-8B .8C .-16D .162.计算(-2)2004+(-2)2005的结果为( )A .22004B .-22004C .-2D .-13.若|x |=1,|y |=2,则|x +y |的值等于( ) A .3 B .-3C .1D .1或34.如图,用图1所示的图案剪成图2所示的小图案,你认为最多能剪( ) A .10个 B .15个C .20个D .25个5.一个五位数,若前两个数字表示的两位数为x ,后三个数字表示的三位数为y ,则这个五位数可表示为( )A .1000x +yB .100x +yC .1000y +xD .100y +x6.用若干个小正方体搭成一个几何体,使得它的正视图和俯视图如图所示,则搭成这样的几何体不同情况的总数为( ) A .6个 B .7个C .8个D .9个7.盒中原装有6个小球,一位魔术师从中任取出若干个小球,并将每一个小球变成6个小球后,再放回盒中,然后他又从盒中任取出若干个小球,并将每一个小球又变成6个小球后,再次放回盒中,如此继续到某一时刻,魔术师停止再取球变魔术时,这时盒中小球的总个数只可能是( )A 2004个B .2005个C .2006个D .2007个二、填空题:(每小题5分,共35分)1.请按照112 ,215 ,3110 ,4117 ,……这一列数的排列规律,写出第14位上的数是__________.2.若a >1,则下列四个数:a ,1a,-a ,a 2中,最大的一个数是__________.图1▲▲▲▲▲ ▲▲▲▲▲ ▲▲▲▲▲●●●●● ●●●●●图2正视图俯视图3.计算12 +13 +23 +14 +24 +34 +15 +25 +35 +45 +……+120 +220 +……+1920 的结果是___________.4.如果在数轴上表示有理数x 的点到原点的距离小于3,那么|x -3|+|x +3|的值等于____________.5.有人规定了一种新的运算“*”,对于任意两个有理数a 、b ,都有a *b =2a -3b5 ,若6*x=35,则x 的值为_________. 6.某城市的方形街道如图所示(图中每个小方形均为相等的正方形),小明同学要从A 地沿此方形街道前往B 地,则路程最短的走法共有________种.7.如图,四边形ABCD 是一个直角梯形,∠A =∠B =90°,AB =10cm ,BC =12cm ,AD =7cm ,四个顶点处扇形的半径分别为AE =BF =3cm ,DG =CH =4cm ,则图中阴影部分的面积为___________cm 2.(答案用含π的结果表示) 三、解答题:(每小题25分,共50分)1.某城市共有10条公路两两相交,且每两条公路只有一个交点,其中仅有三条公路交于同一点.为了让行人安全地通过公路的交点,市政府决定在这些公路的每个交点处安装一套红绿灯.亲爱的同学,如果你是一个工程师,请你动脑筋算一算应准备多少套红绿灯为这10条公路的每个交点处进行安装?二、6题图AB·· 二、7题图2.10个人围成一个圆圈,每个人心里想一个数,并把这个数告诉给左右相邻的两个人,然后每个人把左右相邻的两个人告诉给自己的数的平均数亮出来.如图所示,圆周上的数都是每个人亮出来的平均数.请你求亮出数为11的人心里想的那个数是多少?三、2题图7 896 · 510· ·· ··· · ·· 1112 13 14。
2018年重庆市中考数学试卷(A卷)含答案
2018年重庆市中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面。
都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.(4分)2的相反数是()A.﹣2 B.﹣C.D.22.(4分)下列图形中一定是轴对称图形的是()A.直角三角形B.四边形C.平行四边形D.矩形3.(4分)为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工4.(4分)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个角形第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.185.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm6.(4分)下列命题正确的是()A.平行四边形的对角线互相垂直平分B.矩形的对角线互相垂直平分C.菱形的对角线互相平分且相等D.正方形的对角线互相垂直平分7.(4分)估计(2﹣)•的值应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间8.(4分)按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=﹣4,y=﹣2 C.x=2,y=4 D.x=4,y=2 9.(4分)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2C.3 D.2.510.(4分)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台坡面CD的坡度i=1:0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,则旗杆AB的高度约为()(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)A.12.6米B.13.1米C.14.7米D.16.3米11.(4分)如图,在平面直角坐标系中,菱形ABCD的顶点A,B 在反比例函数y=(k>0,x>0)的图象上,横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为,则k的值为()A.B.C.4 D.512.(4分)若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为()A.﹣3 B.﹣2 C.1 D.2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的的横线上。
2018年全国初中数学竞赛试题及答案
若关于 m 的方程有正整数解,则
9 4n(n 1) 8 (2 n 1)2 l 2 ( l 为正整数),
即 l 2 (2n 1)2 8,[ l (2n 1)][( l (2 n 1)] 8
4
l (2n 1) 8 l (2n 1) 4
所以
,或
,
l (2n 1) 1 l (2n 1) 2
解得: n
5 4
所以 PQ= yp
yQ
( a2
3a
4)
(a2
3a
4) =
2
2a
8
即当 a= 0(属于 -2≤ a≤2)时, PQ 的最大值为 8。
12.已知 a , b 都是正整数,试问关于 x 的方程 x 2 abx 1 ( a b) 2
把它们求出来;如果没有,请给出证明.
-4
Q
-6
B
-8
-10
0 是否有两个整数解?如果有,请
但不多于 8 个,红球不少于 2 个,黑球不多于 3 个,那么上述取法的种数是(
)
( A )14
( B) 16
(C) 18
(D )20
解:选( B )。只用考虑红球与黑球各有 4 种选择:红球( 2,3,4,5 ),黑球( 0,1,2,3 )共 4× 4= 16 种
3.已知 a 、 b 、 c 是三个互不相等的实数,且三个关于 x 的一元二次方程 ax 2 bx c 0 ,
综上,存在正整数 a= 1, b=3 或 a=3, b=1,使得
方程 x 2 abx 1 (a b) 0 有两个整数解为 x1 1, x2 2 。 2
DE
13.如图,点 E, F 分别在四边形 ABCD 的边 AD , BC 的延长线上,且满足
2018年重庆市中学考试数学考试卷(A卷)问题详解及解析汇报(可编辑)
2018年市中考数学试卷(A卷)答案及解析一、选择题(本大题12个小题,每小题4分,共48分。
)1.2的相反数是A.2-B.12-C.12D.2【答案】A【解析】根据一个数的相反数就是在这个数的前面添加上“-”即可求解【点评】本题考查了相反数的定义,属于中考中的简单题2.下列图形中一定是轴对称图形的是A. B. C. D.【答案】D【解析】A40°的直角三角形不是对称图形;B两个角是直角的四边形不一定是轴对称图形;C平行四边形是中心对称图形不是轴对称图形;D矩形是轴对称图形,有两条对称轴【点评】此题主要考查基本几何图形中的轴对称图形和中心对称图形,难度系数不大,考生主要注意看清楚题目要求。
3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工【答案】C【解析】A调查对象只涉及到男性员工;B调查对象只涉及到即将退休的员工;D调查对象只涉及到新进员工【点评】此题主要考查考生对抽样调查中科学选取样本的理解,属于中考当中的简单题。
4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A.12 B.14 C.16 D.18【答案】C【解析】40°直角三角形四边形平行四边形矩形∵第1个图案中的三角形个数为:2+2=2×2=4;第2个图案中的三角形个数为:2+2+2=2×3=6;第3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。
比较简单。
5.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为A. 3cmB. 4cmC. 4.5cmD. 5cm【答案】C【解析】利用相似三角形三边对应成比例解出即可。
2018八年级数学竞赛试题(含答案)
八年级数学竞赛试卷考试时间:100分钟 总分:150分姓名: 班级: 得分:一、选择题(每题5分,共50分)1、下列各式成立的是( )A .a-b+c=a-(b+c )B .a+b-c=a-(b-c )C .a-b-c=a-(b+c )D .a-b+c-d=(a+c )-(b-d )2、已知一次函数y=kx+b 的图象(如图6),当y <0时,x 的取值范围是((A )x >0(B )x <0 (C )x <1 (D )x >1 3、在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100100°角对应相等的角是 ( )A.∠AB.∠BC.∠CD.∠B 或∠C4、某校八(2)班的全体同学喜欢的球类运动用图7所示的扇形统计图来表示,下面说法正确的是( )A 、从图中可以直接看出喜欢各种球类的具体人数;B 、从图中可以直接看出全班的总人数;C 、从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况;D 、从图中可以直接看出全班同学现在喜欢各种球类的人数的大小关系5、已知一次函数y=mx+│m+1│的图像与y 轴交于点(0,3),且y 随x 的增大而减小,则m 的值为( ).A .2B .-4C .-2或-4D .2或-46、设y=ax 15+bx 13+cx 11-5(a 、b 、c 为常数),已知当x=7时,y=7,则x= -7时,y 的值等于( )A 、-7B 、-17C 、17D 、不确定7、已知b>a>0,a 2+b 2=4ab ,则ba b a -+等于( ). A .-21B . 3C .2D .-38、将一个正方形分割成n 个小正方形(n>1),则n 不可能取( ).A .4B .5C .8D .99、若x 取整数,则使分式1-2x 36x +的值为整数的x 值有( ). (A)3个 (B)4个 (C)6个 (D)8个10、已知1x ,2x ,3x 的平均数为5,1y ,2y ,3y 的平均数为7,则1123x y +,2223x y +,3323x y +的平均数为( )(A)31 (B)313 (C)935 (D)17二、填空题(每题8分,共40分)11、点O 为线段 A B 上一点, ∠AOC = 10︒ , ∠COD = 50︒ ,则 ∠BOD = 或A O B12、已知 m >0 ,且对任意整数 k ,2018123k m+均为整数,则 m 的最大值为 . 13、已知某三角形的三条高线长 a ,b ,c 为互不相等的整数,则 a + b + c 的最小值 为 .14、如果用四则运算的加、减、除法定义一种新的运算,对于任意实数x 、y 有则=15、如图5所示,圆的周长为4个单位长度,在圆的4等分点处标上0,1,2,3.先让圆周上数字0所对应的数与数轴上的数-1所对应的点重合,再让数轴按逆时针方向绕在该圆上,那么数轴上的数-2007将与圆周上的数字_________重合.二、简答题(每题20分,共60分) 16、现有两种理财方式供王老师选择.方案一:购买一款分红产品,前三年每年 年初交 10 万元,第 6 年年初返 6 万元,以后每年处返1.5 万元;方案二:购 买一款年利率 5%,满一年计息的储蓄产品,第一年初存款10 万元,接下来 两年每年年初追加本金 10 万元,并将之前的本息全部续存.请问哪个选择更划算?请说明理由.(参考数据:1.054 + 1.053 + 1.052 =3.47563125 )y x yx y x -+=*()()31*191211**017、一筐苹果,若分给全班同学每人3个,则还剩下25 个;若全班同学一起吃,其中5个同学每人每天吃1个,其他同学每人每天吃2个,则恰好用若干天吃完.问筐里最多共有多少个苹果?18、如图所示,有一张长为3、宽为1的长方形纸片,现要在这张纸片上画两个小长方形,使小长方形的每条边都与大长方形的一边平行,并且每个小长方形的长与宽之比也都为3:1,然后把它们剪下,这时,所剪得的两张小长方形纸片的周长之和有最大值.求这个最大值.八年级答案:一、C CADB BDBBA二、11、120度或者140度12、2/3 13、9 14、163/113 15、2 三、1617、18、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年重庆市初中数学竞赛决赛试题(A 卷)
(全卷共三个大题,考试时间120分钟,满分120分)
一、选择题:(每小题5分,共35分)
1、设b a ,是非零有理数,且ab
b a b a 32,0)(222
+=+则的值为( )
A 、
3
1
B 、3
C 、1
D 、—1 2、如图,小明从家到学校有①②③三条路可走,
每条路的长分别为c b a ,,,则( )
A 、a >b >c
B 、a >c >b
C 、a =b >c
D 、a =b <c
3、20082005的末位数字是( ) (1)
A 、8
B 、6
C 、4
D 、2
4、如图2,在数轴上有A 、B 、C 、D 、E 五个整数点(即各点均表示整数),且AB=2BC=3CD=4DE ,若A 、E 两点表示的数的分别为—13和12,那么,该数轴上上述五个点所表示的整数中,离线段AE 的中点最近的整数是( )
(2)
A 、—2
B 、—1
C 、0
D 、2
5、已知关于023,034,045=+-=+-=+-c x b x a x x 有两个解无解的方程只有一个解,则化简b a b c c a ---+-的结果是( ) A 、2a B 、2b C 、2c D 、0
6、十年前张庄人均收入是李庄人均收入的40%,而现在张庄的人均收入是李庄人均收入的
80%,已知现在李庄的人均收入是它十年前人均收入的3倍,那么,现在张庄的人均收入是它十年前人均收入的( )
A
B
C
D
E
初中数学竞赛决赛试题(A 卷)第1页 (共4页)
A 、2倍
B 、3倍
C 、6倍
D 、8倍
7、如图3,每个立方体的6个面上分别写有1到6这个自然数,并且任意两个相对面上所
写两个数字之和为7,把这样的7个立方体一个挨着一个地连接起来,紧挨着的两个面上的数字之和为8,则图中“﹡”所在面上的数字是( ) A 、4 B 、3 C 、2 D 、1
二、填空题:(每小题5分,共35分)
1、已知3
)134(913)(2(,1392++--=x x x x 则的值是 。
2、把20052004,205204,2524这三个数用“>”连结起来的结果是 。
3、在数学中,规定
b a b
c a
d d c -=。
若13-x x
2
=3,则x 的值为 。
4、有一列数,按1、2、3、4、3、2、1、2、3、4、3、2、……的规律排列,那么,从左往右数,第2005个位置上的数是 。
5、某花木基地的A 、B 、C 三种名贵花苗,每株的销售价格分别为3元、2元、1元。
在一次出售花苗时,销售A 、B 两种花苗株数的比为1:2;销售B 、C 两种花苗的株数的比为3;4,共获销售金额29000元,那么,此交销售A 、B 、C 三种花苗共 株。
6、某人从A 点沿北偏东60°的方向走了100米到达点B ,再从点B 沿南偏西10°的方向走了100米到达点C ,那么点C 在点A 的南偏东 度的方向上。
7、某校七年级2班的男生人数是女生人数的1.8倍,在一次数学测试中,全班成绩的平均分是75分,其中女生的平均分比男生的平均分高20%,则女生的平均分是 。
三、解答题:(每小题25分,共50分)
1、有n 个数,第一个记为a 1, 第二个记为a 2,……, 第n 个记为a n ,若a 1= 1
2
,且从第二个数起,每个数都等于“1与它前面那个数的差的倒数”。
(1)求432,,a a a 的值;
(2)根据(1)的计算结果,请我猜想并写出200620052004,,a a a 的值。
(3)计算:200620052004321a a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅.
2、现将连续自然数1至2009按图中的方式排列成一个长方形队列,再用正方形任意框出16个数。
(1)设任意一个这样的正方形框中的最小数为n ,请用n 的代数式表示该框中的16个数,
然后填入右表中相应的空格处,并求出这16个数中的最小数和最大数,然后填入右表中相应的空格处,并求出这16个数的和。
(用n 的代数式表示) (2)计算出该长方形队列中,共可框出多少个这样不同的正方形框。
(3)在图中,要使一个正方形框出的16个数之和和分别等于832、2000、2008是否可能?
若不可能,请说明理由;若可能,请求出该正方形框出的16个数中的最小数和最大数。
1 2 3 4 5 6 7
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 · · · · · · · · · · · · · · · · · · · · · 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
参考答案: 一、选择题
1、D
2、C
3、A
4、B
5、D
6、C
7、B 二、填空题
1、9
2、
242042004252052005
>> 3、1 4、1 5、17000 6、550 7、84分 三、解答题
1、(1)2
1
,1,2432=
-==a a a (2)2,2
1
,1200620052004==
-=a a a (3)1200620052004321=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅a a a a a a 2、(1) n n+1 n+2 n+3 n+7 n+8 n+9 n+10 n+14 n+15 n+16 n+17 n+21 n+22 n+23 n+24 (2)这16个的和=16n+192=16(n+12)
(3)设在(A )16(n+12)=832 n=40 ∴存在最小为40,最大40+24=64
(B )16(n+12)=2000 n=113 ∴存在最小为113,最大为137, (C )16(n+2)=2008 n=125
2
1
, ∴不存在。