初一数学第一学期期末考试试题
北京石景山区2022-2023学年七年级上学期数学期末试题(含答案与解析)
第一部分选择题
一、选择题(共16分,每题2分)
第1-8题均有四个选项,符合题意的选项只有一个.
1.下列实物中,能抽象出圆锥的是()
A. B. C. D.
2.党的二十大报告指出,新时代十年我国加快推进科技自立自强,全社会研发经费支出从10000亿元增加到28000亿元,居世界第二位,研发人员总量居世界首位.将数字28000用科学记数法表示应为()
【详解】解: ,运算正确,故A符合题意;
, 不是同类项,不能合并,原运算错误,故B不符合题意;
,原运算错误,故C不符合题意;
, 不是同类项,原运算错误,故D不符合题意;
故选A
【点睛】本题考查的是同类项的含义,合并同类项,熟练地判断同类项以及合并同类项是解本题的关键.
7.有理数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()
解:去括号,得 .
去分母,得 .
移项,得 .
合并同类项,得 .
系数化1,得 .
(1)“去分母”这一步变形的依据为_____________;
(2)请选择一个角度对小伟的解题过程进行评价:_____________.
【答案】①.等式的性质②.小伟在移项的时候变号,养成了良好的习惯(答案不唯一)
【解析】
【答案】2
【解析】
【分析】将方程的解代入方程计算即可.
【详解】解:将 代入方程 ,得
,
解得 ,
故答案为2.
【点睛】此题考查了一元一次方程的解,解一元一次方程,正确理解方程的解是解题的关键.
13.北京首个全向十字路口设于石景山区,为行人带来了很多便利.其俯视示意图如图所示.若想走近路,从位置A到位置C的两条路径“ ”和“ ”中,你会选择路径_____________,选择的依据是_____________.
第一学期七年级期末考试数学试题(一)
第一学期七年级期末考试数学试卷(时间90分钟 满分120分)一、选择题(共12个小题,每小题3分,共36分) 1.下列各选项中的代数式,符合书写格式的为( ).A .()c b a ÷+B .b a -厘米C .x 311D .y 34 2.若a 为有理数,则下列结论中正确的是( ).A .a -是负数B .a 的绝对值是正数C .a 2是偶数D .()a a -=223.下列方程中,是一元一次方程的是( ).A .()232+=-+x x x xB .()04=-+x xC .1=+y xD .01=+x y4.已知线段AB=7cm ,点C 在直线AB 上,且BC=2cm ,则AC 等于( ).A .9cmB .5cmC .9cm 或5cmD .以上答案都不对5.下图是某中学七年级学生参加课外活动小组人数的扇形统计图,若参加舞蹈类学生42人,则参加球类活动学生人数有( )人.A .145B .147C .149D .1516.下列各题中,不是同类项的是( ).A .y a 312与323a yB .y x 321与xy 321-C .x ab 32与x ba 365-D .mb a 26与bm a 2-7.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.x y x y x xy xy 222222123421213-=⎪⎭⎫ ⎝⎛-+--⎪⎭⎫ ⎝⎛-+-y 2+,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是( ).A .xy 7-B .xy 7+C .xy -D .xy +8.有以下各式:(1)()z y x x z y x x 52352322-+-=+--(2)()()d c b a a d c b a a +---=----+23523522 (3)()63363322--=+-x x x x(4)()()y x y x y x y x 222222-++-=+----(5)()a b b a --=-(6)()()c b d a d c b a +--=-+- 其中,错误的有( ). A .1个B .2个C .3个D .4个9.小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:-=-y y 21212,怎么办呢?小明想了一想,便翻看书后答案,此方程的解是35-=y ,很快补好了这个常数,并迅速地完成了作业,你能补出这个常数吗?它应是( ).A .1B .2C .3D .410.把方程1312=--x x 去分母后,正确的是( ). A .()1123=--x x B .()6123=--x x C .6223=--x xD .6223=-+x x11.A 是一个五次多项式,B 是一个五次单项式,则A 一B 一定是( ).A .十次多项式B .五次多项式C .四次多项式D .不高于五次的整式12.为了求1+2+22+23+…+22008的值,可令s=1+2+22+23+…+22008,则2s=2+22+23+24…+22009,因此2S —S=22009—1,所以1+2+22+23+…+22008=22009一1,仿照以上推理计算出1+5+52+53+…+52009的值是( )A .52009—1 B .52010—1C .4152009-D .4152010-二、填空题(共7个小题,每小题3分,共21分) 13.若单项式()y x k k 23-是五次单项式,则k =________.14.在排成每行七大的日历表中取下一个3×3方块.若所有日期数之和为189,则n 的值为________.15.多项式()7221++-x m x m是关于x 的二次三项式,则m =________. 16.一个三位数,百位数字是a ,十位数字是b ,个位数字是c ,把百位数字与个位数字交换位置后,所得新数与原数的差可被________整除.17.为了合理利用淡水资源,各地纷纷采用价格调控手段达到节约用水的目的.某市自来水的收费标准规定:当每户居民每月的用水量不超过6立方米时,按每立方米a 元收费;超过6立方米时,超过的部分按每立方米b (b>a )元收费.小明家三月份共用水9立方米,应缴纳自来水水费________元.18.某音像社对外租赁光盘,收费办法是:每张光盘在租赁后的头两天每大按0.8元收费,以后每天0.5元收费.请你写出两天后租金y (元)和租赁天数n 之间的函数关系式是_______.19.一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点A 1处,第二次从A 1点跳动到OA 1的中点A 2处,第三次从A 2点跳动到OA 2的中点A 3处,如此不断跳动下去,则第5次跳动后,该质点到原点O 的距离为________.三、解答题(本题满分63分) 20.(本题满分6分)有一列数n x x x ....,x 3,21,…已知1x =2,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差.(1)求4x 及2009x 的大小; (2)求18321....x x x x ++的值. 21.(本题满分6分)已知x x y y 72,621+=-=,若: ①当y y 212=时,求x 的值; ②当x 取何值时,y 1比y 2小3-? ③当x 取何值时,y 1与y 2互为相反数? 22.化简求值:(本题满分10分,每小题5分)(1)()()a a a a a a 233234325-+----+,其中2-=a ;(2)y x y x x xy y xy x y 2222323223+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛---,其中31,3-==y x ;23.解下列方程(本题满分10分,每小题5分)(1)32222-=---x x x (2)5001.032.01=+-+x x24.列方程解应用题(本题满分20分,每小题10分)(1)树下有一堆桃子,第一只猴子先拿走全部桃子的51,另外再吃掉1个;第二只猴子又拿走剩余的51,另外再吃掉1个;第三只猴子又拿走剩余的51,另外再吃掉1个.最后剩余59个桃子,求这堆桃子原来共有多少个?(2)某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套? 25.(本题满分11分)“上网”是获取信息的重要渠道,目前,我市电话拨号上网有两种计费方式,用户可以任选其中一种:(A )计时制:0.05元/分×时间; (B )包月制:54元/月.此外,每一种上网方式都需每分钟加收通讯费0.02元.(1)如果用y表示上网时间为x(时)的费用,请分别写出两种上网方式所需费用y与x之间的函数关系式;并指出费用y是由哪个变量的取值决定的.(2)小明家8月份上网多少小时时,两种上网方式均可选择.(3)小英家8月份若上网60小时,采用哪种上网方式费用较少?第一学期七年级期末考试数学试卷参考答案一、选择题(共12个小题,每小题3分,共36分)1—6 DDACB6—10 BCBCB11—12 DD二、填空题(每题3分,共计21分) 13.3-=k14.2115.216.9917.()b a 36+ 18.()26.05.0>+=n n y19.321二、解答题(本题满分63分) 20.(本题满分6分) 解:(1)4x =2(1分)2009x =21(2分)(2)18321....x x x x ++=9(3分) 21.(本题满分6分)(1)152=x (2)81=x (3)34-=x (每小题2分) 22.化简求值:(本题满分10分,每小题5分)(1)化简代数式为363723-++-a a a ,结果为53 (2)化简代数式为xy x y +2,结果为32-23.解方程(本题满分10分,每小题5分)(1)2=x(2)1969-24.列方程解应用题(本题满分20分,每小题10分)(1)解:这堆桃子原来共有120个. (2)解:25 60(点拨:设加工甲部件x 人,则乙部件(x -85)人,则3×16x =2×10(x -85)解得:x =2585-25=60)25.(本题满分11分)解:(1)A :()x x y 2.46002.005.01=⨯+=………………………3分B :x y 2.1542+=………………………6分上网费用是由上网时间x 的取值确定的。
河北省承德市兴隆县2023-2024学年七年级上学期期末考试数学试卷(含答案)
2023—2024学年度第一学期期末检测试题七年级数学试卷本试卷共8页,满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共38分)一、选择题(本大题共16个小题,1-6每小题3分,7-16每小题2分,共38分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1. 某品牌酸奶外包装上标明“净含量:”;随机抽取四种口味的这种酸奶分别称重如下表.其中,净含量不合格的是()种类原味草莓味香草味巧克力味净含量/ml295300310305A. 原味B. 草莓味C. 香草味D. 巧克力味2. 下列等式错误的是()A. B. C. D.3. 如图,数轴上点P表示的有理数可能是()A. 1.6B. -1.4C. -1.6D. -2.44. 如图,C、D是线段AB的三等分点,若,则线段CB的长度为()A. 3B. 6C. 9D. 125. 方程去分母后,得()A. B.C. D.6. 一副三角板按如图所示的方式摆放,则余角的度数为()A. B. C. D.7. 如果式子的值为10,则的值为()A. 20B. 22C. 26D. 368. 有理数a,b对应的点在数轴上的位置如图,则下列结论正确的是()A. B. C. D.9. 如图所示,直线MN表示一条铁路,铁路两旁各有一点A和B,表示两个工厂.要在铁路上建一货站P,使它到两厂距离之和最短,这个货站P应建在AB与MN的交点处,这种做法用几何知识解释应是()A. 两点之间,线段最短B. 射线只有一个端点C. 两直线相交只有一个交点D. 两点确定一条直线10. 已知直线上A、B两点相距12cm,点C是线段AB的中点,点D与点B相距8cm,则CD的长度是()A. 2cmB. 8cmC. 14cmD. 14cm或2cm11. 如图,将绕点A顺时针旋转一定的角度得到,此时点恰在边AC上,若,,则的长为()A. 2B. 3C. 4D. 512. 元旦到了,初一某班用彩色小灯布置教室,按“一蓝,二红,四黄,三绿”的规律连接起来,那么第100个小灯是()色的A. 红B. 黄C. 蓝D. 绿13. 已知,,,则相等的两个角是()A. B. C. D. 无法确定14. 某学校在元旦联欢会活动中,设座位有x排,若每排坐25人,则有8人无座位;若每排坐29人,则空24个座位,则下列方程正确的是()A. B. C. D.15. 如图,将刻度尺倒放在数轴上,刻度尺上6cm和0cm分别对应数轴上的数-2和3,那么刻度尺上9cm对应数轴上的数为()A. -5B. -5.4C. -4.5D. -3.616. 如图,填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A. 110B. 168C. 212D. 222卷Ⅱ(非选择题,共82分)二、填空题(本大题共3个小题,5个空,每空2分,共10分.把答案写在题中横线上)17. ______.18. 王阿姨买了5盒冰激凌,付了a元,找回b元,5盒冰激凌的总价是______元,冰激凌的单价是______元.19. 如图,点A在数轴上对应的数为a,点B对应的数为b,点A与点B之间的距离记作AB.已知,b比a大12.则:(1)AB的值是______;(2)若点M以每秒1个单位的速度从点A出发沿数轴向右运动,同时点N以每秒2个单位的速度从点B 出发沿数轴向左运动.设运动时间是t秒.当点M与点N之间的距离是9时,则t的最大值为______.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20. 计算:(每小题4分,计8分)(1)(2)解方程:21. 解方程(共10分)学校图书馆以每天借出50册图书为标准.超出部分用正数表示,不足部分用负数表示.上星期图书馆借出图书记录如下:星期一星期二星期三星期四星期五0+8+6-3-7(1)星期五借出______册图书;(2)星期二比星期四多借出______册图书;(3)这五天共借出多少册图书?22.(本小题10分)如图,O是直线AB上一点,OD平分,.若,(1)求的度数;(2)求的度数.23. 应用题(本小题10分)已知,.(1)当,时,求;(2)比较A与B的大小;(3)求.24.(本小题10分)如图所示是一个长方形.(1)根据图中尺寸大小,用含x的代数式表示阴影部分的面积S;(2)若,求S的值.25.(本小题12分)“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出,然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置,如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为130斤,求大象的体重.请将下列解答过程补充完整:孙权曾致巨象,太祖欲知其斤重,访之群下,咸莫能出其理,冲曰:“置象大船之上,而刻其水痕所至,称物以载之,则校可知矣.”——《三国志》解:由题意得等量关系:20块等重的条形石的重量+3个搬运工的体重和=21块等重的条形石的重量+1个搬运工的体重,所以:①已知搬运工体重均为130斤,设每块条形石的重量是x斤,则可列方程为:______.②解这个方程得,______.③实际上由题也可直接得到:一块条形石的重量=______个搬运工的体重.④最终可求得:大象的体重为______斤.26.(本小题12分)如图1,O为直线AB上一点,过点O作射线OC,,将一直角三角板()的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.图1 图2 图3(1)将图1中的三角板绕点O以每秒的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分.①求t的值;②此时ON是否平分?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分?请说明理由.七年级数学试卷答案卷Ⅰ(选择题,共38分)一、选择题(本大题共16个小题,1-6每小题3分,7-16每小题2分,共38分.在每个小题给出的四个选项中,只有一项是符合题目要求的)CDCBCD BCADB DBDCC卷Ⅱ(非选择题,共82分)17. -8 18. ,19. 12;720. 解:(1)原式(2)(每小题4分,按步骤适当给分)21. 解:(1)43 (2)11(每空3分,共6分)(3)(册),即这五天共借出254册图书.……本小问题4分22.(1)解:∵O是直线AB上一点,∴,∵,∵,∴;……5分(2)解:∵,∴,∵OD平分,∴,∵,,∴.……10分23. 解:(1).……3分(2),所以.……7分(3)……10分24. 解:(1)由图形可知:.……5分(2)将代入上式,.……10分25. ①……3分②260……6分③2……9分④5590……12分26. 解:(1)①∵,,∵,∴,∴,∴,∴,解得:秒;……4分②是,理由如下:∵,,∴ON平分;……8分(2)5秒或115秒时,OC平分角MON,理由如下:当OC运动时,∵,,∵,∴,∵三角板绕点O以每秒的速度,射线OC也绕O点以每秒的速度旋转,设为3t,为,∵,可得:,解得:秒;……10分OC停止运动,OM运动时,此时,OC也平分,(秒).……12分。
七年级第一学期期末考试(数学)试题含答案
七年级第一学期期末考试(数学)(考试总分:120 分)一、单选题(本题共计16小题,总分42分)1.(3分)下列运算结果是a2的是( )A.a+aB.a+2C.a•2D.a•a2.(3分)如图,射线OA表示的方向是( )A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°3.(3分)我国渤海、黄海、东海、南海的海水中含有不少化学元素,其中铝、锰元素总量均约为8×106吨.用科学记数法表示铝、锰元素总量的和约是( )A.8×106吨B.1.6×107吨C.16×106吨D.16×1012吨4.(3分)已知x=5是方程2x−3+a=4的解,则a的值是( )A.3B.2C.-3D.-25.(3分)下列说法不正确...的是( )①a3b的系数是3,次数是3;①近似数304.16精确到了十分位;①多项式−5x+6x2−1是二次三项式;①射线AB与射线BA是同一条射线;①一个角的补角不是锐角就是钝角A.①①①①B.①①①C.①①①D.①①①6.(3分)下列变形不正确...的是( )A.如果a=b,那么a+5=b+5B.如果a=b,那么a−c=b−cC.如果ac=bc,那么a=bD.如果ac =bc,那么a=b7.(3分)已知x3-2m y2与2xy n是同类项,则m−n= ( )A.-1B.0C.1D.28.(3分)如图,数轴上三个点所对应的数分别为a,b,c,则下列结论正确的是( )A.a+b > 0B.a-c > 0C.ac > 0D.|a| > |b|x的值为6,则2x2-5x+6的值为( )9.(3分)已知整式x2−52A.9B.12C.18D.2410.(3分)下列图形中,可能..是如图所示的正方体展开图的是( )A.B.C.D.11.(2分)已知|a|=3,|b|=2,|a−b|=a−b,则a+b=( )A.5或−5B.1或5C.5或−1D.−5或112.(2分)互联网"微商"经营已成为大众创业新途径,某微商将一件商品按进价上调50%标价,再以标价的八折售出,仍可获利30元,则这件商品的进价为( )A.80元B.100元C.130元D.150元13.(2分)如图,将一副三角板叠在一起使直角顶点重合于点O(两块三角板可以在同一平面内自由转动),下列结论一定..成立的是( )A.①BOA > ①DOCB.①BOA+① DOC=180°C.①BOA−①DOC=90°D.①BOC≠①DOA14.(2分)如图,点C是线段AB上一点,点M是线段AB的中点,点N是线段AC的中点,若线段MN的长为4,则线段BC的长度是( )A.4B.6C.8D.1015.(2分)在某市奥林匹克联赛中,实验一中学子再创辉煌,竞赛成绩全市领先.某位同学连续答题40道,答对一题得5分,答错一题扣2分(不答同样算作答错),最终该同学获得144分.请问这位同学答对了多少道题?下面共列出4个方程,其中正确的有( )①设答对了x道题,则可列方程:5x−2(40−x)=144;①设答错了y道题,则可列方程:5(40−y)−2y=144;①设答对题目总共得a分,则可列方程:a5+a−1442=40;①设答错题目总共扣b分,则可列方程:144−b5-b2=40.A.4个B.3个C.2个D.1个16.(2分)在学校温暖课程数字兴趣课中,嘉淇同学将一个边长为a的正方形纸片(如图1)剪去两个相同的小长方形,得到一个""的图案(如图2),将剪下的两个小长方形刚好拼成一个"T"字形(如图3),则"T"字形的外围周长(不包括虚线部分)可表示为( )图1 图2图3A.3a−5bB.5a−8bC.5a−7bD.4a−6b二、填空题(本题共计3小题,总分12分)17.(4分)植树时只要定出两棵树的位置,就能确定这一行树所在的直线,原因是__________.18.(4分)对有理数a,b规定运算"①"的意义为a①b=a+2b,比如:5①7=5+2×7,则方程3x①14=2−x的解为__________ .19.(4分)如图,某花园护栏是用直径为80厘米的半圆形条钢组制而成,且每增加一个半圆形条钢,护栏长度就增加a厘米(相邻两个条钢之间都有交叉,a为正整数),设半圆形条钢的总个数为x(x为正整数).(1).当a=50,x=2时,护栏总长度为__________厘米;(2).当a=60时,护栏总长度为__________厘米(用含x的式子表示,结果要求化简);(3).若护栏的总长度为15米,为尽量减少条钢用量,a的值应为__________厘米.三、解答题(本题共计7小题,总分66分)20.(8分)按要求解答下列各小题.(1).计算:(-1)2021+(-18)×|-29|-4÷(-2);(2).化简:5a2+3b2+2(a2−b2)−(5a2−3b2).21.(8分)嘉淇正在解关于x的方程A:x−2m=−3x+4.(1).用含m的式子表示方程A的解;(2).嘉淇妈妈问:"若方程A与关于x的方程B:m=4-x2的解互为相反数,那么此时方程A的解为多少?"请你帮嘉淇解决妈妈提出的问题.22.(9分)已知A=by2−ay−1,B=2y2+3ay−10y+3.(1).若多项式2A−B的值与字母y的取值无关,求a,b的值;(2).在1的条件下,求(2a2b+2ab2)−[2(a2b−1)+3a2b+2]的值.23.(9分)阅读下列材料:计算:124÷(13−14+112).解法一:原式=124÷13−124÷14+124÷112=124×3−124×4+124×12=1124.解法二:原式=124÷(412−312+112)=124÷212=124×6=14.解法三:原式的倒数=(13−14+112)÷124=(13−14+112)×24=13×24−14×24+112×24=4原式=14 .(1).上述得到的结果不同,你认为解法________是错误的; (2).计算:(12−14+16)×36=________;(3).请你选择合适的解法计算:(−1210)÷(37+215−310−521)24.(10分)已知点O 是直线AB 上一点,①COE=60°,OF 是①AOE 的平分线. (1).如图,当①BOE=80°时,求①COF 的度数;(2).当①COE 和射线OF 在如图所示的位置,且题目条件不变时.①求①COF 与①AOE 之间的数量关系; ①直接写出①BOE-2①COF 的值.25.(10分)甲、乙两城相距800千米,一辆客车从甲城开往乙城,车速为a(0<a <100)千米/小时,同时一辆出租车从乙城开往甲城,车速为90千米/小时,设客车行驶时间为t (小时). (1).当t =5时,客车与乙城的距离为______千米(用含a 的式子表示);(2).已知a =70,丙城在甲、乙两城之间,且与甲城相距260千米,当客车和出租车在甲、乙之间的M 处相遇时,出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种返回乙城的方案:方案一:继续乘坐出租车到丙城,加油后立刻返回乙城(出租车加油时间忽略不计); 方案二:在M 处换乘客车返回乙城.假设客车和出租车的行驶速度始终不变,试通过计算,分析小王选择哪种方案能更快返回到乙城?26.(12分)如图,已知点M是线段AB上一定点,AB=12cm,C,D两点分别从M,B出发,以1cm/s,2cm/s的速度沿直线AB向左运动(C在线段AM上,D在线段BM上).(1).若AM=4cm,当点C,D运动了2s时,AC=______.DM=______.(2).若点C,D运动时,总有MD=2AC,求AM的长;的值。
北京市第二中学教育集团2023-2024学年七年级上学期期末数学试题(含解析)
2023−2024学年度第一学期初一数学期末考试试卷考查目标1.知识:人教版七年级上册《有理数》、《整式的加减》、《一元一次方程》、《几何图形初步》全部内容.2.能力:抽象能力,运算能力,推理能力,几何直观能力,阅读理解能力,实际应用能力.考生须知1.本试卷分为第I 卷、第Ⅱ卷和答题卡,共14页;其中第1卷2页,第Ⅱ卷6页,答题卡6页.全卷共三道大题,28道小题.2.本试卷满分100分,考试时间100分钟.3.在第Ⅰ卷、第Ⅱ卷指定位置和答题卡的密封线内准确填写班级、姓名、考号、座位号.4.考试结束,将答题卡交回.第I 卷 (选择题共16分)一、选择题(以下每题只有一个正确的选项,每小题2分,共16分)1.如图是某几何体的三视图,该几何体是( )A .圆柱B .圆锥C .三棱锥D .长方体2.2023年8月,新一代人造太阳“中国环流三号”首次实现100万安培等离子体电流下的高约束模式运行,标志着我国磁约束核聚变装置运行水平迈入国际前列.将1000000用科学记数法表示应为( )A .B .C .D .3.如图,甲从点出发向北偏东方向走到点,乙从点出发向南偏西方向走到点,则的度数是( )6110⨯51010⨯70.110⨯7110⨯O 50︒A O 20︒B AOB ∠A .B 4.已知,,且A .2或8B 5.如图,A .6.若是关于A .10107.如图,将一刻度尺放在数轴上.70︒29a =5b =AOB AOC ∠∠:36︒2x =A .1B .3C .5D .6第Ⅱ卷 (非选择题共84分)10.多项式是 11.若一个角的补角比它的余角的312.古代名著《算学启蒙》中有一题行一十二日,问良马几何追及之.意思是里.慢马先走12天,快马几天可追上慢马?若设快马程为 .32231a a a -+-15.如图,一个大正方形的四个角落分别放置了四张大小不同的正方形纸片,其中号两张正方形纸片既不重叠也无空隙.已知阴影部分的周长是 .(用含a (1)画直线;(2)连接并延长到(3)画射线、并度量AB BC BC CA CD解:∵,∴,∵,∴90AOB ∠=︒90BOC AOC ∠+∠=︒90COD ∠=︒90BOC BOD ∠+∠=︒依题得:,,.50AOC ∠=︒AOB AOD BOD ∴∠=∠+∠COD AOC BOD =∠-∠+∠1805020=︒-︒+︒150=︒根据上图可知:第一次变换后,朝上的点数为5,9.两点之间,线段最短【分析】本题主要考查了线段的性质,即两点之间,线段最短.【详解】解:亮亮打开导航,显示两地直线距离为,但导航提供的三条可选路线长却分别为,,,能解释这一现象的数学知识是:两点之间,线段最短.故答案为:两点之间,线段最短.10. 三 四【分析】本题考查了多项式的概念,几个单项式的和叫做多项式.多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数.根据多项式的概念解答即可.【详解】解:∵有4个项,最高次项是3次,∴多项式是三次四项式.故答案为;三,四.11.##43度【分析】本题考查了余角和补角的意义,如果两个角的和等于,那么这两个角互为余角,其中一个角叫做另一个角的余角;如果两个角的和等于,那么这两个角互为补角,其中一个角叫做另一个角的补角.设这个角为,根据题意列方程求解即可.【详解】解:设这个角为,由题意,得,解得.故答案为:.12.240x=150x+12×150【分析】设良马x 天能够追上驽马,根据路程=速度×时间结合二者总路程相等,即可得出关于x 的一元一次方程.【详解】解:设良马x 天能够追上驽马.根据题意得:240x=150×(12+x )=150x+12×150.【点睛】本题考查的知识点是一元一次方程的应用,解题关键是根据路程=速度×时间结合二者总路程相等,列出关于x 的一元一次方程.13.2或359km 70km 73km 75km 32231a a a -+-32231a a a -+-43︒90︒180︒x ︒x ︒()1803904x x ︒-︒=︒--︒43x =43︒21.2【分析】本题考查了与线段中点有关的计算,据线段中点的定义求出的长,再根据【详解】解:∵点O 是的中点,∴,OB AB 182OB AB ==及根据绝对值的意义化简绝对值.(1)根据数轴可知a .b ,c 的正负性即可求解.(2)根据数轴可知,,,然后根据绝对值的性质化解求解即可.【详解】(1)解:根据数轴可得:,∴,.故答案为:,(2)根据数轴可得:,,∴24.(1)1040(2)302立方米【分析】本题考查了有理数的混合运算,一元一次方程的应用,找到相等关系是解题的关键.(1)根据题中的收费标准计算;(2)根据“B 家庭2023年水费为1838元”列方程求解.【详解】(1)(元),故答案为:1040;(2)设该家庭年用水量为x 立方米,∵,∴,则:,解得:,答:该家庭年用水量为302立方米.25.(1)见详解0b <0a c +>0b a -<0b a c <<<0c -<0abc ><>0b <0a c +>0b a -<||||||b ac b a ++--()b ac a b =-++--b a c a b=-++-+c=()180572001801040⨯+⨯-=()1805726018014601838⨯+⨯-=<260x >()()1805726018092601838x ⨯+⨯-+-=302x =设,∵射线绕点O 顺时针旋转得到射线∴∵平分,平分AOC α∠=OC 90︒90AOD AOC COD a ∠=∠+∠=+OE AOD ∠OF BOC ∠设,则∵平分,平分∴,则设,则,∵平分,平分∴,设,则∵平分,平分AOC β∠=AOD β∠=+OE AOD ∠OF BOC ∠19022EOD AOD β+︒∠=∠=EOF EOD FOC COD ∠=∠+∠-∠AOC γ∠=90AOD γ∠=︒-OE AOD ∠OF BOC ∠19022EOD AOD γ︒-∠=∠=FOC ∠AOC α∠=AOD AOC ∠=∠-360240BOC AOB AOC ∠=︒-∠-∠=OE AOD ∠OF BOC ∠。
西安西工大附中2023-2024学年第一学期七年级数学期末考试试卷附详细答案
西安西工大附中2023-2024学年第一学期期末考试七年级数学试题一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.122.如图所示的几何体的左视图是( )3.如图,已知点B 在点A 的北偏东65°方向,点C 在点A 的南偏西20°方向,则∠BAC 的度数为( ) A.135°B.130°C.125°D.120°4.下列计算,正确的是( ) A.a 2·a 3=a 6B.a 2+a 3=a 5C.(-a 2)3=-a 6D.a 6÷(-a)3=-a 25.点O 、A 、B 、C 在数轴上的位置如图所示,其中点A 、B 到原点O 的距离相等,点A 、C 之间的距离为2.若点C 表示的数为x ,则点B 所表示的数为( ) A.x +2B.x -2C.-x +2D.-x -26.已知a 是两位数,b 是三位数,把b 直接写在a 的右面,就成为一个五位数,这个五位数用代数式可表示成( )第3题图第5题图D.C.B.A. 第2题图A.abB.100a+bC.a+100bD.1000a+b7.若M(5x -y 2)=y 4-25x 2,那么代数式M 应为( ) A.5x 2-y 2B.5x +y 2C.-y 2+5xD.-5x -y 28.《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,则可列方程为( ) A.x+23=x 2-9B.x 3+2=x−92C.x 3-2=x+92D.x−23=x 2+99.计算24046×(-0.25)2024的结果为() A.-22022B.22022C.14D.-1410.有理数a 、b 、c 所对应的点在数轴上的位置如图所示,化简|a -b|-|2c -a|+|c -b|的结果是( ) A.cB.3c -2bC.2a -3cD.-3c二、填空题(共6小题,每小题3分,计18分)11.西安市冬季里某一天的气温为-7℃~-1℃,这一天西安市的温差是____℃. 12.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,即0.00000000022米.将0.00000000022用科学记数法表示为________.13.小明用若干根等长的小木棒设计出如图所示的图形,则第n 个图形中有小木棒____根.第13题图第3个图形第1个图形第2个图形第4个图形…第10题图14.已知m 、n 为有理数,且4x 2+m x +9=(2x +n)2,则m+n 的值为____.15.如图,∠AOB=126°,射线OC 在∠AOB 外,且∠BOC=2∠AOC ,若OM 平分∠BOC ,ON 平分∠AOC ,则∠MON=____°.16.在如图所示的三阶幻方中,填写了一些数、代数式和汉字(其中每个代数式或汉字都表示一个数),若每一横行,每一竖列,以及每条对角线上的3个数之和都相等,则“诚实守信”这四个字表示的数之和为____. 三、解答题(共7小题,计52分) 17.计算题(每小题4分,共12分) (1)-14÷(-5)2×(-53)-|0.8-1|(2)(-2x 2)3+ x 2·x 4-(-3x 3)2(3)解方程:3+x−12=x -x+1418.(5分)先化简,再求值:[(x -2y)2-(x +3y)(x -3y)+3y 2]÷(-4y),其中x =2023,y=-14.19.(6分)列方程解决下面问题.甲、乙两人分别从A ,B 两地同时出发、沿同一条路线相向匀速行驶,已知出发后3h 两人相遇.乙的速度比甲快20km/h ,相遇后乙再经1h 到达A 地.求甲、乙两人的速度. 20.(6分)如图,B 、C 两点把线段AD 分成2︰5︰3三部分,M 为AD 的中点,BM=6,求CM 的长度.第20题图ABM C D第15题图AN BC MO0 信实守诚-8-11 x +1 -x -3第16题图21.(6分)为了解某校七年级学生数学期中考试情况,小亮随机抽取了部分学生的数学成绩(成绩都为整数)为样本,分为A(100~90分)、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果制成如下统计图,请根据图中信息解答以下问题.(1)这次抽样调查的样本容量为_____. (2)请补全条形统计图.(3)这个学校七年级共有学生1200人,若分数为80分(含80分)以上为优秀,估计这次七年级学生期中数学考试成绩为优秀的学生人数大约有多少?22.(7分)如图①,点O 为直线AB 上一点,过点O 作射线0C ,使∠AOC=60°,将一把直角三角尺的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图①中的三角尺绕点O 逆时针旋转至图②,使得点N 在OC 的反向延长线上,求∠MOB 的度数.(2)将图①中的三角尺绕点O 顺时针旋转至图③,使ON 在∠AOC 的内部,请探究∠AOM 与∠NOC 之间的数量关系,并说明理由.第21题图A B C D 25%50%10%CD 等级23.(10分)探究与实践 问题发现(1)用四个长为a ,宽为b 的长方形拼成如图所示的正方形ABCD ,由此可以得到(a+b)2、(a -b)2、ab 的等量关系是_____. 问题探究(2)如图②,将边长为a 的正方形APCD 和边长为b 正方形BPEF 拼在一起,使得A 、P 、B 共线,点E 落在PC 上,连接AB.若AB=8,△APE 的面积为7.5,求CE 的长度. 问题解决(3)如图③,某小区物业准备在小区内规划设计一块休闲娱乐区,其中BE 、CF 为两条互相垂直的道路,且BG=CG ,EG=FG ,四边形ABGF 与四边形CDEG 为长方形,现计划在两个三角形区域种植花草,两个长方形区域铺设塑胶地面,按规划要求,道路BE 的长度为80米.若种值花草每平方米需要100元,铺设塑胶地面每平方米需要30元,若物业为本次修建休闲娱乐区筹集了25万元,请你通过计算说明该物业筹集的资金是否够用?(道路的宽度均不计)第22题图图①B 图②BN 图③BM西安西工大附中2023-2024学年第一学期期末考试七年级数学试题参考答案一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.121.解:2-1=121=12,故选D 。
第一学期期末考试试卷初一数学附答案
第一学期期末考试试卷初一数学一、选择题(本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,把正确选项前的字母填在题后括号内) 1.9-的倒数是( )A .91 B .91- C .9 D .9-2.经专家估算,南海属我国传统海疆线以内的油气资源约合15 000亿美元.用科学记数法表示数字15 000是( ) A .15×103B .1.5×103C .1.5×104D .1.5×1053.代数式21x -与43x -的值互为相反数,则x 等于( )A .-3B .3C .-1D . 1 4.有理数a 、b 在数轴上的位置如图所示,则b a -的值在( )A .-3与-2之间B .-2与-1之间C .0与1之间D .2与3之间 5.下列运算正确的是( )A .32x y xy -=-B .235x x x +=C .222523x x x -=D .222x y xy xy -= 6.当1x =-时,代数式227x x -+的值是( )A .10B .8C .6D .47.已知线段AB =6,在直线AB 上画线段BC ,使BC =2,则线段AC 的长( )A .2B .4C .8D .8或4 8.如图是一个长方体被截去一角后得到的几何体,它的俯视图是( )A B C D二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中横线上)9.已知∠α 的补角比∠α 大30°,则∠α = °.10.绝对值大于1且小于4的所有负整数...之和等于.11.bba-=+22若,______622=+-+baba则.12.已知关于x的方程3142=+-xmx的解是x=1,则m的值为.13.看图填空:CBA⑴=BD BC+=AD-;⑶若点B是线段AC的中点,ADAC21=,则=AC BD.14.观察下列图形:45-7-3-13-31842012-2521603-2y-2x-549图①图②图③图④图⑤请用你发现的规律直接写出图④中的数y:;图⑤中的数x:.三、计算题(本大题共4个小题,每小题5分,共20分.写出计算过程)15.)3()18(322-÷-⨯-.解:16.⎪⎭⎫⎝⎛-+-⨯1578365120.解:17.()2323238⨯--⨯-. 解:18.⎥⎦⎤⎢⎣⎡--⨯---22012)21(4)5332(1. 解:四、解方程(本大题共2个小题,每小题5分,共10分.写出解题过程) 19.04)3(2=-+x .解: 20.21312=--x x . 解:五、列方程解应用题(本题5分,写出解答过程)21.石景山某校七年级1班为郊区的某校“手拉手”班级捐赠课外图书和光盘共120件.已知捐出的图书数比捐出的光盘数的2倍少15件.求该班捐给“手拉手”班级的图书有多少件? 解:六、解答题(本大题共3个小题,每小题5分,共15分)22.当x 为何值时,代数式22)1(2x x --的值比代数式232-+x x 的值大6. 解:23.如图,已知OA ⊥OD ,BO 平分∠AOC ,∠AOB ︰∠COD =2︰5.求∠AOB 的度数。
太仓市第一学期期末考试试卷-初一数学-2
太仓市第一学期期末考试试卷初一数学一、填空题:1.-2的相反数是_____________.2.单项式-2x2y的次数是______________.3.当x=___________时,代数式2x+1的值等于-3.4.已知2x m-1y4与-x4n2n是同类项,则mn=__________.5.如图,直线他、CD、EF相交于点O,则∠1+∠2+∠3的度数是_____________度.a-=,则a=__________.6.若a<0,且237.一个两位数,十位上的数与个位上的数的和是7,若十位上的数字与个位上的数字对换,得到的两位数与原来的两位数的差是9,那么原来的两位数是_____________.8.如图是一个正方体的展开图,如果从前面看是2,从左面看是3,那么从上面看是______.9.在图示的运算流程中,若输出的数y=7,则输入的数x=_______________.10.一个几何体,是由许多规格相同的小正方体堆积而成的,其正视图、左视图如图所示,要摆成这样的图形,至少需要____________块正方体.二、选择题:11北京市目前汽车拥有量约为3120000辆,则3120000用科学记数法表示为()A.0.312×107B.31.2×105 C.3.12×166 D.3.12×10512.-[x-(2y-3z)]去括号应得()A.-x+2y-3z B.-x-2y+3z C.-x-2y-3z D.-x+2y+3z13.如果一个角的补角是150°,那么这个角的余角是()A.60°B.50°C.40°D.30°14.如图,下列说法中错误的是 ( )A .OA 的方向是东北方向B .OB 的方向是北偏西60°C .OC 的方向是南偏西60°D .OD 的方向是南偏东60°15.填在上面三个田字格内的数有相同的规律,根据此规律,A+B+C 等于 ( ) A .140 B .148 C .150 D .15816.线段BC 上有3个点P 1、P 2、P 3,线段BC 外有一点A ,把A 和B 、P 1、P 2、P 3、C 连结起来,可以得到的三角形个数为 ( )A .8个B .10个C .12个D .20个 三、解答题: 17.计算:(本题8分)(1)54254693⎛⎫⨯-- ⎪⎝⎭(2)232008422(1)93⎛⎫-÷⨯-+- ⎪⎝⎭18.(1)化简:2233222x y xy xy x y xy ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦(2)已知A=2x 2+xy+3y 2,B=x 2-xy+2y 2,C 是一个整式,且A+B+C=0,求C .19. (1) 解方程:2(1)3x x -+= (2)解方程:51263x x x +--=-20,如图,线段AB=10cm ,延长AB 到点C ,使BC=6cm ,点M 、N 分别为AC 、BC 的中点,求线段BM 、MN 的长.21.(本题5分)如图,直线AB 、CD 相交于点O ,已知∠AOC=75°,OE 把∠BOD 分成两个角,且∠BOE :∠EOD=2:3,求∠EOB 的度数.22.(本题5分)已知关于x 方程与23x m mx -=+与x -1=2(2x -1)的解互为倒数,求m 的值.23.(本题6分) 当x=1时,代数式x 2-2x+a 的值为3,求当x=-1时,代数式x 2-2x+a 的值.24.(本题6分)2b -与4a b -+互为相反数,求2008ba -的值.25.(本题7分)在下面正方体中,P 、Q 、S 、T 分别是所在播的中点,将此正方体展开,请在展开图中标出P 、Q 、S 、T 的位置,当正方体的边长为a 时,写出展开图中△PSQ 的面积.26.(本题8分)如图,D 是BC 上一点,DE 平分∠ADB 交AB 于E ,DF ⊥DE 交AC 于F ,连结EF .(1)试说明:DF 平分∠ADC ;(2)若∠BDE=50°30′,求∠ADC 的度数.27.(本小题满分8分)为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水目的.该市自来水收费价格见价目表.若某户居民1月份用水9.5m3,则应收水费:2×6+4×(9.5-6)=26元.价目表每月用水量单价不超出6m3的部分2元/m3超出6m3不超出10m3的部分4元/m3超出10m3的部分8元/m3注:水费按月结算(1)已知该户居民2月份用水14m,则应收水费____________元;(2)已知该户居民3月份交水费48元,若设该户居民3月份用水xm3 (x>10),求x的值;(3)若该户居民4、5月份用水20m3 (5月份用水量超过4月份用水量),共交水费64元,则该户居民4、5月份各用水多少立方米?28.(本小题满分8分)在计算l+4+7+10+13+16+19+22+25+28时,我们发现,从第一个数开始,后面的每个数与它的前面一个数的差都是一个相等的常数,具有这种规律的一列数,除了直接相加外,我们还可以用下列公式来求和S,()12nn a aS+=(其中n表示数的个数,a1表示第一个数,a n表示最后一个数),所以1+4+7+10+r3+16+19+22+25+28=() 101282⨯+=145.用上面的知识解答下面问题:某公司对外招商承包一分公司,符合条件的两企业A、B分别拟定上缴利润方案如下:A:每年结算一次上缴利润,第一年上缴1.5万元,以后每年比前一年增加l万元;B:每半年结算一次上缴利润,第一个半年上缴0.3万元,以后每半年比前半年增加0.3万元;(1)如果承包期限4年,请你通过计算,判断哪家企业上缴利润的总金额多?(2)如果承包期限为n年,试用n的代数式分别表示两企业上缴利润的总金额(单位:万元)(3)承包期限n至少是__________年,B企业上缴利润的总金额超过A企业上缴利润的总金额.沁园春·雪<毛泽东>北国风光,千里冰封,万里雪飘。
2022—2023学年度第一学期初一期末考试 (数学)(含答案)101210
2022—2023学年度第一学期初一期末考试 (数学)试卷考试总分:130 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 )1. 的相反数是( )A.B.C.D.2. 下列计算错误的是( )A.B.C.D.3. “植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( )A.两点之间,线段最短B.两点确定一条直线C.两点之间线段的长度,叫做两点之间的距离D.直线可以向两边延长4. 下列说法中正确的是( )A.如果,那么一定是B.一个锐角的补角比这个角的余角大C.射线和射线是同一条射线D.表示的数一定是负数5. 在下列式子中,符合代数式书写形式的是 A.B.C.D.−21−2121121−1210−(−5)=5(−3)−(−5)=2×(−)=−239432(−36)÷(−9)=−4|x |=7x 790∘AB BA −a ()−6. 下列说法中,正确的是( )A.是单项式B.单项式的次数是C.多项式是一次二项式D.单项式的系数是7. 下列各式的计算,正确的是( )A.B.C.D.8. 下列等式变形,符合等式的基本性质的是( )A.若,则B.若,则C.若,则D.若,则9. 关于的方程的解为正整数,则整数的值为( )A.B.C.或D.或10. 现有个能够完全相同的长方形,长、宽分别为、,要求用这个长方形摆成大的正方形,如图所示,利用面积的不同表示方法写出的一个代数恒等式是( )A.B.C.D.11. 已知代数式的值是,则代数式的值是( )A.B.0y x 22ab +3−πy 13x 2−132x−3=7x 2x =7x−33x−2=x+13x+x =1+2−2x =7x =7+2−x =113x =−3x ax+3=4x+1a 2323124a b 4+2ab +=(a +b a 2b 2)24ab =(a +b −(a −b )2)2−2ab +=(a −b a 2b 2)2(a +b)(a −b)=−a 2b 2x+2y+132x+4y+145C.D.不能确定12. 对于代数式,下列解释不合理的是( )A.家鸡的市场价为元千克,千克家鸡需元B.家鸡的市场价为元千克,买千克的家鸡共需元C.正三角形的边长为,则这个三角形的周长为D.制作某种电器需要道工序,已知完成第一道工序所需时间是小时,则完成这道工序所需的时间为小时二、填空题(本题共计 8 小题,每题 5 分,共计40分)13. 《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入元记作元,则支出元记作________元.14. 代数式与是同类项,则________.15. 小明在中考前到文具店买了支铅笔和副三角板,铅笔每支元,三角板每副元,小明共花了________元.16. 在一条直线上取、、三点,使得厘米,厘米,如果是线段的中点,则线段的长为________.17. 规定:对于任意实数,都有:,其中等式右边是通常的加法、减法及乘法运算.如:,那么等式④的解是________. 18. 某种篮球打折后每个篮球售价为元,若设该篮球每个原价为元,则可建立方程模型为________.19. 观察下列等式:,…,则的末位数字是________.20. 小颖家有长度相等而粗细不同的两支蜡烛,其中一支可燃小时,另一支可燃小时.某天晚上突然停电,同时点燃这两根蜡烛,来电后将这两支蜡烛同时吹灭,余下两根蜡烛的长度中,一支是另一支的倍,则停电________小时.三、解答题(本题共计 6 小题,每题 5 分,共计30分)21. 用“☆”定义一种新运算:对于任意有理数和,规定☆.例如:☆.求☆的值;若☆,求的值.22. 如图,点是直线上一点,是一个直角,平分.715a15/a15aa/1515a5a15a15a15 15a500+500300−13x2a y b−23yx4=a b52B22B x ya b aqb=a(a−b)+12⊕5=2×(2−5)+1=2×(−3)+1=−53x+1=167140x=3,=9,=27,=81,=243,=729,=2187313233343536373++++⋯+32333432019453a b a b=a+2ab+ab213=1×+2×1×3+1=1632(1)(−3)2(2)(a+134)=−5aO AB∠COD OE∠BOC如图①,若,求的度数;如图②,若,求的度数(用含有的代数式表示).23. 某商贩每日要到小龙虾基地购进千克小龙虾,下表是该商贩记录的本周小龙虾购进价格(单位:元)浮动情况:星期一二三四五六日每千克价格注:正号表示价格比前一天上涨,负号表示价格比前一天下降.已知小龙虾上周末的进价为每千克元,这周四的进价为每千克元.________;这周购进小龙虾的最高价是每千克多少元?最低价是每千克多少元?若该商贩周五将购进的小龙虾以每千克元全部售出,且出售时小龙虾有的损耗,那么该商贩在本周星期五的收益情况如何?24. 甲和乙在一起做数学题,有一题是:已知代数式的值,,,甲说“代数式的值与,无关”,乙说“代数式的值与,无关”,你同意谁的观点?请说明你的理由.25. 如图是某展览馆模型的平面图,其外框是一个大正方形,中间四个大小相同的正方形(阴影部分)是支撑展馆的核心筒,标记了字母的五个大小相同的正方形是展厅,剩余的是四个大小相同的休息厅,已知核心筒的正方形边长比展厅的正方形的边长的一半多米.若设每个展厅的正方形的边长为米,用含的式子表示核心筒的正方形边长为________米;若核心筒的正方形的边长为米,①则每个展厅正方形的边长为________米;②求该模型的平面图外框大正方形的周长(用含的式子表示);().请根据图中提供的信息,回答下列问题:一个水瓶与一个水杯分别是多少元?我们知道写为小数形式即为,反之,无限循环小数限循环小数都可以写成分数形式,现以无限循环小数可知, (1)∠AOC =30∘∠DOE (2)∠AOC =x ∘∠DOE x 500−1+2.5−2m −3+2+22324(1)m=(2)(3)254%A =5b +2−3−a +8a 3a 4a 2b 2b 3B =6a −8+3−5b 3a 2b 2a 4b 4C =5b +5−11+5a −5a 3a 4a 2b 2b 3b 4A+B+C a b A+B−C a b 1(1)x x (2)y y y (1)(2)130.3˙0.=0.777⋯7˙10x−x =7.−0.=77˙7˙7参考答案与试题解析2022—2023学年度第一学期初一期末考试 (数学)试卷一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 )1.【答案】B【考点】相反数【解析】此题暂无解析【解答】解:由相反数的定义知,的相反数是.故选.2.【答案】D【考点】有理数的除法有理数的乘法有理数的减法【解析】根据有理数的加法、减法、乘法、除法法则分别进行计算即可.【解答】解:,,计算正确;,,计算正确;,,计算正确;,,原题计算错误;故选.3.【答案】B【考点】直线的性质:两点确定一条直线【解析】此题暂无解析−2121B A 0−(−5)=5B (−3)−(−5)=−3+5=2C ×(−)=−239432D (−36)÷(−9)=4D解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,此操作的依据是两点确定一条直线.故选.4.【答案】B【考点】直线、射线、线段余角和补角绝对值【解析】根据绝对值,负数,射线,余角和补角的定义一一判断即可.【解答】解:,∵,∴,故本选项不符合题意;,一个锐角的补角比这个角的余角大,正确,故本选项符合题意;,射线和射线的顶点不同,故不是同一条射线,故本选项不符合题意;,当时,,故表示的数不一定是负数,故本选项不符合题意.故选.5.【答案】A【考点】代数式的写法【解析】选项中的代数式符合书写要求;选项中的代数式应该写为:选项中的代数式应该写为:选项中的代数式应该写为:故选.【解答】此题暂无解答6.【答案】A【考点】多项式单项式【解析】直接利用单项式的定义以及单项式的次数以及系数的定义和多项式的次数与项数确定方法分析得出答案.B A |x |=7x =±7B 90∘C AB BAD a =−1−a =1−a B A B xyzC 735b cD a 2−ab c A解:、是单项式,正确,符合题意;、单项式的次数是,故原式错误,不合题意;、多项式是二次二项式,故原式错误,不合题意;、单项式的系数是,故原式错误,不合题意;故选:.7.【答案】C【考点】合并同类项【解析】根据整式的加减法,即可解答.【解答】解:、,故错误;、,故错误;、,故正确;、,故错误;故选:.8.【答案】D【考点】等式的性质【解析】利用等式的基本性质分别分析得出即可.【解答】解:,若,那么,故此选项错误;,若,那么,故此选项错误;,若,那么,故此选项错误;,若,那么,故此选项正确.故选.9.【答案】C【考点】一元一次方程的解解一元一次方程【解析】A 0B y x 23C ab +3D −πy 13x 2−π13A A 2a +3b ÷5ab B 2−=y 2y 2y 2C −10t+5i=−5t D 3n−2m ;mn m 2n 2C A 2x−3=7x 2x =7x+3B 3x−2=x+13x−x =1+2C −2x =7x =−72D −x =113x =−3D此题可将原方程化为关于的二元一次方程,然后根据,且为整数来解出的值.【解答】解:,.又,∴,∴.∵为整数,∴要为的倍数,∴或.故选.10.【答案】B【考点】列代数式【解析】根据图形的组成以及正方形和长方形的面积公式,知:大正方形的面积-小正方形的面积个矩形的面积.【解答】解:∵大正方形的面积小正方形的面积个矩形的面积,∴,故选.11.【答案】B【考点】列代数式求值方法的优势列代数式求值【解析】先根据已知条件易求的值,再将所求代数式提取公因数,最后把的值代入计算即可.【解答】解:根据题意得:,∴,那么.故选.12.【答案】D【考点】x a x >0x a ∵ax+3=4x+1∴x =24−a x >0x =>024−a a <4x 24−a a=23C =4−=4(a +b −(a −b =4ab )2)2B x+2y 2x+2y x+2y+1=3x+2y =22x+4y+1=2(x+2y)+1=2×2+1=5B根据实际情况,即可列代数式判断.【解答】解:,,都正确,故选项不符合题意;,完成一道工序所需时间是小时,需要完成道工序,每道工序所用的时间不一定相同,因而所需的总时间不一定是小时.故选项符合题意.故选.二、 填空题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )13.【答案】【考点】正数和负数的识别【解析】用正负数表示两种具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据题意,若收入元记作元,则支出元记作元.故答案为:.14.【答案】【考点】同类项的概念【解析】据同类项是字母相同且相同字母的指数也相同,可得的值.【解答】解:∵代数式与是同类项,∴解得∴.故答案为:.15.【答案】【考点】A B C D a 1515a D −300500+500300−300−3008y −13x 2a y b−23y x 4{2a =4,b −2=1,{a =2,b =3,==8a b 238(5x+2y)共花钱数铅笔钱数三角板钱数.【解答】解:支铅笔元,两副三角板元,共花了元.故答案为:.16.【答案】厘米或厘米【考点】线段的和差【解析】本题没有给出图形,在画图时,应考虑到、、三点之间的位置关系的多种情况,然后画出图形,利用线段的和差关系进行计算.【解答】解:当点在线段上时,如图,.厘米,厘米,厘米.:是线段的中点,厘米.当点在线段上的延长线上时,如图,厘米,厘米,厘米.:是线段的中点,厘米.故答案为:厘米或厘米.17.【答案】【考点】定义新符号解一元一次方程【解析】根据定义新运算公式列出一元一次方程即可求出结论.【解答】解:∵,∴,解得: .=+52B 5x 2y (5x+2y)(5x+2y)6.5 2.5A B C C AB 0cBAC =AB−BCAB =9BC =4AC =9−4=50AC OA =,AC =2.512C AB 0Bc AC =AB+BCAB =9BC =4AC =9+4=130AC OA =AC =6.512 2.5 6.5x =−23⊕x+1=163(3−x)=15x =−2故答案为: .18.【答案】【考点】由实际问题抽象出一元一次方程【解析】直接利用原价售价,进而得出答案.【解答】解:设该篮球每个原价为元,则可建立方程模型为:.故答案为:.19.【答案】【考点】规律型:数字的变化类【解析】【解答】解:∵,,,,,,……,∴尾数四个一循环,∴每四个的尾数和是,∵,∴的末位数字是.故答案为:.20.【答案】【考点】一元一次方程的应用——其他问题【解析】可设蜡烛的高度为,等量关系为:粗蜡烛燃烧的高度=(细蜡烛燃烧的高度),把相关数值代入求解即可.【解答】解:设此时蜡烛燃烧了小时.,解得.故答案为:.x =−20.7x =140×=折数10x 0.7x =1400.7x =1407=331=932=2733=8134=24335=72936=21873702019÷4=504⋯33++++...+3233343201977401111−3×1−x 1−=3×(1−)x 5x 4x =40114011三、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )21.【答案】解:.,解得.【考点】有理数的混合运算定义新符号列代数式求值解一元一次方程【解析】无无【解答】解:.,解得.22.【答案】解:∵,∴.∵平分,∴.∵是一个直角,∴,∴;∵,,∴.∵平分,∴.∵,∴,∴.【考点】余角和补角角的计算角平分线的定义【解析】(1)先求得,再根据角平分线的性质得出,根据余角的性质得出的度数;(2)把数字换成希腊字母表示,同(1)的方法即可得出的度数(用含的代数式表示);(1)(−3)☆2=−3×+2×(−3)×2+(−3)=−2722(2)☆4=×+2××4+==−5a +13a +1342a +13a +1325a +253a =−85(1)(−3)☆2=−3×+2×(−3)×2+(−3)=−2722(2)☆4=×+2××4+==−5a +13a +1342a +13a +1325a +253a =−85(1)∠AOC +∠BOC =180∘∠BOC =−∠AOC =−=180∘180∘30∘150∘OE ∠BOC ∠COE =∠BOC =×=1212150∘75∘∠COD ∠COE+∠DOE =90∘∠DOE =−∠COE =−=90∘90∘75∘15∘(2)∠AOC +∠BOC =180∘∠AOC =x ∘∠BOC =−∠AOC =(180−x 180∘)∘OE ∠BOC ∠COE =∠BOC =(180−x =(90−x 1212)∘12)∘∠COD =90∘∠COE+∠DOE =90∘∠DOE =−∠COE =−(90−x =(x 90∘90∘12)∘12)∘∠BOC ∠COE ∠DOE ∠DOE α解:∵,∴.∵平分,∴.∵是一个直角,∴,∴;∵,,∴.∵平分,∴.∵,∴,∴.23.【答案】周一:(元);周二:(元);周三:(元);周四:(元);周五:(元);周六:(元);周日:(元).因为,所以这周内购进小龙虾的最高价是每千克元,最低价是每千克元.(元),答:该商贩在本周星期五收益元.【考点】有理数的混合运算有理数的加减混合运算正数和负数的识别【解析】左侧图片未给出解析.左侧图片未给出解析.左侧图片未给出解析.【解答】解:因为(元),所以.故答案为:.周一:(元);周二:(元);周三:(元);周四:(元);周五:(元);周六:(元);周日:(元).因为,所以这周内购进小龙虾的最高价是每千克元,最低价是每千克元.(元),答:该商贩在本周星期五收益元.24.(1)∠AOC +∠BOC =180∘∠BOC =−∠AOC =−=180∘180∘30∘150∘OE ∠BOC ∠COE =∠BOC =×=1212150∘75∘∠COD ∠COE+∠DOE =90∘∠DOE =−∠COE =−=90∘90∘75∘15∘(2)∠AOC +∠BOC =180∘∠AOC =x ∘∠BOC =−∠AOC =(180−x 180∘)∘OE ∠BOC ∠COE =∠BOC =(180−x =(90−x 1212)∘12)∘∠COD =90∘∠COE+∠DOE =90∘∠DOE =−∠COE =−(90−x =(x 90∘90∘12)∘12)∘+1.5(2)23−1=2222+2.5=24.524.5−2=22.522.5+1.5=2424−3=2121+2=2323+2=2525>24.5>24>23>22.5>22>212521(3)(500−500×4%)×25−500×21=15001500(1)23−1+2.5−2=22.5m=24−22.5=+1.5+1.5(2)23−1=2222+2.5=24.524.5−2=22.522.5+1.5=2424−3=2121+2=2323+2=2525>24.5>24>23>22.5>22>212521(3)(500−500×4%)×25−500×21=15001500解:∵,,,∴,,∴与有关,甲不对;∵,,∴与,无关,∴乙对.【考点】整式的加减合并同类项【解析】先求出的值与代数式的值即可得出结论.【解答】解:∵,,,∴,,∴与有关,甲不对;∵,,∴与,无关,∴乙对.25.【答案】①由题意得,每个展厅正方形的边长为米,故答案为:;②∵核心筒的正方形的边长为米,每个展厅正方形的边长为米,∴该模型的平面图外框大正方形的边长为(米),∴该模型的平面图外框大正方形的周长为(米).③每个休息厅的图形的周长为(米).【考点】列代数式整式的加减【解析】A =5b +2−3−a +8a 3a 4a 2b 2b 3B =6a −8+3−5b 3a 2b 2a 4b 4C =5b +5−11+5a −5a 3a 4a 2b 2b 3b 4A+B+C =5b +2−3−a +a 3a 4a 2b 2b 38+6a −8+3−5+5b +5−11+5a −5b 3a 2b 2a 4b 4a 3a 4a 2b 2b 3b 4=10b +10−22+10a −10+8a 3a 4a 2b 2b 3b 4ab A+B−C =5b +2−3−a +8+6a −8a 3a 4a 2b 2b 3b 3a 2b 2+3−5−5b −5+11−5a +5a 4b 4a 3a 4a 2b 2b 3b 4=8a b A+B+C A+B−C A =5b +2−3−a +8a 3a 4a 2b 2b 3B =6a −8+3−5b 3a 2b 2a 4b 4C =5b +5−11+5a −5a 3a 4a 2b 2b 3b 4A+B+C =5b +2−3−a +a 3a 4a 2b 2b 38+6a −8+3−5+5b +5−11+5a −5b 3a 2b 2a 4b 4a 3a 4a 2b 2b 3b 4=10b +10−22+10a −10+8a 3a 4a 2b 2b 3b 4ab A+B−C =5b +2−3−a +8+6a −8a 3a 4a 2b 2b 3b 3a 2b 2+3−5−5b −5+11−5a +5a 4b 4a 3a 4a 2b 2b 3b 4=8a b x+112(2)2(y−1)2(y−1)y 2(y−1)2y+3×2(y−1)=8y−64(8y−6)=32y−243(2y−2)+4y+8y−6−2(2y−2)=14y−8(1)根据核心筒的正方形边长比展厅的正方形边长的一半多米,表示出核心筒正方形的边长即可;(2)根据核心筒正方形的边长表示出外框正方形的边长,即可表示出外框正方形的周长;【解答】解:根据题意得:核心筒的正方形边长为米.故答案为:.①由题意得,每个展厅正方形的边长为米,故答案为:;②∵核心筒的正方形的边长为米,每个展厅正方形的边长为米,∴该模型的平面图外框大正方形的边长为(米),∴该模型的平面图外框大正方形的周长为(米).③每个休息厅的图形的周长为(米).26.【答案】解:设一个水瓶是元,则一个水杯是元,由题意得:,解得,则(元),答:一个水瓶是元,一个水杯是元.①设,由,可知,即,解得,即,故答案为:;②设,由,可知,,即,解得,即,故答案为:;③设,由,可知,,即,解得,即.【考点】一元一次方程的应用——其他问题【解析】设出水瓶的价格,再表示水杯的价格,构造方程,即可得到答案;按照新定义的运算规则,逐个计算即可.【解答】解:设一个水瓶是元,则一个水杯是元,由题意得:,解得,则(元),答:一个水瓶是元,一个水杯是元.①设,由,可知,即,解得,即,1(1)(x+1)12x+112(2)2(y−1)2(y−1)y 2(y−1)2y+3×2(y−1)=8y−64(8y−6)=32y−243(2y−2)+4y+8y−6−2(2y−2)=14y−8(1)x (30−x)3x+4(30−x)=96x =2430−24=6246(2)0.=x 4˙0.=0.44⋯4˙10x−x =4.−0.=44˙4˙10x−x =4x=490.=4˙49490.=x 7˙5˙0.=0.7575⋯7˙5˙100x−x =75.−0.=757˙5˙7˙5˙100x−x =75x =75990.=7˙5˙253325330.=x 9˙0.=0.999⋯9˙10x−x =9.−0.=99˙9˙10x−x =9x =10.=19˙(1)(2)(1)x (30−x)3x+4(30−x)=96x =2430−24=6246(2)0.=x 4˙0.=0.44⋯4˙10x−x =4.−0.=44˙4˙10x−x =4x=490.=4˙494故答案为:;②设,由,可知,,即,解得,即,故答案为:;③设,由,可知,,即,解得,即.490.=x 7˙5˙0.=0.7575⋯7˙5˙100x−x =75.−0.=757˙5˙7˙5˙100x−x =75x =75990.=7˙5˙253325330.=x 9˙0.=0.999⋯9˙10x−x =9.−0.=99˙9˙10x−x =9x =10.=19˙。
初一数学上期末考试试题与答案共9套
初一数学期末考试试题与答案一一、选择题(1-6每小题3分,7-12每小题4分,共42分)2.下列画图语句中正确的是()A.画射线OP=5cm B.连结A、B两点C.画出A、B两点的中点 D.画出A、B两点的距离3.两个锐角的和()A.一定是锐角 B.一定是直角C.一定是钝角 D.可能是钝角、直角或锐角5.为了考查北京市初中毕业升学数学考试的情况,从125000考生中抽取了1200名考生的成绩,在下列说法中正确的是()A.125000考生数学考试成绩的总和是总体B.每个考生考试成绩是个体C.1200名考生是样本D.1200名考生的成绩是样本容量6.某校对1200名女生的身高进行了测量,身高在(单位:m)这一小组的频率为0.25,则该组的人数为()A.150人 B.300人 C.600人 D.900人7.如上右图是某农村作物统计图,其中水稻所占比例是()A.40% B.72%C.48% D.52%8.某土建工程工需动用15台挖、运机械,每台机械每小时能挖土3m3或者运土2 m3,为了使挖土和运土工作同时结束,安排了x台机械运土,则x应满足()A.2x=3(15-x) B.3x=2(15-x)C.15-2x=3x D.3x-2x=1511.目前,财政部将证券交易印花税税率由原来的1‰(千分之一)提高到3‰.如果税率提高后的某一天的交易额为亿元,则该天的证券交易印花税(交易印花税=印花税率×交易额)比按原税率计算增加了多少亿元()A.a‰ B.2a‰ C.3a‰ D.4a‰12.如图1是一个小正方体的侧面展开图,小正方体从如图2所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上面的字是()A.和 B.谐 C.社 D.会二、填空题(每小题4分,共20分)13.为了解全国初中生的睡眠状况,比较适合的调查方式是(填"普查"或"抽样调查")14.已知∠α与∠β互为补角,且∠α-∠β=30°,则∠α与∠β的大小依次是、。
初一数学试题]]新人教版初一数学上册期末考试(含答案)[1]
人教版2022-2023学年七上期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.截至2021年12月8日,31个省(自治区、直辖市)和新疆生产建设兵团累计报告接种新冠病毒疫苗超过3600000000剂次.用科学记数法表示3600000000是( )A .3.6×109B .0.36×109C .3.6×1010D .0.36×10102.下列各组单项式中,是同类项的是( )A .5a ,3abB .4mn ,﹣nmC .﹣2x 2y ,3xy 2D .3ab ,﹣5ab 23.如图,直线AB 、CD 相交于点O ,则推导出“∠AOD =∠BOC ”,下列依据中,最合理的是( )A .同角的余角相等B .等角的余角相等C .同角的补角相等D .等角的补角相等4.已知关于x 的方程2x ﹣a +5=0的解是x =1,则a 的值为( )A .6B .7C .8D .95.下面四个几何体中,从左面看到的图形是四边形的几何体共有几个?( )A .1个B .2个C .3个D .4个6.若一个角的余角比它的这个角大20°,则这个角等于( )A .25°B .35°C .45°D .55°7.下列说法中错误的是( )A .数字0是单项式B .单项式b 的系数与次数都是1C .12x 2y 2是四次单项式D .−2πab 3的系数是−238.《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人?设共有x 人,则( )A .x+23=x 2−9B .x 3+2=x−92C .x 3−2=x+92D .x−23=x 2+99.(3分)如图,已知∠AOB =∠COD =90°,OB 平分∠DOE ,图中有m 对互余的角;图中有n 对互补的角,则m ,n 的值分别为( )A .m =1,n =2B .m =2,n =3C .m =2,n =5D .m =3,n =610.观察下列等式找出规律①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;…,则(﹣5)3+(﹣6)3+(﹣7)3+…+(﹣15)3的值是( )A .14400B .﹣14400C .14300D .﹣14300二、填空题(共6小题,每小题3分,共18分)将答案直接写在答题卡指定的位置上.11.计算:(﹣7)﹣(+5)+(+13)= .12.亚贸广场某件农服的售价为240元,若这件衣服的利润率为50%,则该衣服的进价为 元.13.计算72°﹣29°18′33″的结果是 .14.若方程(k +2)x |k +1|+6=0是关于x 的一元一次方程,则k +2023= .15.已知线段AB =16,直线AB 上有一点C ,且BC =4,点M 是线段AC 的三等分点,则AM 的长是 .16.如图,已知∠AOB =90°,∠COD 在∠AOB 内部且∠COD =45°.下列说法:①如果∠AOC =∠BOD ,则图中有两对互余的角;②如果作OE 平分∠BOC ,则∠AOC =2∠DOE ;③如果作OM 平分∠AOC ,ON 在∠AOB 内部,且∠MON =45°,则OD 平分∠BON ;④如果在∠AOB 外部分别作∠AOC 、∠BOD 的余角∠AOP 、∠BOQ ,则∠AOP+∠BOQ ∠COD =3;其中正确的有 .三、解答题(共8小题,共72分)在答题卡指定的位置上写出必要的演算过程或证明过程.17.(8分)计算.(1)(5a ﹣3b )+5(a ﹣2b );(2)﹣2×(﹣3)2﹣(﹣2)3÷4.18.(8分)解方程.(1)5(x +2)=14+3x ;(2)x−45+1=x−53.19.(8分)七(31)班有43名志愿者,由于疫情每人捐7个医用口罩或5个抗原检测试剂.现把3个口罩和4个检测试剂配成一套健康包,有意思的是该班捐赠的口罩和抗原试剂刚好配套成整套的健康包,试求该班捐赠口罩和抗原试剂的志愿学生各多少名?20.(8分)按要求完成作图及作答:(1)如图1,请用适当的语句表述点M 与直线l 的关系: ;(2)如图1,画射线PM ;(3)如图1,画直线QM ;(4)如图2,平面内三条直线交于A 、B 、C 三点,将平面最多分成7个不同的区域,点M 、N 是平面内另外两点,若分别过点M 、N 各作一条直线,则新增的两条直线使得平面内最多新增 个不同的区域.21.(8分)如图,∠AOB =110°,OD 平分∠BOC ,∠EOC =3∠AOE .(1)若∠AOD =95°,求∠AOE 的度数.(2)作OF 平分∠EOB ,若∠DOE =65°,求∠FOB 的度数.22.(10分)双十一期间,各大商场进行促销活动,其中“大洋百货”推出了如下活动:活动一:每满300元减50元;活动二:若标价不超过600元时,打九折,若标价超过600元时,则不超过600元的部分打九折,超过600元的部分打六折.设某一商品的标价为x元:(1)x=720时,按方式二应该付多少钱?(2)当300<x<900时,两种方式如何选择才更优惠?23.(10分)如图,数轴上线段AB=2(单位长度),线段CD=4(单位长度),点A在数轴上表示的数是﹣12,点C在数轴上表示的数是14.若线段AB以每秒2个单位长度的速度向右匀速运动,同时线段CD以每秒1个单位长度的速度向左匀速运动.设运动时间为ts.(1)当点B与点C相遇时,点A,D在数轴上表示的数分别为,;(2)当t为何值时,点B刚好与线段CD的中点重合;(3)当运动到BC=9(单位长度)时,求出此时点B在数轴上表示的数.24.(12分)已知∠AOB=120°,OC为∠AOB内部的一条射线,∠BOC=30°.(1)如图1,若OE平分∠AOB,OD为∠BOC内部的一条射线,∠BOD=5∠COD,求∠DOE的度数;(2)如图2,若射线OM绕着O点从OA开始以12度/秒的速度顺时针旋转至OB结束,在旋转过程中,ON 平分∠AOM,试问2∠BON﹣∠BOM是否为定值,若不是,请说明理由;若是,请求出其值;(3)如图3,若射线OE绕着O点从OA开始以15度/秒的速度顺时针旋转至OB结束、OF同时绕着O点从OB开始以3度/秒的速度逆时针旋转至OA结束,运动时间为t秒,当∠EOC=∠FOC时,求t的值.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【解答】解:3600000000=3.6×109.故选:A .2.【解答】解:由“所含的字母相同,且相同字母的指数也相同”可得,选项B 的两个单项式是同类项,故选:B .3.【解答】解:∵∠AOD 与∠BOC 都是∠AOC 的补角,∴∠AOD =∠BOC (同角的补角相等).故选:C .4.【解答】解:把x =1代入方程2x ﹣a +5=0中得:2﹣a +5=0,解得:a =7.故选:B .5.【解答】解:因为圆柱的左视图是矩形,四棱锥的左视图是等腰三角形,圆锥的左视图是等腰三角形,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体;故选:B .6.【解答】解:设这个角等于x °,则它的余角是(90﹣x )°,根据题意得:(90﹣x )°﹣x °=20°,解得:x =35.故这个角等于35°.故选:B .7.【解答】解:A 、数字0是单项式,本选项说法正确,不符合题意;B 、单项式b 的系数与次数都是1,本选项说法正确,不符合题意;C 、12x 2y 2是四次单项式,本选项说法正确,不符合题意;D 、−2πab 3的系数是−2π3,故本选项说法错误,符合题意;故选:D .8.【解答】解:由题意可得:x 3+2=x−92, 故选:B .9.【解答】解:∵OB 平分∠DOE ,∴∠EOB =∠DOB ,∵∠AOB =∠COD =90°,∴∠AOD =∠COB ,∴∠AOE 和∠BOE 互余,∠AOE 和∠BOD 互余,∠BOE 和∠BOD 互余,即m =3;∴∠AOE 和∠AOC 互补,∠AOE 和∠BOC 互补,∠BOE 和∠AOC 互补,∠BOE 和∠BOC 互补,∠AOC 和∠BOD 互补,∠BOC 和∠BOD 互补,即n =6.故选:D .10.【解答】解:∵①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;…,∴(﹣5)3+(﹣6)3+(﹣7)3+…+(﹣15)3=﹣(53+63+73+ (153)=﹣[13+23+33+…+153﹣(13+23+33+43)]=﹣(1202﹣102)=﹣14300,故选:D .二、填空题(共6小题,每小题3分,共18分)将答案直接写在答题卡指定的位置上.11.【解答】解:(﹣7)﹣(+5)+(+13)=﹣7﹣5+13=﹣12+13=1.故答案为:1.12.【解答】解:设该衣服的进价是x 元,依题意有:(1+50%)x =240,解得x =160.高该衣服的进价为160元.故答案为:160.13.【解答】解:72°﹣29°18′33″=71°59′60″﹣29°18′33″=42°41′27″.故答案为:42°41′27″.14.【解答】解:∵方程(k +2)x |k +1|+6=0是关于x 的一元一次方程,∴{k +2≠0|k +1|=1, 解得:k =0,∴k +2023=0+2023=2023.故答案为:2023.15.【解答】解:当点C 在线段AB 上时,∵AB =16,BC =4,∴AC =AB ﹣BC =12,∵点M 是线段AC 的三等分点,∴AM =13AC =4或AM =23AC =8,当点C 在线段AB 的延长线上时,∵AB =16,BC =4,∴AC =AB +BC =20,∵点M 是线段AC 的三等分点,∴AM =13AC =203或AM =23AC =403,∴AM 的长是4或8或203或403. 故答案为:4或8或203或403.16.【解答】解:∵∠AOB =90°,∠COD =45°,∴∠AOC +∠BOD =∠AOB ﹣∠COD =45°.①∵∠AOC =∠BOD ,∠AOC +∠BOD =45°,∴∠AOC =∠BOD =22.5°,∴∠AOD =∠COB =67.5°,∴∠AOD +∠COB =90°,∠BOC +∠AOC =90°,∴图中有两对互余的角,故①正确;②设∠AOC =x ,则∠BOD =45°﹣x ,∴∠BOC =∠BOD +∠COD =45°﹣x +45°=90°﹣x .∵OE 平分∠BOC ,∴∠BOE =12∠BOC =45°−12x ,∴∠DOE=∠BOE﹣∠BOD=(45°−12x)﹣(45°﹣x)=12x,∴∠AOC=2∠DOE,故②正确;③设∠AOC=x,则∠BOD=45°﹣x,∵OM平分∠AOC,∴∠COM=12∠AOC=12x.∴∠CON=∠MON﹣∠COM=45°−12x,∴∠DON=∠COD﹣∠CON=45°﹣(45°−12x)=12x,∴∠BOD不一定等于∠DON,即ON不是∠BOD的平分线,故③错误;④设∠AOC=x,则∠BOD=45°﹣x,∠AOP=90°﹣x,∠BOQ=90°﹣(45°﹣x)=45°+x,∴∠AOP+∠BOQ=90°﹣x+45°+x=135°,∵∠COD=45°,∴∠AOP+∠BOQ∠COD=3,故④正确.故答案为:①②④.三、解答题(共8小题,共72分)在答题卡指定的位置上写出必要的演算过程或证明过程.17.【解答】解:(1)(5a﹣3b)+5(a﹣2b)=5a﹣3b+5a﹣10b=10a﹣13b;(2)﹣2×(﹣3)2﹣(﹣2)3÷4=﹣2×9﹣(﹣8)÷4=﹣18﹣(﹣2)=﹣16.18.【解答】解:(1)去括号得:10x +10=14+3x ,移项得:10x ﹣3x =14﹣10,合并同类项得:7x =4,解得:x =74;(2)去分母得:3(x ﹣4)+15=5(x ﹣5),去括号得:3x ﹣12+15=5x ﹣25,移项得:3x ﹣5x =12﹣15﹣25,合并同类项得:﹣2x =﹣28,解得:x =14.19.【解答】解:设捐赠口罩的有x 人,则捐赠抗原试剂的有(43﹣x )人, 根据题意得:7x 3=5(43−x)4,即28x =15(43﹣x ),解得x =15,∴43﹣x =43﹣15=28,答:该班捐赠口罩的志愿学生有15名,捐赠抗原试剂的志愿学生有28名.20.【解答】解:(1)点M 与直线l 的关系:M 在直线l 外;故答案为:M 在直线l 外;(2)如图1,直线PM 即为所求;(3)如图1,射线QM 即为所求;(4)如图2,新增的两条直线使得平面内最多新增7个交点. 故答案为:7.21.【解答】解:(1)∵∠AOD =95°,∠AOB =110°,∴∠BOD =∠AOB ﹣∠AOD =110°﹣95°=15°,又∵OD 平分∠BOC ,∴2∠COD =2∠BOD =∠BOC ,∴∠BOC =15°+15°=30°,∴∠AOC=∠AOB﹣∠BOC=110°﹣30°=80°,又∵∠EOC=3∠AOE,∴∠AOE=14∠AOC=14×80°=20°;(2)∵∠DOE=65°,∠AOB=110°,∴∠AOE+∠BOD=∠AOB﹣∠DOE=110°﹣65°=45°,设∠AOE=x°,则∠EOC=3x°,又∵OD平分∠BOC,∴∠BOD=∠COD=(45﹣x)°,∵∠EOC+∠COD=∠DOE=65°,∴3x+(45﹣x)°=65°,∴x=10°,∵OF平分∠EOB,∴∠FOB=12∠EOB=12(∠AOB﹣∠AOE)=12×(110﹣10)=50°.22.【解答】解:(1)(720﹣600)×0.6+600×0.9=612(元);(2)①当300<x<600时,活动一可以优惠50元,活动二标价50÷(1﹣0.9)=500元;当x<500时,活动一更优惠;当x=500时,两种方式优惠一样;当500<x<600时,活动二更优惠;②当x=600时,∵活动一优惠50×2=100元,活动二优惠600×0.1=60元,∴活动一更优惠;③当600<x<900时活动一可以优惠50×2=100元,活动二标价600×0.9+100÷(1﹣0.6)=700元;当x <700时,活动一更优惠;当x =700时,两种方式优惠一样;当700<x <900时,活动二更优惠.23.【解答】解:(1)点A 表示的数是4,点D 表示的数是10,故答案为:4,10;(2)由题意可知点B 表示的数是﹣10,线段CD 的中点在数轴上表示的数是16, (2+1)t =16﹣(﹣10),t =263,答:当t =263时,点B 刚好与线段CD 的中点.(3)①当点B 在点C 的左侧时,(2+1)t +9=14﹣(﹣10),t =5,﹣10+2×5=0;②当点B 在点C 的右侧时,(2+1)t =14﹣(﹣10)+9,t =11,﹣10+2×11=12;答:点B 在数轴上表示的数是0或12.24.【解答】解:(1)∵∠BOC =30°,∠BOD =5∠COD ,∴∠BOD =30°×51+5=25°, 又∵∠AOB =120°,OE 平分∠AOB ,∴∠BOE =120°÷2=60°∴∠DOE =60°﹣25°=35°;(2)2∠BON ﹣∠BOM 为定值,理由如下:设OM 运动t 秒,则∠BOM =120﹣12t ,∠AOM =12t ,∵ON 平分∠AOM ,∴∠NOM =12t ÷2=6t ,∠BON =120﹣12t +6t =120﹣6t ,∴2∠BON ﹣∠BOM =2×(120﹣6t )﹣(120﹣12t )=120°,∴2∠BON ﹣∠BOM 为定值;(3)当OE 在∠AOC 内部时,∵∠EOC =∠FOC ,∴120﹣30﹣15t =30﹣3t ,解得t =5,当OE 与OF 重合时,15t +3t =120°,解得t =203,综上所述,当∠EOC =∠FOC 时,t =5秒或203秒。
2025届重庆市十八中学七年级数学第一学期期末考试试题含解析
2025届重庆市十八中学七年级数学第一学期期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在23| 3.5|3,05⎛⎫---- ⎪⎝⎭、、中,最小的数是( ) A .3 B .﹣|﹣3.5| C .235⎛⎫-- ⎪⎝⎭ D .02.为了解汝集镇三所中学七年级680名学生的期末考试数学成绩,抽查了其中60名学生的期末数学成绩进行统计分析.下面叙述正确的是( )A .680名学生是总体B .60名学生的期末数学成绩是总体的一个样本C .每名学生是总体的一个个体D .以上调查属于全面调查3.某中学组织初一部分学生参加社会实践活动,需要租用若干辆客车.若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则只有1人不能上车.设租了x 辆客车,则可列方程为( )A .4010431x x +=+B .4010431x x -=-C .401043(1)x x +=-D .4010431x x +=-4.点A 、B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论,其中正确的是( ) ①b ﹣a <1;②a +b >1;③|a |<|b |;④ab >1.A .①②B .③④C .①③D .②④5.在下列单项式中,与是同类项的是( ) A . B . C . D .6.下列各式中,是同类项的是( )A .22a b 与23b a -B .2x π与212xC .2212m n -与225tm nD .6xy -与6yz -7.如果方程24=x 与32x k +=-方程的解相同,则k 的值为( )A .8-B .4-C .4D .88.电视剧《铁血将军》在我市拍摄,该剧展示了抗日英雄范筑先的光辉形象.某校为了解学生对“民族英雄范筑先”的知晓情况,从全校2400名学生中随机抽取了100名学生进行调查.在这次调查中,样本是 ( )A .2400名学生B .100名学生C .所抽取的100名学生对“民族英雄范筑先”的知晓情况D .每一名学生对“民族英雄范筑先”的知晓情况9.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式10.数9的绝对值是( )A .9B .19C .﹣9D .19- 11.∠1与∠2互补,∠3与∠1互余,∠2+∠3=210°,则∠2是∠1的( )A .2倍B .5倍C .11倍D .不确定12.A 、B 两地相距350千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t 小时两车相距50千米,则t 的值是( )A .2B .1.5C .2或1.5D .2或2.5二、填空题(每题4分,满分20分,将答案填在答题纸上)13.对于X ,Y 定义一种新运算“*”:X *Y =aX +bY ,其中a ,b 为常数,等式右边是通常的加法和乘法运算.已知:3*5=15,4*7=28,那么2*3=________.14.一个角的补角与它的余角的3倍的差是40°,则这个角为_____.15.若多项式4322(1)(2)31x a x b x x -++---中不含3x 项和2x 项,则ab =______.16.已知225m a b -和437n a b -是同类项,则m n +的值是_______.17.计算201920191()22-⨯=__________.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)小明爸爸上周买进某种股票1000股,每股27.3元,下表为本周每天该股票的涨跌情况:①星期三收盘时,每股是多少元?②本周内最高价是每股多少元?最低价是每股多少元?③若小明爸爸按本周五的收盘价将股票全部卖出,你认为他会获利吗?19.(5分)定义如下:使等式222ab a b =--成立的一对有理数a ,b 叫“理想有理数对”,记为(a ,b ),如:277442233⨯=-⨯-,所以数对(4,73)是“理想有理数对”. (1)判断数对(-1,1)是否为“理想有理数对”,并说明理由;(2)若数对(-3,m )是“理想有理数对”,求m 的值,并求代数式()231m m --的值. 20.(8分)解下列方程(1)12225y y y -+-=- (2)()()()22431233x x x ---=-+21.(10分)滴滴快车是一种便捷的出行工具,分为普通快车和优享型快车;两种.下表是普通快车的收费标准:(1)张敏乘坐滴滴普通快车,行车里程7公里,行车时间15分钟,求张敏下车时付多少车费?(2)王红乘坐滴滴普通快车,行车里程22公里,下车时所付车费63.4元,则这辆滴滴快车的行车时间为多少分钟?22.(10分)解方程:2(x ﹣1)﹣2=4x23.(12分)已知多项式3x 2+my ﹣8减去多项式﹣nx 2+2y+7的差中,不含有x 2、y 的项,求n m +mn 的值.参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、B【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:﹣|﹣3.5|=﹣3.5,﹣(﹣325)=3.4,∵﹣3.5<0<3<3.4,∴﹣|﹣3.5|<0<3<﹣(﹣325),∴在23| 3.5|35⎛⎫---- ⎪⎝⎭、、中,最小的数是﹣|﹣3.5|.故选B.【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2、B【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本即可.【详解】A、680名学生的期末考试数学成绩是总体,故A不符合题意;B、60名学生的期末数学成绩是总体的一个样本,故B符合题意;C、每名学生的期末数学成绩是总体的一个个体,故C不符合题意;D、以上调查属于抽样调查,故D不符合题意;故选:B.【点睛】本题考查了总体、个体、样本和抽样调查,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.3、A【解析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后进行分析从而得到正确答案.【详解】设有x辆客车,由题意得:每辆客车乘40人,则有10人不能上车,总人数为40x+10,若每辆客车乘43人,则只有1人不能上车,则总人数为43x+1,列方程为40x+10=43x+1;故选A .【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程. 4、C【分析】根据图示,可得b <﹣3,1<a <3,据此逐项判断即可.【详解】①∵b <a ,∴b ﹣a <1;②∵b <﹣3,1<a <3,∴a +b <1;③∵b <﹣3,1<a <3,∴|b |>3,|a |<3,∴|a |<|b |;④∵b <1,a >1,∴ab <1,∴正确的是:①③,故选C .【点睛】本题考查了绝对值的含义和求法,以及数轴的特征和应用,要熟练掌握,解答此题的关键是判断出a 、b 的取值范围. 5、C 【解析】试题分析:与是同类项的是.故选C . 考点:同类项.6、B【分析】由题意直接根据同类项的定义进行分析,即可求出答案.【详解】解:A. 22a b 与23b a -,不是同类项,此选项错误;B. 2x π与212x ,是同类项,此选项正确; C. 2212m n -与225tm n ,不是同类项,此选项错误; D. 6xy -与6yz -,不是同类项,此选项错误.【点睛】本题考查同类项的定义,解题的关键是正确理解同类项的定义即如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.7、A【分析】根据24=x 先求出x 的值,然后把x 的值代入32x k +=-求出k 即可.【详解】解:由方程24=x 可得x=2,把x=2代入32x k +=-得:62+=-k解得8k =-.故选:A【点睛】本题考查了同解方程,掌握同解方程即为两个方程解相同的方程是解题的关键.8、C【解析】试题分析:首先根据样本的含义:从总体中取出的一部分个体叫做这个总体的一个样本,可得在这次调查中,样本是所抽取的100名学生对“民族英雄范筑先”的知晓情况.然后判断出这次调查的总体是:2400名学生对“民族英雄范筑先”的知晓情况.故选C考点:总体、个体、样本、样本容量9、B【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A .为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意;B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意;C .为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;D .为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意;故选:B .【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【分析】根据绝对值的意义直接进行求解即可.【详解】因为9的绝对值是9;故选A.【点睛】本题主要考查绝对值的意义,熟练掌握绝对值的意义是解题的关键.11、B【分析】根据和为90度的两个角互为余角,和为180度的两个角互为补角列出算式,计算即可.【详解】解:∵∠1与∠2互补,∴∠1+∠2=180°,则∠2=180°−∠1,∵∠3与∠1互余,∴∠3+∠1=90°,则∠3=90°−∠1,∵∠2+∠3=210°,∴180°−∠1+90°−∠1=210°,解得:∠1=30°,则∠2=150°,150°÷30°=5,即∠2是∠1的5倍,故答案为:B.【点睛】本题考查的余角和补角的概念,掌握和为90度的两个角互为余角,和为180度的两个角互为补角是解题的关键.12、C【分析】设t时后两车相距50千米,分为两种情况,两人在相遇前相距50千米和两人在相遇后相距50千米,分别建立方程求出其解即可.【详解】设t时后两车相距50千米,由题意,得350-110t-80t=50或110t+80t-350=50,解得:t=1.5或1.故选:C【点睛】本题考查了列一元一次方程解实际问题的运用,分类讨论思想的运用,由行程问题的数量关系建立方程是关键.二、填空题(每题4分,满分20分,将答案填在答题纸上)13、2义计算2*3即可.【详解】∵X*Y=aX+bY , 3*5=15,4*7=28,∴35154728a b a b +=⎧⎨+=⎩, 解得3524a b =-⎧⎨=⎩, ∴X*Y=-35X+24Y ,∴2*3=-35×2+24×3=2, 故答案为2.【点睛】本题考查了新定义运算与解二元一次方程组,求出a 、b 的值是解题的关键.14、1°【分析】设这个角为x°,则它的补角为(180-x)°,余角为(90-x)°,再根据题意列出等量关系.【详解】解:设这个角为x°,则其余角为(90﹣x)°,补角为(180﹣x)°,依题意有180-x - 3(90-x)=40,解得x =1.故这个角是1°,故答案为:1°.【点睛】本题考查了补角及余角的概念等,熟练掌握补角和余角的概念是解决本题的关键.15、-2【分析】根据多项式系数与项之间的关系,当对应项的系数为零时,可视作多项式不含该项,进而利用方程思想求字母的值即得. 【详解】多项式4322(1)(2)31x a x b x x -++---中不含3x 项和2x 项 ∴1=0+a ,2=0-b∴=1a ,=2b∴=122-⨯=-ab故答案为:2-【点睛】本题考查多项式含参问题,正确找到题目中“不含项”对应的系数列出方程是解题关键,先合并同类项再确定不含项的系数是此类题的易错点.【分析】根据同类项的定义列式求出m 、n 的值,然后计算m n +即可.【详解】解:∵225m a b -和437n a b -是同类项,∴2m =1,3−n =1,解得:m =2,n =2,则m +n =2+2=1.故答案为:1.【点睛】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个相同:①所含字母相同,②相同字母的指数相同.17、-1【解析】根据积的乘方的运算方法,求出算式的值是多少即可.【详解】解:(−12)2019×22019=[(−12)×2]2019=(-1)2019=-1. 故答案为:-1.【点睛】此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn (m ,n 是正整数);②(ab )n =a n b n (n 是正整数).三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18、①28.3元;②29.8元,25.8元;③不会【分析】(1)根据题意列出算式27.31 1.5 1.5++-,计算即可求解;(2)根据题意可以得到周二股价最高,周四股价最低,分别计算即可求解;(3)根据正负数的意义表示周五的股价,为正数则盈利,为负数则亏损,据此判断即可.【详解】解:(1)27.31 1.5 1.528.3++-=(元)答:星期三收盘时每股是28.3元.(2)27.31 1.529.8++=(元),27.31 1.5 1.5 2.525.8++--=(元)答:本周内最高价是每股29.8元,最低价是每股25.8元(3)1 1.5 1.5 2.50.51++--+=-答:若小明爸爸按本周五的收盘价将股票全部卖出,他不会获利.【点睛】本题考查了正负数的实际应用和有理数的加减混合运算,正确理解题意并正确列出算式是解题关键.【分析】(1)根据“理想有理数对”的定义即可判断;(2)根据“理想有理数对”的定义,构建方程可求得m 的值,再代入原式即可解决问题.【详解】(1)111-⨯=-,()212123--⨯-=-,∴11-⨯≠()21212--⨯-, ∴()11-,不是“理想有理数对”;(2)由题意得:()23322m m -=---,解得:7m =-, ()231m m --()()27317⎡⎤=----⎣⎦ 4924=-25=.【点睛】本题考查了有理数的混合运算、“理想有理数对”的定义,解题的关键是理解题意,灵活运用所学知识解决问题.20、(1)711=y (2)x=0 【分析】(1)方程去分母,去括号,移项,合并同类项,系数化为1,即可得解;(2)方程去括号,移项,合并同类项,系数化为1,即可得解.【详解】解:(1)12225y y y -+-=- )2(220)1(510+-=--y y y42205510--=+-y y y54202510--=+-y y y117=y711=y (2)()()()22431233x x x ---=-+4831239x x x --+=--4332981x x x -+=-+-0x =【点睛】本题考查了解一元一次方程.解一元一次方程的步骤为:去分母,去括号,移项,合并同类项,系数化为1.21、(1)张敏下车时付22元车;(2)这辆滴滴快车的行车时间为26分钟【分析】(1)根据普通快车的收费标准即可求解;(2)设这辆滴滴快车的行车时间为x 分钟,根据题意列出方程即可求解.【详解】解:(1)()()8 2.0720.415522+⨯-+⨯-=(元)答:张敏下车时付22元车费.(2)设这辆滴滴快车的行车时间为x 分钟,依题意有()()()8 2.02220.45 1.0221563.4x +⨯-+⨯-+⨯-=,解得26x =答:这辆滴滴快车的行车时间为26分钟.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意列出方程求解.22、x =﹣1.【分析】根据一元一次方程的解法,去括号,移项合并同类项,系数化为1即可.【详解】解:去括号得:1x ﹣1﹣1=4x ,移项合并得:﹣1x =4,解得:x =﹣1,故答案为:x =-1.【点睛】本题考查了一元一次方程的解法,掌握一元一次方程的解法是解题的关键.23、1.【分析】由题意列出关系式,去括号合并同类项,由于不含有x 2、y 的项,得到它们的系数为0,求出m 、n 的值,将m 、n 的值代入所求式子中计算,即可求出值.【详解】1x 2+my ﹣8﹣(﹣nx 2+2y+7)=1x 2+my ﹣8+nx 2﹣2y ﹣7=(1+n ) x 2+(m ﹣2)y ﹣15因为不含x 2,y 项所以1+n=0,m ﹣2=0,得:n=﹣1,m=2,所以n m+mn=(﹣1)2+2×(﹣1)=1.【点睛】熟练掌握去括号的法则以及合并同类项的法则是解题的关键.。
深圳高级中学2023-2024学年第一学期期末测试初一数学试卷(试题)
深圳高级中学(集团)2023-2024学年第一学期期末测试初一数学命题人:汤士强审题人:杨冬明注意事项:1、答题前,考生务必将在答题卡写上姓名、班级,准考证号用2B 铅笔涂写在答题卡上。
2、每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动用橡皮擦干净后,再涂其它答案,不能答在试题卷上。
3、考试结束,监考人员将答题卡收回。
1.作为中国非物质文化遗产之一的紫砂壶,成型工艺特别,造型式样丰富,陶器色泽古朴典雅,从一个方面鲜明地反映了中华民族造型审美意识.如图是一把做工精湛的紫砂壶“景舟石瓢”,下面四幅图是从左面看到的图形的是()A .B .C .D .2.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约45000000000千克,这个数据用科学记数法表示为()A .104.510⨯千克B .94.510⨯千克C .104510⨯千克D .110.4510⨯千克3.小敏计划在寒假参加海外游学,她打算制作一个正方体礼盒送给外国朋友.如图所示是她设计的礼盒的平面展开图,请你判断,正方体礼盒上与“孝”字相对的面上的字是()A .义B .仁C .智D .信4.如图,检测4个排球,其中质量超过标准的克数记为正数,不足的克数记为负数,从轻重的角度,下列最接近标准的是()A .B .C .D .5.下列说法正确的是()A .231x xy --是三次三项式B .222xab -的次数是6C .223xy π-的系数是23-D .223x -的常数项是3-6.如图,经过刨平的木板上的A ,B 两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A .两点之间,线段最短B .两点确定一条直线C .过一点,有无数条直线D .连接两点之间的线段叫做两点间的距离7.深圳市有近12万名考生参加中考,为了解这些考生的数学成绩,从中抽取600名考生的数学成绩进行统计分析,以下说法正确的是()A .这600名考生是总体的一个样本B .每位考生的数学成绩是个体C .近12万名考生是总体D .600名学生是样本容量8.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?设这种自行车每辆的进价是x 元,则所列方程为()A .()45%1+80%=50x x ⨯-B .()80%1+45%=50x x ⨯-C .()80%1+45%=50x x -⨯D .()45%1-80%=50x x ⨯-9.如图,点M 、点C 在线段AB 上,点M 是线段AB 的中点,AC =2BC ,若MC =2,则AB 的长为().A .8B .10C .12D .1610.我们把不超过有理数x 的最大整数称为x 的整数部分,记作[]x ,又把[]x x -称为x 的小数部分,记作{}x ,则有[]{}x x x =+.如:[]1.31=,{}1.30.3=,[]{}1.3 1.3 1.3=+,下列说法中正确的有()个.①[]2.82=;②[]5.35-=-;③若12x <<,且{}0.4x =,则 1.4x =或 1.6x =-;④方程[]{}313x x x +=+的解为0.25x =.A .4B .3C .2D .111.如图,一副三角板中,将一个三角板60︒角的顶点与另一个三角板的直角顶点重合,如果127∠=︒,那么2∠的大小是度.12.若代数式3a x y -与212b x y 的和是单项式,则22a b --=.13.如果从一个多边形的一个顶点出发作它的对角线,最多能将多边形分成2023个三角形,那么这个多边形的边数为.14.定义运算“*”对于任意有理数a 与b ,满足()22()a b a b a b a b a b ⎧-≥*=⎨-<⎩,例如:111414212,121333*=-⨯=*=⨯-=-.若有理数x 满足43x *=,则x 的值为.15.已知:如图所示,A 、B 是数轴上的两个点,点A 所表示的数为5-,动点P 以每秒4个单位长度的速度从点B 向左运动,同时,动点Q 、M 从点A 向右运动,且点M 的速度是点Q 速度的13,当运动时间为2秒和4秒时,点M和点P 的距离都是6个单位长度,则当点P 运动到点A 时,动点Q 所表示的数为.16.(5分)计算:202311(1)|37|52⎛⎫⎛⎫-+--⨯-÷- ⎪ ⎪⎝⎭⎝⎭.17.(6分)先化简,再求值:()()222332412x x y x y -+-+-,其中2x =-,17y =-.18.(7分)某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有_____人,并补全条形统计图;(2)在扇形统计图中,m =_____,n =____,表示区域C 的圆心角是____度;(3)全校学生中喜欢篮球的人数大约有多少?19.(8分)某厂本周计划每天生产200辆自行车,由于工作人员轮休等原因,实际每天生产量与计划生产量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数):星期一二三四五六日增减(单位:辆)7+2-5-14+11-15+8-(1)该厂星期三生产电动车_____辆;该厂在本周实际生产自行车的数量为_____辆.(2)该厂实行“每日计件工资制”,每生产一辆自行车可以得60元,若超额完成任务,则超过部分每辆在60元基础上另奖15元;少生产一辆则倒扣20元,那么该厂工人这一周的工资总额是多少元?(3)若将(2)问中的实行“每日计件工资制”改为实行“每周计件工资制”,其他条件不变,在此计算方式下这一周工人的工资与按日计件的工资哪一个更多?请说明理由.20.(9分)【问题情境】在综合实践课上,老师让同学们利用天平和一些物品探究等式的基本性质,现有一架天平和一个10克的砝码,如何称出1个乒乓球和1个纸杯的质量?【操作探究】下面是“指挥小组”的探究过程;准备物品:①若干个大小相同的乒乓球(质量相同);②若干个大小相同的纸杯(质量相同).探究过程:设每个乒乓球的质量是x 克.天平左边天平右边天平状态乒乓球的总质量一次性纸杯的总质量记录18个乒乓球和1个10克的砝码14个一次性纸杯平衡8x ___________记录24个乒乓球2个一次性纸杯和1个10克的砝码平衡4x___________【解决问题】(1)①将表格中的空白部分用含x 的式子表示;②分别求1个乒乓球的质量和1个一次性纸杯的质量.【拓展设计】(2)“创新小组”根据“智慧小组”的探究过程提出这样一个问题:请你设计一个方案,使得乒乓球的个数为一次性纸杯个数的2倍,并填入下表:天平左边天平右边天平状态记录3乒乓球______个一次性纸杯______个+2个10克的砝码平衡21.(10分)定义:如果两个一元一次方程的解之和为1,我们就称这两个方程为“美好方程”.例如:方程48x =和10x +=为“美好方程”.(1)若关于x 的方程30x m +=与方程4210x x -=+是“美好方程”,求m 的值;(2)若“美好方程”的两个解的差为8,其中一个解为n ,求n 的值;(3)若关于x 的一元一次方程1322024x x k +=+和1102024x +=是“美好方程”,求关于y 的一元一次方程()12024211y y k +=+-的解.22.(10分)已知,如图1,将一块直角三角板的直角顶点O 放置于直线MN 上,直角边OA 与直线MN 重合,其中90AOB ∠=︒,然后将三角板AOB 绕点O 顺时针旋转,设AOM α∠=,从点O 引射线OC 和OD ,OC 平分BON ∠,13BOD MOB ∠=∠.(1)如图2,填空:当30α=︒时,CON ∠=______︒.(2)如图2,当090α︒<<︒时,求COD ∠的度数(用含α的代数式表示);(3)如图3,当90180α︒<<︒时,请判断16COD BON ∠-∠的值是否为定值,若为定值,求出该定值,若不是定值,请说明理由.。
湖北省武汉市一初慧泉中学2022-2023学年第一学期期末考试七年级数学试题(含答案)
湖北省武汉市一初慧泉中学2022-2023学年第一学期期末考试七年级数学试题一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个各选答案,其中有且只有一个正确,请用2B 铅笔在答题卡上将对应题目正确答案的代号涂黑.1.-3的相反数是A 13B −13. C 3. D -3.2.下列两个单项式不是同类项的是Ax 2y 和m 2n B 12x 2y 和x 2y. C- 2和3 D ab 和-ba.3.方程2x+1=-1的解是A x =−32 Bx =-1 Cx =1 D x =−12 4.如图的几何体是一个工件的立体图,从上面看这个几何体,所看到的平面图形是5.如图是正方体的展开图形,其中汉字“集”相对面写的字是A 汉B 武.C 一D 团.6.把方程2x+3y-1=0改写成含x 的式子表示y 的形式为A.x =12(1-3y ) B .y =13(1-2x ) C. x =2(1-3y ) D y =13(2x-1)7.如图,货轮O 雷达探测到它的北偏西20°方向上有灯塔A ,西南方向有游艇B ,则∠AOB 的大小A65°. B105°. C110°. D115°.8.大于-4.2而小于2.3的整数共有( )个A5个. B6个. C7个. D8个.9.一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利10元,如果设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是A 0.8(1+0.5)x =x+10.B 0.8(1+0.5)x =x-10.C 0.8(1+0.5x )=x-10.D 0.8(1+0.5x )=x+10.10.在数轴上表示有理数a ,b ,c 的点如图所示,若ac <0,|b|<|c|,则下列一定成立的是A abc <0.B |a|>|b|. Ca+c >0. Db+c >0.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答题卡指定的位置.11.有理数578000用科学记数法表示为_____.12.多项式2+3x4-4x2y-x3y+6x的项数和次数之积为_____.13.用两个钉子就可以把一根木条固定在墙上,依据的数学原理_____________________.14.若∠P=15°15′,则∠P的余角度数为______.15.如图,∠COD在∠AOB的内部,分别作∠AOC、∠BOD的角平分线OE、 OF,下列结论:①∠AOB+∠COD=∠AOD+∠BOC;②∠AOB=2∠EOF;③ 2∠AOF=∠AOB+∠AOD;④若∠AOB=7∠COD,则∠EOF=4∠COD.其中正确的结论是_______.(填序号)16.在直线l上有A、B、C、D四点,其中点B是线段AD的三等分点,点C是线段AD的中点,点E是线段AD延长线上一点,且AE+BE=2AD,则BE的值为.CE三、解答题(共8小题,共72分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形.17.(本题满分8分)计算:(1)-12-(3-5)+32; (2)6a2+(5a2-2a)-2(a2-3a).18.(本题满分8分)解方程(组)(1)3(x+6)=9-5(1-2x); (2)19.(本题满分8分)如图,已知四点A、B、C、D.(1)请按要求画出图形(不用说明理由):①连接AC;②画直线AB;③连接CD并反向延长;④画点M,使点M既在直线AB上也在直线CD上;(2)若平面内有一动点P,线段AB=a,CD=b,AC=m,BD=n,则PA+PB+PC+PD的最小值为_____.(直接写出结果)20.(本题满分8分)列二元一次方程组解决问题:据统计,甲、乙两种作物的单位面积产量的比是2:3如图所示,现要把一块长200米宽70米的长方形土地ABCD (AB>AD),分为两块小长方形土地,上方小长方形种植甲种作物,下方小长方形种植乙种作物,怎样设计DE和AE的长度,使得甲、乙两种作物的总产量的比是1:2?21.(本题满分8分)已知非零有理数x、y满足|x-2y|=2x+y.(1)若x是方程9x-5=13的解,求y的值;(2)求x+2yx −3xyy的值.22.(本题满分10分)如图,AB、CD交于点O.(1)可得到结论:∠AOC=∠BOD,依据是:(直接填序号:①同角的补角相等,②同角的余角相等);(2)若∠AOE=4∠DOE,∠AOE的余角是∠DOE的2倍,求∠BOC;(3)在(2)的条件下,从点O引出一条射线OP,当∠COP=∠AOE+∠DOP时,∠BOP= .(直接写出结果)23.(本题满分10分)为推动中小学篮球运动,江汉区体卫艺站胡老师集中购买一批指定品牌的篮球和篮球运动服.市场调查发现:A、B两商场的以同样的价格出售两种商品,已知每套篮球运动服比篮球贵60元,2套篮球运动服比3个篮球还要贵30元.(1)求一个篮球和一套篮球运动服的单价;(2)为了促销A、B两商场推出优惠活动:A商场:每购买满10套篮球队服,送一个篮球;B商场:原价购买篮球队服,篮球的价格打八折,若胡老师需要购买篮球m个和篮球运动服150套.①请你用含m的代数式表示在A、B两个商场所需要花费的费用;②如果你是胡老师,你认为到哪个商场购买比较划算?24.(本题满分12分)已知AB=24,DE=10,点C为线段AB的三等分点(BC>AC),点A点B左侧,点D在点E左侧.(1)若线段DE在线段AB上运动.①如图1,当点C为线段DE的中点时,BE=;(直接写出结果)② M为线段AB上一点,且BM=2BE,CE+DM=1AE,求线段CE的长;2(2)若线段DE在射线BA上运动,且2AD+CE=BD,求线段CD的长.。
第一学期七年级期末考试数学试题(二)
第一学期七年级期末考试数学试卷考试时间:90分钟一、选择题:(每小题3分,共33分)1.将下列图形绕直线l 旋转一周,可以得到下图所示的立体图形的是( )2.有理数a 、b 在数轴上的对应点的位置如图所示,则( )A .0<-b aB .0=+b aC .0<+b aD .0>+b a3.用四舍五入法2.508保留三个有效数字是( )A .2.51B .2.5C .2.50D .2504.小明调查了本班同学最喜欢的球类运动情况,并作出了如图的统计图.下面说法正确的是( )A .从图中可以直接看出全班总人数B .从图中可以直接看出喜欢足球运动的人数最多C .从图中可以直接看出喜欢各种球类运动的具体人数D .从图中可以直接看出喜欢各种球类运动的人数的百分比 5.当3,2=-=y x 时,代数式y x 2324-的值为( )A .14B .一50C .一14D .506.某品牌的彩电降价30%以后,每台售价为a 元,则该品牌彩电每台原价为( )A .0.7a 元B .0.3a 元C .a 310元 D .a 710元7.一段导线,在0℃时的电阻为2,温度每增加1℃,电阻增加0.008,那么电阻R 表示为温度t (℃)的函数关系式为( )A .R=0.008tB .R=2t+0.008C .R=2.008tD .R=2+0.008t8.一个三位数,百位数字是a ,十位数字是b ,个位数是c ,这个三位数为( )A .abcB .a +b +cC .100a +10b +cD .100c +10b +a9.下列等式变形错误的是( )A .由a =b ,得a +5=b +5B .由a =b ,得33-=-ba . C .由22-=+y x ,得y x =D .由y x 33=-,得y x -=10.方程246231xx x -=+--的“解”的步骤如下,错在哪一步( ) A .()()()x x x -=+--43212 B .x x x 312222-=+-- C .124=xD .3=x11.某件商品标价为13200元,若以9折出售,仍可获利10%(相对于进货价),则该商品的进货价为( )A .10692元B .10560元C .10800元D .11880元二、填空题(1-3小题每空1分,4-10每小题3分,共28分)1.在实际问题中,造路和架线都尽可能减少弯路,是因为____________________________;圆柱的侧面展开图是________________________. 2.311-的相反数是________________,绝对值是43的数是________________. 3.用“>,<,=”填空:32-________20,211-________311-,()2--________1.4.长方形的宽为a 米,长比宽多2米,则长方形的周长是________米.5.已知线段AB=2cm ,延长AB 到C ,使BC=2AB ,若D 为AB 的中点,则线段DC 的长为________.6.某种储蓄的年利率为2.54%。
2025届云南省楚雄北浦中学数学七年级第一学期期末经典试题含解析
2025届云南省楚雄北浦中学数学七年级第一学期期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.若多项式22229(93)x y ax y -+--+的值与x 的取值无关,则(2)a -的值为( )A .0B .1C .4-D .42.下列调查中,最适合全面调查(普查)的是( )A .调查某型号炮弹的射程B .调查我市中学生观看电影《少年的你》的情况C .调查某一天离开重庆市的人口数量D .调查某班学生对南开校史知识的了解程度3.如图,射线OA 表示的方向是( )A .北偏东65︒B .北偏西35︒C .南偏东65︒D .南偏西35︒4.将算式1﹣(+2)﹣(﹣3)+(﹣4)写成和式是( )A .﹣1﹣2+3﹣4B .1﹣2﹣3+4C .1﹣2﹣3﹣4D .1﹣2+3﹣4 5.若单项式23m xy-与2385n x y -是同类项,则式子2m n -的值是( ) A .-2 B .2C .0D .-4 6.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数学知识是( ).A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线 7.下列说法正确的是( )A .若12AOC AOB ∠=∠,则射线OC 为AOB ∠平分线 B .若AC BC =,则点C 为线段AB 的中点C .若123180∠+∠+∠=︒,则这三个角互补D .若α∠与β∠互余,则α∠的补角比β∠大90︒8.有理数a 、b 在数轴上的表示如图所示,则( )A .a-b>0B .a+ b<0C .ab>0D .a b <9.纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数): 城市悉尼 纽约 时差/时 2+ 13-当北京6月15日23时,悉尼、纽约的时间分别是( )A .6月16日1时;6月15日10时B .6月16日1时;6月14日10时C .6月15日21时;6月15日10时D .6月15日21时;6月16日12时10.已知∠α与∠β互补,∠α=150°,则∠β的余角的度数是( )A .30°B .60°C .45°D .90°二、填空题(本大题共有6小题,每小题3分,共18分)11.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10,正方形A 、B 、C 、D 的面积之和为_______.12.1∠与2∠互为余角,若13420∠=︒',则2∠= _______.13.如图,已知C 为线段AB 的中点,D 在线段CB 上.若DA =6,DB =3,则CD =_____.14.在数轴上,点A 表示-5,从点A 出发,沿数轴移动4个单位长度到达点B ,则点B 表示的数是__________.15.如图,点B 、D 在线段AC 上,且1134BD AB CD ==,E 、F 分别是AB 、CD 的中点,EF =10cm ,则CD =_________cm .16.若3-x y 与1a b x y -是同类项,则(b-a)2019=__________三、解下列各题(本大题共8小题,共72分)17.(8分)数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合,研究数轴我们发现:若数轴上点A 、点B 表示的数分别为a 、b ,则A ,B 两点之间的距离AB =|a ﹣b|,线段AB 的中点表示的数为.如:如图,数轴上点A 表示的数为﹣2,点B 表示的数为8,则A 、两点间的距离AB =|﹣2﹣8|=10,线段AB 的中点C 表示的数为=3,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t >0).(1)用含t 的代数式表示:t 秒后,点P 表示的数为 ,点Q 表示的数为 .(2)求当t 为何值时,P 、Q 两点相遇,并写出相遇点所表示的数;(3)求当t 为何值时,PQ =AB ;(4)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.18.(8分)为了迎接全国文明城市创建,市交警队的一辆警车在一条东西方向的公路上巡逻,如果规定向东为正,向西为负,从出发点开始所走的路程为:+2,-3,+2,+1,-2,-1,-2(单位:千米)(1)最后,这辆警车的司机如何向队长描述他的位置?(2)如果此时距离出发点东侧2千米处出现交通事故,队长命令他马上赶往现场处置,则警车在此次巡逻和处理事故中共耗油多少升?(已知每千米耗油0.2升)19.(8分)先化简再求值,求代数式22(22)6()b a b b a b b -+---的值,其中12a =-,1b = 20.(8分)如图,以直线 AB 上一点 O 为端点作射线 OC ,使∠BOC=70°,将一个直角三角形的直角顶点放在点 O 处.(注:∠DOE=90°)(1)如图①,若直角三角板 DOE 的一边 OD 放在射线 OB 上,则∠COE= °;(2)如图②,将直角三角板 DOE 绕点 O 逆时针方向转动到某个位置,若 OC 恰好平分∠BOE,求∠COD 的度数;(3)如图③,将直角三角板 DOE 绕点 O 转动,如果 OD 始终在∠BOC 的内部, 试猜想∠BOD 和∠COE 有怎样的数量关系?并说明理由.21.(8分)某校发起了“保护流浪动物”行动,七年级两个班的105名学生积极参与,踊跃捐款,已知甲班有13的学生每人捐了10元,乙班有25的学生每人捐了10元,两个班其余学生每人捐了5元,设甲班有学生x 人. (1)用含x 的代数式表示两班捐款的总额;(结果要化简)(2)计算当x =45,两班共捐款多少元?22.(10分)完成下列各题:(1)计算:()15324368⎛⎫-⨯-+ ⎪⎝⎭. (2)计算:213(12)||6(1)2-+-⨯--÷-. 23.(10分)乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:多边形的顶点数4 5 6 7 8 … n从一个顶点出发 的对角线的条数 12 3 4 5 … ________(1)观察探究:请自己观察上面的图形和表格,并用含n 的代数式将上面的表格填写完整;(2)实际应用:数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳:乐乐认为(1),(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.24.(12分)解方程:(1)3x ﹣4=2x +5;(2)253164x x --+=.参考答案一、选择题(每小题3分,共30分)1、D【分析】先去括号,计算整式的加减,再根据值与x 的取值无关可求出a 的值,然后代入计算有理数的乘方即可得.【详解】22229(93)x y ax y -+--+,2222993x y ax y =-+-+-,2(2)76a x y =-++,多项式22229(93)x y ax y -+--+的值与x 的取值无关,20a ∴-=,解得2a =,则2(2)(2)4a -=-=,故选:D .【点睛】本题考查了整式加减中的无关型问题等知识点,熟练掌握整式的加减运算法则是解题关键.2、D【分析】普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.据此即可作出判断.【详解】解:A 、调查某型号炮弹的射程,适合抽样调查,故此选项错误;B 、调查我市中学生观看电影《少年的你》的情况,人数众多,适合采用抽样调查,故此选项错误;C 、调查某一天离开重庆市的人口数量,适合采用抽样调查,故此选项错误;D 、调查某班学生对南开校史知识的了解程度,人数不多,适宜采用全面调查(普查)方式,故此选项正确. 故选:D .【点睛】本题考查抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、C【分析】直接根据方位角确定即可.【详解】射线OA 表示的方向是南偏东65︒故选:C .【点睛】本题主要考查方位角,掌握方位角是解题的关键.4、D【分析】根据加减法之间的关系,将加减运算写出省略加号和括号的和式即可.【详解】解:原式=1﹣2+3﹣4故选:D【点睛】本题考查有理数加减混合运算,解题的关键是熟练掌握利用加减法之间的关系,省略加号代数和.5、C【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出m 和n 的值,进而求解.【详解】解:∵23m xy-与2385n x y -是同类项,∴2n-3=1,2m=8,解得:m=4,n=2,∴m-2n=0,故选C.【点睛】本题考查同类项的概念,解题的关键是熟练运用同类项的概念,本题属于基础题型.6、C【分析】根据两点之间,线段最短即可得出答案.【详解】由于两点之间线段最短∴剩下纸片的周长比原纸片的周长小∴能正确解释这一现象的数学知识是两点之间,线段最短故答案为:C .【点睛】本题考查了线段的性质,关键是掌握两点之间线段最短.7、D【分析】逐一进行分析即可得出答案.【详解】A. 若12AOC AOB ∠=∠,则射线OC 不一定为AOB ∠平分线,点C 可能在AOB ∠外部,故该选项错误; B. 若AC BC =,则点C 不一定为线段AB 的中点,因为C 与A,B 不一定共线,故该选项错误;C. 若123180∠+∠+∠=︒,则这三个角互补,互补是相对于两个角来说的,故该选项错误;D. 若α∠与β∠互余,则α∠的补角为180α︒-∠ ,而90βα∠=︒-∠ ,所以α∠的补角比β∠大90︒,故该选项正确;故选:D .【点睛】本题主要考查线段与角的一些概念,掌握角平分线的定义,互补,互余的定义是解题的关键.8、D【分析】本题可借助数轴用数形结合的方法求解.从图形中可以判断a <0<b ,并且|a |<|b |,再对照题设中每个选项,就能判断正确与否.【详解】观察图形可知a <0<b ,并且|a |<|b |,∴a -b <0,a +b >0,ab <0,|a |<|b |.故A 、B 、C 错误,D 正确.故选D .【点睛】本题考查了利用数轴比较有理数的大小,根据数形结合的思想比较两个数的大小与绝对值大小是解题的重点. 9、A【详解】略10、B【分析】根据补角的概念求出∠β的度数,再求出∠β的余角的度数即可.【详解】解:∵∠α与∠β互补,且∠α=150°,∴∠β=180°-150°=30°,=-=∴∠β的余角903060故选B.【点睛】本题考查的是余角和补角的概念,掌握余角和补角的概念是解题的关键.二、填空题(本大题共有6小题,每小题3分,共18分)11、100【解析】如图,设正方形A、B、C、D、E、F的边长分别为a、b、c、d、e、f,根据勾股定理可得e2=a2+b2,f2=c2+d2,e2+f2=102,即可得出正方形A、B、C、D的面积之和等于最大正方形G的面积,根据正方形面积公式即可得答案.【详解】如图,设正方形A、B、C、D、E、F的边长分别为a、b、c、d、e、f,∵所有的四边形都是正方形,所有的三角形都是直角三角形,∴e2=a2+b2,f2=c2+d2,∴正方形E、F的面积和为正方形A、B、C、D面积的和,∵最大的正方形的边长为10,∴e2+f2=102,∴最大正方形G的面积等于正方形E、F的面积和,∴正方形A、B、C、D的面积之和等于最大正方形G的面积,∴正方形A、B、C、D的面积之和为102=100,故答案为:100【点睛】本题考查勾股定理的几何意义,勾股定理包含几何与数论两个方面,几何方面,一个直角三角形的斜边的平方等于另外两边的平方和.这里边的平方的几何意义就是以该边为边的正方形的面积.12、5540'︒【分析】根据互余关系可知∠1+∠2=90°,再根据∠1的度数即可解答.【详解】解:∵1∠与2∠互为余角,∴∠1+∠2=90°,又∵13420∠=︒',∴2903420'5540'∠=︒-︒=︒故答案为:5540'︒.【点睛】本题考查了余角关系的概念,解题的关键是掌握“若1∠与2∠互为余角,则∠1+∠2=90°”.13、1.5【分析】根据题意即可求出AB 的长,然后根据中点的定义即可求出CB ,从而求出CD 的长.【详解】解:∵DA =6,DB =3,∴AB=DA +DB=9∵C 为线段AB 的中点,∴CB=12AB=4.5 ∴CD=CB -DB=1.5故答案为:1.5.【点睛】此题考查的是线段的和与差,掌握各线段之间的关系是解决此题的关键.14、-9或-1【分析】先根据点A 所表示的数,再分两种情况进行讨论,当点A 沿数轴向右移动和点A 沿数轴向左移动时,列出式子,求出点B 表示的数.【详解】解:∵点A 表示-5,∴从点A 出发,沿数轴向右移动4个单位长度到达B 点,则点B 表示的数是-5+4=-1;∴从点A 出发,沿数轴向左移动4个单位长度到达B 点,则点B 表示的数是-5-4=-9;故答案为:-9或-1.【点睛】此题考查了数轴,解题的关键根据题意列出式子,再根据有理数的加减法法则进行计算,要考虑两种情况,不要漏掉. 15、16【分析】设,BD x =则4CD x =,3,AB x = 6,AC x = 再利用中点的含义分别表示,AE CF ,求解EF ,利用10EF =,列方程解方程即可得到答案.【详解】解:设,BD x = 则4CD x ∴=,3,AB x =6,AC AB DC BD x ∴=+-=E 、F 分别是AB 、CD 的中点,1.5,AE BE x ∴== 2,DF CF x ==6 1.52 2.5,EF AC AE FC x x x x ∴=--=--=10EF =,2.510,x ∴=4,x ∴=44416.CD x ∴==⨯=故答案为:16.【点睛】本题考查的是线段的和差,线段的中点的含义,一元一次方程的应用,掌握以上知识是解题的关键.16、-1【分析】根据同类项的定义可求出a 、b 的值,即可得答案.【详解】∵3-x y 与1a b x y-是同类项, ∴a=3,b-1=1,解得:a=3,b=2,∴(b-a)2019=(2-3)2019=-1.故答案为:-1【点睛】本题考查同类项的概念应用,所含字母相同,并且相同字母的指数也相同的项叫做同类项;根据同类项的定义得出a 、b 的值是解题关键.三、解下列各题(本大题共8小题,共72分)17、(1)-2+3t ,8-2t ;(2)相遇点表示的数为4;(3)当t=1或3时,PQ=AB ;(4)点P 在运动过程中,线段MN 的长度不发生变化,理由见解析.【解析】(1)根据题意,可以用含t 的代数式表示出点P 和点Q ;(2)根据当P、Q两点相遇时,P、Q表示的数相等,可以得到关于t的方程,然后求出t的值,本题得以解决;(3)根据PQ=AB,可以求得相应的t的值;(4)根据题意可以表示出点M和点N,从而可以解答本题.【详解】(1)由题意可得,t秒后,点P表示的数为:-2+3t,点Q表示的数为:8-2t,故答案为:-2+3,8-2t;(2)∵当P、Q两点相遇时,P、Q表示的数相等,∴-2+3t=8-2t,解得:t=2,∴当t=2时,P、Q相遇,此时,-2+3t=-2+3×2=4,∴相遇点表示的数为4;(3)∵t秒后,点P表示的数-2+3t,点Q表示的数为8-2t,∴PQ=|(-2+3t)-(8-2t)|=|5t-10|,又∴|5t-10|=5,解得:t=1或3,∴当t=1或3时,PQ=AB;(4)点P在运动过程中,线段MN的长度不发生变化,理由如下:∵点M表示的数为:点N表示的数为:∴MN=∴点P在运动过程中,线段MN的长度不发生变化.【点睛】本题考查一元一次方程的应用、数轴、两点间的距离、绝对值,解答本题的关键是明确题意,利用方程和数形结合的思想解答.18、(1)他的位置为出发点以西3千米;(2)3.6升【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量乘以路程,可得总耗油量,根据有理数的减法,可得答案.【详解】解:(1)∵(2)(3)(2)(1)(2)(1)(2)++-+++++-+-+-3=-(千米)∴这辆城管的汽车司机向队长描述他的位置为出发点以西3千米;(2)|2||3||2||1||2||1||2||3||2|18++-+++++-+-+-+-++=(千米)∴180.2 3.6⨯=(升),∴这次出警共耗油3.6升.【点睛】本题考查了正数和负数,(1)利用了有理数的加法运算,(2)利用了单位耗油量乘以路程得出总耗油量是解题关键. 19、2682b a b -+,6【分析】先去括号合并同类项进行化简,再代数求值.【详解】原式222266b a b b a b b =--+-+2682b a b =-+ 当12a =-,1b =时 原式21618()122=⨯-⨯-⨯+ 6=【点睛】本题考查了去括号,合并同类项,将整式化到最简,然后把a 、b 的值代入即可.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.20、(1)20;(2)20 º;(3)∠COE ﹣∠BOD=20°.【解析】试题分析:(1)根据图形得出∠COE=∠DOE-∠BOC ,代入求出即可;(2)根据角平分线定义求出∠EOB=2∠BOC=140°,代入∠BOD=∠BOE-∠DOE ,求出∠BOD ,代入∠COD=∠BOC-∠BOD 求出即可;(3)根据图形得出∠BOD+∠COD=∠BOC=70°,∠COE+∠COD=∠DOE=90°,相减即可求出答案. 试题解析:(1)如图①,∠COE=∠DOE ﹣∠BOC=90°﹣70°=20°;(2)如图②,∵OC 平分∠EOB ,∠BOC=70°,∴∠EOB=2∠BOC=140°,∵∠DOE=90°,∴∠BOD=∠BOE ﹣∠DOE=50°,∵∠BOC=70°,∴∠COD=∠BOC ﹣∠BOD=20°;(3)∠COE ﹣∠BOD=20°,理由是:如图③,∵∠BOD+∠COD=∠BOC=70°,∠COE+∠COD=∠DOE=90°, ∴(∠COE+∠COD )﹣(∠BOD+∠COD )=∠COE+∠COD ﹣∠BOD ﹣∠COD=∠COE ﹣∠BOD=90°﹣70°=20°,即∠COE ﹣∠BOD=20°. 点睛:本题考查了角的综合计算,能根据图形和已知条件求出各个角之间的关系是解此题的关键.21、(1)13753x -+;(2)720元. 【分析】(1)设甲班有学生x 人,则乙班有学生(105-x )人,分别表示出每班捐款10和5元的总数,求和并化简即可;(2)根据(1)中所求代数式,把x=45代入求值即可.【详解】(1)设甲班有学生x 人,∵两个班共有学生105人,∴乙班人数为105-x , ∴两班捐款的总额是:121210(105)10(1)5(1)(105)53535x x x x ⨯+⨯-⨯+-⨯+-⨯-⨯ 10104204315333x x x =+-++- 1375()3x =-+元. (2)当x=45时,11375=45375=-15+735=72033x -+-⨯+(元). 答:两班共捐款720元.【点睛】本题考查列代数式及整式的加减,根据题意,分别表示出每班捐款10和5元的总数的代数式并熟练掌握合并同类项法则是解题关键.22、(1)3;(2)-1【分析】(1)利用乘法分配律进行计算;(2)先计算乘方、乘法和除法,再计算加减法.【详解】(1)()15324368⎛⎫-⨯-+ ⎪⎝⎭=-8+20-1=3;(2)213(12)||6(1)2-+-⨯--÷- =-1-6+6=-1.【点睛】此题考查有理数的混合运算,掌握有理数的乘法分配律计算法则,乘方法则,乘除法计算法则是解题的关键.23、 (1)n -3,12n(n -3);(2) 135个;(3) 每个同学相当于多边形的一个顶点,则共有n 个顶点. 【分析】(1)依据图形以及表格中的变换规律,即可得到结论;(2)依据数学社团有18名同学,即可得到数学社团的同学们一共将拨打电话数量;(3)每个同学相当于多边形的一个顶点,则共有n 个顶点,进而得到每人要给不同组的同学打一个电话,则每人要打(n-3)个电话,据此进行判断.【详解】解:(1)由题可得,当多边形的顶点数为n 时,从一个顶点出发的对角线的条数为n-3,多边形对角线的总条数为12n (n-3); 故答案为n-3,12n (n-3); (2)∵3×6=18, ∴数学社团的同学们一共将拨打电话为12×18×(18-3)=135(个); (3)每个同学相当于多边形的一个顶点,则共有n 个顶点;每人要给不同组的同学打一个电话,则每人要打(n -3)个电话; 两人之间不需要重复拨打电话,故拨打电话的总数为12n(n -3); 数学社团有18名同学,当n =18时,12×18×(18-3)=135. 【点睛】本题主要考查了多边形的对角线,n 边形从一个顶点出发可引出(n-3)条对角线.从n 个顶点出发引出(n-3)条,而每条重复一次,所以n 边形对角线的总条数为:12n (n-3)(n≥3,且n 为整数). 24、(1)9x = ;(2)13x =【分析】(1)通过移项,合并同类项,便可得解;(2)通过去分母,去括号,移项,合并同类项,进行解答便可.【详解】(1)3x﹣2x=5+4,解得:x=9;(2)去分母得:2(2x﹣5)+3(3﹣x)=12,去括号得:4x﹣10+9﹣3x=12,移项得:4x﹣3x=12+10﹣9,合并同类项得:x=1.【点睛】本题主要考查了解一元一次方程,熟记解一元一次方程的一般步骤是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
——第一学期期末考试
初一数学试题
一、填空(每题2分,共30分)
1. 我国最长的河流长江全长约6300千米,用科学记数法表示为 千米 2. 若21=
x ,2-=y 时,那么14
1
++-y x = 3. 多项式-x-y 减去-x+3y 的差是
4. 若72+-n m b a 与443b a -是同类项,则m= ,n
5. 分别表示有理数a 、b 的两点在数轴上的位置如图,则化简b a a -+=
6. a-b+c-d=a 7. 方程
12
1
2=+x 的解是 8. 在下列方程中 ① x+2y=3,②931=-x x , ③
3132+=-y y , ④02
1
=x ,是一元一次方程的有 ,是二元一次方程的有 (填序号)
9. 若x-y=5,m-x+y=1,那么y m 22
-的值是
10.已知:方程2x-1=3的解是方程
22
=+x
m 的解,则m= 11.当x= 时,代数式5x+10与4x+14的值相等
12.方程组⎩
⎨⎧=-=+28
y x y x 的解是
13.若⎩⎨⎧=-=12
y x 是方程2x-(a+1)y=5的一组解,则a=
14.若⎩⎨⎧-==12y x 是方程组⎩
⎨⎧=+=-125
3by x y ax 的解,那么a= ,b
15.已知:a 、b 为有理数,且a+b<0,则b a b a ----+31的值是 二、选择题(每题2分,共
1. 下列各数()0
2-,-(-2),()3
2-,()()4
3
22---中,负数的有( )个
A 1
B 2
C 3
D 4
2. 如果2(x+3)的值与3(1-x)的值与为相反数,那么x=( )
A -8
B 8
C -9
D 9 3. 若3=a ,5=b ,则b a +的值为( )
A 8
B 2
C 2或8
D 以上都不对 4. 若y 为正数,且x+y<0,则下列结论中,错误的一个是( )
A 03>y x
B 0<+y x
C 0>+y x
D 02<-y x 5. 下列计算中,正确的是( )
A 6a+4b=10ab
B 2422437y x y x y x =-
C 07722=-ba b a
D 4221688x x x =+
6. 对于多项式-a-2b+3c-4d ,下面各式中括号添得正确的是( )
A -(-a+2b-3c+4d)
B -(a+2b-3c-4d)
C -a-(2b-3c+4d)
D -a+(2b-3c-4d 7. 方程3x+y=9在正整数范围内的解的个数是( )
A 1个
B 2个
C 3个
D 有无数个
8. ⎩⎨⎧-==2
1y x 是方程组( )的解
A ⎩
⎨⎧=-=+531y x y x B
⎩
⎨
⎧-=--=+531
y x y x C ⎩
⎨
⎧=+=+133
y x y x D ⎩
⎨
⎧=--=+533
2y x y x 9. 减去562-+-x x 等于5342-+x x 的多项式是( )
A 932+x
B 10352-+x x
C 10932-+x x
D x x 352- 10.在等式b kx y +=中,当x=-1时,y=0;当x=0,y=1,则这个等式是( ) A y=x+1 B y=-x+1 C y=x-1 D y=-x-1
三、解答下列各题(每小题5分,共
1.()22
3
453416522315-⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-+-÷
2. b a b a ab ab b a 22
22223
221--+
- 3.先化简后求值:()()
y x xy xy y x 2222223---,其中x=-1,y=2
4.已知x 、y 、z 都是有理数,且()()0212
2
=-++-++y x z y x ,求代数式
2x-3(y-4z)-[7y-5(x-4y)+3z]的值
四、解下列方程或方程组(每小题6分,共12分)
1. 161
8141213+-=+--x x x 2.⎩⎨⎧=+=-104332y x y x
五、列方程解应用题
1. 某水池甲、乙两个入水管,单独开甲管,2小时把空池灌满,单独开乙管,
3小时把空池灌满,现先开甲管半小时,然后两管齐开,问把空池灌到3
2
,
一共要用多少时 (6分)
2.某校学生列队以8千米/时的速度前进,在队尾,校长让一名学生跑步到队伍的最前面找带队老师传达一个指示,然后立即返回队尾,这位学生的速度为12千米/时,从队尾出发赶到排头又回到队尾共用了7.2分钟,问学生队伍的长是多少米? (6分)
3.甲、乙二人在400米的环形跑道上跑步,已知甲的速度比乙快,如果二人在同一地方出发,同向跑,则3分相遇一次,若反向跑,则40秒相遇,求甲跑步的速度每秒跑多少米? (6分)。