化工原理下册 干燥-3
化工原理(下)干燥
t↑→PS↑→φ↓,但H不变 (在没达到饱和之前无水凝出) 所以空气预热可提高载湿能力.
计算: 空气向纱布表面的传热速率为:
湿纱布中水向空气的传质速率为 :
因湿球温度处的热量达平衡状态: 空气向湿纱布表面的传热速率 等于水分汽化所需的热量,即:
而当
P=101.33 kPa t≥100℃时 Ps≥P φ= Pw/P ,Pw= φP ∴ H = 0.622 Pw/(P-Pw) = 0.622 φ/(1-φ)
此时φ只取决于 与温度无关,
H,
此时φ值均等于t=100℃时
的φ值,所以t>100℃后
的φ线⊥向上,与H线平行。
∵ 30℃时,PS = 4.25 kpa ∴ HS = 0.622 pS /(P - pS) = 0.622×4.25 /(101.33-4.25) = 0.0272 kg/kg φ = pw /pS = 2.33 / 4.25 = 0.548
(2)50℃时,PS = 12.33 kpa H不变 φ= pw /pS = 2.33 / 12.33 = 0.189 Q = IH50℃ - IH30℃ =[( 1.01+1.88H ) t50+ r0H ] - [(1.01+1.88H) t30+ r0H ]
Байду номын сангаас
3、湿空气在温度308K和总压 1.52Mpa 下,已知其湿度H为 0.0023Kg水/Kg绝干空气, 则其比容υH应为多少? 解: υH = (0.772+1.244H) ×(T/273)(1.013×105/P)
化工原理 PPT 第5章 干燥
k H rt w
( H s ,t w H )
:空气向湿棉布的对流传热系数,W/(m2 •℃);
k H :以湿度差为推动力的传质系数,kg/(m2 •s•H);
rtw
H
:湿球温度下水的汽化潜热,kJ/kg水;
H s ,tw:湿球温度tw下空气的饱和湿度,kg水/kg绝干气;
:空气的湿度, kg水/kg绝干气。
30
(2)湿空气状态点的确定
31
(3)简单分析:
a.当H、p一定时, 。 t
因此,提高湿空气温度 t,不仅提高了湿 空气的焓值,使其作为载热体外,也降低了相
对湿度使其作为载湿体。
pv b.因pv py、ps f t 及 100% pS 故t一定时,p ,故加压对干燥不利。
H f ( p,pV )
当p为一定值时,
H f ( pV )
当空气达到饱和时,相应的湿度称为饱和湿度 Hs,此时湿空气中的水汽分压等于该空气温度下纯 水的饱和蒸气压 ps。
0.622pS HS p-pS
即:
H S f (t,p)
10
2.相对湿度百分数(简称相对湿度) 定义:在一定总压下,湿空气中水汽分压pV与同
20
影响湿球温度tw的三方面因素: ①物系性质:与α 、 kH有关的物性; ②空气状态:t、H; ③流动条件: α/kH 。 实验表明,α与 kH都与空气速度的 0.8次幂成正比,故α与kH之比值与流速 无关,只与物性有关。当物系已确定, 则物系性质就不再改变,此时,湿球温 度只与气相状态有关,即:
tas :是由热量衡算与物料衡算导出的,属于静平衡。
• tw与tas 数值上的差异取决于α/kH与cH两者之间的差别。 (1)空气—水蒸气体系, c H ,r0 rt 得 t w t as w kH (2)空气—甲苯体系, k 1.8c H ,tw tas
化工原理下册课件第5章 干燥(湿物料的性质)
影响降速阶段的因素: • 干燥速率主要决定于物料本身的结构、形状和大小
(水分在物料内部的迁移速率)。而与空气的性质 关系很小。
三、临界含水量
临界含水量=f(物料的性质、厚度、干燥速率、干燥器 的种类、干燥操作条件)
无孔吸水性材料XC>多孔材料XC 厚度增加 XC 分散越细, 干燥面积 XC 恒速段干燥速率 XC
定时测定物料的质量变化,并记录每一时间间隔D内 的物料的质量变化DW及表面温度q,直到物料的质量
恒定为止。此时物料所含的水分即为该条件下的平衡 水分。
干燥曲线和干燥速率曲线
AB和A’B的区别:AB段是在物料初始温度小于空 气的湿球温度,而A’B段则是物料的初始温度大于 空气的湿球温度
• AB(或A’B)段: AB为湿物料不稳定的加热过程。 该过程的时间很短, 将其作为恒速干燥的一部分。 X下降,θ增加至空气的湿球温度。
生产中为保证产品质量,降低XC 措施:减小物料的厚度
非结合水分:包括机械地附着于固体表面的水分,如 物料表面的吸附水分、较大孔隙中的水分等。
特点:物料中非结合水分与物料的结合力弱,其蒸汽 压与同温度下纯水的饱和蒸汽压相同,干燥过程中除 去非结合水分较容易。
ቤተ መጻሕፍቲ ባይዱ强调:
物料的结合水分和非结合水分的划分只取决于物料
本身的性质,而与干燥介质的状态无关;
平衡水分与自由水分则还取决于干燥介质的状态。
二、结合水分(bound water)与非结合水分(unbound water)
划分依据:根据物料与水分结合力的状况 结合水分: 包括物料细胞壁内的水分、物料内毛细 管中的水分、及以结晶水的形态存在于固体物料之中 的水分等。
大学化学《化工原理-干燥DRY3》课件
p-X图
T ?
p
0
X
四种水
平衡水 Ps p
结合水 0
T
自由水
非结合水 X
四种水的定义
• 平衡水: 用此种空气无法再去除的水; • 自由水: • 非结合水: 机械地附着在物料表面, 产生
的蒸汽压与纯水无异; • 结合水: 与物料之间有物理化学作用, 因
而产生的蒸汽压低于同温度下纯水的饱 和蒸汽压.
作业
• 1. 如果让你选择的话, 你会选择哪种作为 干燥介质?
• 2. 想一想, 为什么要混起来呢?
第四章 干燥(DRYING)
第一节 概述 第二节 湿空气的性质 第三节 干燥的平衡关系 第四节 干燥过程的动力学 第五节 干燥设备 第六节 干燥过程和设备的设计计算 讨论课 小结
X-图
• 是什么?
X*
0
X-图
• 为什么?
– 如何从p-X图得到 X-图? – 有何区别?(T) – 有何好处?(不同温度下曲线变化幅度很小,
便于估算)
X-图
•
四
X*
种
水
如
何Hale Waihona Puke 表示0?
第三节 干燥的平衡关系
1. 气体的组成 2. 固体的组成 3. 平衡关系图 4. 几个定义和为什么
– 平衡水, 自由水等 – 为什么用X-相对湿度图?
第三节 干燥的平衡关系
1. 气体的组成 2. 固体的组成 3. 平衡关系图 4. 几个定义和为什么
– 平衡水, 自由水等 – 为什么用X-相对湿度图?
水在气体和固体中组成之间的 关系
1. 气体的组成: pw,H…. 2. 固体的组成:
X(干基含水量, kg水/kg绝干物料) w(湿基含水量, kg水/kg湿物料)
化工原理第十三章干燥
第十三章 干燥 Drying
13.2.1 湿空气的性质
13.2.2 湿度图及其应用
第二节 湿空气的性质和湿度图
2024/2/8
13.2.1 湿空气的性质
1、湿含量H( humidity)
单位质量干空气中所含水汽的质量 ,又称湿含量。
湿空气中水汽的质量 H 湿空气中绝干空气的质量
气中汽化
温增湿
焓 不 变
tas
饱和
一般情况下,绝热增湿过程可看视为等焓过程,即 空气释放的显热与水分汽化带回的潜热相等:
cH (t tas ) (Has H )ras
Has H cH 1.011.88H
tas t
ras
ras
Has、ras是tas的函数,cH是H的函数
2024/2/8
不饱和空气:t tas(t ) td
饱和空气: t tas (t ) td
2024/2/8
13.2.2 湿度图及其应用
1、H-t图
•F=2-1+2=3,总压P一定,则F=2.
•6条线
-等t线 –等H线 –等相对湿度线 –等CH线 –VH线 – tas线
2024/2/8
2、湿度图的应用
1)由测出的参数确定湿空气的状态 a)水与空气系统,已知空气的干球温度t和湿球温度tw,确 定该空气的状态点A(t,H)。 b)水与空气系统中,已知t和td,求原始状态点A(t,H)。 c)水与空气系统中,已知t和φ,求原始状态点A的位置 2)已知湿空气某两个可确定状态的独立变量,求该湿空气 的其他参数和性质
tM1)
qL
cwtM1
物料升温所需热量
2024/2/8
l
(I2
化工原理干燥-3
● 缺点: ① 热效率低; ② 设备占地面积大、设备成本费高; ③ 粉尘回收麻烦,回收设备投资大。
10.6.2 干燥器的选择
(1)选择干燥器需要考虑的问题 ① 被干燥物料的性质; ② 湿物料的干燥特性 ; ③ 处理量; ④ 回收问题; ⑤ 能源价格、安全操作和环境因素。
26
(2)干燥器选择步骤 ① 根据湿物料的形态、干燥特性、产品的要求、处理量和以及 所采用的热源为出发点,进行干燥实验,确定干燥动力学和传 递特性; ② 确定干燥设备的工艺尺寸,结合环境要求,选择出适宜的干 燥器型式; ③ 若几种干燥器同时适用时,要进行成本核算及方案比较,选 择其中最佳者。
◆ 厢式干燥器的主要缺点: 物料得不到分散,干燥时间长; 若物料量大,所需的设备容积也大; 工人劳动强度大; 热利用率低; 产品质量不均匀。
16
(2)气流式干燥器 结构:
17
优点: ① 气、固间传递表面积很大,体积传质系数很高,干燥速率大; ② 接触时间短,热效率高,气、固并流操作,可以采用高温介质, 对热敏性物料的干燥尤为适宜; ③ 由于干燥伴随着气力输送,减少了产品的输送装置; ④ 气流干燥器的结构相对简单,占地面积小,运动部件少,易于 维修,成本费用低。
(1)厢式干燥器(盘架式干燥器)
原理:主要是以热风通过湿物料 的表面,达到干燥的目的。
13
厢式干燥器中的加热方式有两种: 单级加热
多级加热
14
H /(kg kg-1) H /(kg kg-1)
等φ线
C
C2
B3
A C1
B2
B
B1
0
t /℃
具有中间加热的干燥过程
采用废气循环法
等φ线 C
M
化工原理实验报告干燥
化工原理实验报告干燥化工原理实验报告:干燥实验目的:本实验旨在探究干燥过程中的原理和影响因素,通过实验数据分析和结果总结,加深对干燥过程的理解。
实验原理:干燥是化工生产中常见的一种工艺操作,其目的是将物料中的水分蒸发或者挥发,使物料达到一定的干燥程度。
在干燥过程中,热量的传递和水分的蒸发是两个关键的环节。
热传递可以通过对流、传导和辐射等方式进行,而水分的蒸发则受到温度、湿度、风速等因素的影响。
实验步骤:1. 准备实验所需的样品和干燥设备。
2. 将样品放入干燥设备中,并记录下初始重量和湿度。
3. 启动干燥设备,设置相应的温度和风速。
4. 定期取出样品,记录下其重量和湿度。
5. 根据实验数据进行分析和计算,得出干燥速率、热传递效率等参数。
实验结果:通过实验数据的统计和分析,我们得出了不同条件下的干燥速率和热传递效率。
在不同的温度、湿度和风速条件下,干燥速率和热传递效率均有所不同。
同时,我们也发现了一些影响干燥效果的因素,如样品的初始湿度、表面积等。
结论:通过本次实验,我们深入了解了干燥过程中的原理和影响因素,对干燥工艺有了更深入的理解。
同时,我们也发现了一些可以优化的地方,如调整干燥设备的工艺参数,选择合适的干燥方法等,以提高干燥效率和降低能耗。
总结:干燥是化工生产中不可或缺的一环,其效率和质量直接影响着产品的成品率和品质。
通过本次实验,我们对干燥过程有了更深入的了解,为今后的工艺优化和改进提供了一定的参考依据。
同时,也为我们的理论知识和实践技能提供了锻炼和提升的机会。
希望通过不断地实验和学习,我们能够更好地掌握化工原理,为工程实践提供更精准的指导。
化工原理干燥现象的原理
化工原理干燥现象的原理
干燥是指将湿物质中的水或其他溶剂除去的过程。
化工原理中的干燥现象主要涉及到物质传质、热传导和质量平衡等原理。
1. 物质传质:湿物质中的水分子存在着与固体或其他溶质之间的相互作用力。
在干燥过程中,水分子需要克服这些相互作用力,才能从湿物质中逸出到气相中,实现传质过程。
传质通常是由高浓度到低浓度的方向进行,即从湿物质表面到气相中。
2. 热传导:在干燥过程中,通过向湿物质提供热量,可以提高物质的温度,促进水分子的蒸发和传质过程。
热传导的速度取决于热传导系数、温度梯度和物质的热容等因素。
3. 质量平衡:在干燥过程中,湿物质中的水分子通过蒸发从湿物质中逸出,同时空气中的水分子通过扩散等方式进入湿物质。
这种水分子的进出平衡使得湿物质中的水分子的含量逐渐减少,直到达到物料表面的饱和度。
综上所述,干燥现象主要是通过物质传质、热传导和质量平衡等原理来实现湿物质中水分子的从湿物质中蒸发并逸出的过程。
化工原理干燥习题及答案
化工原理干燥习题及答案干燥是化工生产中常见的操作之一,其目的是去除物料中的水分或溶剂,以满足后续工艺或产品的要求。
本习题集将通过一系列问题,帮助学生理解干燥过程的基本原理和计算方法。
习题一:恒定干燥速率阶段的干燥计算某工厂需要干燥一批含水量为50%的湿物料,物料的初始质量为100kg。
若干燥器在恒定干燥速率阶段的干燥速率为0.5kg水/h,求干燥到含水量为20%所需的时间。
解答:1. 首先计算初始状态下物料中水的质量:\( m_{水初} = 100kg\times 50\% = 50kg \)。
2. 目标含水量为20%,即干燥后物料中水的质量为:\( m_{水终} = 100kg \times 20\% = 20kg \)。
3. 需要去除的水的质量为:\( m_{去水} = m_{水初} - m_{水终} = 50kg - 20kg = 30kg \)。
4. 根据干燥速率,计算所需时间:\( t = \frac{m_{去水}}{速率} = \frac{30kg}{0.5kg/h} = 60h \)。
习题二:非恒定干燥速率阶段的干燥曲线绘制假设某干燥过程的干燥速率与物料含水量的关系为 \( U = 100 - 5C \),其中 \( U \) 是干燥速率(kg水/h),\( C \) 是物料的含水量(%)。
绘制含水量从50%降至10%时的干燥曲线。
解答:1. 根据给定的关系式,计算不同含水量下的干燥速率。
2. 绘制含水量与干燥速率的关系图,横坐标为含水量,纵坐标为干燥速率。
3. 通过图形可以观察到,随着含水量的降低,干燥速率逐渐减小,直至达到非恒定干燥速率阶段。
习题三:干燥器的设计问题设计一个干燥器,要求每小时能处理1000kg的湿物料,物料的初始含水量为60%,要求干燥到含水量为15%。
假设干燥器的效率为80%。
解答:1. 计算每小时需要去除的水的质量:\( m_{水} = 1000kg \times (60\% - 15\%) = 1000kg \times 45\% = 450kg \)。
《化工原理》干燥
《化工原理》第九章干燥§1 概述一、概念干燥是利用热能除去湿固体物料中湿份(水分或其它液体)的操作。
二、干燥与蒸发的区别蒸发:溶剂分子从料液表面进入气相。
料液表面溶剂蒸汽分压始终是饱和蒸汽压,蒸发速率由传热速率控制。
干燥:溶剂分子从湿物料表面进入气相。
湿物料表面溶剂蒸汽分压不一定是饱和蒸汽压,干燥速率同时由传热速率和传质速率所控制。
三、干燥操作进行的必要条件干燥是热质同时传递过程,干空气将热量传给湿物料;湿物料将湿份传给干空气。
湿物料表面水汽(或其它蒸汽)的分压大于干燥介质中水汽(或其它蒸汽)的分压→干燥湿物料表面水汽(或其它蒸汽)的分压等于干燥介质中水汽(或其它蒸汽)的分压→平衡湿物料表面水汽(或其它蒸汽)的分压小于干燥介质中水汽(或其它蒸汽)的分压→增湿(回潮)干燥操作进行的必要条件:湿物料表面水汽(或其它蒸汽)的分压必需大于干燥介质中水汽(或其它蒸汽)的分压。
四、干燥分类1、按操作压力的大小分类常压干燥和真空干燥2、按操作方式分类1) 传导干燥(间接加热干燥)2) 对流干燥(直接加热干燥)3) 辐射干燥4) 介电加热干燥(高频加热干燥)3、按操作流程分类连续干燥间歇干燥§2 湿空气的性质一、水蒸气分压P w湿空气 P 总 = P a + P w饱和湿空气 P 总 = P a + P S二、湿度(湿含量)H定义:单位质量绝干空气中所含水分的质量。
w w a w a w a a w w p P p p p M M n M n M H -⋅=⋅=⋅⋅==2918量湿空气中绝干空气的质湿空气中水蒸气的质量湿空气的湿度:w w p P p H -⋅=622.0饱和湿空气的湿度:S S S p P p H -⋅=622.020o C 233.2m kN p S =,绝干空气水kg kg H S 015.033.23.10133.2622.0=-⨯=80o C 24.47m kN p S =,绝干空气水kg kg H S 55.04.473.1014.47622.0=-⨯=例:求20o C 下mmHg p w 54.17=时的H 和H S 及50o C 下mmHgp w 35=时的H 和H S 。
化工原理知识点总结干燥
化工原理知识点总结干燥干燥是指将含水物质中的水分除去的过程,广泛应用于化工、冶金、食品、药品、农业等行业中。
干燥工艺可以提高产品质量,延长产品保存期限,增加产品附加值。
本文将从干燥的基本原理、传热传质机理、常见的干燥设备和干燥过程中的控制因素等方面对干燥做出总结。
一、基本原理1.1水分除去过程干燥的基本原理是将物质中的水分除去,水分从物质中逸出,物质变得更干燥。
水分除去的方式分为蒸发和挥发两种。
蒸发是指物质表面的水分被热能所吸收,转化为水蒸气散发出去;挥发是指水分通过物质内部的孔隙、裂缝等介质被蒸发并逸出。
1.2干燥速率干燥速率是指在干燥过程中,单位时间内从物质中脱除的水分量。
干燥速率受温度、湿度、空气流速等因素的影响。
1.3干燥曲线干燥曲线是指在干燥过程中,物质含水量随着时间变化的曲线。
常见的干燥曲线有初始下降期、常速期和末速期。
二、传热传质机理2.1传热机理干燥中传热主要通过对流传热和辐射传热两种方式实现。
对流传热是指通过对流换热将热量传递给物质表面,将水分蒸发出去;辐射传热是指通过辐射换热将热能传递给物质表面,促使水分蒸发。
2.2传质机理干燥中传质主要通过扩散传质实现,即水分从物质内部向外部扩散传递。
传质速率受物质的性质、温度、湿度、压力等因素的影响。
三、常见的干燥设备3.1流化床干燥流化床干燥是指将物料通过气体流化,使得气体均匀地穿透物质,从而提高传热传质效率。
流化床干燥适用于颗粒状、粉末状的物料。
3.2喷雾干燥喷雾干燥是指通过将液态物料雾化成细小颗粒,然后与热空气接触,使得水分蒸发,从而实现干燥。
喷雾干燥适用于液态物料的干燥。
3.3真空干燥真空干燥是指在低压条件下进行的干燥过程。
通过减压降低水的沸点,从而实现水分的除去。
真空干燥适用于对热敏感物料的干燥。
3.4离心干燥离心干燥是指将物料通过高速旋转的离心机,使得水分被甩出物料的表面,从而达到干燥的目的。
离心干燥适用于颗粒状、液态的物料。
化工原理练习题-干燥
化⼯原理练习题-⼲燥固体⼲燥填空题:1、温度为40℃,⽔汽分压为5kPa 的湿空⽓与⽔温为30℃的⽔接触,则传热⽅向为:,传质⽅向为。
已知30℃和40℃下⽔的饱和蒸汽压分别为4.24kPa 和7.38kPa 。
答案:⽓到⽔;⽓到⽔2、冬季将洗好的湿⾐服晾在室外,室外温度在零度以上,⾐服有⽆可能结冰?,其原因是。
答案:有,不饱和空⽓的湿球温度Wt t p ,当0W t p 时可能结冰3、在101.325kPa 下,不饱和湿空⽓的温度为40℃,相对湿度为60%,(1)若加热⾄80℃,则空⽓的下列状态参数如何变化?湿度,相对湿度? ,湿球温度W t ,露点温度d t ,焓I 。
(2)若在等温条件下使总压减⾄时,则该空⽓下列参数将如何变化?湿度,相对湿度? ,湿球温度W t ,露点温度d t ,焓I 。
(变⼤,变⼩,不变)答案:(1)不变,变⼩,变⼤,不变,变⼤;(2)不变,变⼩,变⼩,变⼩,不变。
4、总压恒定时,某湿空⽓的⼲球温度⼀定,若其露点温度d t 增⼤,则以下参数如何变化?P ⽔汽,H ,? ,W t ,I 。
(增⼤,减⼩,不变)答案:增⼤,增⼤,增⼤,增⼤,增⼤5、总压恒定时,某湿空⽓的⼲球温度⼀定,⽽湿球温度W t 增⼤,则以下参数如何变化?P ⽔汽,H ,? ,d t ,I 。
(增⼤,减⼩,不变)答案:增⼤,增⼤,增⼤,增⼤,增⼤6、不饱和湿空⽓的⼲球温度t ,湿球温度W t ,露点温度d t 的⼤⼩顺序为。
答案:t >W t >d t7、⼲燥这⼀单元操作,既属于传热过程,⼜属______________。
答案:传质过程8、在同⼀房间⾥不同物体的平衡⽔汽分压是否相同?;它们的含⽔量是否相同?;湿度是否相等?。
答案:是,否,是9、若空⽓中湿含量及温度均提⾼以保持相对湿度不变,则对同⼀湿物料,平衡含⽔量,结合⽔含量。
(变⼤,变⼩,不变)答案:不变,不变10、在⼀定温度下,物料中结合⽔分和⾮结合⽔分的划分是根据___________⽽定的;平衡⽔分和⾃由⽔分是根据__________⽽定的。
化工原理-干燥ppt课件
V nRT P
V T P0 V0 P T0
V T P0 n22.4 273 P
干燥
湿空气的性质*
3.比热容(湿比热)cH
比热容是指常压下,含1kg绝干气的湿空气之温度升高(或降低)1℃所吸 收(或放出)的热量,cH。
cHcgcvH
1.011.88H
[kJ/(kg干气℃)]
cHf H
cg干空气的比热,kJ/(kg·℃) 1.01kJ/(kg·℃)
将湿球温度计置于温度为t、湿度为H的流
动不饱和空气中,湿纱布中的水分汽化,并向 空气主流中扩散;同时汽化吸热使湿纱布中的 水温下降,与空气间出现温差,引起空气向水 分传热。
湿球温度tw:当空气传给水分的显热恰好等 于水分汽化所需的潜热时,空气与湿纱布间的 热质传递达到平衡,湿球温度计上的温度维持 恒定。此时湿球温度计所测得的温度称为湿空 气的湿球温度。
一干燥器的主要型式677喷雾干燥器一干燥器的主要型式喷雾器结构68一干燥器的主要型式8滚筒干燥器双滚筒干燥器69一干燥器的主要型式真空耙式干燥器冷冻干燥器7055干燥器二干燥器的选型主要干燥器的选择表湿物料的状态物料的实例处理量适用的干燥器液体或泥浆状洗涤剂树脂溶液盐溶液牛奶等大批量喷雾干煤器小批量滚筒干燥器泥糊状染料颜料硅胶淀粉粘土碳酸钙等的滤饼或沉大批量气流干燥器带式干燥器小批量真空转筒干燥器粉粒状00120m聚氯乙烯等合成树脂合成肥料磷肥活性炭石膏钛铁矿谷物大批量气流干燥器转筒干燥器流化床干燥器小批量转筒干燥器厢式干燥器块状20100m煤焦碳矿石等大批量转筒干燥器小批量厢式干燥器片状烟叶薯片大批量带式干燥器转筒干燥器小批量穿流厢式干燥器小批量高频干燥器短纤维酯酸纤维硝酸纤维大批量带式干燥器小批量穿流厢式干燥器一定大小的物料或制品陶瓷器胶合板皮革等大批量隧道干燥器71对流传导辐射气流喷雾流化床干燥实验干燥曲线x干燥章小结湿空气性质及湿焓图性质湿度h0622干球温度t湿球温度t10118810118824902490188干燥过程物料的平衡关系与速率关系结合水分与非结合水分平衡水分x与自由水分恒定干燥条件下的干燥速率恒定干燥条件下的干燥时间等i过程干燥速率udwgdxsdsd干燥速率曲线ux临界含水量x干燥方法干燥器对流式
化工原理干燥题
化工原理干燥题化工原理干燥题:某化工厂需要将某种溶液中的水分蒸发掉,以得到干燥的产物。
该溶液的初始质量为1000 kg,水分含量为30%(质量分数),希望将水分含量降至5%。
1. 计算需要蒸发掉的水分质量。
解答:初始溶液中水分质量为1000 kg × 30% = 300 kg,希望降至的水分含量为5%,即干燥后水分质量为1000 kg × 5% =50 kg。
因此,需要蒸发掉的水分质量为300 kg - 50 kg = 250 kg。
2. 假设溶液在干燥过程中没有其他挥发物质,只有水分挥发。
如果使用热风作为热源,水分的蒸发热为2257 kJ/kg,热风的温度为150 ℃,求蒸发所需的热量。
解答:蒸发所需的热量可通过以下公式计算:蒸发热量 = 蒸发水分质量 ×水分蒸发热蒸发热量 = 250 kg × 2257 kJ/kg = 564,250 kJ3. 假设蒸发器的热效率为80%,即有20%的热量会散失或用于其他热交换过程。
求热风供给蒸发器的热量。
解答:热风供给蒸发器的热量可通过以下公式计算:热风供给热量 = 蒸发热量 / 热效率热风供给热量 = 564,250 kJ / 80% = 705,312.5 kJ4. 设热风的流量为200 m³/min,热风的平均比热容为1.007kJ/(kg·℃),求热风的温度变化。
解答:热风的温度变化可通过以下公式计算:热风温度变化 = 热风供给热量 / (热风流量 ×热风比热容)热风温度变化 = 705,312.5 kJ / (200 m³/min × 1.007 kJ/(kg·℃)) 热风温度变化≈ 351.87 ℃因此,为达到将水分含量降至5%的要求,需要提供约705,312.5 kJ的热能,使用150 ℃的热风进行蒸发,并使热风温度上升约351.87 ℃。
化工原理干燥
化工原理干燥化工原理干燥是指利用热能将物料中的水分或其他挥发性成分蒸发或挥发出来的过程,是化工生产中常见的一种操作。
干燥是化工生产中非常重要的一环,它直接影响产品的质量和生产效率。
在化工生产中,干燥通常用于固体物料的处理,比如粉末、颗粒、块状物料等。
干燥的原理主要是通过加热,使物料中的水分或其他挥发性成分蒸发或挥发出来,从而使物料变得干燥。
在干燥过程中,除了加热外,通常还会利用空气或其他气体来帮助传递热量,加快物料中水分的蒸发速度。
化工原理干燥的方法有很多种,常见的有自然干燥、空气干燥、真空干燥、喷雾干燥、流化床干燥等。
每种干燥方法都有其适用的范围和特点,根据不同的物料和生产要求,选择合适的干燥方法非常重要。
在进行化工原理干燥时,需要考虑一些关键因素,比如物料的性质、干燥温度、干燥时间、干燥介质、干燥设备等。
物料的性质包括其初始水分含量、粒度、形状等,这些都会影响干燥的效果。
干燥温度和时间是直接影响干燥效果的因素,合理的温度和时间可以提高干燥效率,同时也要考虑避免物料过热或过干。
选择合适的干燥介质和干燥设备也是非常重要的,不同的介质和设备对干燥效果有着不同的影响。
化工原理干燥在化工生产中有着广泛的应用,比如在食品加工、药品生产、化肥生产、化工原料生产等领域都需要进行干燥操作。
通过合理选择干燥方法和控制干燥参数,可以提高产品的质量,降低生产成本,提高生产效率。
在进行化工原理干燥时,需要严格遵守操作规程,确保操作安全。
同时,也需要定期对干燥设备进行检查和维护,保持设备的正常运转。
只有在严格遵守操作规程和保持设备良好状态的情况下,才能保证干燥操作的顺利进行,确保产品质量和生产效率。
总之,化工原理干燥是化工生产中非常重要的一环,它直接影响产品的质量和生产效率。
通过合理选择干燥方法和控制干燥参数,可以提高产品的质量,降低生产成本,提高生产效率。
同时,严格遵守操作规程和保持设备良好状态也是确保干燥操作顺利进行的关键。
化工原理干燥
化工原理干燥
在化工原理中,干燥是一种常见的操作过程,用于去除物料中的水分或其他溶剂。
干燥的目的是提高物料的质量和稳定性,同时也有助于后续的加工和储存。
干燥的原理可以根据物料和工艺的不同而有所区别。
常见的干燥方法包括热风干燥、真空干燥、喷雾干燥、冷冻干燥等。
在热风干燥中,通过加热空气并将其送入干燥室,物料与热空气进行热交换,从而使物料中的水分蒸发。
这种干燥方法适用于水分含量较高的物料,可以快速去除大部分的水分。
真空干燥是在低压下进行的干燥过程。
通过降低环境压力,使物料中的水分在较低温度下蒸发,从而减少热量对物料的影响。
真空干燥适用于对温度敏感的物料,可以保持其原有的质量和活性。
喷雾干燥是将物料以细小颗粒的形式喷雾进入干燥室,通过热空气的作用使水分蒸发,从而干燥物料。
这种方法适用于对颗粒度要求较高的物料,可以获得均匀的干燥效果。
冷冻干燥是在低温条件下进行的干燥过程。
物料先被冷冻,然后通过升温使水分从固态直接转变为气态,从而干燥物料。
冷冻干燥适用于对物料品质要求较高的情况,可以保持原有的味道、香气和营养成分。
除了选择适当的干燥方法外,干燥过程中还需要注意一些关键
参数,如温度、湿度、干燥时间等。
恰当地控制这些参数可以避免物料过热或过干,从而保证产品质量。
总之,干燥作为一种重要的化工操作过程,在化工原理中发挥着关键作用。
选择适当的干燥方法和优化干燥参数对于提高产品质量和工艺效果至关重要。
化工原理第八章干燥
I Ig H v (c I g H v )t r c 0 H c H t r 0 H
显热项
汽化潜热项
对于空气-水系统: I(1.0 1 1.8H 8 )t24H 90
G1
W
G2中仍含少量水分-干燥产品; 注意与绝干物料G的区别。
5.2.3干燥系统的热量衡算
1、热量衡算基本方程
加入干燥系统的Q被用于: ①加热空气 ②蒸发水分 ③加热湿物料 ④热损失
2、干燥系统的热效率
说明:
* t2, H2 ;
* t2 也 不 ,一 宜 t2 般 ta 过 1s (2低 ~ 0 5)。 0 C
风风机量:V 0LH 0 vL (0.77 1.2 24 H 0)42 (27 7 t0 3)3 1 (P 0 0 1 ) 3
3.产品流量( G)2:
G c G 2 (1 w 2 ) G 1 (1 w 1 )
G2
(1 (1
w1) w2)
G1
Gc (1 w 2 )
第五章 干燥
概述
去湿定义:从物料中脱除湿分的过程称为去湿。 湿分:不一定是水分!
一、去湿方法: 1.机械法:沉降、过滤、离心分离 ——低能耗 2.化学法:使用吸附剂或干燥剂 ——成本甚高 3.干燥法: 加热→湿分汽化→蒸汽排出 ——能耗较大
注:干燥介质:是指带走湿分的外加气相
按操作压强 —
常压干燥(√)
2918
273 P
27 t3 1 .0 1 13 50 vH (0 .77 1 .2 2H 4) 4273 P
化工原理干燥实验原理
化工原理干燥实验原理
干燥实验是一种将湿润或含水物质转化为干燥状态的过程。
在化工工艺中,干燥是一项重要的操作,它可以用于去除物质中的水分或其他挥发性成分,以改变物质的性质和应用。
干燥可以通过多种方法实现,如加热、通风、压缩等。
干燥的原理主要涉及湿润物质中水分或其他挥发性成分的蒸发和扩散。
当湿润物质受热后,水分或其他挥发性成分会转化为气态,并从物质中逸出。
而通过通风或压缩,可以加速气态成分的扩散和远离物质表面,从而降低物质的湿度。
干燥实验的目的是通过实验方法验证和确定最佳的干燥条件。
这些条件可以包括温度、湿度、通风速度、压力等。
通常,实验中会通过称量、加热、定时等方法来监测物质在不同条件下的干燥过程。
通过比较实验结果,可以确定最佳的干燥条件,以提高干燥效率和质量。
实验中还可能涉及到干燥曲线的绘制。
干燥曲线是指在不同时间下,物质湿度与干燥时间之间的关系曲线。
通过绘制干燥曲线,可以更好地了解物质在不同条件下的干燥特性,并为工业生产提供参考和指导。
总之,干燥实验是一种用于确定最佳干燥条件和了解物质干燥特性的重要方法。
通过实验验证,可以为化工工艺提供基础数据和参考,以实现高效、质量优良的干燥操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
W ( I 2 I1 ) Wc W1 QD q H 2 H1
(Wc w1 QD ) :外界补充的热量及湿物料中被汽化水分
带入的热量;补充热
q :热损失及湿物料在干燥室获得的热量。损失热
即:△=补充热﹣损失热
2018/9/10
1)等焓过程:
I 2 I1
Gw
rw
(t t w )
rw
(t t w )
2018/9/10
影响恒速干燥的因素
夏天比冬天干得快 晴天比雨天干得快 有风比无风干得快
t (t t w )
H ( H w H )
U C (U )
u , k H
2018/9/10
UC的来源:
2018/9/10
二、固体物料的干燥机理
当湿物料(其含水量大于平衡含水量)与干燥介质 (热空气)接触,其表面水分汽化,形成表面与内部的湿 度差,水分由内部向表面扩散。在干燥的不同时期,其控 制机理不同:
1.表面汽化控制:表面汽化速率内部扩散速率
内部水分能迅速到达表面,物料表面足够湿润,其表面温 度可取tW,干燥速率受表面汽化速率控制,此类干燥操作
令
Qp L(I1 I 0 )
Q QD L( I 2 I 0 ) q Wc w1 QD
L( I 2 I1 ) Wcw1 QD q
L( I 2 I1 ) W ( I 2 I1 )
H 2 H1
W ( I 2 I1 ) 则有: Wc w1 QD q H 2 H1
X ,U
C点:临界点 XC:临界含水量 E点:平衡点 X*:平衡水分
2018/9/10
2)恒速干燥阶段
前提:湿物料表面全部润湿(充满非结合水) 。 恒速干燥特点: 1. U=UC=const.
2. 物料表面温度为tw
3. 去除的水分为非结合水分 4. 物料内部水分扩散表面水分汽化速率,属表面汽化 控制 5.干燥速率取决于空气性质,与物料性质关系不大
0
Wc w1 QD q 0
等焓过程又可分为两种情况: I 空气放出的显热完全用于蒸发水分所需的潜热,而水 B t1 蒸汽又把这部分潜热带回到空气中,所以空气焓值不变。 C
t2 湿物料中水分带入的热量及干燥器补充的热量正好与 A t0 热损失及物料升温所需的热量相抵消,此时,空气的焓 值也保持不变。
t0
2018/9/10
H0
H
2 .空气出口状态的确定方法 ——确定H2、I2
a . 计算法 W ( I 2 I1 ) Wc W1 QD q H 2 H1
I 2 (1.01 1.88H 2 )t 2 2492H 2
I1
(H2、I2)
b. 图解法
t1 I0
A
B
1
Pw
干燥推动力: p pS pw
与物料的种类、温度及空气的相对湿度有关
时,物料中还存在的水分;不能用干燥方法除去的 X* = f(物料种类、空气性质)
2018/9/10
2)自由水分 在干燥过程中所能除去的超出平衡水分的那一部分水分。
木材与 298 K, 60% 的空气接触时, X * 0.12;
x1
物 料 x0 总 的 水 含 分 水 量 x* 自 由 水 分
平 衡 水 分
非结合水分
结 合 水 分 100%
0
2018/9/10
空气相对湿度φ
【练习】在常压25℃下,水分在ZnO与空气间的平衡关系为:
相对湿度 φ=100%,平衡含水量X*=0. 2 kg水/kg干料。 现ZnO的含水量为0.25 kg水/kg干料,令其与25℃,
物 料 含 水 量 X 物 料 表 面 温 度
X1 A
B
X
X - 线
C
Xc X* 0
D
E
t2
tW
t1
0 干燥时间
t - 线
t
2018/9/10
2、干燥速率曲线
1)干燥速率 :单位时间内,单位干燥面积上汽化的水分量 。
ABC段:恒速干燥阶段 AB段:预热段 BC段:恒速段 CDE段:降速干燥阶段
2018/9/10
四、干燥过程的图解
等焓干燥过程(绝热干燥过程或理想干燥过程)
——空气在进、出干燥室的焓值不变。 规定: •不向干燥室中补充热量 QD=0; •忽略干燥室向周围散失的热量 QL=0;
实际干燥过程
——在非绝热情况下进行的干燥过程。
2018/9/10
1. 过程分析:
Q Qp QD L(I 2 I 0 ) q Wc w1
(1) 由干燥速率曲线查得
(2)用U C
rw
(t t w ) k H ( H w H ) 计算
求取 α 经验关联式: (1)气体流动方向与物料平行
0.0204 G 0.8
G=2500 ~ 3000
[w/m2 k] [kg/m2 hr]
(2)气体流动方向与物料垂直
1.17G 0.37
3. 恒速干燥 uC 越大, XC 越高。
2018/9/10
四、干燥时间的计算
1、恒定干燥条件下干燥时间的计算
1)利用干燥速度曲线进行计算
分离变量积分
;
2018/9/10
2)用对流传热系数或传质系数进行计算 水分由表面汽化的速率(传质速率): [kg水/m2•s] 传热速率:
Q A(t tw )
2、干燥系统的热效率
蒸发水分所需的热量为
忽略物料中水分带入的焓
2018/9/10
影响热效率的因素
1.
一定时,
t2
H 2
传质推动力
传热推动力
因此,t2不能过低,一般规定t2比进入干燥器时空气的 湿球温度tw高20 ~ 50℃。
2.
一定时, t1
3. 回收废气中热量 4. 加强管道保温,减少热损失
2. 物料表面温度
t tw
3. 除去的水分为非结合、结合水分
4.物料内部水分扩散表面水分汽化速率,属内部扩散控 制。
5.影响 u 的因素: 与物料种类、尺寸、形状有关,与空气状态关系不大。
2018/9/10
4)临界含水量 XC
X C f(物料结构、厚度、分 散程度、空气状态)
1. 吸水性物料 XC大于不吸水性物料 XC 2. 物料层越薄、分散越细, XC 越低
H0
2018/9/10
H
2)实际干燥过程:
a. 补充热量小于损失的热量 0即 b. 补充热量大于损失的热量 0 即 I C3
I 2 I1 下方
I 2 I1
上方
理想操作线 BC: 过点B的等焓线
t1 t2
B
A C C1
C
2
实际操作线 BC1: 在等焓线的下 方 实际操作线 BC2: 在等焓线的上方 补充的热量足够多,恰使干燥过 程在等温下进行,操作线为过B点 的等温线 BC3
2018/9/10
G=4000 ~ 20000 [kg/m2 hr]
2、降速干燥时间的计算
不论干燥曲线如何,都可用图解积分法
θ2
X2 Xc
X 2018/9/10
降速阶段
恒速阶段
C B A
φ=40%的空气接触,平衡含水量X*=0.07 kg水/kg干料,求
物料的自由水分、平衡水分、结合水分和非结合水分。
1.0 结合水分 非结合水分
解:
=40﹪
平衡水分 自由水分 总含水量 0
平衡水分=0.07 自由水分=0.25-0.07=0.18
0.2 X=0.25
X*=0.07
结合水分=0.2 非结合水分=0.25-0.2=0.05
2018/9/10
3)降速干燥阶段 第一降速阶段 — 物料表面不能全部维持湿润,而形成部分
干区;由于汽化面积减少,使干燥速率(按全部表面积计
)下降。
第二降速阶段 — 物料表面全部形成干区,汽化面内移;
由于物料内部热、质传递路径增长,使干燥速率下降。
2018/9/10
降速干燥阶段特点: 1.
X ,U
直至恒值。此时为动态平衡, 含水量为平衡含水量。将物料 放入电烘箱烘干到恒重,即为 物料的绝干质量Gc
干燥介质 湿物料
记录:时间~物料质量~物料温度~ X= G Gc Gc
2018/9/10
空气的温度、湿度、流速及物料接触方式不变
干燥曲线 : 恒定干燥条件下,用于描述物料含水量 X、干
燥时间 θ 及物料表面温度t之间 的关系曲线。 为了比较不同物料在相同条件下的干燥速率,还可以把干 燥曲线转化成干燥速率曲线。
0
2
C
t2
t0
2018/9/10
H0 H1
H2
例:某种湿物料在常压气流干燥器中进行干燥, 湿物料的流量为1kg/s,初始湿基含水量为3.5%,干 燥产品的湿基含水量为0.5%。空气状况为:初始温 度为25℃,湿度为0.005kg/kg干空气,经预热后进 干燥器的温度为140℃,若离开干燥器的温度选定为 60℃和40℃, 试分别计算需要的空气消耗量及预热器的传热 速率。 又若空气在干燥器的后续设备中温度下降了 10℃,试分析以上两种情况下物料是否返潮?假设 干燥器为理想干燥器。
2018/9/10
解:因在干燥器内经历等焓过程,
℃
℃
2018/9/10
绝干物料量 :
绝干空气量:
2018/9/10
预热器的传热速率
℃
2018/9/10