数字信号处理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电气与电子信息工程学院
数字信号处理课程设计报告
设计题目:IIR数字滤波器
专业班级:*******
学生姓名:*************
学号:****************
指导教师:*******************
设计时间:2014.01.06-2014.01.10
一、设计目的
数字滤波是数字信号分析中最重要的组成部分之一,与模拟滤波相比,它具有精度和稳定性高、系统函数容易改变、灵活性强、便于大规模集成和可实现多维滤波等特点。
课程设计是理论学习的延伸,是掌握所学知识的一种重要手段,对于贯彻理论联系实际、提高学习质量、塑造自身能力等于有特殊作用。本次课程设计一方面通过MATLAB 仿真设计内容,使我们加深对理论知识的理解,同时增强其逻辑思维能力,另一方面对课堂所学理论知识作一个总结和补充。
二、设计内容
1. 设计题目:IIR 数字滤波器的设计
设计内容:已知通带截止频率kHz f p 2.0=,通带最大衰减dB P 1=α,阻带截止频率kHz f s 3.0=,阻带最小衰减dB s 25=α,T=1ms ,按照以上技术要求,用脉冲响应不变法和双线性变换法设计巴特沃斯数字低通滤波器,并观察所设计数字滤波器的幅频特性曲线。
三、设计原理
3.1数字低通滤波器的设计原理
滤波器从广义上来说对特定的频点或频点以外的频率进行有效滤波的电路,这种电路保留输入信号中的有用信息,滤除不需要的信息,从而达到信号的检测、提取、识别等不同的目的。如果处理的信号是时域离散信号,那么相应的处理系统就称为数字滤波器,由于在实际工作中被处理的信号都是幅度量化的数字信号,因此,数字滤波器实际上是用有限精度的算法实现一个线性时不变的时域离散系统。
在许多科学技术领域中,广泛应用线性滤波和频谱分析对信号进行加工处理,模拟滤波是处理连续信号,数字滤波则是处理离散信号,而后者是在前者的基础上发展起来的。我们知道,无源或有源模拟滤波器是分立元件构成的线性网络,他们的性能可以用线性微分方程来描述,而数字滤波器是个离散线性系统, 要用差分方程来描述,并以离散变换方法来分析。这些方程组可以用专用的或通用的数字计算机进行数字运算来实现。因此,数字滤波器的滤波过程是一个计算过程,它将输入信号的序列数字按照预定的要求转换成输出数列。
数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤除某些频率成分的数字器件或程序。因此,数字滤波的概念和模拟滤波相同,只是信号的形式和实现滤波方法不同。正因为数字滤波通过数值运算实现滤波,所以数字滤波器处理精度高、稳定、体积小、重量轻、灵活、不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊滤波功能。如果要处理的是模拟信号,可以通过A/DC 和D/AC ,在信号形式上进行匹配转换,同样可以使用数字滤波器对模拟信号进行滤波。
数字滤波器的种类很多,分类方法也不同,滤波器在功能上总的可分为四 类,即低通(LP)、高通(HP)、带通(BP)、带阻(BS)滤波器等,每一种又有模拟滤波器和数字滤波器两种形式。如果滤波器的输人和输出都是离散时间信号,则该滤波器的冲击响应也必然是离散的,这种滤波器称之为数字滤波器。
3.2变换方法的原理
脉冲响应不变法是一种将模拟滤波器转化为数字滤波器的基本方法。它利用
模拟滤波器理论设计数字滤波器,也就是使数字滤波器能模仿模拟滤波器的特性,这种模仿可从不同的角度出发。冲激响应不变法遵循的准则是使数字滤波器的单位取样响应与参照的模拟滤波器的脉冲响应的取样值完全一样,即h(n)=h
a
(nT),其中T为取样周期。实际是由模拟滤波器转换成为数字滤波器,就
是要建立模拟系统函数H
a
(S)与数字系统函数H(z)之间的关系。脉冲响应不变法是从S平面映射到z平面,这种映射不是简单的代数映射,而是S平面的每一条宽为的横带重复地映射到整个z平面
双线性法靠频率的严重非线性关系得到S平面与Z平面的单值一一对应关系,整个jΩ轴单值对应于单位圆一周,这个关系就是式所表示的,其中ω和Ω为非线性关系。在零频率附近,Ω~ω接近于线性关系,Ω进一步增加时,ω增长变得缓慢,(ω终止于折叠频率处),所以双线性变换不会出现由于高频部分超过折叠频率而混淆到低频部分去的现象。使数字滤波器的频率响应与模拟滤波器的频率响应相似。冲激响应不变不得法、阶跃响应不变法:时域模仿逼近缺点是产生频率响应的混叠失真双线性变换法也是一种由S平面到z平面的映射过程,双线性变换法与脉冲响应不变法不同,它是一种从S平面到z平面简单映射。双线性变换中数字域与频率和模拟频率之间的非线性关系限制了它的应用范围,只有当非线性失真是允许的或能被裣时,才能采用双线性变换法,通常低通、高通、带通和带阻等滤波器等具有分段恒定的频率特性,可以采用预畸变的方法来补偿频率畸变,因此可以采用双线性变换设计方法
四、设计步骤
4.1脉冲响应不变法
按照数字滤波器技术指标要求设计一个过渡模拟低通滤波器H
a
=(s),再按照
一定的转换关系将H
a (s)转换成数字低通滤波器的系统函数H
a
(s)。由此可见,设
计的关键问题就是找到这种转换关系,将s平面上的H
a
(s)转换成z平面上的
H(z)。为了保证转换后的H(z)稳定且满足技术指标要求,对转换关系提出两点要求:
(1)因果稳定的模拟滤波器转换成数字滤波器,仍是因果稳定的。我们知道,
模拟滤波器因果稳定的条件是其系统函数H
a
(s)的极点全部位于s平面的左半平面;数字滤波器因果稳定的条件是H(z)的极点全部在单位圆内。因此,转换关系应使s平面的左半平面映射到z平面的单位圆内部。
(2)数字滤波器的频率响应模仿模拟了滤波器的频响特性,s平面的虚轴映射为s平面的单位圆,相应的频率之间呈线性关系。
脉冲响应不变法是实现模拟滤波器数字化的一种直观而常用的方法。它特别适合于对滤波器的时域特性有一定要求的场合。从滤波器的脉冲响应出发,使数字滤波器的单位脉冲响应序列h(n) 模仿模拟滤波器的冲击响应(t), 使h(n)正
好等于h
a
(t)的采样值,
即 h(n)=h
a
(nT)
T为采样周期。如以H
a (s)及H(z)分别表示h
a
(t)的拉氏变换及h(n)的z变换,