第 四 章 电控驱动防滑牵引力控制系统(ASRTRC)

第 四 章  电控驱动防滑牵引力控制系统(ASRTRC)
第 四 章  电控驱动防滑牵引力控制系统(ASRTRC)

第四章电控驱动防滑/牵引力控制系统(ASR/TRC)

一、教学目的和基本要求

通过此章内容的教学,让学生了解ASR的理论基础、ASR控制的方式、ASR 与ABS的区别;掌握ASR的结构与工作原理及典型车型的ASR结构组成和工作过程;了解防滑差速器的作用、形式以及四轮驱动防滑差速器的基本结构和工作原理。

二、教学内容及课时安排

第一节概述、第二节ASR的结构与工作原理理论教学:1学时。

第三节典型ASR 理论教学:2学时。

第四节防滑差速器的结构原理理论教学:1学时。

三、教学重点及难点

重点:ASR的理论基础;ASR的结构与工作原理。

难点:丰田ABS/TRC液压系统的工作情况及控制电路。

四、教学基本方法和教学过程

此内容采用理实一体化教学方法,对ASR及典型车型ABS/TRC的结构原理的授课采用先理论后实践的方法。

五、作业

1.ASR的理论基础

2.ASR与ABS的区别

3.ASR的结构与工作原理

4.防滑差速器的作用

5.典型车型的A BS/TRC液压系统的控制方式

第四章电控驱动防滑/牵引力控制系统(ASR/TRC)

第一节概述

一、ASR系统的理论基础

1.ASR系统的理论基础

汽车驱动防滑控制(Anti Slip Reguliation)系统简称ASR,是应用于车轮防滑的电子控制系统。

汽车打滑是指汽车车轮的滑转,车轮的滑转率又称滑移率。驱动车轮的滑移

率S d=×100%,式中v c是车轮圆周速度;v是车身瞬时速度。滑移率与纵向附着系数的关系如图5-1所示。

2.ASR与ABS的区别

(1)ABS是防止制动时车轮抱死滑移,提高制动效果,确保制动安全;ASR (TRC)则是防止驱动车轮原地不动而不停的滑转,提高汽车起步、加速及滑溜路面行驶时的牵引力,确保行驶稳定性。

(2)ABS对所有车轮起作用,控制其滑移率;而ASR只对驱动车轮起制动控制作用。

(3)ABS是在制动时,车轮出现抱死情况下起控制作用,在车速很低(小于8km/h)时不起作用;而ASR则是在整个行驶过程中都工作,在车轮出现滑转时起作用,当车速很高(80~120 km/h)时不起作用。

二、防滑转控制方式

汽车防滑转电子控制系统常用的控制方式有:

1.发动机输出功率控制

在汽车起步、加速时,ASR控制器输出控制信号,控制发动机输出功率,以抑制驱动轮滑转。常用方法有:辅助节气门控制、燃油喷射量控制和延迟点火控制。

2.驱动轮制动控制

直接对发生空转的驱动轮加以制动,反映时间最短。普遍采用ASR与ABS 组合的液压控制系统,在ABS系统中增加电磁阀和调节器,从而增加了驱动控制功能。

3.同时控制发动机输出功率和驱动轮制动力

控制信号同时起动ASR制动压力调节器和辅助节气门调节器,在对驱动车轮施加制动力的同时减小发动机的输出功率,以达到理想的控制效果。

4.防滑差速锁(LSD:Limited-Slip-Differential)控制

LSD能对差速器锁止装置进行控制,使锁止范围从0%~100%,系统结构如图5-2所示。

当驱动轮单边滑转时,控制器输出控制信号,使差速锁和制动压力调节器动作,控制车轮的滑移率。这时非滑转车轮还有正常的驱动力,从而提高汽车在滑溜路面的起步、加速能力及行驶方向的稳定性。

5.差速锁与发动机输出功率综合控制:

差速锁制动控制与发动机输出功率综合控制相结合的控制系统可根据发动机的状况和车轮的滑转的实际情况采取相应的控制达到最理想的控制效果。

第二节ASR系统的结构与工作原理

一、ASR的基本组成与工作原理

1.ASR的基本组成

ASR由ECU、执行器(制动压力调节器、节气门驱动装置)、传感器(车轮车速传感器、节气门开度传感器)等组成。

2.ASR的工作原理

车速传感器将行驶汽车驱动车轮转速及非驱动车轮转速转变为电信号,输送给电控单元ECU。ECU根据车速传感器的信号计算驱动车路的滑移率,若滑移率超限,控制器再综合考虑节气门开度信号、发动机转速信号、转向信号等因素确定控制方式,输出控制信号,使相应的执行器动作,使驱动车轮的滑移率控制在目标范围之内。

二、ASR传感器

1.车轮车速传感器:与ABS系统共享。

2.节气门开度传感器:与发动机电控系统共享。

3.ASR选择开关:ASR专用的信号输入装置。ASR选择开关关闭时ASR不起作用。

三、ASR电子控制单元(ECU)

ASR ECU也是以微处理器为核心,配以输入输出电路及电源等组成。ASR 与ABS的一些信号输入和处理是相同的,为减少电子器件的应用数量,ASR控制器与ABS电控单元常组合在一起,图5-4为ABS/ASR组合ECU实例。

四、ASR系统的执行机构

1.制动压力调节器

ASR的制动压力调节器执行ASR ECU的指令对滑转车轮施加制动力和控制制动力的大小,以使滑转车轮的滑转率在目标范围内。ASR的压力源是蓄压器,通过电磁阀来调节驱动车轮的制动压力。

ASR制动压力调节器结构形式有:单独方式和组合方式。

(1)

单独方式

ASR ECU通过电磁阀的控制实现对驱动轮制动力的控制,控制过程如下:

◆正常制动时ASR不起作用,电磁阀不通电,阀在左位,调压缸的活塞被回位弹簧推至右边极限位置。

此时调压缸右腔与储液室相通而压力低,左腔通过活塞使ABS制动压力调节器与车轮制动分泵相通,因此ASR不起作用且对ABS无任何影响。

◆起步或加速时若驱动轮出现滑转需要实施制动时,ASR使电磁阀通电,阀至右位,蓄压器中的制动液推活塞左移。

此时调压腔右腔与储液室隔断而与蓄压器接通,蓄压器中的制动液推活塞左移使与ABS制动压力调节器的通道封闭。活塞左移使左腔压力增大,驱动车轮制动分泵压力升高。

◆压力保持过程:此时电磁阀半通电,阀在中位,调压缸与储液室和蓄压器都隔断,于是活塞保持原位不动,制动压力保持不变。

◆压力降低过程:此时电磁阀断电,阀回左位,使调压腔右腔与蓄压器隔断而与储液室接通,于是调压缸右腔压力下降,制动压力下降。

(2)组合方式

ASR制动压力调节器与ABS制动压力调节器组合在一起,

(ABS/ASR组合压力调节器)如图5-6所示。

◆ASR不起作用时,电磁阀Ⅰ不通电,ABS起制动作用并通过电磁阀Ⅱ和电磁阀Ⅲ来调节制动压力。

◆驱动轮滑转时,ASR控制器使电磁阀Ⅰ通电,阀移至右位,电磁阀Ⅱ和电磁阀Ⅲ不通电,阀仍在左位,于是,蓄压器的压力油通入驱动轮制动泵,制动压力增大。

◆需要保持驱动轮制动压力时,ASR控制器使电磁阀Ⅰ半通电,阀至中位,隔断蓄压器及制动总泵的通路,驱动轮制动分泵压力保持不变。

◆需要减小驱动轮制动压力时,ASR控制器使电磁阀Ⅱ和电磁阀Ⅲ通电,阀移至右位,接通驱动车轮制动分泵与储液室的通道,制动压力下降。

2.节气门驱动装置

ASR控制系统通过改变发动机辅助节气门的开度来控制发动机的输出功率。

节气门驱动装置由步进电机和传动机构组成。步进电机根据ASR控制器输出的控制脉冲转动规定的转角,通过传动机构带动辅助节气门转动。

ASR不起作用时,辅助节气门处于全开位置,当需要减少发动机驱动力来控制车轮滑转时,ASR控制器输出信号使辅助节气门驱动机构工作,改变辅助节气门开度。

第三节典型ASR

一、丰田车系防抱死制动与驱动防滑(ABS/TRC)

ASR由电子控制单元ECU、车轮轮速传感器、制动压力调节器、副节气门及控制驱动轮制动管路等组成。

副节气门由步进电机控制,并设有节气门开度传感器。

ASR(TRC)工作过程:

1.液压系统与执行器

⑴ABS/TRC液压系统

ABS/TRC液压系统由制动供能装置(电动泵、蓄能器)、电磁阀总成(3个二位二通阀)、压力调节装置(2个电磁阀、储液器)等组成,如图5-9所示。

工作情况:

①当需要对驱动轮施加制动力矩时:TRC的3个电磁阀都通电。

②当需要对驱动轮保持制动力矩时:ABS的2个电磁阀通较小电流。

③当需要对驱动轮减小制动力矩时:ABS的2个电磁阀通较大电流。

④当无需对驱动轮施加制动力矩时:各个电磁阀都不通电且ECU控制步进电机转动使副节气门保持开启。

⑵TRC液压制动执行器

TRC液压制动执行器由泵总成、制动执行器组成。

①泵总成:由泵电动机和蓄压器两部分组成。

②制动执行器:由蓄压器切断电磁阀、制动总泵切断电磁阀、储液缸切断电磁阀和压力开关或压力传感器四部分组成。

2.副节气门及其驱动机构—副节气门执行器依据ECU的信号控制副节气门的开闭角度,从而控制进入发动机空气量,达到控制发动机输出功率的目的。

副节气门传感器安装及结构如图5-14所示。

3.TRC控制电路及主要装置

丰田ABS/TRC控制电路。

4.TRC的工作过程

⑴正常制动过程(TRC不起作用)

⑵汽车加速过程(TRC起作用)

①压力升高

②压力保持

⑶压力降低

5.车轮转速控制过程

⑴一个典型的轮速控制循环

⑵轮速控制运转条件

二、日产车系ASR

三、本田车系ASR

第四节防滑差速器

一、防滑差速器简介

1.防滑差速器—防止车轮打滑的差速器,可自动控制汽车驱动轮打滑。

2.类型

强制锁止式——通过电控或气控锁止机构人为的将差速器锁止。

自动锁止式(自锁式)——在滑路面上自动增大锁止系数直至完全锁止。

二、电子控制式防滑差速器

1.电子控制式防滑差速器

⑴V-TCS(Vehicle Traking Control System)—根据驱动轮的滑移量,通过电子控制装置来控制发动机转速和汽车制动力进行工作;或按照左、右车轮的转速差来控制转矩,并与制动器相结合最优分配驱动轮驱动力。

⑵LSD(Limited Slip Differential)—利用传感器掌握各种道路情况和车辆运动状态,通过操纵加速踏板和制动器,采集和读取驾驶员

所要求的信息,并按驾驶员的意愿和要求最优分配左右驱动轮驱动力,如图5-21所示。

2.四轮驱动防滑差速器

⑴基本结构

传递路线:发动机—变速器—驱动小齿轮—环齿轮—中央差速器—前驱动轴—前差速器

1)中央差速器——具有两大功能:

将变速器输出动力均匀分配前后驱动轴

2)差速限制机构——当前后车轮间发生转速差时,按照转速差控制油压多板离合器的接合力,从而控制前后轮的转矩分配。

⑵工作原理

⑶控制特性主要根据节气门开度、车速和变速器变速信号由ECU控制并改变差动限制离合器的压紧力。

①起步控制

②打滑控制

③通常控制

电子控制系统的组成和工作过程

电子控制系统的组成和工作过程 一、教学分析 1.教材分析 本课是第一章第二节“电子控制系统的组成和工作过程”。从对比分析两种路灯控制系统的基本组成入手,再通过搭接一个路灯自动控制的电子模型,来学习电子控制系统的基本组成和工作过程,从而为学生学习后面各章提供了一把钥匙。 2.学情分析 学生在通用技术必修2的学习中,已学过关于控制系统的一些概念,例如输入、控制、输出,以及功能模拟方法的含义,但对电子控制系统内部电子元件,例如发光二极管、光敏电阻、三极管等的工作原理不太了解,教师可用通俗的语言补充解释其作用,以利于学生的学习。 二、教学目标 1.知识与技能目标 (1)知道电子控制系统的基本组成。 (2)能用方框图分析生活中常见电子控制系统的工作过程。 2.过程与方法目标 (1)通过对两种路灯控制系统方框图的对照,知道电子控制系统的基本组成。 (2)通过搭接一个路灯自动控制的电子模型,加深对电子控制系统组成的理解。 3.情感态度和价值观目标 (1)激发学生动手尝试的兴趣和热爱技术的情感。 (2)提高学生比较及分析电子控制系统的能力。 三、教学重难点 1.重点 (1)电子控制系统的基本组成。 (2)能用方框图分析生活中常见电子控制系统的工作过程。 2.难点 电子控制系统内部常见电子元件的工作原理。 四、教学策略 本节课程以多媒体技术为辅助教学手段,通过观察、基本知识讲授、小组探究、分析表达、技术试验、能力展示等教学方法和策略,在教师指导下,通过学生自主探究建构知识和技能。 五、教学准备 通用技术专用教室、多媒体、课件、路灯自动控制模型。 六、课时安排 共1课时 七、教学过程 (一)新课导入 教师展示:路灯自动控制模型 板书:第一章电子控制系统概述 第二节电子控制系统的组成和工作过程

牵引力控制稳定性控制系统指示灯故障

5.1.3.13 牵引力控制/稳定性控制系统指示灯故障诊断说明 ? 在使用此诊断程序之前,执行。 ? 查阅,以获得诊断方法的概述。 ? 提供每种诊断类别的概述。 故障诊断信息 电路对搭铁短 路 开路/电阻过 大 对电压短 路 信号性 能 稳定性控制开关信 号 B2745 02 1 1 — 稳定性控制开关搭 铁 — 1 —— 1. 稳定性控制开关不工作 将点火开关置于ON 位置后,组合仪表点亮牵引力控制/稳定性控制启用指示灯、冬季指示灯和稳定性控制停用指示灯5秒钟。当系统处于牵引力控制或稳定性控制模式时,电子制动控制模块(EBCM) 将通过串行数据请求组合仪表点亮(闪烁)牵引力控制/稳定性控制启用指示灯。电子制动控制模块检测到故障时,将向组合仪表发送一条串行数据信息以指令牵引力控制/稳定性控制启用指示灯点亮。 车身控制模块(BCM) 监测稳定性控制开关。一旦按下稳定性控制开关,车身控制模块会请求电子制动控制模块停用牵引力控制系统。当按下稳定性控制开关5秒钟后,车身控制模块会请求电子制动控制模块停用稳定性控制系统。电子制动控制模块通过串行数据请求组合仪表熄灭冬季指示灯和稳定性控制停用指示灯,以将停用状态通知驾驶员。 参考信息

示意图参考 连接器端视图参考 说明与操作 电气信息参考 ? ? ? ? 故障诊断仪参考 参见,以获取故障诊断仪信息 电路/系统检验 1.将点火开关置于 ON 位置,用故障诊断仪指令组合仪表全部指示灯测试点亮和熄灭。确认牵引力控制/稳定性控制启用指示灯、牵引力控制停用指示灯和稳定性控制停用指示灯的点亮和熄灭。 ?如果有任何一个指示灯未点亮和熄灭,则更换P16组合仪表。 2.按下并松开牵引力控制开关的同时,观察故障诊断仪“BCM Traction Control Switch(车身控制模块牵引力控制开关)”参数。确认读数在“Active(启动)”和“Inactive(未启动)”间变化。 ?如果参数不在规定值之间变化,则参见“电路/系统测试”。

专家控制系统课后大作业

5-1 什么是专家系统?它具有哪些特点和优点? 专家系统(Expert System) 是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。也就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题。简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。 专家系统的特点如下: (1)启发性。不仅能使用逻辑知识,也能使用启发性知识,它运用规范的专门知识和直觉的评判知识进行判断、推理和联想,实现问题求解; (2)透明性。它使用户在对专家系统结构不了解的情况下,可以进行相互交往,并了解知识的内容和推理思路,系统还能回答用户的一些有关系统自身行为的问题; (3)灵活性。专家系统的知识与推理机构的分离,使系统不断接纳新的知识,从而确保系统内知识不断增长以满足商业和研究的需要; (4)实用性。可长期保存人类专家的知识与经验,且工作效率高、可靠性好、能汇集众多专家的特长,达到高于任何单个专家的水平,是保存、传播、使用及提高专家知识与经验的有效工具; (5)符号操作。与常规程序进行数据处理和数字计算不同,专家系统强调符号处理和符号操作。使用符号表示知识,用符号集合表示问题的概念,一个符号是一串程序设计,并可用于表示现实世界中的概念; (6)不确定性推理。领域专家求解问题的方法大多数是经验性的,经验知识一般用于表示不精确性且存在一定概率的问题。此外,其提供的有关信息往往是不确定的。而专家系统能够综合应用模糊和不确定的信息与知识进行推理; 专家系统的优点如下: (1)专家系统能够高效率、准确、周到、迅速和不知疲倦地进行工作; (2)专家系统解决实际问题时不受周围环境的影响,也不可能遗漏忘记; (3)军事专家系统的水平是一个国家国防现代化的重要标志之一;

第7章专家控制系统

第7章 专家控制系统 教学内容 首先介绍专家系统基本概念、特征、组成以及基本类型。。然后讲授专家控制系统的工作原理,最后介绍了建立专家系统的步骤和专家控制器。 教学重点 1.专家系统的概念,即它是一种模拟人类专家解决领域问题的计算机程序系统。将专家系统同控制理论和技术相结合,对系统进行控制形成专家控制系统。把专家系统作为控制器称为专家控制器。专家系统的基本组成,即由知识库、推理机、解释接口等组成。 2.专家控制系统工作原理。专家系统设计的基本步骤:认识和阶段化概念,实现阶段,获取知识、构造外部知识库,调试和检验阶段。 教学难点 专家系统的工作原理、知识的表示和获取,专家系统的设计。 教学要求 1.了解专家系统的概念,理解专家控制系统、专家控制器的概念。 2.掌握专家系统的特征、组成和基本类型。 3.理解专家控制系统的工作原理。知识的表示和获取。 4.掌握建立专家系统的步骤。 5.了解专家控制器的组成,专家控制器的设计原则。 7.1 概述 7.1.1 专家系统的起源与发展 人工智能科学家一直在致力于研制在某种意义上讲能够思维的计算机软件,用以“智能化”的处理、解决实际问题。60年代,科学家们试图通过找到解决多种不同类型问题的通用方法来模拟思维的复杂过程,并将这些方法用于通用目的的程序中。然而事实证明这种“通用”程序处理的问题类型越多,对任何个别问题的处理能力似乎就越差。后来,科学家们认识到了问题的关键即计算机界程序解决问题的能力取决于它所具有的知识量的大小。为使一个程序智能化,必须使其具有相关领域的大量高层知识。为解决某具体专业领域问题的计算机程序系统的开发研制工作,导致专家系统这一新兴学科的兴起。 从本质上讲,专家系统是一类包含着知识和推理的智能计算机程序,其内部含有大量的某个领域专家水平的知识和经验,能够利用人类专家的知识和解决问题的方法来处理该领域的问题。 1965年斯坦福大学开始建立用于分析化合物内部结构的DENTRAL系统,首先使用了“专家系统”的概念。70年代末,该校又研制成功了著名的医疗系统MYCIM和用于矿藏勘探的PROSPECTOR系统,推动了专家系统的开发研究和应用。80年代,专家系统的研究开发进入了高潮,应用范围涉及到工业、农业、国防、教育及教学、物理、控制等许多领域。在控制系统辅助设计、故障诊断和系统控制等方面得到了推广应用。专家系统的研究发展,促进了人工智能科学的进步,也使专家系统本身成为人工智能科学的一个重要分支领域。

过程控制系统第4章 思考题与习题

第4章思考题与习题 1.基本练习题 (1)什么是被控过程的特性?什么是被控过程的数学模型?为什么要研究过程的数学模型?目前研究过程数学模型的主要方法有哪几种? 答: 1)过程控制特性指被控过程输入量发生变化时,过程输出量的变化规律。 2)被控过程的数学模型是描述被控过程在输入(控制输入与扰动输入)作用下,其状态和输出(被控参数)变化的数学表达式。 3)目的: ○1设计过程控制系统及整定控制参数; ○2指导生产工艺及其设备的设计与操作; ○3对被控过程进行仿真研究; ○4培训运行操作人员; ○5工业过程的故障检测与诊断。 4)机理演绎法和实验辨识法。 (2)响应曲线法辨识过程数学模型时,一般应注意哪些问题? 答: 1)合理地选择阶跃输入信号的幅度,幅值不能过大以免对生产的正常进行产生不利影响。但也不能太小,以防其他干扰影响的比重相对较大而影响试验结果。一般取正常输入信号最大幅值的10%; 2)试验时被控过程应处于相对稳定的工况; 3)在相同条件下进行多次测试,消除非线性; 4)分别做正、反方向的阶跃输入信号试验,并将两次结果进行比较,以衡量过程的非线性程度; 5)每完成一次试验后,应将被控过程恢复到原来的工况并稳定一段时间再做第二次试验。 (3)怎样用最小二乘法估计模型参数,最小二乘的一次完成算法与递推算法有何区别? 答: 1)最小二乘法可以将待辨识过程看作“黑箱”。利用输入输出数据来确定多项式的系数利用) h k e =θ来确定模型参数。 k T+ ) ( (y k ( ) 2)区别:一次完成要知道所有的输入输出数据才能辨识参数,即只能离线辨识。递推算法可以只知道一部分数据即进行辨识,可用于在线辨识。

专家控制系统

第三章 专家控制系统 3.1 专家系统概述 1.专家及专家系统的定义 专家指的是那些对解决专门问题非常熟悉的人们,他们的这种专门技术通常源于丰富的经验以及他们处理问题的详细专业知识。 定义 3.1专家系统主要指的是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的经验方法来处理该领域的高水平难题。也就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家才能处理好的复杂问题。简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。 专家系统的基本功能取决于它所含有的知识,因此,有时也把专家系统称为基于知识的系统(knowledge-based system)。 3.1.1 专家系统的特点及优点 1.专家系统的特点 与常规的计算机程序系统比较,专家系统具有下列特点: (1)启发性 专家系统要解决的问题,其结构往往是不合理的,其问题求解(problem-solving)知识不仅包括理论知识和常识,而且包括专家本人的启发知识。 (2)透明性 专家系统能够解释本身的推理过程和回答用户提出的问题,以便让用户了解推理过程,增大对专家系统的信任感。 (3) 灵活性 专家系统的灵活性是指它的扩展和丰富知识库的能力,以及改善非编程状态下的系统性能,即自学习能力。 (4)符号操作。与常规程序进行数据处理和数字计算不同,专家系统强调符号处理和符号操作(运算),使用符号表示知识,用符号集合表示问题的概念。一个符号是一串程序设计,并可用于表示现实世界中的概念。 (5)不确定性推理。领域专家求解问题的方法大多数是经验性的;经验知识一般用于表示不精确性并存在一定概率的问题。此外,所提供的有关问题的信息往往是不确定的。专家系统能够综合应用模糊和不确定的信息与知识,进行推理。 2.专家系统的优点 (1) 专家系统能够高效率、准确、周到、迅速和不知疲倦地进行工作。 (2) 专家系统解决实际问题时不受周围环境的影响,也不可能遗漏和忘记。 (3) 可以使专家的专长不受时间和空间的限制,以便推广珍贵和稀缺的专家知识与经验。 (4) 专家系统能促进各领域的发展,它使各领域专家的专业知识和经验得到总结和精炼,能够广泛有力地传播专家的知识、经验和能力。 (5) 专家系统能汇集多领域专家的知识和经验以及他们协作解决重大问题的能力,它拥有更渊博的知识、更丰富的经验和更强的工作能力。 (6) 军事专家系统的水平是一个国家国防现代化的重要标志之一。 (7) 专家系统的研制和应用,具有巨大的经济效益和社会效益。 (8) 研究专家系统能够促进整个科学技术的发展。专家系统对人工智能各个领域的发展起了很大的促进作用,并将对科技、经济、国防、教育、社会和人民生活产生极其深远的影响。 3.1.2 专家系统的结构与类型 1. 专家系统的结构 专家系统的结构是指专家系统各组成部分的构造方法和组织形式。系统结构选择恰当与否,是与专家系统的适用性和有效性密切相关的,选择什么结构最为恰当,要根据系统的应用环境和所执行任务的特点确定。例如,MYCIN系统的任务是疾病诊断与解释,其问题的特点是

热工过程控制系统

热工过程控制系统 第一章 过程控制系统概述 1.1过程控制定义及认识 1.2过程控制目的 *1.3过程控制系统的组成 1.4过程控制系统的特点 *1.5过程控制系统的分类 *1.6过程控制性能指标 1.7 过程控制仪表的发展 1.8 过程控制的地位 1.9 过程控制的任务 1.1过程控制定义及认识 过程控制定义 所谓过程控制(Process Control )是指根据工业生产过程的特点,采用测量仪表、执行机构和计算机等自动化工具,应用控制理论,设计工业生产过程控制系统,实现工业生产过程自动化。 1.3 过程控制系统组成 被控过程(Process ), 指运行中的多种多样的工艺生产设备; 过程检测控制仪表(Instrumentation ), 包括: 测量变送元件(Measurement ); 控制器(Controller ); 执行机构(Control Element ); 显示记录仪表 1.5 过程控制系统的分类 按系统的结构特点来分::反馈控制系统,前馈控制系统,复合控制系统(前馈-反馈控制系统) 按给定值信号的特点来分: 定值控制系统,随动控制系统,程序控制系统 性能指标: 对自动控制系统性能指标的要求主要是稳、快、准。 最大超调量σ%反映系统的相对稳定性,稳态误差ess 反映系统的准确性,调整时间ts 反映系统的快速性。 第三章 过程执行器 主要内容 执行器 电动执行器 气动执行器 调节阀及其流量特性 变频器原理及应用 本节内容在本课程中的地位 执行器用于控制流入 或流出被控过程的物 料或能量,从而实现 对过程参数的自动控 制。 3.1 调节阀(调节机构)结构 调节阀是一个局部阻力可以改变的节流元件。由于阀芯在阀体内移动,改变了阀芯与阀座之 间的流通面积,即改变了阀的阻力系数,被调介质的流量也就相应地改变,从而达到调节工艺参数的目的。 3.1 调节阀 功能:接受控制器输出的控制信号,转换成直线位移或角位移,来改变调节阀的流通截面积。 3.1.1 调节阀的组成 要求观察 思考调节变换 显示记录调节给定值执行机构检测 仪表记录仪显示器调节器控制器测量变送被控过程 执行器r(t)e(t)u(t)q(t)f(t)y(t)z(t)-控制器 测量变送 被控过程 执行器 r ( t ) e ( t ) u ( t ) q ( t ) f ( t ) y ( t ) z ( t ) -

控制系统工作过程

1.1有传感器的开环控制系统:比如自动门控制系统、声控灯控制系统,红外线自动水龙头 “某某装置”检测到“某某”信号,该信号输入到“控制器”,“控制器”发出相应的指令,让“执行器”“运作”,使“控制对象”“怎么样”。 “某某装置”检测到信号,“控制器”接收到该信号后,便发出相应的指令,让“执行器”“运作”,使控制对象“怎么样”。 说明: “某某装置”:传感器,比如红外传感器,声音传感器,光传感器等等 “某某”信号:红外信号,声音信号,光线信号 “控制器”,“执行器”,“控制对象”等都是可以从控制系统的方框图里读出;“运作”,即“控制量”转化成动词;“怎么样”,即“被控量”转化成动词。 注意点: 在阐述工作过程时,要把控制系统所有状态的控制都写出来,可以按照以上的模式阐述,但是可以简洁一些。例如自动门的控制系统,要说明如何自动开启,也要说明如何自动关闭。 实际上,写控制系统的工作过程就是将方框图转化为文字表述,所以在写的时候一定要利用好方框图。同理,在写方框图的时候,也是从工作过程找到“控制器”、“执行器”等等。 举例:自动门控制系统 红外装置检测到人体的红外信号,该信号输入到控制电路,控制电路便发出相应的指令,让电机转动,从而使门开启。当门开启之后,如果没有人在门四周,控制电路作出判断,并发出指令,电机就反向转动,使门关闭。 1.2无传感器的开环控制系统:农业灌溉水泵抽水系统,电风扇风速控制系统 “一个输入量”,“控制器”接收到该信号后,便发出相应的指令,让“执行器”“运作”,使控制对象“怎么样”。 举例:农业灌溉水泵抽水系统 表述一:只要接通电源,电机接受到该信号后,带动水泵工作,水从水管里排出。只要关闭电源,电机停止工作,停止供水。 表述二:只要接通电源,电机就带动水泵工作,水从水管里排出。只要关闭电源,电机停止工作,停止供水。 水流量 输入量 到人热辐射 发出的信号) 门开或门关

汽车牵引力控制技术

汽车牵引力控制技术(TCS)的工作原理 现代科学技术的发展,促使车辆的性能越来越高,特别是机电一体化技术在车辆上得到了广泛的应用:电子控制燃油喷射系统、制动防抱死装置(ABS)、车辆防侧滑系统等。牵引力控制系统(Traction Control System, 简记为TCS)又称为驱动防滑控制系统(Anti-Slip Regulation, 简记为ASR),它是汽车制动防抱死系统基本思想在驱动领域的发展和推广。是上世纪80 年代中期开始发展的新型实用汽车安全技术,这项技术的采用主要解决了汽车在起步、转向、加速、在雪地和潮湿的路面行驶等过程中车轮滑转的问题。它的功能一是提高牵引力;二是保持汽车的行驶稳定。行驶在易滑的路面上,没有ASR的汽车加速时驱动轮容易打滑;如是后驱动的车辆容易甩尾,如是前驱动的车辆容易方向失控。有ASR时,汽车在加速时就不会有或能够减轻这种现象。在转弯时,如果发生驱动轮打滑会导致整个车辆向一侧偏移,当有ASR时就会使车辆沿着正确的路线转向。 一、汽车牵引力控制技术(TCS)的工作原理 ASR 系统和ABS系统采用相同的原理工作:即根据车辆车轮转速传感器所测得的车轮转速信号由电控单元进行分析、计算、处理后输送给执行机构用来控制车辆的滑移现象,使车辆的滑移率控制在10%~20%之间,从而增大了车轮和地面之间的附着力,有效地防止了车轮的滑转。 滑移率由实际车速和车轮的线速度控制,其计算公式为:滑移率=(实际车速—车轮线速度)/ 实际车速×100% 轮速可由轮速传感器准确检测得到。而车速的准确检测者比较困难,一般采用以下几种方法: 1、采用非接触式车速传感器 如多普勒测速雷达,但这种方式成本较高、技术复杂,应用较少。 2、采用加速传感器 这种方法由于受坡道的影响,误差较大,控制精度差,应用也较少。 3、根据车轮速度计算汽车速度 由于车速和轮速的变化趋势相同,当.实际车轮减速度达到某一特定值时以该瞬间的轮速为初始值,根据轮速按固定斜率变化的规律近似计算出汽车速度(称为车身参考速度)。 二、汽车牵引力控制技术(TCS)的控制方式 1、采用电控悬架实现驱动车轮载荷调配 在各驱动车轮的附着条件不一致时,可以通过电控悬架的主动调整使载荷较多地分配在附着条件较好的驱动车轮上,使各驱动车轮附着力的总和有所增大,从而有利于增大汽车的牵引力,提高汽车的起步加速性能;也可以通过悬架的主动调整使载荷较多地分配在附着条件较差的驱动车轮上,使各驱动车轮的附着力差异减小,从而有利于各驱动车轮之间牵引力的平衡,提高汽车的行驶方向稳定性。目前在ASR 领域中电控悬架参与控制技术还处在理论探索阶段,而且这项技术较为复杂,成本也较高,所以在ASR 系统中一般很少采用。 2、调节发动机的输出转矩控制驱动力矩发动机输出力矩调节是最早应用的驱动防滑控制方式。在附着系数较小的冰雪路面上或

过程控制系统-04

过程控制系统Process Control System 天津大学电气与自动化工程学院 董峰

通过这章的学习,我们可 以得到以下收获: 通过这章的学习,我们可以得到以下收获:z 什么情况下采用串级增强控制系统性能?z 利用五个规则设计串级控制系统;z 串级控制系统的校正;z 系统设计和应用。

主要内容 主要内容 过程的挑战——改善性能1 串级控制的设计规则 2 串级控制的特点和应用原则3 几个过程控制的例子 4

4.1 引言 4.1.1 串级系统的概念 串级控制系统是在简单控制系统基础上发展起来的。当被控对象的滞后较大,干扰较剧烈、频繁,采用简单控制系统不能满足工艺要求时,可考虑采用串级控制系统。

1. 目的 (1)在对主要变量Y1作用前抑制扰动D2; 内环应有足够的能力消除这些扰动; (2)在内环中应能够补偿非线性(如:阀门的滞后)。 2. 分析 内环:外环: 2 2 ' 2 2 2 2 2 2 2 2 2 21 1 1 R L D R C P C P D C P Y+ = + + + = 1 1 2 1 1 2 1 1 2 1 1 ' 2 1 11 1 R C L P C L P C L P D D P Y + + + + =

3. 设计程序 (1)首先,按照内环传递函数L 2=1设计外环;例如:假设( 2)调整外环参数(滤波器时间常数)到是指达到稳定的合适的性能范围, 计算,此时调整内环的响应足够快;(3)设计内环以保证 √稳态性能的鲁棒性 √√内环的比例带合理, 且内环的开关控制无效。 如果以上步骤不能达到稳定,返回步骤(2),增加外环的滤波器时间常数。 ()()12L BW L BW >>()1L BW ()() 12105L BW L BW ×?>

控制系统的工作过程与方式

控制系统的工作过程与方式 教材:(凤凰国标教材)普通高中课程标准实验教科书通用技术(必修2) 文档内容:控制系统的工作过程与方式 章节:第四单元控制与设计第二节控制系统的工作过程与方式 课时:第1课时 作者:叶朝晖(海南省海南中学) 一、教学目标 1. 知识与技能目标 (1)通过灯的开关、投影幕升降、婴儿尿湿报警器等控制系统案例分析,归纳控制系统的基本特征; (2)通过对音乐贺卡和自动门等典型案例的分析,熟悉简单的开环控制系统的基本组成和工作过程,了解开环控制的基本特征; 2. 过程与方法目标 (1)学会用方框图来归纳控制系统实例的基本特征,学会用方框图把复杂问题简单化; (2)借助老师搭建的支架,形成自己关于控制设计的创意,并学会用方框图表示自己的控制设计想法; (3)通过动手制作简单控制玩偶,亲自体验开环控制系统的组成和工作过程和原理。 3. 情感态度和价值观目标 (1) 通过魔术及控制系统的实物形成和保持学生了解控制系统、探究控制系统的兴趣与热情。 (2) 借助老师搭建的支架,形成自己关于控制设计的创意,从而体会创新的快乐,培养创新的精神。 二、教学重点 分析和理解开环控制系统的基本组成和工作过程分析,学会用方框图描述开环控制系统的工作过程,学会用方框图来表达设计想法 三、教学难点 理解开环控制系统的基本组成和工作过程,形成开环控制思想 四、教学方法 教授、任务驱动、小组合作。 五、设计思想 1. 教材分析 本节是“控制与设计”第二节“控制系统的工作过程与方式”第1课时的内容,其内容包括“控制系统”与“开环控制系统”,是学生在学习控制在生活和生产中的应用后,进一步深入学习与探讨有关控制系统的组成和工作过程,并为下一课时进一步学习“闭环控制系统的基本组成和工作过程”打下基础。为此,我对教学内容进行了如下的处理:首先理解什么是控制,再到归纳出控制系统的一般特征,接着分析开环控制的系统的基本组成和工作过程,最后对开环控制系统进行设计和制作,其内容是逐渐的深入和深化。其中画方框图作为一种分析问题的方法和手段贯穿这些内容中。对于画方框图,重点不在于教学生怎样画方框,而是要教学生怎样利用方框图来分析和理解控制系统,怎样利用方框图把复杂问题简单化,怎样用方框图来表达自己的设计想法。 2. 学情分析

牵引力控制系统 TCS

TCS:英文全称是Traction Control System,即牵引力控制系统,又称循迹控制系统。汽车在光滑路面制动时,车轮会打滑,甚至使方向失控。同样,汽车在起步或急加速时,驱动轮也有可能打滑,在冰雪等光滑路面上还会使方向失控而出危险,TCS就是针对此问题而设计的。TCS依靠电子传感器探测到从动轮速度低于驱动轮时(这是打滑的特征),就会发出一个信号,调节点火时间、减小气门开度、减小油门、降挡或制动车轮,从而使车轮不再打滑。TCS可以提高汽车行驶稳定性,提高加速性,提高爬坡能力。TCS如果和ABS相互配合使用,将进一步增强汽车的安全性能。TCS和ABS可共用车轴上的轮速传感器,并与行车电脑连接,不断监视各轮转速,当在低速发现打滑时,TCS会立刻通知ABS动作来减低此车轮的打滑。若在高速发现打滑时,TCS立即向行车电脑发出指令,指挥发动机降速或变速器降挡,使打滑车轮不再打滑,防止车辆失控甩尾。 TCS与ABS的区别在于,ABS是利用传感器来检测轮胎何时要被抱死,再减少制动器制动压力以防被抱死,它会快速的改变制动压力,以保持该轮在即将被抱死的边缘,而TCS主要是使用发动机点火的时间、变速器挡位和供油系统来控制驱动轮打滑。 TCS对汽车的稳定性有很大的帮助,当汽车行驶在易滑的路面上时,没有TCS的汽车,在加速时驱动轮容易打滑,如果是后轮,将会造成甩尾,如果是前轮,车子方向就容易失控,导致车子向一侧偏移,而有了TCS,汽车在加速时就能够避免或减轻这种现象,保持车子沿正确方向行驶。在TCS应用时,可以在仪表板显视出地面是否有打滑的现象发生,它有一个控制旋扭,如果想要享受一下自己控制的快感,在适当的时机可以将系统关掉,车子重新启动时TCS就会自动放开。ASR:ASR驱动防滑系统也叫牵引力控制系统,即Acceleration Slip Regulation的缩写。功能与TCS相同,同样是为了防止车辆在起步、再加速时驱动轮打滑,维持车辆行驶方向稳定性的系统,叫法不同,通常多在大众等德系车型上看到这个缩写。 TRC:TRC功能与TCS相同,此种叫法多出现于丰田、雷克萨斯等日系车型上。 ATC:功能与TCS相同,Automatic Traction Control的缩写,自动牵引力控制,又称为牵引力控制。

热工过程控制系统

热工过程控制系统 第一章 过程控制系统概述 1.1过程控制定义及认识 1.2过程控制目的 *1.3过程控制系统的组成 1.4过程控制系统的特点 *1.5过程控制系统的分类 *1.6过程控制性能指标 1.7 过程控制仪表的发展 1.8 过程控制的地位 1.9 过程控制的任务 1.1过程控制定义及认识 过程控制定义 所谓过程控制(Process Control )是指根据工业生产过程的特点,采用测量仪表、执行机构和计算机等自动化工具,应用控制理论,设计工业生产过程控制系统,实现工业生产过程自动化。 1.3 过程控制系统组成 被控过程(Process ), 指运行中的多种多样的工艺生产设备; 过程检测控制仪表(Instrumentation ), 包括: 测量变送元件(Measurement ); 控制器(Controller ); 执行机构(Control Element ); 显示记录仪表 1.5 过程控制系统的分类 按系统的结构特点来分::反馈控制系统,前馈控制系统,复合控制系统(前馈-反馈控制系统) 要求 观察 思考 调节变换显示记录调节给定值 执行 机构检测仪表 记录仪显示器调节器 控制器 测量变送 被控过程 执行器 r(t)e(t) u(t) q(t) f(t) y(t) z(t) -

按给定值信号的特点来分: 定值控制系统,随动控制系统,程序控制系统 性能指标: 对自动控制系统性能指标的要求主要是稳、快、准。 最大超调量σ%反映系统的相对稳定性,稳态误差ess 反映系统的准确性,调整时间ts 反映系统的快速性。 第三章 过程执行器 主要内容 执行器 电动执行器 气动执行器 调节阀及其流量特性 变频器原理及应用 本节内容在本课程中的地位 执行器用于控制流入 或流出被控过程的物 料或能量,从而实现 对过程参数的自动控 制。 3.1 调节阀(调节机构)结构 调节阀是一个局部阻力可以改变的节流元件。由于阀芯在阀体内移动,改变了阀芯与阀座之间的流通面积,即改变了阀的阻力系数,被调介质的流量也就相应地改变,从而达到调节工艺参数的目的。 3.1 调节阀 功能:接受控制器输出的控制信号,转换成直线位移或角位移,来改变调节阀的流通截面积。 3.1.1 调节阀的组成 执行机构:执行机构是指根据控制器控制信号产生推力或位移的装置; 控制器 测量变送 被控过 程 执行器 r ( t ) e ( t ) u ( t ) q ( t ) f ( t ) y ( t ) z ( t ) -

电机驱动控制系统

电机驱动控制系统 摘要 由于单片机具有体积小、集成度高、运算速度快、运行可靠、应用灵活、价格低廉以及面向控制等特点,因此在工业控制、数据采集、智能仪器仪表、智能化设备和各种家用电器等领域得到广泛的应用,而且发展非常迅猛。随着单片机应用技术水平不断提高,目前单片机的应用领域已经遍及几乎所有的领域。 与交流电动机相比,直流电机结构复杂、成本高、运行维护困难,但是直流电机具有良好的调速性能、较大的启动转矩和过载能力强等许多优点,因此在许多行业仍大量应用。近年来,直流电动机的机构和控制方式都发生了很大的变化。随着计算机进入控制领域以及新型的电力电子功率元器件的不断出现,采用全控型的开关功率元件进行脉宽调制(Pulse Width Modulation,简称PWM)已成为直流电机新的调速方式。这种调速方法具有开关频率高、低速运行稳定、动态性能良好、效率高等优点,更重要的是这种控速方式很容易在单片机控制系统中实现,因此具有很好的发展前景。 本设计为单片机控制直流电机,以AT89C51单片机为核心,采用了PWM技术对电机进行控制,通过对占空比的计算达到精确调速的目的。由键盘控制电动机执行启停、速度和方向等各种功能,用红外对管测量电机的实际转速,并通过1602液晶显示出控制效果。设计上,键盘输入采用阵列式输入,用4*4的矩阵键盘形式,这样可以有效的减少对单片机I/O口的占用。

关键词:AT89C51 PWM 电机测速 一、硬件设计 1、总体设计

20 929303456781011121314151617318RFB 91112 10k 23

1918 2122232425262728 1.2.2 1602液晶显示模块 本模块实现了转速等显示功能。 D :方向;占空比;预设转速;实测速度; 1.2.3键盘模块 根据实验要求,需由按键完成对直流电机的控制功能,并经分 析得出需要16个按键,为节省I/O 口并配合软件设计,此模块使用了4*4的矩阵模式。并通过P1口与主机相连。 1.2.4 PWM 驱动电路模块设计与比较

宝马动态牵引力控制系统DTC-DSC

BMW 售后服务培训 BMW 行驶动力控制系统培训班工作资料

说明 本学员手册中所包含的信息仅适用于BMW 售后服务培训班的学员。 有关技术数据方面的更改/补充情况请参见“客户技术服务”的相关信息。 ?2001 BMW AG 慕尼黑,德国。未经 BMW AG(慕尼黑)的书面许可不得翻印本手册的任何部分VS-42 MFP-HGK-BRK-E85_0500

目录 页码 第 1 章E85 行驶动力控制系统 1 简介 1 部件 / 安装位置 2 系统概览 4 - 输入 / 输出信号 4 - DSC 电路方框图 6 系统功能8 操作8

E85 行驶动力控制系统 简介 除了已熟知的 ABS、ASC 和 CBC 功能外,Z4 上的动态稳定控制系统(DSC)还包含另一项功能– DTC(动态牵引力控制系统)。 在 E85 上安装了 E46 上已使用的 DSC 模块 MK 60。DTC 功能可以通过 DSC 按钮启用,该功能具有两个子功能: –自动稳定控制系统(ASC) + 动态稳定控制系统(DSC)的运动性调节 –显著提高牵引力,尤其是在附着系数值较低的路面上 其它功能基本上相同。 如果启用 DTC 功能,组合仪表上就会出现字样(指示灯)“DTC”。 该系统进行主动调节干预时,组合仪表内的 DSC 警告灯闪烁。

部件/ 安装位置 该系统由以下部件构成: –DSC 模块 MK60 –车轮转速传感器 –DSC 传感器 –DSC 按钮 DSC 模块 MK 60 安装在发动机室内弹簧减振支柱顶左前侧。控制单元和阀体构成一个单元。 DSC 传感器位于车辆右侧座椅下,通过一个独立的 CAN 与 DSC 模块连接。该传感器测量横向加速度和偏转率。 插图1:E85 DSC 传感器KT-10300 索引说明 1 DSC 传感器

课程设计专家PID控制系统simulink仿真

内蒙古科技大学 课程设计 题目:专家PID控制系统仿真 学生姓名: 学号: 专业:自动化 班级: 指导教师:

专家PID控制系统仿真 摘要 简单介绍了常规PID控制的优缺点和专家控制的基本原理,介绍了专家PID控制的系统结构,针对传递函数数学模型设计控制器。基于MATLAB的simulink仿真软件进行应用实现,仿真和应用实现结果均表明,专家PID控制具有比常规PID更好的控制效果,且具有实现简单和专家规则容易获取的优点。 论文主要研究专家PID控制器的设计及应用,完成了以下工作: (1)介绍了专家PID控制和一般PID控制的原理。 (2)针对任务书给出的受控对象传递函数G(s)=523500/(s3+87.35s2+10470s) ,并且运用MATLAB实现了对两种PID控制器的设计及simulink仿真,且对两种PID控制器进行了比较。 (3)结果分析,总结。 仿真结果表明,专家PID控制采用多分段控制,其控制精度更好,且具有优越的抗扰性能。 关键词:专家PID,专家系统,MATLAB,simulink仿真

Expert PID control system simulation Abstract The advantages and disadvantages of conventional PID control and the basic principle of expert control are briefly introduced, and the structure of expert PID control system is introduced. Simulink simulation software based on MATLAB is implemented. The simulation and application results show that the expert PID control has better control effect than the conventional PID, and has the advantages of simple and easy to get. This paper mainly studies the design and application of the expert PID controller: (1) the principle of PID control and PID control is introduced in this paper. (2) the controlled object transfer function G (s) =523500/ (s3+87.35s2+10470s), and the use of MATLAB to achieve the design and Simulink simulation of two kinds of PID controller, and the comparison of two kinds of PID controller. (3) result analysis, summary. The simulation results show that the control accuracy of the expert PID control is better than that of the control. Key words:Expert PID , MA TLAB, expert system, Simulink, simulation

控制系统的工作过程及方式

控制系统的工作过程与方式 一、教学目标 1.通过案例分析,归纳控制系统的基本特征; 2.了解开环控制和闭环控制的特点; 3.分析典型案例,熟悉简单的开环控制系统的基本组成和简单的工作过程 4.学会用框图来归纳控制系统实例的基本特征,逐步形成理解和分析简单开环和闭环控制系统的一般方法 二、教学内容分析 本节是“控制与设计”第二节的内容,其内容包括“控制系统”、“开环控制系统与闭环控制系统的组成及其工作过程”是学生在学习控制在我们的生活和生产中的应用后,进一步学习有关控制系统的组成、工作方式以及两种重要的控制系统:开环控制和闭环控制,并熟悉它们工作原理和作用。 生活中不乏简单控制系统的应用,人们对此往往象看待日出日落一类自然景色般的习以为常。本部分内容的学习,正是要引导学生,从技术的角度、用控制的思维看周围的存在,分析其道理,理解其基本的组成和工作过程。 本课教学内容,从学生生活经验出发,从实例分析入手,归纳出对控制系统的一般认识,以及根据控制系统方式分类的开环控制系统和闭环控制系统两类,并侧重对开环控制系统的工作过程、方框图、重要参数进行分析。本课要解决的重点是:开环控制系统的工作过程分析,用方框图描述开环控制系统的工作过程。 三、学习者分析 学生在前面的学习中已经学习和分析了控制在生活生产中的应用,获得了有关控制及其应用的初步感性认识和体验,但是对控制的基本工作方式和工作机理还缺乏了解,他们对进一步了解控制系统的知识是有探究的欲望的。结合前面的应用案例分析,进一步分析案例中控制是如何工作的,以及有怎样的工作方式,是学生学习的最近发展区。 四、教学策略: 1. 教法: 本章的教学结合具体的教学内容和目标我们采用“案例情景—机理分析—总结归纳-认识提升”的模式展开。在教学中把知识点的教与学置于具体的案例情景当中,通过丰富而贴近生活的案例使学生从生活体验到理性分析的思维升华过程。同时关注学生能否用不同的语言表达、交流自己的体验和想法。通过富有吸引力的现实生活中的问题,使学生回想和体会控制系统的工作过程,激发学生的好奇心和主动学习的欲望。让学生本着“回想—分析—联想—猜想”的思维过程,对教学内容进行步步展开,使学生亲历自主探索和思维升华的过程。 2. 学法: 鼓励学生自主探究和合作交流,引导学生自主观察、总结,在与他人的交流中丰富自己的思维方式,获得不同的体验和不同的发展。注意引导学生体会控制系统的工作过程和方式,特别是引导学生会学用系统框图来抽象概括控制系统、帮助分析和理解控制系统的组成及其工作过程的方法 五、教学资源准备 多媒体设备、相关图片资料、技术试验工具、材料等

过程控制系统课后习题

第二章 1什么是对象特性?为什么要研究对象特性? 答:研究对象特性是设计控制系统的基础;为了能使控制系统能安全投运并进行必要的调试;优化操作。 2什么是对象的数学模型?静态数学模型与动态数学模型有什么区别? 答:对对象特性的数学描述就叫数学模型。 静态:在输入变量和输出变量达到平稳状态下的情况。 动态:输出变量和状态变量在输入变量影响下的变化情况。 3建立对象的数学模型有什么意义? 答:1,控制系统的方案设计; 2控制系统的调试和调节器参数的确定; 3制定工业过程操作优化方案; 4新型控制方案及控制策略的确定; 5计算机仿真与过程培训系统; 6设计工业过程的故障检测与诊断系统。 4建立对象的数学模型有哪两种方法? 答:机理建模和实验建模。 机理建模:由一般到特殊的推理演绎方法,对已知结构、参数的物理系统运用相应的物理定律或定理,根据对象或生产过程的内部机理,经过合理的分析简化而建立起描述系统各物理量动静态性能的数学模型。 实验建模步骤:1确定输入变量与输出变量信号;2测试;3对数据进行回归分析。 5反应对象特性的参数有哪些?各有什么物理意义?他们对自动控制系统有什么影响? 答:K—放大系数。对象从新稳定后的输出变化量与输入变化量之比。 T—时间参数。时间参数表示对象受到输入作用后,被控变量的变化快慢。 桃—停滞时间。输入发生变化到输出发生变化之间的时间间隔。 6评价控制系统动态性能的常用单项指标有哪些?各自的定义是什么? 单项性能指标主要有:衰减比、超调量与最大动态偏差、静差、调节时间、振荡频率、上升时间和峰值时间等。 衰减比:等于两个相邻的同向波峰值之比n; 过渡过程的最大动态偏差:对于定值控制系统,是指被控参数偏离设定值的最大值A; 超调量:第一个波峰值y与最终稳态值y之比的百分数; 残余偏差C:过渡过程结束后,被控参数所达到的新稳态Y与设定值之间的偏差。 调节时间:从过渡过程开始到过渡过程结束所需的时间; 振荡频率:过渡过程中相邻两同向波峰之间的时间间隔叫振荡周期或工作周期,其倒数称为振荡频率; 峰值时间:过渡过程开始至被控参数到达第一个波峰所需要的时间。 第三章 12选择调节器控制规律的依据是什么?若已知过程的数学模型,怎样来选择pid控制规律? 1根据桃0/T0比值来选择。若比值小于,选PI,若在与之间,选用PI或者PID,若大于,就需要用到串级控制。 2根据过程特性来选择控制器的控制规律。 P:过渡时间短,克服干扰能力大。常用于负荷变化小,自平衡能力强,对象控制通道中的滞后时间与时间常数之比小,允许余差存在,控制质量要求不高的场合。

电机驱动控制系统

电机驱动控制系统 “安邦信”是中国变频器行业的一块老品牌,在技术上沉淀了二十几年,在产、学、研、市场应用的道路上积累深厚的经验。1992年3月在江苏徐州成立,1998年10月迁址深圳,更名为“深圳市安邦信电子有限公司”是第一批国家电子工业部20家变频器企业之一,专注于变频器的研发、生产和销售,快速为客户提供个性化的解决方案。 “安邦信”是国内少数同时生产高、中、低压变频器的企业,主要服务于装备制造业、节能环保、新能源三大领域,营销网络遍布全国。公司在国产品牌厂商中名列前茅,其中专用变频系列产品在多个细分行业处于业内首创或领先地位。 “安邦信”旗下的电机科技有限公司,具有30年多年专注工业电动机与汽车电机的研发、制造历史。拥有先进自动化生产线和专业检测设备,拥有资深的专业电机设计、工艺,工装设计工程师。 多年来,始终坚持“产品做精、市场做专”的经营方针。投重金搭建研发平台,精诚与多所院校建立研发联盟。获得了各种技术专利100多项,掌握了永磁同步、异步、电流开环、闭环矢量控制与485、CAN、PROFIBUS通讯的技术。完成了40V-1000V电压等级,0.4KW-8700KW功率等级产品供货能力。市场横跨电动汽车、工业控制两大行业领域,在电动汽车领域具有永磁电机、异步电机控制,40V-560V电压等级、1.5KW-250KW功率范围,风冷、水冷、油冷全系列的产品供应。当前生产的电动车电机有高效永磁同步电机,高效铜转子异步电机,高效鼠笼式异步电机三大系列。 “安邦信”制造基地根据公司的研发优势,大量采用自动化生产设备,生产设备及仪器业内领先,空间布局,生产线结构都依据国际标准设计,年产能超过15万台。 规范的流程,先进的设备,敬业的员工是安邦信制造体系的核心竞争力,严谨而人性化的生产管理实现了大规模生产效应。 电机驱动控制系统产品 “安邦信”针对市场的需求研发出电机驱动控制系统产品,形成一套驱控体系,为整车厂提供电机驱控系统解决方案,提高整车效率。其中72V,7.5KW和144V,15KW系列产品,经过市场验证,深受好评获得客户良好认可。 7.5KW和15KW电机驱动控制器系统,电机驱动控制系统具有高峰值转矩、高可靠性、低成本的特点。同时具有高效异步铜转子电机采用双冷技术,同步降低电机定转子温度,电机具有高效、高功率密度、

相关文档
最新文档