《工程力学》组合变形

合集下载

工程力学第十一章 组合变形

工程力学第十一章 组合变形

土建工程中的混凝土或砖、石偏心受压柱,往往不 允许横截面上出现拉应力。这就是要求偏心压力只能作 用在横截面形心附近的截面核心内。
要使偏心压力作用下杆件横截面上不出现拉应力, 那么中性轴就不能与横截面相交,一般情况下充其量只能 与横截面的周边相切,而在截面的凹入部分则是与周边外 接。截面核心的边界正是利用中性轴与周边相切和外接时 偏心压力作用点的位置来确定的。
解:拉扭组合:
7kNm T
50kN FN
安全
例11-8 直径为d的实心圆轴,
·B
P 若m=Pd,指出危险点的位置, 并写出相当应力 。
x
m
解:偏拉与扭转组合
z
C P P 例11-9 图示折角CAB,ABC段直径
d=60mm,L=90mm,P=6kN,[σ]=
BA
60MPa,试用第三强度理论校核轴 x AB的强度。
例11-6 图示圆轴.已知,F=8kN,Me=3kNm,[σ]=100MPa, 试用第三强度理论求轴的最小直径.
解:(1) 内力分析
4kNm M
3kNm T
(2)应力分析
例11-7 直径为d=0.1m的圆杆受力如图,T=7kNm,P=50kN, []=100MPa,试按第三强度理论校核此杆的强度。
至于发生弯曲与压缩组合变形的杆件,轴向压力 引起的附加弯矩与横向力产生的弯矩为同向,故只有 杆的弯曲刚度相当大(大刚度杆)且在线弹性范围内 工作时才可应用叠加原理。
A M
F FN
+ ql2/8
+
B
+
=
C 10kN
A 1.6m
1.6m
10kN
1.2m
例11-3 两根无缝钢管焊接 而成的折杆。钢管外径 D=140mm,壁厚t=10mm。求 危险截面上的最大拉应力和 B 最大压应力。

工程力学之组 合 变 形

工程力学之组 合 变 形

工程力学第10章组合变形学习目标(1)了解组合变形的概念及其强度问题的分析方法;(2)掌握斜弯曲、拉伸(压缩)与弯曲和偏心压缩的应力及强度计算。

10.1 组合变形的概念例如,烟囱的变形,除自重W引起的轴向压缩外,还有水平风力引起的弯曲变形,同时产生两种基本变形,如图10-1(a)所示。

又如图10-1(b)所示,设有吊车的厂房柱子,作用在柱子牛腿上的荷载F,它们合力的作用线偏离柱子轴线,平移到轴线后同时附加力偶。

此时,柱子既产生压缩变形又产生弯曲变形。

再如图10-1(c)所示的曲拐轴,在力F作用下,AB 段同时产生弯曲变形和扭转变形。

10.1 组合变形的概念图10-110.1 组合变形的概念上述这些构件的变形,都是两种或两种以上的基本变形的组合,称为组合变形。

研究组合变形问题依据的是叠加原理,进行强度计算的步骤如下:(1)将所作用的荷载分解或简化为几个只引起一种基本变形的荷载分量。

(2)分别计算各个荷载分量所引起的应力。

(3)根据叠加原理,将所求得的应力相应叠加,即得到原来荷载共同作用下构件所产生的应力。

(4)判断危险点的位置,建立强度条件。

10.2例如图10-2(a)所示的横截面为矩形的悬臂梁,外力F作用在梁的对称平面内,此类弯曲称为平面弯曲。

斜弯曲与平面弯曲不同,如图10-2(b)所示同样的矩形截面梁,外力F的作用线通过横截面的形心而不与截面的对称轴重合,此梁弯曲后的挠曲线不再位于梁的纵向对称面内,这类弯曲称为斜弯曲。

斜弯曲是两个平面弯曲的组合,本节将讨论斜弯曲时的正应力及其强度计算。

10.2图10-210.210.2.1 正应力计算斜弯曲时,梁的横截面上同时存在正应力和切应力,但因切应力值很小,一般不予考虑。

下面结合图10-3(a)所示的矩形截面梁说明斜弯曲时正应力的计算方法。

图10-310.2.1 正应力计算10.2.1.1 外力的分解由图10-3(a)可知:10.2.1.2 内力的计算如图10-3(b)所示,距右端为a 的横截面上由F y 、F z 引起的弯曲矩分别是:10.2 10.2.1 正应力计算10.2.1.3 应力的计算由M z 和M y (即F y 和F z )在该截面引起K 点的正应力分别为:F y 和F z 共同作用下K 点的正应力为:10.210-110.210.2.1 正应力计算10.2.1.3 应力的计算通过以上分析过程,我们可以将组合变形问题计算的思路归纳为“先分后合”,具体如下:10.210.2.2 正应力强度条件同平面弯曲一样,斜弯曲梁的正应力强度条件仍为:10-2即危险截面上危险点的最大正应力不能超过材料的许用应力[σ]。

12-2 工程力学-组合变形的强度计算

12-2 工程力学-组合变形的强度计算



故,安全。
3 2 4 2
6.37 2 435.7 2 71.7 MPa
[例7] 方形截面杆的横截面面积在 mn 处减少一半,试求由 轴向载荷 P 引起的 mn 截面上的最大拉应力。
解:
N M m ax A W
a2 a a a2 P P/ P / 8 2 2 4 4 6 a
§12–3
拉(压)弯组合 偏心拉(压)
一、拉(压)弯组合变形:杆件同时受横向力和轴向力的作用而产
生的变形。
P P R
x z
P
x y z Mz
P
My
y My
二、应力分析: x z Mz P
P
MZ
My
y My
P xP A
Mzy xM z Iz
xM
y
Myz Iy
P Mz y Myz x A Iz Iy
max
F1 M max A Wz F1 F e A Wz
m
m
4)强度计算 因危险点的应力是单向应力 状态,所以其强度条件为:
F1 F e max 135MPa [ ] A Wz
例11-11 如图所示为一起重支架。已知a =3.0m, b=1.0m,F=36.0kN,AB梁材料的许用应力[ ]=140 MPa。试确定AB梁槽钢的型号。
拉压与弯曲组合变形的分析步骤
(1)、外力分析:
y
x
y P1
y
y P
x
=
P1
x
+
x P2
P2
P
P1 P cos
P2 P sin
(2)、内力分析:

工程力学第15章组合变形

工程力学第15章组合变形

32(1.0103)20.75(1.0103)2
M 20.010.21kNm 3 160106
max
2 2 r4M2W0.75T232M2d30.75T2
d3
32
M2 0.75T2
由内力图及强度公式可判断危险截面在E 处 ⑶ 确定AB 轴的直径 所以AB 轴的直径d = 44mm 。
例:图所示齿轮传动轴,用钢制成。在齿轮1 上作用有径
tmax
Mymax Wy
Mzmax Wz
F2l bh2 /
6
2F1l hb2 /6
90118605201109/618029082001019/6 cmax(MWymyaxMWzmzax)9.98MPa
例:图所示一矩形截面悬臂梁,截面宽度b = 90mm ,高度h = 180mm , 两在两个不同的截面处分别承受水平力F1和铅垂力F2。已知F1 = 800N , F2 = 1650N ,l = 1m ,求梁内的最大正应力并指出其作用位置。
FN
N
FN A
F S y F S z (对实心截面引起切应力很小,忽略)
M y Mz
M
My Iy
z
Mz Iz
y
T
T
IP
1
1(
2
242)
3
1(
2
242)
强度条件
弯扭组合受力的圆轴一般由塑性材料制成,采用第三或第四强度理论建立强 度条件。分析危险截面A A
3
T 410 A W
20MPa 20103 (10103)2(8103)2
6
W 20010 85104 100106
P
强度校核 由内力图及强度公式可判断危险截面距B 端2m 处, 计算危险点在横截面的应力值 所以AB 段强度满足要求。

组合变形(工程力学课件)

组合变形(工程力学课件)

偏心压缩(拉伸)
轴向拉伸(压缩)
偏心压缩
F2 F2e
轴向压缩(拉伸)和 弯曲两种基本变形组合
偏心压缩(拉伸)
单向偏心压缩(拉伸)
双向偏心压缩(拉伸)
单向偏心压缩(拉伸)
外力
内力
平移定理
应力
+
=
弯矩
轴力
max
min
FN A
Mz Wz
【例 1】求横截面上的最大正应力
F 50 kN
e 10 mm
组合变形的概念 及其分析方法
杆件的四种基本变形
轴向拉压 剪切 扭转
F
F
F
F
Me
Me
沿轴线的伸长或缩短 相邻横截面相对错动 横截面绕轴线发生相对转动
Me
弯曲
Me
F
轴线由直线变为曲线 横截面发生相对的转动
两种或两种以上基本变形的组合,称为组合变形
常见的 组合变形
(1)拉(压)弯组合 (2)斜弯曲(弯、弯组合) (3)偏心压缩(拉伸) (4)弯扭组合
24 106 401.88 103
64
4.3 59.7 64 [ ] 满足强度要求
59.7 55.4
斜弯曲
平面弯曲
作用线与截面的 纵向对称轴重合
梁弯曲后挠曲线位于外力F所在的纵向对称平面内
斜弯曲
作用线不与截面 的对称轴重合
梁弯曲后挠曲线不再位于外力F所在的纵向平面内
图示矩形截面梁,应用叠加原理对其进行分析计算:
3、应力分析
( z,y)
横截面上任意一点 ( z, y) 处 的正应力计算公式为
Mz
z
O
x
1.拉伸正应力
N

工程力学-组合变形

工程力学-组合变形

s
强度条件为 nb
n
塑性材料 脆性材料
(2) 概述复杂应力状态下的强度计算:
组合变形的构件内危险点多为二向或三向应力状态。
难以用实验测定各种应力状态而建立强度条件,常常依 据部分实验结果提出假设,推测材料失效的原因,从而 建立强度理论。
5
§14.2 强度理论概论
强度理论 (theory of strength)
(1) 两种失效现象:屈服和断裂
各种材料的强度不足引起的失效现象不同,表现为屈服 和断裂两类。
(2) 衡量变形的程度:
衡量构件受力变形程度的量有应力、应变、能量等。
(3) 强度理论:
根据材料破坏现象和大量的实验资料,人们对强度的失 效提出了各种假说,称为强度理论。
不同的强度理论认为,材料按某种方式(屈服或断裂)
在二向应力状态下, 为两个非零主应力,
则在 为坐标的平面坐标系中, 当 同号时,失效准则为
当 异号时,失效准则为
28
故任意情况下失效准则在 所示。
平面中为六角形,如图
若某一平面应力状态其两个非零主应力
所在的点 M ,落在六来自形区域之内,则该应力状态不会引起屈服。
若点 M 落在六角形边界上,则该应力状态会引起材料 屈服。
本章主要内容:
(1) 介绍几种常见的强度理论; (2) 讨论工程中常见的斜弯曲、拉(压)弯、偏心拉
(压)、弯扭等组合变形形式的强度计算。
2
第14章 组合变形 (combined deformation)
§14.1 组合变形的概念与分析方法
四种基本变形
拉伸(压缩)、剪切、扭转、弯曲。
组合变形 (combined deformation)

工程力学-组合变形课程课件

工程力学-组合变形课程课件

离中性轴最远的点,这就是危险点。
令 y0 , z0 代表中性轴上任一点的坐标,
即得中性轴方程
中性轴
z
1 ez z ey y 0
O
Iy
Iz
中性轴在 y , z 两轴上的截距为 D2
ay
D1
az y
ay
iz2 ey
az
iy2 ez
工程力学
第12章 组合变形
例12.6 螺旋夹紧装置如图所示,已知 F 2kN ,
800
D
C
A
2500
B
1500
F
工程力学
第12章 组合变形
1、先计算出CD 的杆长
800
D
C
A
2500
1500
FCD
FAx A
FCDx
FAy
FCDy
l 25002 8002 2620mm 2.62m
2、取AB为研究对象,画受力简图
B
MA 0
F
FCD
2.5 2.5 2.62
F
(2.5 1.5)
中性轴与y 轴的夹角q 为
tanq z0 I y M z I y tan
y0 I z M y I z
式中, 为合弯矩与轴的夹角。
Iz Iy Iz Iy
q q
斜弯曲 平面弯曲
工程力学
中性轴将横截面分为两部分,一部分受 拉应力,一部分受压应力。作平行于中 性轴的两直线,分别与横截面的周边相 切,这两个切点D1,D2就是该截面上拉应 力和压应力为最大的点。将危险点的坐 标代入(12.1)式,即可求得横截面上的 最大拉应力和最大压应力。危险点的应 力状态为单向应力状态或近似当作单向 应力状态,故其强度条件为

上篇 工程力学部分 第10章 组合变形

上篇 工程力学部分 第10章 组合变形
上一页
返回
下一页
第二节
斜 弯 曲
外力F的作用线只通过横截面的形心而不 与截面的对称轴重合,梁弯曲后的挠曲线不再 位于梁的纵向对称平面内,这类弯曲称为斜弯 斜弯 曲。斜弯曲是两个平面弯曲的组合,下面将讨 论斜弯曲时的正应力及其强度计算。
一、正应力计算
斜弯曲时,梁的横截面上同时存在正应力和剪应力,但因剪应 力值很小,一般不予考虑。 斜弯曲梁的正应力计算的思路可以归纳为“先分后合”,具体 计算过程如下: 1.外力的分解:由图10-3(a)可知:Fy=Fcosφ,Fz=Fsinφ 2.内力的计算 距右端为l1的横截面上由Fy、Fz引起的弯矩分别是: Mz=Fya=Facosφ My=Fza=Fasinφ 3.正应力的计算 由Mz和My在该截面引起K点正应力分别为σ’=±Mzy/Iz , σ’’=±Myz/Iy Mz和My共同作用下K点的正应力为
上一页
返回
下一页
二、双向偏心压缩(拉伸)时的 双向偏心压缩(拉伸) 正应力计算
图10-7(a)所示的偏心受拉杆,平行于轴线的拉力 的作用点不在截面的任何一个对称轴上,与z轴、y轴 的距离分别为ey和ez,此变形称为双向偏心拉伸 双向偏心拉伸,当F 双向偏心拉伸 为压力时,称为双向偏心压缩 双向偏心压缩。 双向偏心压缩 双向偏心压缩(拉伸)实际上是轴向压缩(拉伸) 与两个平面弯曲的组合变形。任一点的正应力由三部 分组成,计算这类杆件任一点正应力的方法,与单向 偏心压缩(拉伸)类似。 三者共同作用下,横截面上ABCD上任意点K的总 正应力为以上三部分叠加,即 F Mz y M yz / // /// (10-6) σ = σ +σ +σ = ± ± A Iz Iy
Mz FN (b) _ h (a) +

工程力学组合变形

工程力学组合变形

取=0 ,以y0、z0代
表中性轴上任一点的坐
标,则可得中性轴方程
2024/1/28
1
zF iy2
z0
yF iz2
y0
0
23
可见,在偏心拉伸(压缩)情况下,中性轴是一条不 通过截面形心的直线。
求出中性轴在y、z两轴上的截距
ay
iz2 yF
,
az
iy2 zF
z
对于周边无棱角的截面,可作两条
D1(y1,z1)
2024/1/28
10
0.642 qa 2
0.444qa 2 0.321 qa 2
A
DC
0.617 a
A
DC
My 图 (N m) B
B Mz 图 (N m)
0.456 qa 2 0.383 qa 2
在xoz主轴平面内的 弯矩图(y轴为中性轴)
在xoy主轴平面内的 弯矩图 (z轴为中性轴)
0.266 qa 2
4.强度分析 根据危险点的应力状态和杆件的材料按强度 理论进行强度计算。
2024/1/28
3
§8-2 斜弯曲
一、概念
平面弯曲:外力施加在梁的对称面(或主平面) 内时,梁将产生平面弯曲。
即梁变形后,轴线位于外力所在的平面之内。 对称弯曲:平面弯曲的一种。
斜弯曲梁变形后,轴线位于外力所在的平面之外。
2024/1/28
F A
FzF Wy
FyF Wz
危险点处仍为单轴应力状态,其强度条件为
t,max [ t ] c,max [ c ]
2024/1/28
26
补充例题 图示矩形截面钢杆,用应变片测得杆件上、下
表面的轴向正应变分别为εa=1×10-3、 εb =0.4×10-3, 材料的弹性模量E=210GPa 。(1).试绘出横截面上的正

工程力学-第8章组合变形

工程力学-第8章组合变形

斜弯曲也称为双向平面弯曲。 一、强度计算:
外力分解: Py Pcos
内力计算: Pz Psin
MzPyxPcosxMco;s MyPzxPsinxMsin;
应力计算:
返. 回 下一张 上一张 小结
最大应力:
ma x M Izzym ax M Iyyzma x M W zzM Iyy;
强度条件:
m axM Wzz
返. 回 下一张 上一张 小结
二、计算: 以挡土墙为例。
自重作用使任意截面产生轴向
压力N(x);对应各点产生压应力:
N(x);
N
A
土压力作用使截面产生弯矩
M(x);对应点产生正应力:
M(x)y;
M
Iz
X截面任意点应力:
k
N(x)M(x)y;
A
Iz
ma x N(x)M(x);
min
A
W z
挡土墙底部截面轴力和弯矩最大,
返. 回 下一张 上一张 小结
3. 常见组合变形的类型 : (1) 斜弯曲 (2) 拉伸(压缩)与弯曲组合 (3) 偏心拉伸(压缩) (4) 弯扭组合
二、计算方法 : 组合变形若忽略变形过程中各基本变形间的互相影
响,则可依据叠加原理计算。
1. 叠加原理 :弹性范围小变形情况下,各荷载分别单独 作用所产生的应力、变形等互不影响,可叠加计算。
设计 W z : M [m ]a x12c0 m 3;
查表 1号 6选工字 W z 钢 14 c, 1 m 3,A2,6 1 cm 2;
校核 m a | xN A : M W m z | a1 x .4 0 M 0 1 P 0 0 0 a [] 5;
因此,可选16号工字钢。

工程力学 第11章组合变形

工程力学 第11章组合变形


第三节
偏心压缩
三.截面核心的概念 ——若外力作用在截面形心附近的某一个区域,使 得杆件整个截面上全为压应力而无拉应力,这个 外力作用的区域称为截面核心。
第三节
偏心压缩
例2. 起重机支架的轴线通过基础的中心。 起重机自重180kN,其作用线通过基础 底面QZ轴,且有偏心距e=0.6m.已知基 础混凝土的容重等于22kN/m3,若矩形 基础的短边长3m。 试计算:(1)其长边的尺寸为 多少时使基础底面不产生拉应力? (2)在所选的值之下,基础底面上的 最大压应力为多少?

Mzy M cosy Iz Iz

Myz Iy

M sin z Iy
(4)应力叠加——危险点应力

Mz y Myz cos sin M ( y z) IZ Iy IZ Iy
第二节
危险点的应力为:
max
斜弯曲
工程力学
第十一章 组合变形
主要内容
第一节 组合变形的概念 第二节 斜弯曲 第三节 偏心压缩
第一节
组合变形的概念
牛腿柱
第一节
组合变形的概念
F F F
试分析受压立柱的变形形式
压缩-弯曲变形
压缩变形
压缩-弯曲变形
第一节
组合变形的概念
一.组合变形的概念 1.组合变形——由两种或两种以上的基本变形组合 而成的变形称为组合变形 。 2.组合变形杆件的强度计算方法——叠加原理。 二.叠加原理解题步骤: (1)分解:将作用于组合变形杆件上的外力分解或简化 为基本变形的受力方式; (2)叠加:对各基本变形进行应力计算后,将各基本变形 同一点处的应力进行叠加,以确定组合变形时各点的应力; (3)强度条件:分析确定危险点的应力,建立强度条件。

工程力学-组合变形汇总

工程力学-组合变形汇总

⼯程⼒学-组合变形汇总10 组合变形1、斜弯曲,弯扭,拉(压)弯,偏⼼拉伸(压缩)等组合变形的概念;2、危险截⾯和危险点的确定,中性轴的确定;如双向偏⼼拉伸, 中性轴⽅程为3、危险点的应⼒计算,强度计算,变形计算、。

4、截⾯核⼼。

10.1、定性分析图10.1 ⽰结构中各构件将发⽣哪些基本变形图 10.1[解](a )AD 杆时压缩、弯曲组合变形,BC 杆是压缩、弯曲组合变形;AC 杆不发⽣变形。

(b )AB 杆是压弯组合变形,BC 杆是弯曲变形。

(c )AB 是压缩弯曲组合变形,BC 是压弯组合变形。

(d )CD 是弯曲变形,BD 发⽣压缩变形,AB 发⽣弯伸变形,BC 发⽣拉弯组合变形。

10.2 分析图10.2中各杆的受⼒和变形情况。

解题范例图 10.2[解] (a)⼒可分解成⽔平和竖直⽅向的分⼒,为压弯变形。

(b)所受外⼒偶矩作⽤,产⽣弯曲变形。

(c)该杆受竖向集中荷载,产⽣弯曲变形.(d)该杆受⽔平集中荷载,偏⼼受压,产⽣压缩和弯曲变形。

(e)AB段:受弯,弯曲变形,BC段:弯曲。

(f)AB段:受弯,弯曲变形,BC段:压弯组合。

(g)AB段:斜弯曲,BC段:弯纽扭合。

10.3分析图10.3 ⽰构件中 (AB、BC和CD) 各段将发⽣哪些变形?图10.3[解] AB 段发⽣弯曲变形,BC 段发⽣弯曲、扭转变形;CD 段发⽣拉伸、双向弯曲变形。

10.4⼀悬臂滑车架如图 10.4 所⽰,杆AB 为18号⼯字钢(截⾯⾯积30.6cm 2,Wz=185cm 3),其长度为l =2.6m 。

试求当荷载F=25kN 作⽤在AB 的中点处时,杆内的最⼤正应⼒。

设⼯字钢的⾃重可略去不计。

图 10.4[解] 取AB 为研究对象,对A 点取矩可得NBCY F 12.5kN = 则 3225==NBCX NAB F F 分别作出AB 的轴⼒图和弯矩图:kN3225kN.mNBCX轴⼒作⽤时截⾯正应⼒均匀分布,AF N=σ(压)弯矩作⽤时截⾯正应⼒三⾓形分布,WzM=σ(下拉上压)可知D 截⾯处上边缘压应⼒最⼤,叠加可得最⼤正应⼒94.9MPa (压10.5如图 10.5 所⽰,截⾯为 16a 号槽钢的简⽀梁,跨长 L=4.2m, 受集度为 q 的均布荷载作⽤ ,q=2KN/m 。

工程力学力 08章组合变形-1

工程力学力 08章组合变形-1

中性轴
Z y
z y
Z y
斜弯曲
3.横截面为园形或椭圆形(无棱角),则先合成弯矩后计算应力: 先用双箭头矢量表示绕两个轴的弯矩,然后按照矢量合成法则
确定合弯矩,然后确定最大拉、压正应力点,根据材料进行强
度校核。
例题:结构如图,在端部Py过形心且与沿y轴方向,在中部Pz过形 心且与沿z轴方向。尺寸如图。 求此梁的最大应力。
max
N Mz (拉,在最上沿的各点) A Wz
或者
偏心拉伸时,中性轴不再过截面形 心,甚至没有中性轴。
或者
max
N Mz (拉,在最上沿的各点) A Wz
强度条件:
注意:偏心拉伸时,无论什么材料,只有一个危险点即:最大 拉应力点。
基本工作: ①安全校核 ②பைடு நூலகம்面设计 ③确定承载力
•根据截面应力的分布规律,可以找到危险点,然 后进行强度校核。
2.两种组合变形应力计算:
•拉压与弯曲—在危险点处:
(弯曲应力) (拉、压应力)
•偏心拉压—在危险点处:
(拉、压应力) ( y向弯曲应力) ( z向弯曲应力)
3.斜弯曲变形的应力处理方法: (1)矩形或工字形截面:
x
Pz z y L H Py
解:对于园截面杆,在危险截面的形心处,分解出与基本变形对
应的载荷,将绕Y轴和Z轴的弯矩My、Mz用双箭头矢量表示, 然后按照矢量合成的方法,计算出合弯矩M,根据弯曲应力的 分布规律,可以找到危险点。 Mz=PyL
M
My=PzH
x
2 M y M z2
最大拉应力σT
(假设:各个基本变形互不影响)
③叠加。

第十二章 工程力学之组合变形

第十二章 工程力学之组合变形

二、叠加原理 杆在组合变形下的应力和变形分析,一般可利用叠加原理。
叠加原理: 实践证明,在小变形和材料服从虎克定律的前提下, 杆在几个载荷共同作用下所产生的应力和变形,等于每个载荷 单独作用下所产生的应力和变形的总和。 当杆在外力作用下发生几种基本变形时,只要将载荷简化为一 系列发生基本变形的相当载荷,分别计算杆在各个基本变形下 所产生的应力和变形,然后进行叠加,就得到杆在组合变形下 的应力和变形。 另外,在组合变形情况下,一般不考虑弯曲剪应力。
(2)根部截面的内力分析
作轴的扭矩图和弯矩图如图12-6(c)所示。
根部截面上的扭矩 T m 120 N m
弯矩
M Pl 3Fl 3 960 0.12 346 N m
(3)应力分析
根部截面在弯曲、扭转基本变形下的应力分布如图12-6(d) 所示
由此可见,A点既有正应力,也有剪应力,B点只有剪应力
max N M 5.9 115 120.9MPa
最大应力几乎等于许用应力,故可安全工作。
例12-2:图12-5(a)所示为一钻床,在零件上钻孔时,钻床的 立柱受到的压力为P=15kN。已知钻床的立柱由铸铁制成,许用 拉应力,[σ拉]=35MPa,e=400mm试计算立柱所需的直径d。 解: (1)内力分析,判断变形 形式 用截面法求立柱横截面上 的内力,如图12-5(b)所 示,横截面上的内力有两 个,轴力FN和弯矩M,且 有

可见, Tx和Fcx使AC产生轴向压缩,而Ty、P和Fcy产生弯曲变 形,所以AC杆实际发生的是轴向压缩与弯曲的组合变形。 (2)作内力图,找出危险截面 AC梁的轴力图和弯矩图如图12-4(b)所示。
从图中可以看出,在梁的中间截面上有最大弯矩,而轴力在各 个截面上是相同的,所以,梁的中间截面是危险截面。

工程力学8组合变形

工程力学8组合变形

最大拉应力 最大压应力
σt max
P 425×7.5P = + MPa 15 5310
P 425×12.5P = − MPa 15 5310
′ σcmax = σ′ +σc′max
由抗拉强度条件
σt max ≤ [σt ] = 30 MPa
由抗压强度条件
P ≤ 45.1 kN P ≤171.3 kN
A =15×10 m , zo = 7.5 cm , 4 I y = 5310 cm
2
−3
求内力(作用于截面形心 求内力 作用于截面形心) 作用于截面形心
10
几何参数
A =15×10 m , zo = 7.5 cm , 4 I y = 5310 cm
2
−3
求内力(作用于截面形心 求内力 作用于截面形心) 作用于截面形心 取研究对象如图
23
i
2 z
+
i
2 y
= −1
当压力作用点在直线 上移动时 当压力作用点在直线pq上移动时,C点的应力保 直线 上移动时, 点的应力保 持为零。 持为零。 中性轴通过C点,但方位不断变化。 中性轴通过 点 但方位不断变化。 截面核心的确定 截面核心的确定 设AE为中性轴 为 中性轴的截距为a 中性轴的截距为 y, az, 由:
b h 2 i = , iz = 12 12
2 y
2
2
设AB为中性轴 为中性轴
a点坐标 点坐标
h AB直线的截距为: ay = − , az = ∞ 直线的截距为: 直线的截距为 2 2 2 iy iz h 由:ya = − , z = − ya = , za = 0 a ay az 6
26

工程力学-弯扭组合

工程力学-弯扭组合
M

d 3
32 M T π[σ ]
2

664669 N· mm
3
32 1940.9 664.7 π 100 10
6
2
= 0.0593 m = 59.3 mm T图 圆整,取: d = 60 mm
上海应用技术学院
18 例5 图示空心圆轴,内径d=24mm,外径D=30mm,F1=600N, B轮直径为0.4m,D轮直径为0.6m,[s]=100MPa。 F2 试用第三强度理论校核此杆的强度。 y 80º F1 解: 1. 外力分析

|M|max=F1l T = Me
上海应用技术学院
FN=F2
O T O

Me
x x
3. 应力分析 a点为危险点: 取单元体:
F1
s
a
s
tT tT
σ σM σ N
τT T Wp T 2W
a b A M O
6 Me B
F2
l
M W

FN A

x F2

FN –Fl 为单拉(压)与纯剪切组合应力状态。 O 注意:此时b点应力s为 T M FN σ σM σN O W A
M
Fy
A
y M2
B
F'y
C D
13 x
Fz T
z
1kN· m

F'z
My
z
Mz
O Mz O

0.568kN· m
x x

0.364kN· m 1.0kN· m ㊉ 1.064kN· m
对圆形截面,可将Mz、My My 合成为: M O
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档