803.分式的化简与求值-奥数精讲与测试8年级
八年级奥数:分式的化简求值
八年级奥数:分式的化简求值解读课标先化简后求值是解代数式化简求值问题的基本策略,分式的化简求值通常分为有条件和无条件两类.给出一定的条件并在此条件下求分式的值的问题称为有条件的分式化简求值,解这类问题,既要瞄准目标,又要抓住条件,既要依据条件逼近目标,又要能根据目标变换条件,不但要经常用到整式化简求值的知识、方法,而且还常常用到如下技巧策略:1.适当引入参数;2.拆项变形或拆分变形;3.整体代入;4.取倒数或利用倒数关系等.问题解决例1 已知,则_____________.例2 a 、b 、c 为非零实数,且,若,则 等于( ). A .8 B .4 C .2 D .1例3 已知,求的值.例4 已知,且,求x 的值.012=--x x =++5412x x x 0=/++c b a a c b a b c b a c c b a ++-=+-=-+abca c cb b a ))()((+++11,11=+=+c b b a ac 1+012=--a a 1129322322324-=-++-a xa a xa a例5 已知a 、b 、c 满足,求证:这三个分数的值有两个为1,一个为-1.数学冲浪知识技能广场1.请你先化简:=___________,再选取一个你喜爱又使原式有意义的数代人求值得_____________.2.已知实数,则代数式的值为_____________. 3.若,且,则的值为_______________. 4.若,则的值为_______________. 5.若,则的值为( ). 6.若的值为,则的值为( ). A .1 B .-1 C . D . 7.当时,代数式的值是( ). A .-1 B . C . D .1 1222222222222=-++-++-+abc b a ac b a c bc a c b 1)111(22-÷-+x x x 01442=+-x x xx 212+2002,2003,2004222=+=+=+m c m b m a 24=abc cb a abc ca b bc a 111---++ad d c c b b a ===d c b a d c b a +-+-+-31=+x x 1212++x x x 10.A 8.B 101.C 81.D 73222++y y 1416412-+y y 17-1561-=m 3339952122+--+÷----m m m m m m n m m 12-128.已知,,那么的值等于( ). A .1 B .2 C .3 D .49.化简求值:,其中a 满足 10.已知,求的值. 思想方法天地11.若abc ≠0,且,则=______________. 12.已知实数a 、b 、c 满足与,则的值是_____________. 13.已知a 、b 、c 满足,则的值为___. 14.已知,且,则m =____________. 15.已知,则的值是( ). 16.已知,且,则代数式的值为() A .3 B .2 C .1 D .017.如果,,那么的值为( ).A .36B .16C .14D .318.若a 、b 、c 满足,则a 、b 、c 中( ). A .必有两个数相等 B .必有两个数互为相反数11=+b a 12=+c b ac 2+24)44122(22+-÷++--+-a a a a a a a a .0122=-+a a p yx z z y x x z y y x z z y x x z y =-+-+=-+-+=++-+32P P P ++b a c a c b c b a +=+=+abca c cb b a ))()((+++11=++c b a 1713111=+++++a c c b b a ba c a cbc b a +++++1=+++++b a c a c b c b a ba c a cbc b a +++++2220142=++a a 53312324=++++a ma a ma a 161,171,151=+=+=+a c ca c h bc b a ab cabc ab abc ++241.231.221.211.D C B A 0=/abc 0=++c b a 222a b c bc ca ab++0=++c b a 0312111=+++++c b a 222)3()2()1(+++++c b a cb ac b a ++=++1111C .必有两个数互为倒数D .每两个数都不相等19.已知,求的值.20.已知,求的值.应用探究乐园21.探索问题:(1)请你任意写出五个正的真分数________、________、________、________、________.给每个分数的分子和分母同加一个正数得到五个分数:________、________、________、________、________.(2)比较原来每个分数与对应新分数的大小,可以得出下面的结论:一个真分数是(a 、b 均为正数),给其分子、分母同加一个正数m ,得,则两个分数的大小关系是:. (3)请你用文字叙述(2)中结论的含义:___________________________.(4)你能用图形的面积说明这个结论吗?(5)解决问题:如图,有一个长宽不等的长方形绿地,现给绿地四周铺一条宽相等的小路,问原来的长方形与现在的铺过小路后的长方形是否相似?为什么?______________________________________________________________________________________________________________.(6)这个结论可以解释生活中的许多现象,解决许多生活与数学中的问题.请你再提出一个类似的数学问题,或举出一个生活中与此结论相关的例子.b ac a c b c b a +=+=+cb ac b a 322-+++1===cz by ax 444444111111111111z y x c b a +++++++++++a bmb m a ++ba mb m a ________++22.已知a 、b 、c 为正数,满足证明:以为三边长可构成一个直角三角形.,32①=++c b a .41②=-++-++-+ab c b a ca b a c bc a c b c b a 、、。
分式的化简求值经典练习题(带答案)
分式的化简一、比例的性质:⑴ 比例的基本性质:a cad bc b d=⇔=,比例的两外项之积等于两内项之积. ⑵ 更比性(交换比例的内项或外项): ( ) ( ) ( )a bc d a c d cb d b a d bc a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩交换内项 交换外项 同时交换内外项⑶ 反比性(把比例的前项、后项交换):a c b db d a c=⇒=⑷ 合比性:a c a b c d b d b d ±±=⇒=,推广:a c a kb c kdb d b d±±=⇒=(k 为任意实数) ⑸ 等比性:如果....a c m b d n ===,那么......a c m ab d n b+++=+++(...0b d n +++≠)二、基本运算分式的乘法:a c a cb d b d⋅⋅=⋅分式的除法:a c a d a db d bc b c ⋅÷=⨯=⋅乘方:()n nn n n a a aa a aa ab b bb b bb b⋅=⋅=⋅个个n 个=(n 为正整数) 整数指数幂运算性质:⑴m n m n a a a +⋅=(m 、n 为整数) ⑵()m n mn a a =(m 、n 为整数) ⑶()n n n ab a b =(n 为整数)⑷m n m n a a a -÷=(0a ≠,m 、n 为整数) 负整指数幂:一般地,当n 是正整数时,1n n a a-=(0a ≠),即n a -(0a ≠)是n a 的倒数 分式的加减法法则:知识点睛中考要求同分母分式相加减,分母不变,把分子相加减,a b a bc c c+±=异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bcb d bd bd bd±±=±=分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算.结果以最简形式存在.一、分式的化简求值【例1】 先化简再求值:2111x x x---,其中2x = 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖南郴州【解析】原式()()111x x x x x =---()111x x x x-==-当2x =时,原式112x ==【答案】12【例2】 已知:2221()111a a a a a a a ---÷⋅-++,其中3a =【考点】分式的化简求值 【难度】2星 【题型】解答 【关键词】【解析】222221(1)()4111(1)a a a a a a a a a ---+÷⋅=-=--++-【答案】4-【例3】 先化简,再求值:22144(1)1a a a a a-+-÷--,其中1a =- 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,安徽省中考【解析】()()2221144211122a a a a a a a a a a a a --+-⎛⎫-÷=⋅= ⎪----⎝⎭- 当1a =-时,原式112123a a -===---【答案】1例题精讲【例4】 先化简,再求值:2291333x x x x x ⎛⎫-⋅ ⎪--+⎝⎭其中13x =. 【考点】分式的化简求值【难度】2星 【题型】解答【关键词】2010年,湖南省长沙市中考试题【解析】原式()()()33133x x x x x +-=⋅-+ 1x=当13x =时,原式3=【答案】3【例5】 先化简,再求值:211(1)(2)11x x x -÷+-+-,其中x =【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖北省十堰市中考试题【解析】原式()()()111121x x x x x +-=⋅+-+-+ ()()12x x x =-+-22x =-当x 时,原式224=-=.【答案】4【例6】 先化简,后求值:22121(1)24x x x x -++÷--,其中5x =-. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,广东省肇庆市中考试题【解析】22121(1)24x x x x -++÷--=221(1)2(2)(2)x x x x x -+-÷-+- =21(2)(2)2(1)x x x x x -+-⋅-- =21x x +- 当5-=x 时,原式21x x =+-521512+-=-=-. 【答案】12【例7】 先化简,再求值:532224x x x x -⎛⎫--÷⎪++⎝⎭,其中3x =. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖北省武汉市中考试题【解析】原式2453(3)(3)2(2)22(2)22(3)3x x x x x x x x x x ---+-+=⨯=+++-=÷+,当3x =-时,原式=【答案】【例8】 先化简,再计算:231124a a a +⎛⎫+÷ ⎪--⎝⎭,其中3a =. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖南省岳阳市中考试题【解析】原式()()2223221a a a a a a +--⎛⎫=+⨯ ⎪--+⎝⎭()()22121a a a a a +-+=⨯-+ 2a =+【答案】2a +【例9】 当12x =-时,求代数式22226124111x x x x x x x x ⎛⎫++-+-+÷ ⎪--+⎝⎭的值 【考点】分式的化简求值【难度】3星 【题型】解答 【关键词】【解析】原式2224(1)1(1)(1)2413x x x x x x x x x x -++=⨯==+--+- 【答案】13【例10】 先化简分式22222936931a a a a a a a a a ---÷-+-+-,然后在0,1,2,3中选一个你认为合适的a 值,代入求值.【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,广东省深圳市中考试题【解析】原式()()()()223332313a a a a a a a a a a a a +-+-=⋅-=+=--+ 当0123a =,,,时,原式0246=,,, 【答案】0,2,4,6【例11】 先化简:22222a b ab b a a ab a ⎛⎫-+÷+ ⎪-⎝⎭,当1b =-时,再从22a -<<的范围内选取一个合适的整数a 代入求值.【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,贵州省贵阳市中考试题【解析】原式()()()()22221a b a b a ab b a b a a a b a a a ba b +-+++=÷=⋅=-++在22a -<<中,a 可取的整数为101-,,,而当1b =-时, ①若1a =-,分式222a b a ab--无意义;②若0a =,分式22ab b a +无意义;③若1a =,分式1a b+无意义. 所以a 在规定的范围内取整数,原式均无意义(或所求值不存在)【答案】a 在规定的范围内取整数,原式均无意义(或所求值不存在)【例12】 已知212242xA B C x x x ===--+,,将它们组合成()A B C -÷或A B C -÷的形式,请你从中任选一种进行计算,先化简,再求值其中3=x .【考点】分式的化简求值 【难度】3星 【题型】解答【关键词】2010年,河南省中考试题【解析】选一:()()()21221242222x x x A B C x x x x x x x +⎛⎫-÷=-÷=⨯= ⎪--++--⎝⎭ 当3x =时,原式1132==- 选二:()21212124222x A B C x x x x x x x -÷=-÷=-=--+--,当3x =时,原式13=【答案】选一:当3x =时,原式1132==- 选二:当3x =时,原式13=【例13】 先化简,再求值:224125(2)2[2()](34)(2)a a a a a a a a +++÷--÷-+,其中4a = 【考点】分式的化简求值【难度】3星【题型】解答【关键词】【解析】原式2224(3)5(2)(2)[2](34)(2)a a aaa a a a+++=÷--÷-+4(3)(2)(2)5(34)(2)2a a aa a a+-+-=÷-++ 4(3)2(34)(2)(3)(3)a aa a a a++=⋅-+-+4(34)(3)a a=--当4a=时,原式441(34)(3)(344)(43)2a a=== --⨯--本题含分式乘方、加、减、乘、除混合运算;与分式四则混合运算类似,分式的四则混合运算的顺序是:先算乘方,再算乘除,后算加减,如有括号,括号内先算.【答案】1 2【例14】已知20102009x y==,,求代数式22xy y x yxx x⎛⎫---⎪⎝⎭÷的值.【考点】分式的化简求值【难度】2星【题型】解答【关键词】2010年,顺义一模试题【解析】22xy y x y xx x ⎛⎫---⎪⎝⎭÷222x xy y xx x y-+=-2()x y xx x y-=-x y=-当2010x=,2009y=时,原式=201020091x y-=-=.【答案】1【例15】已知22a b==a bb a-的值.【考点】分式的化简求值【难度】2星【题型】解答【关键词】2010年,湖北荆门市中考试题【解析】∵22a b=+=∴4a b+=,a b-=,1ab=而a bb a-22()()a b a b a bab ab-+-==∴a bb a-=()()a b a bab+-==【答案】【例16】 先化简,再求值:()()x yy x y x x y -++,其中11x y ==,. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖南湘潭市中考试题【解析】原式()()22x y xy x y xy x y =-++ ()22x y xy x y -=+()()()x y x y xy x y -+=+x y xy-=当 11x y ==,时,11221x yxy--=== 【答案】2【例17】 化简,再求值:11-a b b a ⎛⎫+ ⎪+⎝⎭ab a b÷+.其中1a =, b =. 【考点】分式的化简求值 【难度】3星 【题型】解答【关键词】2010年,黄石市中考试题【解析】原式()()()()()2b a a b a b a b b a ab a b b++-+=⋅=-+-∵1a b ==,∴原式1b ==,∴=【例18】 先化简,再求值:22112b a b a b a ab b ⎛⎫-÷ ⎪-+-+⎝⎭,其中11a b ==-【考点】分式的化简求值 【难度】3星 【题型】解答【关键词】2010年,宣武一模试题【解析】原式()()()()()()22a b a b a b a b a b a b b a b+----=⋅=-++当11a b ==-==【答案】【例19】 先化简,再求值:22211x yx y x y x y⎛⎫+÷ ⎪-+-⎝⎭,其中11x y ==, 【考点】分式的化简求值 【难度】3星 【题型】解答【关键词】2010年,广西桂林中考试题 【解析】原式2222222x y x y x yx y x y x y ⎛⎫+-=+÷ ⎪---⎝⎭ 22222x y x y x y x y x y++--=⨯- 222x x y xy==当11x y ==,原式22131xy====-【答案】1【例20】 求代数式()()22222222222a b c a b c ab ac a a ab ab a b a b -----+⋅÷-++-的值,其中1a =,12b =-,23c =- 【考点】分式的化简求值 【难度】3星 【题型】解答 【关键词】【解析】()()22222222222a b ca b c ab ac a a ab ab a b a b -----+⋅÷-++- ()()()()()()()()()2a b c a a b c a b c a b a b a a b a b c a b c a b -+-+--+-=⋅⋅-+--++a b c a b --=+. ∴当1a =,12b =-,23c =-时,原式12123112++=-1313263=⨯=. 【答案】133二、条件等式化简求值1. 直接换元求值【例21】 已知:2244a b ab +=(0ab ≠),求22225369a b a b ba b a ab b a b--÷-++++的值. 【考点】分式的化简求值 【难度】3星 【题型】解答【关键词】2010年,石景山二模【解析】由2244a b ab+=得2b a=原式2 a ba b-=+当2b a=时,原式42a aa a-=+1=-【答案】1-【例22】已知x y z,,满足235x y z z x==-+,则52x yy z-+的值为()A.1B.13C.13- D.12【考点】分式的化简求值【难度】4星【题型】选择【关键词】2007年,全国初中数学联赛试题【解析】B;由235x y z z x==-+得332y x z x==,,∴5531 2333 x y x xy z x x--== ++【答案】1 3【例23】已知:34xy=,求2222222x y xy yx xy y x xy-+÷-+-的值【考点】分式的化简求值【难度】3星【题型】解答【关键词】【解析】2222222()()()3 2()()4 x y xy y x y x y y x y xx xy y x xy x y x x y y -++-+÷=÷== -+---【答案】3 4【例24】已知:220x-=,求代数式222(1)11x xx x-+-+的值.【考点】分式的化简求值【难度】2星【题型】解答【关键词】2010年,丰台一模【解析】原式=22 (1)1)(1)1 x x x x x-++-+(=2111 x x x x-+++=211x xx+-+.∵220x-=,∴22x=.∴原式=211111x x x x +-+==++.【答案】1【例25】 已知12=x y ,求2222222-⋅+-++-x x y y x xy y x y x y 的值. 【考点】分式的化简求值【难度】2星 【题型】解答【关键词】2010年,海淀一模【解析】y x y y x y x y xy x x-++-⋅+-2222222 22()()2()x x y x y yx y x y x y -+=⋅++-- 22()x y x y x y =+--2()()x y x y +=-.当21=y x 时,x y 2=. 原式2(2)6(2)x x x x +==--.【答案】6-【例26】 已知221547280x xy y -+=,求xy的值. 【考点】分式的化简求值 【难度】3星 【题型】解答 【关键词】【解析】221547280x xy y -+=,∴(37)(54)0x y x y ++=,∴370x y +=或540x y +=,由题意可知:0y ≠,73x y =-或45x y =-. 【答案】45-【例27】 已知22690x xy y -+=,求代数式2235(2)4x yx y x y +⋅+-的值.【考点】分式的化简求值 【难度】3星 【题型】解答【关键词】2010年,海淀二模【解析】22690x xy y -+=,2(3)0x y -=.∴ 3x y =. ∴原式35(2)(2)(2)x yx y x y x y +=⋅++-352x yx y +=-3(3)52(3)y yy y+=-145=. 【答案】145【例28】 已知x =,求351x x x++的值. 【考点】分式的化简求值 【难度】4星 【题型】解答【关键词】降次,整体置换【解析】21x -=21x x =+,0x ≠.则()233245555111x x x x x x x x x x x++++=====【例29】 已知20x y -=,求22()2x y xyy x x xy y -⋅-+的值.【考点】分式的化简求值 【难度】3星 【题型】解答【关键词】2010年,东城二模【解析】22()2x y xyy x x xy y -⋅-+=22222x y xyxy x xy y-⋅-+ =2()()()x y x y xyxy x y -+⋅- =x y x y+-. ∵20x y -=, ∴2x y =.∴x y x y +-=2332y y yy y y+==-. ∴原式3.=【答案】3【例30】 已知3a b =,23a c =,求代数式a b c a b c+++-的值. 【考点】分式的化简求值 【难度】3星 【题型】解答 【关键词】【解析】(法1)注意将未知数划归统一,2,33a a b c ==,123331233a a aa b c a b c a a a++++==+-+- (法2)3a b =,223233a c b b ==⨯=,32332a b c b b ba b c b b b ++++==+-+-【答案】3【例31】 已知123a b c a c ==++,求ca b+的值. 【考点】分式的化简求值【难度】4星 【题型】解答【关键词】第8届,华罗庚金杯复赛【解析】23b c a a c a +=⎧⎨+=⎩22b c a c a +=⎧⇒⎨=⎩02b c a =⎧⇒⎨=⎩,所以220c aa b a ==++.【答案】2【例32】 已知2232a b ab -=,0a >,0b >,求证:252a b a b +=- 【考点】分式的化简求值 【难度】4星 【题型】解答 【关键词】【解析】由已知可得22230a ab b --=,则(3)()0a b a b -+=,所以3a b =或a b =-∵0a >,0b >,∴3a b =,则23255322a hb b b a b b b b ++===--【答案】52【例33】 已知:2232a b ab -=,求2a ba b+-的值.【考点】分式的化简求值 【难度】3星【题型】解答【关键词】清华附中暑假作业【解析】变形可得:()(3)0a b a b +-=,所以a b =-或3a b =,所以212a b a b +=--或52. 【答案】12-或52【例34】 已知22(3)0x y a b -+-=,求32223322232332a x ab y b xya x ab y b xy++++的值.【考点】分式的化简求值 【难度】3星 【题型】解答【关键词】第9届,华罗庚金杯总决赛1试 【解析】由已知可得:2y x =,3a b =,故原式7297=. 【答案】7297【例35】 已知分式1x yxy+-的值是m ,如果用x ,y 的相反数代入这个分式,那么所得的值为n ,则m 、n 是什么关系?【考点】分式的化简求值 【难度】3星 【题型】解答 【关键词】【解析】由题可知:()()()1.1x ym xy x y n x y +⎧=⎪-⎪⎨-+-⎪=⎪---⎩,①②由②得:11x y x yn m xy xy--+==-=---.∴m n =-,∴0m n +=. 所以m n ,的关系为互为相反数.【答案】m n ,的关系为互为相反数【例36】 已知:233mx y +=,且()22201nx y x y -=≠≠-,.试用x y ,表示m n. 【考点】分式的化简求值 【难度】4星 【题型】解答 【关键词】【解析】∵0x ≠,∴由233mx y +=,得:()()231133y y y m x x+--==. 由222nx y -=,得:()222122y y n x x++==. ∵1y ≠-,∴0n ≠,∴231121y y y m n x x +-+=÷()231121y y x x y +-=⋅+312x y -=. 【答案】()312x y -【例37】 已知:230a b c -+=,3260a b c --=,且0abc ≠,求3332223273a b c ab bc a c-++-的值.【考点】分式的化简求值 【难度】4星 【题型】解答 【关键词】【解析】由题意可知:2303260a b c a b c -+=⎧⎨--=⎩,解得43a c b c =⎧⎨=⎩,333322233215173453a b c c ab bc a c c -+-==-+- 【答案】13-【例38】 已知方程组:230230x y z x y z -+=⎧⎨-+=⎩(0xyz ≠),求:::x y z【考点】分式的化简求值 【难度】3星 【题型】解答 【关键词】【解析】把z 看作已知数,解关于x 、y 的方程组,解得5y z =,7x z =,所以::7:5:1x y z =. 【答案】::7:5:1x y z =【例39】 若4360x y z --=,270x y z +-=(0xyz ≠),求222222522310x y z x y z +---的值.【考点】分式的化简求值 【难度】3星 【题型】解答【关键词】全国初数数学竞赛【解析】由43627x y z x y z -=⎧⎨+=⎩,得32x zy z =⎧⎨=⎩,代入得原式13=-.【答案】13-【例40】 设自然数x 、y 、m 、n 满足条件58x y m y m n ===,求的x y m n +++最小值. 【考点】分式的化简求值 【难度】5星 【题型】解答【关键词】黄冈市初中数学竞赛【解析】58x y =,58y m =,85m y =,864525n m y ==,从而y 是825200⨯=的倍数,当200y =586412520032051211578525x y m n y y y y +++=+++=+++=【例41】 设有理数a b c ,,都不为0,且0a b c ++=,则222222222111b c a c a b a b c+++-+-+-的值为___________。
人教版 八年数学上册 竞赛专题:分式的化简与求值(含答案)
人教版 八年数学上册 竞赛专题:分式的化简与求值(含答案)【例l 】 已知2310a a -+=,则代数式361a a +的值为 .(“希望杯”邀请赛试题)解题思路:目前不能求出a 的值,但可以求出13a a+=,需要对所求代数式变形含“1a a +”.【例2】 已知一列数1234567,,,,,,,a a a a a a a 且18a =,75832a =,356124234567a a a a a a a a a a a a =====,则5a 为( ) A .648 B .832 C .1168 D .1344(五城市联赛试题) 解题思路:引入参数k ,把17a a 用k 的代数式表示,这是解决等比问题的基本思路.【例3】 3(0)x y z a a ++=≠.求222()()()()()()()()()x a y a y a z a z a x a x a y a z a --+--+---+-+-.(宣州竞赛试题) 解题思路:观察发现,所求代数式是关于x a y a z a ---、、的代数式,而条件可以拆成x a y a z a ---、、的等式,因此很自然的想到用换元法来简化解题过程.【例4】 已知1,2,3,xy yz zxx y y z z x===+++求x 的值. (上海市竞赛试题)解题思路:注意到联立等式得到的方程组是一个复杂的三元一次方程组,考虑取倒数,将方程组化为简单的形式.【例5】 不等于0的三个正整数,,a b c 满足1111a b c a b c++=++,求证:,,a b c 中至少有两个互为相反数.解题思路:,,a b c 中至少有两个互为相反数,即要证明()()()0a b b c c a +++=. (北京市竞赛试题)【例6】 已知,,a b c 为正整数,满足如下两个条件:①32;a b c ++=②14b c a c a b a b c bc ac ab +-+-+-++= 解题思路:本题熟记勾股定理的公式即可解答.(全国初中数学联赛试题)能力训练1.若a b c d b c d a ===,则a b c d a b c d-+-+-+的值是 .(“希望杯”邀请赛试题)2.已知2131x x x =-+,则24291x x x =-+ . (广东竞赛试题)4.已知232325x xy y x xy y +-=--,则11x y -= .5.如果111,1a b b c+=+=,那么1c a +=( ).A .1B .2C .12 D .14(“新世纪杯”竞赛试题)6.设有理数,,a b c 都不为0,且0a b c ++=,则222222222111b c a c a b a b c +++-+-+-的值为( ).A .正数B .负数C .零D .不能确定7.已知4360,270(0)x y z x y z xyz --=+-=≠,则22222223657x y z x y z++++的值为( ). A .0 B .1 C .2 D .不能确定8.已知211x x mx =-+,则36331x x m x -+的值为( )A .1B .313m + C .2132m - D .2131m + 9.设0a b c ++=,求222222222a b c a bc b ac c ab+++++的值.10.已知111x y z y z x+=+=+其中,,x y z 互不相等,求证2221x y z =. (天津市竞赛试题)11.设,,a b c 满足1111a b c a b c++=++, 求证2121212121211111n n n n n n a b c a b c------++=++.(n 为自然数) (波兰竞赛试题)12.三角形三边长分别为,,a b c . (1)若a abc b c b c a++=+-,求证:这个三角形是等腰三角形;(2)若1111a b c a b c-+=-+,判断这个三角形的形状并证明.13.已知1ax by cz ===,求444444111111111111a b c x y z +++++++++++的值. (“华杯赛”试题)14.解下列方程(组): (1)18272938x x x x x x x x +++++=+++++; (江苏省竞赛试题) (2)596841922119968x x x x x x x x ----+=+----;(“五羊杯”竞赛试题)(3)111211131114x y z y z x z x y ⎧+=⎪+⎪⎪+=⎨+⎪⎪+=⎪+⎩.(北京市竞赛试题)B 级1.设,,a b c 满足0a b c ++=,0abc >,若a b c x a b c=++, 111111()()()y a b c b c c a a b=+++++,则23x y xy ++= .2.若0abc ≠,且a b b c c a c a b+++==,则()()()a b b c c a abc +++= . 3.设,,a b c 均为非零数,且2(),3(),4()ab a b bc b c ac a c =+=+=+,则a b c ++= .4.已知,,x y z 满足1x y z y z x z y x ++=+++,则222x y z y z x z y x+++++的值为 .5.设,,a b c 是三个互不相同的正数,已知a c c bb a b a-==+,那么有( ). A .32b c = B .32a b = C .2b c = D .2a b =6.如果0a b c ++=,1114a b c ++=-,那么222111a b c++的值为( ).A .3B .8C .16D .208.若615325x y x y y x y x -==-,则222245623x xy y x xy y-+-+的值为( ). A .92 B .94C .5D .6 (全国初中数学联赛试题)9.已知非零实数,,a b c 满足0a b c ++=. (1)求证:3333a b c abc ++=; (2)求()()a b b c c a c a bc a b a b b c c a---++++---的值. (北京市竞赛试题)10.已知2410a a ++=,且42321322a ma a ma a++=++.求m 的值. (北京市竞赛试题)(天津市竞赛试题)13.某商场在一楼和二楼之间安装了一自动扶梯,以均匀的速度向上行驶,一男孩和一女孩同时从自动扶梯上走到二楼(扶梯行驶,两人也走梯).如果两人上梯的速度都是匀速的,每次只跨1级,且男孩每分钟走动的级数是女孩的2倍.已知男孩走了27级到达扶梯顶部,而女孩走了18级到达顶部. (1)扶梯露在外面的部分有多少级?(2)现扶梯近旁有一从二楼下到一楼的楼梯道,台阶的级数与自动扶梯的级数相等,两人各自到扶梯顶部后按原速度再下楼梯,到楼梯底部再乘自动扶梯上楼(不考虑扶梯与楼梯间的距离).求男孩第一次追上女孩时走了多少级台阶? (江苏省竞赛试题)参考答案例1 181提示:3363111aa a a +=+例2 A 提示:7665544332216a a a a a a a a a a a a k ∙∙∙∙∙==71a a =58328,得k=31±,又25443322151k a a a a a a a a a a =∙∙∙=例3油x+y+z=3a ,得(x-a )+(y-a )+(z-a )=0.设x-a=m ,y-a=n ,z-a=p ,则m+n+p=0,即p=-(m+n ).原式=222p n m pm np mn ++++=()222p n m n m p mn ++++=()()2222n m n m n m mn ++++-=-21 例4 x=512 提示:由已知条件知xy ≠0,yz ≠0,取倒数,得:⎪⎪⎪⎩⎪⎪⎪⎨⎧+++,31,21,1zx x z zx z y xy y x 即⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+,3111,2111,111x z z y y x ①+②+③,得1211111=++z y x 例5 提示:由已知条件,得()()a bc acb abc bc ac b ab +++++++22=()()[]()c a b a c b a b ++++=()()()0=+++a c c b b a例6 由勾股定理,结论可表示为等式:a=b+c ,①或b=a+c ,②或c=b+a ,③,联立①③,只需证a=16或或b =16或c =16,即(a -16)(b -16)(c -16)=0. ④ 展开只需证明0=abc -16(ab +bc +ac )+162(a +b +c )-163=abc -16(ab +bc +ac )+163 ⑤ 将①平方、移项,有a 2+b 2+c 2=322-2(ab +bc +ca ),⑥ 又将②移项、通分,有 0=14-(++b c a bc ++c a b ac -+a b cab++) =14-(2+ab ac a abc -+2+bc ab b abc -+2ac bc c abc +-)=2228()4()4abc ab bc ac a b c abc -+++++=28()4[322()]4abc ab bc ac ab bc ca abc-+++-++把⑥代入等式中,0=316()164abc ab bc ac abc-+++①② ③=23 16()16()164abc ab bc ac a b cabc-+++++-=(16)(16)(16)4a b cabc---当a-16=0时,由①有a=16=b+c,由勾股定理逆定理知,为斜边的直角三角形.同理,当b=16或c=16时,分别有b=a+c或c=b+a角三角形.A级1. 0或-22. 15∵231x xx-+=1,∴x+1x=4.又∵42291x xx-+=5,∴24291xx x-+=153.34. A5. C 提示:b 2+c 2-a2=-2bc6.B7. C 提示:取倒数,得x+1x=1+m,原式的倒数=x3+31x-m38. 1 提示:2a2+bc=2a2+b(-a-b)=a2-ab+a2-b2=(a-b)(a+a+b)=(a-b)(a-c)9. 提示:由x+1y=y+1z,得x-y=1z-1y,得zy=y zx y--10. 提示:参见例5得(a+b)(b+c)(a+c)=011. (1)∵()a b cbc+=()b cb c a++-,∴(b+c)(ab+ac-a2-bc)=0.∴(b+c)(a-b)(c-a)=0.∵b+c≠0,∴a=b或c=a.∴这个三角形为等腰三角形.(2)∵1a+1c=1+a b c-+1b,∴a cac+=()a ca b c b+-+∴(a-b+c)=ac,∴(a-b)(b-c)=0, a=b或b=c,∴这个三角形为等腰三角形.12. 3 x =1a ,y =1b ,c =1z ,∴411a ++411x +=411a ++4111a+=1,∴原式=3. 13. (1)x =-112(2)x =12314(3)(x ,y ,z )=(2310,236,232)提示:原方程组各方程左端通分、方程两边同时取倒数.B 级1. 22. -1或8 提示:设a b c +=b c a +=c a b +=k ,则k =-1或2 3. 1128354. 0 提示:由x y z +=1-y z x +-z x y +,得:14=x -xy z x +-xz x y + 5. A 6. C 7. A 提示:由已知条件得x =3y8. (1)由a +b +c =0,得a +b =-c ∴a 3+b 3+c 3=-3ab (a +b )=3abc(2)∵(a b c -+b c a -+c a b -)·c a b -=1+22c ab , ∴同理:(a b c -+b c a -+c a b -)·a b c -=1+22a bc ,(a b c -+b c a -+c a b -)·b c a-=1+22b ac ,∴左边=3+22c ab +22a bc+22c ab =3+3332()a b c abc ++=99. ∵a 2+4a +1=0,∴a 2+1=-4a ,①a ≠0. 4232122a ma a ma a++++=2222(1)(2)2(1)a m a a a ma ++-++=3.把①代入上式中,222216(2)8a m a a ma +--+=3,消元得1692)8m m+--+=3,解得m =19.10. 设甲、乙、丙三人单独完成此项工作分别用a 天、b 天、c 天,则,,bc a p b c ac b q a c ab c x a b ⎧=⋅⎪+⎪⎪=⋅⎨+⎪⎪=⋅⎪+⎩即111,111,111p a b c q b a c x c a b ⋅=+⋅=+⋅=+解得x =14. 11.(1)设女孩速度x 级/分,电梯速度y 级/分,男孩速度2x 级/分,楼梯S 级,则 27271818.S x y S x y -⎧=⎪⎪⎨-⎪=⎪⎩,得13.5271818S S -=-,327418S S -=-,∴S =54. (2)设男孩第一次追上女孩时走过扶梯m 编,走过楼梯n 编,则女孩走过扶梯(m -1)编,走过楼梯(n -1)编,男孩上扶梯4x 级/分,女孩上扶梯3x 级/分.545454(1)54(n 1)423m m m x x x x --+=+,即114231m n m n --+=+,得6n +m =16,m ,n 中必有一个是正整数,且0≤︱m -n ︱≤1.①16mn -=,m 分别取值,则有显然,只有m =3,n =126满足条件,故男孩所走的数=3×27+126×54=198级.∴男孩第一次追上女孩时走了198级台阶.。
第15章 分式的计算与化简求值 人教版八年级上册数学讲义
第15章分式的计算与化简求值 人教版八年级上册数学讲义一、内容复习1、最简分式的定义:一个分式的分子与分母没有公因式时,叫最简分式.2、通分的定义:把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这样的分式变形叫做分式的通分.通分的关键是确定最简公分母.①最简公分母的系数取各分母系数的最小公倍数.②最简公分母的字母因式取各分母所有字母的最高次幂的积.通分:,.二、知识点一 分式的乘、除法法则【知识梳理】1. 分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母,用式子表示为b a ·d c =bdac . 2. 分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为b a ÷d c =b a ·c d =bcad . 【提醒】1. 分式与分式相乘,若分子、分母是单项式,可先将分子、分母分别相乘,然后约去公因式,化为最简分式;若分子、分母是多项式,先把分子、分母分解因式,看能否约分,然后再相乘.2.当整式与分式相乘时,要把整式(看做是分母为1的式子)与分式的分子相乘作为积的分子,分式的分母不变.当整式是多项式时,同样要先分解因式,看能否约分,然后再相乘.3.分式的除法运算可以转化为分式的乘法运算,若除式(或被除式)是整式时,可以看做是分母是1的式子,然后按照分式除法法则计算.4.分式的乘除运算结果要通过约分化为最简分式(分式的分子、分母没有公因式)或整式的形式.5.分式的乘除混合运算,如果没有其他附加条件(如括号等),则应按照由左到右的顺序进行计算.【例题精讲】例1、计算2x 3÷的结果是( )A .2x 2B .2x 4C .2xD .4【分析】原式利用除法法则变形,计算即可得到结果.【解答】解:原式=2x 3•x=2x 4,故选:B .【强化练习】1、(1)x m 86·m x 32 (2)3ab 2÷ab 62、化简的结果是( )A .B .C .D .知识点二 分式的乘方法则【知识梳理】分式的乘方法则:分式乘方要把分子、分母分别乘方。
分式的化简求值经典练习题(带答案)
精心整理精心整理分式的化简乘方:()n n n nn a a aa a aa ab b bb b bb b ⋅=⋅=⋅个个n 个=(n 为正整数)整数指数幂运算性质: ⑴m n m n a a a +⋅=(m 、n 为整数) ⑵()m n mn a a =(m 、n 为整数) ⑶()n n n ab a b =(n 为整数)⑷m n m n a a a -÷=(0a ≠,m 、n 为整数)中考要求精心整理精心整理负整指数幂:一般地,当n 是正整数时,1n na a -=(0a ≠),即n a -(0a ≠)是n a 的倒数分式的加减法法则:同分母分式相加减,分母不变,把分子相加减,a b a b ccc+±=异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bc bdbdbdbd±±=±=分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算.【例1【例2【题型】解答 【关键词】【解析】222221(1)()4111(1)a a a a a a a a a ---+÷⋅=-=--++-【答案】4-【例3】 先化简,再求值:22144(1)1a a a a a-+-÷--,其中1a =-..【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,安徽省中考【解析】()()2221144211122a a a a a a a a a a a a --+-⎛⎫-÷=⋅= ⎪----⎝⎭-当1a =-时,原式112123a a -===---【答案】13【例4】 先化简,再求值:2291333x x x x x⎛⎫-⋅ ⎪--+⎝⎭其中13x =.【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖南省长沙市中考试题 【解析】原式()()()33133x x x x x +-=⋅-+ 当13x =时,原式3=【答案】3【例5】 先化简,再求值:211(1)(2)11x x x -÷+-+-,其中x =. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖北省十堰市中考试题 【解析】原式()()()111121x x x x x +-=⋅+-+-+当x时,原式224=-=.【答案】4精心整理精心整理【例6】 先化简,后求值:22121(1)24x x x x -++÷--,其中5x =-. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,广东省肇庆市中考试题【解析】22121(1)24x x x x -++÷--=221(1)2(2)(2)x x x x x -+-÷-+-【例7。
分式的化简求值经典练习题(带答案)
精心整理精心整理分式的化简乘方:()n n n nn a a aa a aa ab b bb b bb b ⋅=⋅=⋅个个n 个=(n 为正整数)整数指数幂运算性质: ⑴m n m n a a a +⋅=(m 、n 为整数) ⑵()m n mn a a =(m 、n 为整数) ⑶()n n n ab a b =(n 为整数)⑷m n m n a a a -÷=(0a ≠,m 、n 为整数)中考要求精心整理精心整理负整指数幂:一般地,当n 是正整数时,1n na a -=(0a ≠),即n a -(0a ≠)是n a 的倒数分式的加减法法则:同分母分式相加减,分母不变,把分子相加减,a b a b ccc+±=异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bc bdbdbdbd±±=±=分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算.【例1【例2【题型】解答 【关键词】【解析】222221(1)()4111(1)a a a a a a a a a ---+÷⋅=-=--++-【答案】4-【例3】 先化简,再求值:22144(1)1a a a a a-+-÷--,其中1a =-..【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,安徽省中考【解析】()()2221144211122a a a a a a a a a a a a --+-⎛⎫-÷=⋅= ⎪----⎝⎭-当1a =-时,原式112123a a -===---【答案】13【例4】 先化简,再求值:2291333x x x x x⎛⎫-⋅ ⎪--+⎝⎭其中13x =.【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖南省长沙市中考试题 【解析】原式()()()33133x x x x x +-=⋅-+ 当13x =时,原式3=【答案】3【例5】 先化简,再求值:211(1)(2)11x x x -÷+-+-,其中x =. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖北省十堰市中考试题 【解析】原式()()()111121x x x x x +-=⋅+-+-+当x时,原式224=-=.【答案】4精心整理精心整理【例6】 先化简,后求值:22121(1)24x x x x -++÷--,其中5x =-. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,广东省肇庆市中考试题【解析】22121(1)24x x x x -++÷--=221(1)2(2)(2)x x x x x -+-÷-+-【例7。
初二数学知识点专题讲解与练习7---分式的化简与求值(培优版)
.A 1996
.B 1997
.C 1998
.D 19999
.若 ,则 的值为( x
y 6x −15 y
8
=
=
3y 2x −5y
x
4x2 − 5xy + 6 y2 x2 − 2xy + 3y2
).
A. 9
B. 9
.C 5
2
4
9.已知非零实数 a,b,c 满足 a + b + c = 0 .
.D 6 (全国初中数学联赛试题)
,则 为( a1 = a2 = a3 = a4 = a5 = a6
a2 a3 a4 a5 a6 a7
a5
)
.A 648
.B 832
.C 1168
.D 1944
(五城市联赛试题)
解题思路:引入参数k ,把a1 a7 用k 的代数式表示,这是解决等比问题的基本思路.
【例 】 . 3 x + y + z = 3a(a ≠ 0)
a2
b2
c2
+
+
2a2 + bc 2b2 + ac 2c2 + ab
10.已知 x + 1 = y + 1 = z + 1 其中 x, y, z 互不相等,求证 x2 y2z2 = 1.
y
z
x
(天津市竞赛试题)
3 / 11
.设 满足 11 a,b,c 1 + 1 + 1 = 1 , a b c a+b+c
c + a + b −1−1−1
的值为 .
ab bc ac a b c
(“缙云杯”竞赛试题)
数学北师大版八年级下册分式的化简求值题
,其中x
的值从不等式组
3 x 3 5 x 1 0 2
的整数解中选取。
x 3 x 3 解:原式= 2 x x 3
= =
x 2 6 x 9 x
= 在1<x≤3的整数有-2,3,但只有2 能保证分式在化简过程中有意义,当x=2时, 2-3 原式= 2 -1
活动二:合作探究
考点二:分式的约分和通分 要求:在小组内合作交流完成考点二 (时间:2分钟)
活动二:合作探究
考点二:分式的约分和通分 1.分式约分的步骤: (1)取分式的分子与分母系数的 最大公约数 作为公因 式的系数。 (2)取各个公因式的 最低次幂 作为公因式的因式。 (3)如果分子、分母是多项式,则应先把分子、分 母 分解因式 ,然后寻找公因式。 (4)约去分子与分母的 公因式 . 2.最简分式:分子和分母没有 公因式 的分式
bd ac
b d 3、分式的除法: a c
b c bc a d ad
活动二:合作探究
考点三:分式的运算 要求:独立完成练一练的两个小题 (时间:6分钟)
2 x x 1 ,其中x 1、先化简,再求值: ( 2 1 ) 2 x x x 2 x 1 - x 1 的值从不等式组 的整数解中选取。 2 x 1 4 x x 2 x x 1 x 1 - x 1 2 解:原式= x x x 1 2 2 x 1 4
B.(a2-b2)(a+b) D.a2-b2
活动二:合作探究
考点三:分式的运算 要求:在小组内合作交流完成考点三 (时间:2分钟)
考点三:分式的运算
a b 1、分式的加减:同分母分相加减: c c
八年级数学上册第十五章分式基础专题分式的运算化简与求值习题名师公开课省级获奖课件新人教版
谢谢大家
每一个成功者都有一个开始。勇于开始,才能找到成功的路成功源于不懈的努力,人生最大的敌人是自己怯懦每天只看目标,别老想障碍宁愿辛苦一阵子,不要辛苦一辈子积极向上的心态,是成功者的最基本要素生活总会给你另一个机会,人生就像骑单车,想保持平衡就得往前走21:19:48我们必须在失败中寻找胜利10、一个人的梦想也许不值钱,但一个人的努力很值钱。11、在真实的生命里,每桩伟业都由信心开始,并由信心跨出第一步。
5.先化简,再求值: ,其中x的值从不等式组
的整数解中选取.
6.先化简,再求值: ,其中a2-2a-6=0.
7.已知x2-10xy+25y2=0,且xy≠0,求 的值.
类型三 求分式值的特殊方法
了解面对逆境,远比如何接受顺境重要得多一般的伟人总是让身边的人感到渺小昨天是张退票的支票积极人格的完善是本,财富的确立是末昨晚多几分钟的准备每一发奋努力的背,必有加倍的赏赐要及时把握梦想,因为梦想一死10、一个人的梦想也许不值钱,但一个人的努力很值钱。11、在真实的生命里,每桩伟业都由信心开始,并由信心跨出第一步。
类型一 分式的运算
1.计算:
(1)原式=1.
(5)原式=-2a-6.
Hale Waihona Puke 类型二 分式的化简求值2.先化简,再求值: ,其中x=2.
3.先化简,再求值: 其中x=3,y=2.
4.先化简,再求值: ·(m2-2mn+n2),其中m-n=1.
解:原式=3(m-n),当m-n=1时,原式=3×1=3.
习题课分式的化简与求值人教版广东八年级数学上册课件
B组 3.计算:(2-1 x+1)÷xx2--34·x2+4xx+4. 解:原式=32- -xx·(x+2) x-(3x-2)·(x+x 2)2 =x+x 2.
习题课分式的化简与求值人教版广东 八年级 数学上 册课件
习题课分式的化简与求值人教版广东 八年级 数学上 册课件
4.(眉山中考)先化简,再求值:(x-x 1-
【变式2】 (黑龙江中考)先化简,再求值:(a-2aba-b2)÷a-a b,其中 a=12,b=1. 解:原式=a2-2aab+b2·a-a b =(a-ab)2·a-a b =a-b. 当a=12,b=1时,原式=12-1=-12.
习题课分式的化简与求值人教版广东 八年级 数学上 册课件
习题课分式的化简与求值人教版广东 八年级 数学上 册课件
ቤተ መጻሕፍቲ ባይዱ
类型2 分式的化简求值 【例2】 (云浮云安区期末)先化简,再求值:3aa-3÷a2-a22a+1- a-a 1,其中a=2.
解:原式=3(aa-1)·(a-a21)2-a-a 1 =a3-a1-a-a 1 =a2-a1. 当a=2时,原式=a2-a1=22-×21=4.
习题课分式的化简与求值人教版广东 八年级 数学上 册课件
习题课分式的化简与求值人教版广东 八年级 数学上 册课件
2.(江门期末)计算:(1-1-1 x)÷x2-x 1. 解:原式=1-1-x-x 1·(x-1)x(x+1) =x-x 1·(x+1)x(x-1) =x+1.
习题课分式的化简与求值人教版广东 八年级 数学上 册课件
习题课分式的化简与求值人教版广东 八年级 数学上 册课件
x-2 x+1
2x2-x )÷x2+2x+1
数学北师大版八年级下册分式化简求值
分式化简求值专题练习
知识点:
1、分式的基本性质
2、通分(关键是确定最简公分母)
3、约分(关键找公因式)
4、加减法运算:(1)同分母分式相加减
(2)异分母分式相加减
5、 乘法运算
6、 除法运算
一:例题讲解
1、先化简,再求值:21121a a a a a ⎛⎫-÷ ⎪--+⎝⎭,其中a =
二:随堂练习
2、先将)11(122x
x x x +∙+-化简,然后请你自选一个合理的x 值,求原式的值.
3、先化简,再求值:221.111
x x x x x ⎛⎫-÷ ⎪-+-⎝⎭其中1x =
三:限时测试
4、化简求值:22111
a a a a a ⎛⎫-÷ ⎪+--⎝⎭
,其中a =
5、先化简222212x x x x -∙⎪⎭
⎫ ⎝⎛--,再从0, 1, 2中选一个合适的x 的值代入求值.
6、先化简,再求值:2
124422+--+÷++x x x x x x x ,其中12-=x .
7、先化简,再求值:1121222222+÷⎪⎪⎭
⎫ ⎝⎛+----+x x x x x x x x x
,其中1x =.
四:课后提高
8、先化简,再求值:b a a b a b a b ab a b a --+-∙+--22222,其中31+=a ,31-=b .
9、有这样的一道题:“计算:2222111x x x x x x x
-+-÷--+的值,其中x =2004。
”甲同学把“x=2004”错抄成“x=2040”,但他的计算结果也是正确的。
你说这是怎么回事?。
数学同步练习题考试题试卷教案初中数学竞赛专题辅导:分式的化简与求值
第五讲分式的化简与求值分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据.在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值.除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答.本讲主要介绍分式的化简与求值.例1 化简分式:分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多.=[(2a+1)-(a-3)-(3a+2)+(2a-2)]说明本题的关键是正确地将假分式写成整式与真分式之和的形式.例2 求分式当a=2时的值.分析与解先化简再求值.直接通分较复杂,注意到平方差公式:a2-b2=(a+b)(a-b),可将分式分步通分,每一步只通分左边两项.例3 若abc=1,求分析本题可将分式通分后,再进行化简求值,但较复杂.下面介绍几种简单的解法.解法1 因为abc=1,所以a,b,c都不为零.解法2 因为abc=1,所以a≠0,b≠0,c≠0.例4 化简分式:分析与解三个分式一齐通分运算量大,可先将每个分式的分母分解因式,然后再化简.说明互消掉的一对相反数,这种化简的方法叫“拆项相消”法,它是分式化简中常用的技巧.例5 化简计算(式中a,b,c两两不相等):似的,对于这个分式,显然分母可以分解因式为(a-b)(a-c),而分子又恰好凑成(a-b)+(a-c),因此有下面的解法.解说明本例也是采取“拆项相消”法,所不同的是利用例6 已知:x+y+z=3a(a≠0,且x,y,z不全相等),求分析本题字母多,分式复杂.若把条件写成(x-a)+(y-a)+(z-a)=0,那么题目只与x-a,y-a,z-a有关,为简化计算,可用换元法求解.解令x-a=u,y-a=v,z-a=w,则分式变为u2+v2+w2+2(uv+vw+wu)=0.由于x,y,z不全相等,所以u,v,w不全为零,所以u2+v2+w2≠0,从而有说明从本例中可以看出,换元法可以减少字母个数,使运算过程简化.例7 化简分式:适当变形,化简分式后再计算求值.(x-4)2=3,即x2-8x+13=0.原式分子=(x4-8x3+13x2)+(2x3-16x2+26x)+(x2-8x+13)+10=x2(x2-8x+13)+2x(x2-8x+13)+(x2-8x+13)+10=10,原式分母=(x2-8x+13)+2=2,说明本例的解法采用的是整体代入的方法,这是代入消元法的一种特殊类型,应用得当会使问题的求解过程大大简化.解法1 利用比例的性质解决分式问题.(1)若a+b+c≠0,由等比定理有所以a+b-c=c,a-b+c=b,-a+b+c=a,于是有(2)若a+b+c=0,则a+b=-c,b+c=-a,c+a=-b,于是有说明比例有一系列重要的性质,在解决分式问题时,灵活巧妙地使用,便于问题的求解.解法2 设参数法.令则a+b=(k+1)c,①a+c=(k+1)b,②b+c=(k+1)a.③①+②+③有2(a+b+c)=(k+1)(a+b+c),所以 (a+b+c)(k-1)=0,故有k=1或 a+b+c=0.当k=1时,当a+b+c=0时,说明引进一个参数k表示以连比形式出现的已知条件,可使已知条件便于使用.练习四1.化简分式:2.计算:3.已知:(y-z)2+(z-x)2+(x-y)2=(x+y-2z)2+(y+z-2x)2+(z+x-2y)2,的值.。
初中数学(初二)考点:分式的化简求值
1、考点名称:分式的化简求值5年考试次数:327考点内容:(1) 先把分式化简后,再把分式中未知数对应的值代入求出分式的值.(2) 在化简的过程中要注意运算顺序和分式的化简.(3) 化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.规律方法:分式化简求值时需注意的问题:1.化简求值,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤,代入求值的模式一般为“当…时,原式=…”.2.代入求值时,有直接代入法,整体代入法等常用方法.解题时可根据题目的具体条件选择合适的方法.当未知数的值没有明确给出时,所选取的未知数的值必须使原式中的各分式都有意义,且除数不能为0.2、考点名称:解分式方程5年考试次数:247考点内容:(1)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.(2)解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解. 所以解分式方程时,一定要检验.3、考点名称:分式方程的应用5年考试次数:151考点内容:1、列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.2、要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间等等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力. 4、考点名称:待定系数法求一次函数解析式5年考试次数:76考点内容:待定系数法求一次函数解析式一般步骤是:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.注意:求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的值.5、考点名称:三角形内角和定理5年考试次数:106考点内容:(1)三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.(2)三角形内角和定理:三角形内角和是180°.(3)三角形内角和定理的证明证明方法,不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角.在转化中借助平行线.(4)三角形内角和定理的应用主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角6、考点名称:全等三角形的判定5年考试次数:136考点内容:(1)判定定理1:SSS--三条边分别对应相等的两个三角形全等.(2)判定定理2:SAS--两边及其夹角分别对应相等的两个三角形全等.(3)判定定理3:ASA--两角及其夹边分别对应相等的两个三角形全等.(4)判定定理4:AAS--两角及其中一个角的对边对应相等的两个三角形全等.(5)判定定理5:HL--斜边与直角边对应相等的两个直角三角形全等.方法指引:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.7、考点名称:等腰三角形的判定5年考试次数:44考点内容:判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.简称:等边对等角说明:①等腰三角形是一个轴对称图形,它的定义既作为性质,又可作为判定办法.②等腰三角形的判定和性质互逆;③在判定定理的证明中,可以作未来底边的高线也可以作未来顶角的角平分线,但不能作未来底边的中线;④判定定理在同一个三角形中才能适用.8、考点名称:勾股定理5年考试次数:760考点内容:(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a2+b2=c2的变形有:、及(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.9、考点名称:三角形中位线定理5年考试次数:229考点内容:(1)三角形中位线定理: 三角形的中位线平行于第三边,并且等于第三边的一半.(2)几何语言: 如图,∵点D、E分别是AB、AC的中点∴DE∥BC,DE=BC.10、考点名称:平行四边形的判定5年考试次数:102考点内容:(1)两组对边分别平行的四边形是平行四边形.符号语言:∵AB∥DC,AD∥BC∴四边行ABCD是平行四边形.(2)两组对边分别相等的四边形是平行四边形.符号语言:∵AB=DC,AD=BC∴四边行ABCD是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.符号语言:∵AB∥DC,AB=DC∴四边行ABCD是平行四边形.(4)两组对角分别相等的四边形是平行四边形.符号语言:∵∠ABC=∠ADC,∠DAB=∠DCB∴四边行ABCD是平行四边形.(5)对角线互相平分的四边形是平行四边形.符号语言:∵OA=OC,OB=OD∴四边行ABCD是平行四边形.。
最新初二数学分式化简求值练习题及答案优秀名师资料
精品文档初二数学分式化简求值练习题及答案2、先化简,再求值:12?2,其中x,,2( x?1x?1,其中a=,1(3、先化简,再求值:4、先化简,再求值:5先化简,再求值6、化简:7、先化简,再求值:,其中(,其中x=(,其中x满足x,x,1=0(2a?3ba?b? a?ba?b,其中a=(先化简x11?)?2,再从,1、0、1三个数中,选择一个你认x?1x?1x?1为合适的数作为x的值代入求值(1 / 26精品文档9、先化简,再求值:先化简下列式子,再从2,,2,1,0,,1中选择一个合适的数进行计算(12、先化简,再求值:13、先化简,再求值:,其中((318+1)?,其中x=2(x?1x,其中x=2.xx?1??x?2?3xx2x?)?14、先化简?2x?1x?1x?12a?1a2?2a?111a????值:2,其中。
2a?1a2?aa?11x,2x,118(先化简,再求值:??1,x,2?x2,4x,,5(??x2?1?2x?1?22 / 26精品文档??x?19. 先化简再计算:2?,其中x是一元二次方程x?2x?2?0的正数根. x?x?x?2m2?2m?1m?120 化简,求值: )其中m=( ? aa??x?3x2?6x?91?2?,再取恰的x的值代入求值.3请你先化简分式2x?1x?2x?1x?12a?2a2?1??a?1??224、先化简再求值其中a=+1 a?1a?2a?125、化简,其结果是(x2,16x26(先化简,再求值:?,其中x3,4(x,2x,2xx2,4x,4x,22x27、先化简,再求值:,x,2.x,162x,8x,428、先化简,再求值:?2,其中x?4( x?2x?2x?42aa3 / 26精品文档?)?a,其中a?1. a?11?a30、先化简,再求值:?a,其中aa2?11?a2?1?x?1(?1???x?x?1a?1?aab2a?b)?32(?a2?b2a?bb?a2??233先化简,再求值:?a?1???a?1,其中a1( a?1????34化简:(35(先化简,再求值:11?a2a?,其中( ?221-a1?a4 / 26精品文档x2,2x,1x36、.先化简,x值代入求值.x,1x,1x22x?1?39(当x??2时,求的值( x?1x?1x2?42?xx?)?40先化简,再把x取一个你最喜欢的数代入求值:42、先化简,再求值:43、先化简:先化简,再求值(+x(其中45、先化简,再求值,?(再从1,2,3中选一个你认为2(+)?,其中x=2(1化简,再从,1,1两数中选取一个适当的数作为x的值代x?1入求值(全国初中数学竞赛辅导第四讲分式的化简与求值分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以同一个不等于5 / 26精品文档零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据(在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值(除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答(本讲主要介绍分式的化简与求值(例1 化简分式:分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多(,,--+,说明本题的关键是正确地将假分式写成整式与真分式之和的形式(例求分式当a=2时的值(分析与解先化简再求值(直接通分较复杂,注意到平方差公式:a-b=,可将分式分步通分,每一步只通分左边两项(22例若abc=1,求分析本题可将分式通分后,再进行化简求值,但较复杂(下面介绍几种简单的解法(解法1 因为abc=1,所以a,b,c都不为零(解法因为abc=1,所以a?0,b?0,c?0(6 / 26精品文档例化简分式:分析与解三个分式一齐通分运算量大,可先将每个分式的分母分解因式,然后再化简(说明互消掉的一对相反数,这种化简的方法叫“拆项相消”法,它是分式化简中常用的技巧(例化简计算:似的,对于这个分式,显然分母可以分解因式为,而分子又恰好凑成+,因此有下面的解法(解说明本例也是采取“拆项相消”法,所不同的是利用例已知:x+y+z=3a,求分析本题字母多,分式复杂(若把条件写成++=0,那么题目只与x-a,y-a,z-a有关,为简化计算,可用换元法求解(解令x-a=u,y-a=v,z-a=w ,则分式变为u+v+w+2=0(由于x,y,z不全相等,所以u,v,w不全为零,所以u+v+w?0,从而有7 / 26精品文档222222说明从本例中可以看出,换元法可以减少字母个数,使运算过程简化(下例同:例化简分式:变形,化简分式后再计算求值(适当22=3,即x-8x+13,0(原式分子=+++10432322分式练习题及答案初二1、当x为何值时,分式x2 8 / 26精品文档?1x2?x?2有意义,当x为何值时,分式x2?1 x2?x?2的值为零,2、计算: a2?4x2a?2??a?2??1a?22x?x?2?x? ??1??1?x??xx?2??? x2?2x ?22?x?y??x?y?1124?3x?x?y??x?y?3x????9 / 26精品文档?x1?x?1?x?1?x2?1?x43、计算已知x2x2?2?1,求11??x的值。
初二下分式化简求值练习题
初二下分式化简求值练习题分式是数学中的一种运算形式,它由一个分子和一个分母组成,分子与分母都是多项式。
在初二数学学习中,分式的化简与求值是一个重要的知识点。
在本文中,我将为大家提供一些初二下分式化简求值的练习题,以帮助大家加深对这一知识点的理解与掌握。
练习题1:化简分式 $\dfrac{6x^2+15x}{3x+9}$。
解析:要化简这个分式,首先可以观察到分子和分母都可以被3整除,所以可以进行约分。
约分后的结果为 $\dfrac{2x^2+5x}{x+3}$。
练习题2:求值分式$\dfrac{x^2+y^2}{x+y}$,其中$x=3$,$y=2$。
解析:将$x=3$、$y=2$代入分式,得到$\dfrac{3^2+2^2}{3+2}=\dfrac{9+4}{5}=\dfrac{13}{5}$。
练习题3:化简分式 $\dfrac{4x^3-8x^2+6x}{2x^2-4x+2}$。
解析:要化简这个分式,首先可以观察到分子和分母都可以被2整除,所以可以进行约分。
约分后的结果为 $\dfrac{2x^3-4x^2+3x}{x^2-2x+1}$。
练习题4:求值分式$\dfrac{2a^2b+4ab^2}{ab(a+b)}$,其中$a=2$,$b=3$。
解析:将$a=2$、$b=3$代入分式,得到$\dfrac{2(2^2)(3)+4(2)(3^2)}{2(2)(3)+(2)+(3)}=\dfrac{2(12)+4(18)}{4(3)+ 5}=\dfrac{24+72}{12+5}=\dfrac{96}{17}$。
练习题5:化简分式 $\dfrac{4x^2-9}{x^2-2x-8}$。
解析:要化简这个分式,可以将分子和分母进行因式分解。
分子可以写成 $(2x+3)(2x-3)$,而分母可以写成 $(x-4)(x+2)$。
所以分式可以化简为 $\dfrac{(2x+3)(2x-3)}{(x-4)(x+2)}$。
八年级数学奥术三级第二跳思维训练第二讲分式的化简求值试题
第二讲:分式的化简求值【知识梳理】1、先化简后求值是解代数式化简求值问题的根本策略,分式的化简求值通常分为有条件和无条件两类。
给出一定的条件并在此条件下求分式的值的问题称为有条件的分式化简求值,解这类问题,既要瞄准目的,又要抓住条件,既要根据条件逼近目的,又要能根据目的变换条件。
常常用到如下策略: 〔1〕适当引入参数; 〔2〕拆项变形或者拆分变形; 〔3〕整体代入;〔4〕取倒数或者利用倒数关系等。
2、根本思路(1) 由繁到简,即从比拟复杂的一边入手进展恒等变形推到另一边; (2) 两边同时变形为同一代数式;(3) 证明:0=-右边左边,或者1=右边左边,此时0≠右边。
3、根本方法在恒等变形的过程中所用的方法有配方法、消元法、拆项法、综合法、分析法、比拟法、换元法、待定系数法、设参数法以及利用因式分解等诸多方法。
【例题精讲】【例1】〔1〕x y -=20,求2222323x xy y x xy y-+=+-___________________;〔2〕511=+y x ,那么=+++-yxy x yxy x 2252___________________; 〔3〕假设345a b c ==,那么=--++c b a c b a 3223____________________;【例2】假设a b b c c ax c a b+++===,求x 的值?【例3】0≠abc ,且a c c b b a ==,求3223a b ca b c++--的值?【稳固】假设ad d c c b b a ===,那么d c b a dc b a +-+-+-的值是 __________________;【例4】:x x 210--=,求x x441+的值。
【稳固】〔1〕2310a a -+=,那么代数式361a a +的值是_______________;〔2〕假设210x x --=,那么4521x x x++=_______________;【例5】a 、b 、c 为实数,且ab a b bc b c ca c a +=+=+=131415,,,那么abcab bc ca ++的值是多少?【例6】1=abc ,求证:1111=++++++++c ac cb bc b a ab a 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1.化简6
663
33112
11x x x x x x x x ⎛
⎫⎛⎫+-+- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫+++ ⎪ ⎪⎝
⎭⎝⎭
例2.化简分式:22222325345285
1223
a a a a a a a a a a a a ++-----+--+++--
例3.已知abc=1,求111
a b c
ab a bc b ca c ++
++++++的值。
例4.若a b c a b c a b c c b a
+--+-++==
,求()()()a b a c b c abc +++的值。
例5.已知a +b +c=0,求222
222222a b c a bc b ac c ab
+++++的值。
A 卷
一、填空题
01.代数式()22111
32211x y x y z x x x x y x x
π-++-++
-+、、、、、中程分式的代数式是_____________。
02.使分式111213x
+
+
+无意义的值共有__________个。
03.当x=__________时,分式3
412
x x -+的值为零。
04.53x y =,72y z =,x y y z
-+=__________。
05.化简22212b b a ab a ab b a ab b ⎡⎤⎛⎫
⨯+- ⎪⎢⎥
+++⎝⎭⎣⎦
=__________。
06.化简
()3222
23321111
12m n m n m mn n m n m n
m n ⎡⎤-⎛⎫⎛⎫+++÷⎢⎥ ⎪ ⎪++⎝⎭⎝⎭+⎢⎥⎣⎦=__________。
07.化简
()()3
2
23233223231
231
x y x y
y x x y x y x y -----
+--+--=__________。
08.若11123
x y -=,则23432x xy y
x xy y +---=__________。
09.已知3a 2
+ab −2b 2
=0(a ≠0,b ≠0),,则22
a b a b b a ab
+--=__________。
10.设211
x
x mx =-+,则36
331x x m x -+=__________。
二、解答题
11.计算22222261011285
69943
x x x x x x x x x x ++-+++-++-++.
12.已知a+b+ c=0,求1111113a b c b c c a a b ⎛⎫⎛⎫⎛⎫
++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
的值。
13.求
()()2
219942000199439851995
1991199319961997
-+⨯⨯⨯⨯的值。
B 卷
一、填空题
01.化简36564578x y x y x y x y
x y x y x y y x
-------+-+-=__________。
02.化简24
1124
1111x x x x
+++-+++=__________。
03.化简()()()()()()
222a b c b a c c a b
a b a c b c b a c a c b ------++------=__________。
04.若x 2−5x +1=0,则2x 2−9x −3+25
1
x +=__________。
05.若a 、b 、c 为非零有理数,且a +b +c=0,则a b b c c a a b
b c
c a
+
+
=__________。
06.若123x y z z x ==++,则2z y x
+=__________。
07.若4x −3y −6z=0,2x + 4y −14z=0(z ≠0),则222
222
23657x y z x y z ++++=
__________。
08.化简6
663
3311211x x x x x x x x ⎛⎫⎛⎫+-+- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝
⎭=__________。
09.:若a 2−3a+1=0,则3
61a
a +=__________。
10.若x +y +z ≠0,且x y z y z z x x y ==+++,则x x y z
++=__________。
二、解答题
11.若1a x -+b(xy −2)2=0,且ab >0,求
()()()()1111122xy x y x y +++++++⋯()()
119971997x y +++。
12.已知4x 3−4x 2 y −xy 2+y 3=0,求22
x y
xy
+的值。
13.化简分式2
2
2222113111112123x x x x x x x x x x x x x x ⎡⎤+--+⎢⎥⎛⎫+-+-÷⎢⎥ ⎪⎝
⎭⎢⎥--+--+⎣
⎦
C 卷
一、填空题
01.计算3211
1111
n n n n n n x x x x x x --+-+-+=__________。
02.化简22223
322
3322232b a b a a b a b b a b a b a a b a b a
b +++÷⎛⎫---+- ⎪⎝⎭=__________。
03.已知x 2−5x −1999=0,则
()()()()
42
21112x x x x -+----=__________。
04.若x −y −2=0,2y 2+y −4=0,则x
y y
-=__________。
05.若x +y +z =3a ,则()()()()()()
333
x a y a z a x a y a z a ----+-+-=__________。
06.若x=4ab
a b
+,且a ≠0, b ≠0, a ≠b, a+b ≠0,则2222x a x b x a x b +++
--=__________。
07.化简
()()()()()()()()()()()()
222222y x z x z y x y x z y x x z y x y z x y z y z x y z x x z y ------++
+-+-+-+-+-+-=__________。
08.n 3+100能被n +10整除的正整数n 的最大值为__________。
09.设正整数a 、b 、c 、d 满足5
8
a b c b c d ===,则a +b +c +d 的最小值为__________。
10.若abc=1,则
111
a b c
ab a bc b ca c ++
++++++=__________。
二、解答题
11.设x −1
x
=3,求10821064
11x x x x x x ++++++的值。
12. ()()()()()()()()
4
4
4
4
4
4
4
4
103242232434324463244324163242832440324++++++++求的值。
13. 设a 、b 、c 是不为0的有理数,且ab=2(a +b),bc =3(b +c),ca =4(c +a),求a +b +c 的值。
14.已知a 、b 、c 为非零实数,且满足a 2+b 2+c 2= 1,
1111113a b c b c c a a b ⎛⎫⎛⎫⎛⎫
+++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
,求a +b +c 的值。