教案棱柱与棱锥

合集下载

《棱柱、棱锥和棱台》示范课教案【高中数学】

《棱柱、棱锥和棱台》示范课教案【高中数学】

《棱柱、棱锥和棱台》教学设计1.理解棱柱的定义,知道棱柱的结构特征,并能识别和作图.2.理解棱锥、棱台的定义,知道棱锥、棱台的结构特征,并能识别和作图.重点:棱锥、棱台的结构特征.难点:识别和作图.一、新课导入温故知新:在初中阶段,我们已经遇到长方体、正方体、圆柱、圆锥、球等简单的空间图形.许多复杂的空间图形都是由一些简单的空间图形组合而成的.而简单的空间图形又是怎样构成的呢?答案:考察一下长方体,可以将长方体看作是由水平放置的矩形沿着竖直的方向平移而得到的.设计意图:简单的空间图形具有怎么样的结构特征,怎样在平面上的表示空间图形,是认识简单几何体的起点,用运动的观点去认识几何特征,有助于学生发展抽象概括的数学核心素养.二、新知探究问题1:在我们的周围存在各种物体,如果我们只考虑这些物体的形状和大小,那么抽象出来的就是空间图形.仔细观察下面的空间图形,你能发现它们可以怎样形成?答案:图(1)和图(3)中的空间图形分别由平行四边形和五边形沿某一方向平移而得.◆教学目标◆教学重难点◆教学过程◆追问1:图(2)和图(4)中的空间图形分别由怎么样的图形沿什么方向平移而得?答案:图(2)和图(4)中的空间图形分别由三角形和六边形平移而得.总结:一般地,由一个平面多边形沿某一方向平移形成的空间图形叫作棱柱(prism).平移起止位置的两个面叫作棱柱的底面,多边形的边平移所形成的面叫作棱柱的侧面.(1)(2)追问2:该怎么命名棱柱呢?答:底面为三角形、四边形、五边形……的棱柱分别称为三棱柱、四棱柱、五棱柱……例如,图(1)为三棱柱,图(2)为六棱柱,并分别记作棱柱ABC−A′B′C′、棱柱ABCDEF−A′B′C′D′E′F′.追问3:根据棱柱形成的过程,我们可以看出棱柱具有什么特点?答:(1)两个底面是全等的多边形,且对应边互相平行;(2)侧面都是平行四边形.设计意图:将一个图形上所有的点按某一确定的方向及相同距离移动就是平移,用运动的观点看静态的几何,发展学生的抽象概括的学科核心素养.问题2:与图对比,下面的空间图形是由上图发生什么样变化得到的?答:通过观察对比发现,当上图中各棱柱的一个底面收缩为一个点时,就可得到下图.当棱柱的一个底面收缩为一个点时,得到的空间图形叫作棱锥注意:棱锥中常见名称的含义追问1:该怎么命名棱锥呢?答:底面为三角形、四边形、五边形……的棱锥分别称为三棱锥、四棱柱、五棱锥……上图中的四棱柱可记作棱锥S−ABCD.追问2:根据棱锥形成的过程,我们可以看出棱锥具有什么特点?答:(1)底面是多边形;(2)侧面是有公共点的三角形.追问3:用一个平行于棱锥底面的平面去截棱锥,会形成什么空间图形呢?答:如图,用一个平行于棱锥底面的平面去截棱锥,截面和底面间形成的部分叫做棱台.设计意图:面动成体,用运动的观点看几何体,发展学生的空间想象能力.三、应用举例例1:画一个四棱柱.解:如图,画四棱柱可分三步完成:第一步画上底面——画一个四边形;第二步画侧棱——从四边形的每一个顶点画平行且相等的线段;第三步画下底面——顺次连接这些线段的另一个端点.例2:画一个三棱台.解:首先画一个三棱锥,在它的一条侧棱上取一点,然后从这点开始,顺次在各个侧面内画出与底面对应边平行的线段,最后将多余的线段擦去.四、课堂练习1.下面的几何体中是棱柱的有________.(填序号)2.下列说法正确的有________.(填序号)①棱锥的侧面为三角形,且所有侧面都有一个公共点;②棱台的侧面有的是平行四边形,有的是梯形;③棱台的侧棱所在直线均相交于同一点.参考答案:1.棱柱有三个特征:(1)有两个面相互平行.(2)其余各面是平行四边形.(3)侧棱相互平行.本题所给几何体中⑥⑦不符合棱柱的三个特征,而①②③④⑤都符合.2.棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故①对.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故②错,③对.因而正确的有①③.五、课堂小结在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来六、布置作业教材第144页练习第1、3、4题.。

棱柱,棱锥,棱台的表面积和体积教学设计

棱柱,棱锥,棱台的表面积和体积教学设计

棱柱,棱锥,棱台的表面积和体积教学设计
摘要:
1.教学目标
2.教学内容
3.教学重点与难点
4.教学方法
5.教学过程
6.教学总结
正文:
一、教学目标
通过本节课的学习,使学生掌握棱柱、棱锥、棱台的表面积和体积的计算方法,能够熟练运用这些公式解决实际问题,提高学生的数学运算能力和空间想象能力。

二、教学内容
1.棱柱的表面积和体积
2.棱锥的表面积和体积
3.棱台的表面积和体积
三、教学重点与难点
1.教学重点:棱柱、棱锥、棱台的表面积和体积的计算公式
2.教学难点:公式的推导和运用
四、教学方法
1.启发式教学法:引导学生通过实例发现公式
2.讲练结合法:讲解与练习相结合,帮助学生掌握知识
3.讨论法:分组讨论,激发学生的思维,提高学生的解题能力
五、教学过程
1.引入:通过讲解实际生活中的例子,激发学生的兴趣,引入本节课的主题
2.讲解:分别讲解棱柱、棱锥、棱台的表面积和体积的计算公式,并结合实例进行推导
3.练习:布置一些习题,让学生运用所学知识进行练习,培养学生的解题能力
4.小组讨论:组织学生进行小组讨论,解决一些具有挑战性的问题,提高学生的思维能力
5.总结:对本节课的内容进行总结,回顾所学知识,布置课后作业
六、教学总结
通过本节课的学习,学生应该能够掌握棱柱、棱锥、棱台的表面积和体积的计算方法,能够熟练运用这些公式解决实际问题。

同时,本节课的教学过程也培养了学生的数学运算能力和空间想象能力,提高了学生的思维品质。

棱柱棱锥职高教案

棱柱棱锥职高教案

棱柱棱锥职高教案教案标题:探索棱柱与棱锥的特征与性质——职高教案教学目标:1. 熟练掌握棱柱和棱锥的定义,并能够准确区分它们;2. 理解棱柱和棱锥的特征与性质,包括底面、侧面、顶点、高、棱长等概念;3. 能够运用所学知识解决与棱柱和棱锥相关的问题。

教学重点:1. 理解棱柱和棱锥的定义;2. 掌握棱柱和棱锥的特征与性质。

教学难点:1. 运用所学知识解决与棱柱和棱锥相关的问题。

教学准备:1. 教师准备:投影仪、计算器、白板、彩色粉笔、教学课件;2. 学生准备:教材、作业本、笔记本。

教学过程:一、导入(5分钟)1. 利用投影仪展示一些日常生活中的棱柱和棱锥的图片,引发学生对这两种几何体的认知;2. 提问学生:“你们能说出棱柱和棱锥的特征和区别吗?”二、概念讲解(10分钟)1. 通过教学课件,详细讲解棱柱和棱锥的定义,并强调它们的区别;2. 解释底面、侧面、顶点、高、棱长等概念,并结合实例进行说明。

三、特征与性质(15分钟)1. 分别讲解棱柱和棱锥的特征与性质,包括底面形状、侧面数量、顶点数量等;2. 强调棱柱和棱锥的底面和侧面之间的关系,并通过示意图进行说明;3. 通过计算实例,让学生熟悉如何计算棱柱和棱锥的面积和体积。

四、练习与巩固(15分钟)1. 分发练习题,让学生独立完成;2. 针对练习题进行讲解和答疑,帮助学生解决遇到的问题;3. 强调解题思路和方法,培养学生的问题解决能力。

五、拓展应用(10分钟)1. 提供一些与棱柱和棱锥相关的实际问题,让学生运用所学知识解决;2. 鼓励学生思考并尝试不同的解决方法;3. 分享学生的解题思路和答案,促进学生之间的交流与合作。

六、总结与反思(5分钟)1. 对本节课的内容进行总结,并强调棱柱和棱锥的特征与性质;2. 让学生进行自我评价,思考自己在本节课中的学习收获和不足之处。

板书设计:棱柱与棱锥棱柱:底面形状、侧面数量、顶点数量棱锥:底面形状、侧面数量、顶点数量底面、侧面、顶点、高、棱长教学反思:通过本节课的教学,学生能够熟练掌握棱柱和棱锥的定义,并能够准确区分它们。

8.3.1 棱柱、棱锥、棱台的表面积和体积(教案)

8.3.1 棱柱、棱锥、棱台的表面积和体积(教案)

8.3.1 棱柱、棱锥、棱台的表面积和体积(教案)一、教学目标1、了解棱柱、棱锥、棱台的表面积公式;2、了解棱柱、棱锥、棱台的体积公式;3、运用棱柱、棱锥、棱台的表面积与体积公式解决问题.二、教学重点、难点重点:了解记忆棱柱、棱锥、棱台的表面积与体积公式难点:棱柱、棱锥、棱台的表面积与体积公式解决简单的实际问题.三、学法与教学用具1、学法:学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标.2、教学用具:多媒体设备等四、教学过程(一)创设情景,揭示课题【回顾】正方体及其展开图长方体及其展开图正方体棱长为a长方体三条棱长分别为,,a b c表面积表面积26 S a=正方体表面积222 S ab bc ca=++长方体表面积体积体积3 V a=正方体V abc=长方体【情景】许多建筑在装修时,需要知道它们的表面积或体积,以便计算用料和工时.【问题】如何求多面体的表面积与体积?(二)阅读精要,研讨新知【发现1】棱柱、棱锥、棱台都是多面体,多面体的表面积就是围成多面体各个面的面积的和.三棱柱及平面展开图三棱锥及平面展开图三棱台及平面展开图【例题研讨】阅读领悟课本114P 例1、例2(用时约为1分钟,教师作出准确的评析.)例1如图8.3-1,四面体P ABC -的各棱长均为a ,求它的表面积.解:由已知,四面体P ABC -的四个面都是边长为a 的正三角形,且234S a =正三角形 所以四面体P ABC -的表面积22343P ABC S a -==【发现2】棱柱、棱锥、棱台的体积棱柱棱锥棱台底面积为S ,高为h底面积为S ,高为h上底面积为S ',下底面积为S ,高为hV Sh =棱柱13V Sh =棱锥1()3V h S S S S ''=++棱台例2 如图8.3-2,一个漏斗的上面部分是一个长方体,下面部分是一个四棱锥,两部分的高都是0.5m ,公共面ABCD 是边长为1m 的正方形,那么这个漏斗的容积是多 少立方米(精确到0.01 m 3)? (计算漏斗的容积时不考虑漏斗的厚度)解:由已知,这个漏斗的容积为ABCD A B C D P ABCD V V V ''''--=+1112110.5110.50.673263V =⨯⨯+⨯⨯⨯=+=≈( m 3)【小组互动】完成课本116P 练习1、2、3、4,同桌交换检查,老师答疑.(三)探索与发现、思考与感悟1. 已知正三棱锥S ABC -(侧棱相等,底面是正三角形)的底面边长为a ,高为66a ,则此三棱锥的表面积为( )A. 234a B.233+ C. 2334a D. 234 解:如图,在三棱锥S ABC -中, 6,AB a SO ==,013sin 603OD AB =⋅⋅= 所以2263()()662aSD a a =+= 所以正三棱锥S ABC -的表面积为22133332244a S a a a =⨯⨯⨯+=表面积,故选B2.已知正方体的8个顶点中,有4个为正四面体(各个棱长相等)的顶点,则这个三棱锥与正方体的表面积之比为( )A. 1:2B. 1:322D. 6解:如图,三棱锥B ACD ''-为正四面体,且四个面为全等的等边三角形, 设正方体的棱长为1,则2AB '=所以2342)234B ACD S ''-=⨯=表面积6S =正方体表面积 所以:2363B ACD S S ''-==正方体表面积表面积,故选B.3. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .解:如图,平面ABCD 2为底面边长,高为1的正四棱锥, 所以其体积为2142(2)133V =⨯⨯=. 答案:434. 正四棱台1111ABCD A B C D -,两底面边长分别为20 cm 和10 cm ,侧面面积为780 cm 2,求正四棱台的体积.解:如图,1110A B =,20AB =,取11A B 的中点1E ,AB 的中点E ,则1E E 为斜高. 设1,O O 分别是上、下底面的中心,则四边形11EOO E 为直角梯形. 因为114(1020)7802S EE =⨯+⨯=侧。

棱柱、棱锥、棱台 高中数学教案8-1 第1课时

棱柱、棱锥、棱台  高中数学教案8-1 第1课时

§8.1基本立体图形第1课时棱柱、棱锥、棱台学习目标 1.通过对实物模型的观察,归纳认知棱柱、棱锥、棱台的结构特征.2.理解棱柱、棱锥、棱台之间的关系.3.能运用棱柱、棱锥、棱台的结构特征描述现实生活中简单几何体的结构并进行有关计算.知识点一空间几何体、多面体、旋转体的定义1.空间几何体:如果我们只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.多面体、旋转体类别多面体旋转体定义由若干个平面多边形围成的几何体一条平面曲线(包括直线)绕它所在平面内的一条定直线旋转所形成的曲面叫做旋转面,封闭的旋转面围成的几何体叫做旋转体图形相关概念面:围成多面体的各个多边形;棱:相邻两个面的公共边顶点:棱与棱的公共点轴:形成旋转体所绕的定直线思考构成空间几何体的基本元素是什么?常见的几何体可以分成哪几类?答案构成空间几何体的基本元素是:点、线、面.常见几何体可以分为多面体和旋转体.知识点二棱柱的结构特征1.棱柱的结构特征棱柱图形及表示定义:有两个面互相平行,其余各面都是四边形,并且相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱如图可记作:棱柱ABCDEF—A′B′C′D′E′F′相关概念:底面(底):两个互相平行的面;侧面:其余各面;侧棱:相邻侧面的公共边;顶点:侧面与底面的公共顶点分类:按底面多边形的边数分:三棱柱、四棱柱、五棱柱……2.几个特殊的棱柱(1)直棱柱:侧棱垂直于底面的棱柱叫做直棱柱(如图①③);(2)斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱(如图②④);(3)正棱柱:底面是正多边形的直棱柱叫做正棱柱(如图③);(4)平行六面体:底面是平行四边形的四棱柱也叫做平行六面体(如图④).思考棱柱的侧面一定是平行四边形吗?答案棱柱的侧面一定是平行四边形.知识点三棱锥的结构特征棱锥图形及表示定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥如图可记作:棱锥S—ABCD 相关概念:底面(底):多边形面;侧面:有公共顶点的各个三角形面;侧棱:相邻侧面的公共边;顶点:各侧面的公共顶点分类:(1)按底面多边形的边数分:三棱锥、四棱锥……,其中三棱锥又叫四面体;(2)底面是正多边形,并且顶点与底面中心的连线垂直于底面的棱锥叫做正棱锥知识点四棱台的结构特征棱台图形及表示定义:用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台如图可记作:棱台ABCD—A′B′C′D′相关概念:上底面:平行于棱锥底面的截面;下底面:原棱锥的底面;侧面:其余各面;侧棱:相邻侧面的公共边;顶点:侧面与上(下)底面的公共顶点分类:由三棱锥、四棱锥、五棱锥……截得的棱台分别叫做三棱台、四棱台、五棱台……思考棱台的各侧棱延长线一定相交于一点吗?答案一定相交于一点.1.所有的棱柱两个底面都平行.(√)2.棱柱的两个底面是全等的多边形.(√)3.棱柱最多有两个面不是四边形.(√)4.棱锥的所有面都可以是三角形.(√)一、棱柱的结构特征例1(1)下列关于棱柱的说法:①所有的面都是平行四边形;②每一个面都不会是三角形;③两底面平行,并且各侧棱也平行;④被平面截成的两部分可以都是棱柱.其中正确的说法的序号是________.答案③④解析①错误,棱柱的底面不一定是平行四边形.②错误,棱柱的底面可以是三角形.③正确,由棱柱的定义易知.④正确,棱柱可以被平行于底面的平面截成两个棱柱.所以说法正确的序号是③④.(2)如图所示,长方体ABCD-A1B1C1D1,M,N分别为棱A1B1,C1D1的中点.①这个长方体是棱柱吗?如果是,是几棱柱?为什么?②用平面BCNM把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,请说明理由.解①是棱柱,并且是四棱柱,因为以长方体相对的两个面作底面,是互相平行的,其余各面都是矩形,且四条侧棱互相平行,符合棱柱的定义.②截面BCNM右上方部分是三棱柱BB1M-CC1N,左下方部分是四棱柱ABMA1-DCND1.反思感悟棱柱结构的辨析方法(1)扣定义:判定一个几何体是不是棱柱的关键是棱柱的定义.①看“面”,即观察这个多面体是否有两个互相平行的面,其余各面都是四边形;②看“线”,即观察每相邻两个四边形的公共边是否平行.(2)举反例:通过举反例,如与常见几何体或实物模型、图片等不吻合,给予排除.跟踪训练1下列命题中正确的是()A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫棱柱的底面C.棱柱的侧面都是平行四边形,而底面不是平行四边形D.棱柱的侧棱都相等,侧面是平行四边形答案 D二、棱锥、棱台的结构特征例2(1)(多选)下列说法中,正确的是()A.棱锥的各个侧面都是三角形B.四面体的任何一个面都可以作为棱锥的底面C.棱锥的侧棱平行D.有一个面是多边形,其余各面是三角形的几何体是棱锥答案AB解析由棱锥的定义,知棱锥的各个侧面都是三角形,故A正确;四面体就是由四个三角形所围成的几何体,因此四面体的任何一个面都可以作为三棱锥的底面,故B正确;棱锥的侧棱交于一点,不平行,故C错.棱锥的侧面是有一个公共顶点的三角形,故D错.(2)有下列四种叙述:①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;④棱台的侧棱延长后必交于一点.其中正确的有()A.0个B.1个C.2个D.3个答案 B解析①中的平面不一定平行于底面,故①错;由棱台的定义知,④正确;②③可用反例去检验,如图所示,侧棱延长线不能相交于一点,故②③错.反思感悟判断棱锥、棱台的方法(1)举反例法结合棱锥、棱台的定义举反例直接排除关于棱锥、棱台结构特征的某些不正确说法.(2)直接法棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点跟踪训练2下列关于棱锥、棱台的说法:①棱台的侧面一定不会是平行四边形;②由四个平面围成的封闭图形只能是三棱锥;③棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.答案①②解析①正确,棱台的侧面一定是梯形,而不是平行四边形;②正确,由四个平面围成的封闭图形是四面体也就是三棱锥;③错误,如图所示的四棱锥被平面截成的两部分都是棱锥.空间几何体的表面展开图典例(1)某同学制作了一个对面图案均相同的正方体礼品盒,如图所示,则这个正方体礼品盒的表面展开图应该为(对面是相同的图案)()答案 A解析其展开图是沿盒子的棱剪开,无论从哪条棱剪开,剪开的相邻面在展开图中可以不相邻,但未剪开的相邻面在展开图中一定相邻.相同的图案是盒子上相对的面,展开后不能相邻.(2)如图是三个几何体的表面展开图,请问各是什么几何体?解图①中,有5个平行四边形,而且还有两个全等的五边形,符合棱柱特点;图②中,有5个三角形,且具有共同的顶点,还有一个五边形,符合棱锥特点;图③中,有3个梯形,且其腰的延长线交于一点,还有两个相似的三角形,符合棱台的特点.把表面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.[素养提升]多面体表面展开图可以有不同的形状,应多实践,观察并大胆想象立体图形与表面展开图的关系,一定先观察立体图形的每一个面的形状,借助展开图,培养直观想象素养.1.下面多面体中,是棱柱的有()A.1个B.2个C.3个D.4个答案 D解析根据棱柱的定义进行判定知,这4个图都满足.2.有一个多面体,由五个面围成,只有一个面不是三角形,则这个几何体为()A.四棱柱B.四棱锥C.三棱柱D.三棱锥答案 B解析根据棱锥的定义可知该几何体是四棱锥.3.(多选)下列说法不正确的是()A.棱台的两个底面相似B.棱台的侧棱长都相等C.棱锥被平面截成的两部分是棱锥和棱台D.棱柱的侧棱都相等,侧面都是全等的平行四边形答案BCD解析 由棱台的定义知A 正确,B ,C 不正确;棱柱的侧棱都相等且相互平行,且侧面是平行四边形,但侧面并不一定全等,D 不正确. 4.三棱柱的平面展开图是( )答案 B5.一个棱柱有10个顶点,所有的侧棱长的和为60 cm ,则每条侧棱长为________ cm. 答案 12解析 棱柱有10个顶点,则该棱柱为五棱柱,共有5条侧棱,且侧棱长都相等,侧棱长为605=12 (cm).1.知识清单:(1)多面体、旋转体的定义. (2)棱柱、棱锥、棱台的结构特征. 2.方法归纳:举反例法,定义法. 3.常见误区:棱台的结构特征认识不清.1.有两个面平行的多面体不可能是( ) A .棱柱 B .棱锥 C .棱台 D .以上都错 答案 B解析 由棱锥的结构特征可得.2.下列关于棱柱的说法中,错误的是( ) A .三棱柱的底面为三角形 B .一个棱柱至少有五个面C .若棱柱的底面边长相等,则它的各个侧面全等D .五棱柱有5条侧棱、5个侧面,侧面为平行四边形 答案 C解析显然A正确;底面边数最少的棱柱是三棱柱,它有五个面,故B正确;底面是正方形的四棱柱,有一对侧面与底面垂直,另一对侧面不垂直于底面,此时侧面并不全等,故C错误;D正确.3.如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是()A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)答案 B解析(1)图还原后,①⑤对面,②④对面,③⑥对面;(2)图还原后,①④对面,②⑤对面,③⑥对面;(3)图还原后,①④对面,②⑤对面,③⑥对面;(4)图还原后,①⑥对面,②⑤对面,③④对面;综上,可得还原成正方体后,其中两个完全一样的是(2)(3).4.设集合M={正四棱柱},N={长方体},P={直四棱柱},Q={正方体},则这四个集合之间的关系是()A.Q M N P B.Q M N PC.P M N Q D.Q N M P答案 B解析根据定义知,正方体是特殊的正四棱柱,正四棱柱是特殊的长方体,长方体是特殊的直四棱柱,所以{正方体}⊆{正四棱柱}⊆{长方体}⊆{直四棱柱},故选B.5.(多选)下列说法错误的是()A.有一个面是多边形,其余各面都是三角形,由这些面围成的多面体是棱锥B.有两个面平行且相似,其余各面都是梯形的多面体是棱台C.如果一个棱锥的各个侧面都是等边三角形,那么这个棱锥可能为六棱锥D.如果一个棱柱的所有面都是长方形,那么这个棱柱是长方体答案ABC解析有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥,即其余各面的三角形必须有公共的顶点,故A错误;棱台是由棱锥被平行于棱锥底面的平面所截而得的,而有两个面平行且相似,其余各面都是梯形的多面体有可能不是棱台,因为它的侧棱长延长后不一定交于一点,故B错误;当棱锥的各个侧面的共顶点的角之和是360°时,各侧面构成平面图形,故这个棱锥不可能为六棱锥,故C错误;若每个侧面都是长方形,则说明侧棱与底面垂直,又底面也是长方形,符合长方体的定义,故D正确.6.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱.答案5697.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位是________.答案北8.直四棱柱ABCD-A1B1C1D1,若AB⊥AD且AB=3,AD=4,AA1=5,则AC1的长为________.答案5 2解析依题意该直四棱柱为长方体,∴AC21=AB2+AD2+AA21=32+42+52=50,∴AC1=5 2.9.如图,在正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)若正方形边长为2a,则每个面的三角形面积为多少?解(1)如图折起后的几何体是三棱锥.(2)S △PEF =12a 2,S △DPF =S △DPE =12×2a ×a =a 2,S △DEF =32a 2. 10.试从正方体ABCD -A 1B 1C 1D 1的八个顶点中任取若干,连接后构成以下空间几何体,并且用适当的符号表示出来.(1)只有一个面是等边三角形的三棱锥;(2)四个面都是等边三角形的三棱锥;(3)三棱柱.解 (1)如图①所示,三棱锥A 1-AB 1D 1(答案不唯一).(2)如图②所示,三棱锥B 1-ACD 1(答案不唯一).(3)如图③所示,三棱柱A 1B 1D 1-ABD (答案不唯一).11.用一个平行于棱锥底面的平面去截棱锥,截得的棱台上、下底面积之比为1∶4,截去的棱锥的顶点到底面的距离为3,则棱台的上、下底面的距离为( )A .12B .9C .6D .3答案 D解析 设原棱锥的高为h ,由题意得⎝⎛⎭⎫3h 2=14,则h =6,因而棱台的高为3,故选D.12.如图,能推断这个几何体可能是三棱台的是( )A .A 1B 1=2,AB =3,B 1C 1=3,BC =4B .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =3C .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =4D .AB =A 1B 1,BC =B 1C 1,CA =C 1A 1答案 C解析 选项A 中A 1B 1AB ≠B 1C 1BC ,故A 不符合题意;选项B 中B 1C 1BC ≠A 1C 1AC,故B 不符合题意;选项C 中A 1B 1AB =B 1C 1BC =A 1C 1AC,故C 符合题意;选项D 中满足这个条件的可能是一个三棱柱,不可能是三棱台.13.在五棱柱中,不同在同一个侧面且不同在同一个底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线共有________条.答案 10解析 如图,在五棱柱ABCDE -A 1B 1C 1D 1E 1中,从顶点A 出发的对角线有两条:AC 1,AD 1,同理从B ,C ,D ,E 点出发的对角线均有两条,共2×5=10(条).14.一个长方体共顶点的三个面的面积分别是2,3,6,则这个长方体对角线的长是________.答案 6解析 设长方体长、宽、高为x ,y ,z ,则yz =2,xz =3,yx =6,三式相乘得x 2y 2z 2=6,即xyz =6,解得x =3,y =2,z =1,所以x 2+y 2+z 2=3+2+1= 6.15.如图,在三棱锥V -ABC 中,VA =VB =VC =4,∠AVB =∠AVC =∠BVC =30°,过点A 作截面AEF ,则△AEF 周长的最小值为________.答案4 2解析将三棱锥沿侧棱VA剪开,并将其侧面展开平铺在一个平面上,如图,线段AA1的长为所求△AEF周长的最小值.∵∠AVB=∠A1VC=∠BVC=30°,∴∠AVA1=90°.又VA=VA1=4,∴AA1=4 2.∴△AEF周长的最小值为4 2.16.如图,在一个长方体的容器中装有少量水,现将容器绕着其底部的一条棱倾斜,在倾斜的过程中:(1)水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?(2)水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?(3)如果倾斜时不是绕着底部的一条棱,而是绕着其底部的一个顶点,上面的第(1)题和第(2)题对不对?解(1)不对.水面的形状就是用一个与棱(将长方体倾斜时固定不动的棱)平行的平面截长方体时截面的形状,因而可以是矩形,但不可能是非矩形的平行四边形.(2)不对.水的形状就是用与棱(将长方体倾斜时固定不动的棱)平行的平面将长方体截去一部分后剩余部分的几何体,此几何体是棱柱,水比较少时,是三棱柱,水多时,可能是四棱柱或五棱柱,但不可能是棱台或棱锥.(3)用任意一个平面去截长方体,其截面形状可以是三角形、四边形、五边形、六边形,因而水面的形状可以是三角形、四边形、五边形、六边形,水的形状可以是棱锥、棱柱,但不可能是棱台,故此时(1)对,(2)不对.。

赛课教案:棱柱、棱锥、棱台的结构特征教案

赛课教案:棱柱、棱锥、棱台的结构特征教案

1.1.1棱柱、棱锥、棱台的结构特征(一)一、教学目标:1.知识与技能(1)通过实物及图片的观察感知,认识多面体、棱柱几何特征,了解多面体、棱柱的概念。

(2)会用语言概述棱柱、棱锥、棱台的结构特征。

(3)准确对几何体以及棱柱、棱锥、棱台分类。

2.过程与方法(1)让学生通过直观感受,从实物中概括出棱柱、棱锥、棱台的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

(3)重视立体几何知识和平面几何知识间的"类比";体会"空间问题转化为平面问题"的"转化"思想3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力二、教学重点、难点:棱柱的概念、结构特征三、教学用具实物模型、投影仪四、教学过程(一)复习巩固:回顾几个概念:空间图形与我们的生活息息相关。

请学生观察周围的物体,它们都占据着空间的一部分①、如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形叫做空间几何体。

②、由若干个平面多边形围成的空间几何体叫做多面体;围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点。

(2)探究新知一、棱柱:1、观察这些图形有什么共同特征?(学生观察思考后,师生共同完成)①有两个面互相平行;②其余各面都是四边形;③相邻两个四边形的公共边互相平行;小结:满足这三个特征的多面体叫做棱柱。

(给出定义)理解定义:问题一:问题二:所以定义中不能简单描述成“其余各面都是平行四边形”。

2、棱柱的相关概念棱柱的底面:棱柱中两个相互平行的面,简称底;其余各面叫做棱柱的侧面;棱柱的侧棱:相邻侧面的公共边;棱柱的顶点:侧面与底面的公共顶点.3、棱柱的分类:底面是三角形、四边形、五边形…的棱柱分别叫做三棱柱、四棱柱4、棱柱的表示方法:①我们用表示底面各顶点的字母表示棱柱。

一二年级数学教案:认识棱柱和棱锥的体积

一二年级数学教案:认识棱柱和棱锥的体积

棱柱和棱锥的体积公式 相同体积和底面积的棱柱和棱锥的高度关系 举例说明:以底面积为10cm²、高为5cm的棱柱和棱锥为例 结论:相同体积和底面积的棱柱和棱锥,棱锥的高度是棱柱的1/3
棱柱体积公式:V=a*h,其中a为 底面积,h为高
相同底面积和高度的棱柱和棱锥, 棱锥体积是棱柱体积的1/3
棱锥体积公式: V=(1/3)×a×b×h,其中a、 b为底面边长,h为高
公式:V=底面积 ×高
适用范围:适用 于所有底面为平 行多边形的棱柱
计算步骤:先求出 底面积,再乘以高 即可得到体积
注意事项:底面必 须是平行多边形, 高必须垂直于底面
公式:V=1/3*S*h,其中S为 底面积,h为高
计算方法:先求出底面积,再 代入公式计算体积
强调体积的概念和单位, 避免混淆
提醒学生注意计算过程中 的单位换算和精度要求
添加文档副标题
目录
01.
02.
03.
04.
05.
06.
棱柱:底面为多边形,侧面 为平行四边形的几何体
棱锥:底面为多边形,侧面为 三角形,顶点在底面的射影为
底面中心的几何体
棱柱体积:等于底面积与高的乘积 棱锥体积:等于底面积与高的三分之一的乘积
棱柱体积公式:V=a×b×h, 其中a、b为底面边长,h为 高
棱柱和棱锥的体积公式在计算几何 形状的体积、解决流体动力学问题 等方面具有广泛的应用。
添加标题
添加标题
添加标题
添加标题
在几何学、物理学和工程学等领域, 棱柱和棱锥的体积公式可以用于描 述和解决各种问题。
在计算机图形学中,棱柱和棱锥的 体积公式可以用于三维建模和渲染。
结合实际:通过实例和实际操作,帮助学生理解棱柱和棱锥的体积计算方法。

棱柱棱锥教案

棱柱棱锥教案

棱柱棱锥教案【学习目标】:1、棱锥和棱台的定义、性质及它们之间的关系2、空间与平面问题的相互转化;【研习教材】:研习点一:棱锥及相关概念1.定义:叫做棱锥,画出一个三棱锥和四棱锥2.相关概念:(在棱锥中标出相关概念所在图像的位置)(1)棱锥的侧面(2)棱锥的顶点(3)棱锥的侧棱(4)棱锥的底面(5)棱锥的高联想·质疑如何理解棱锥?1.棱锥是多面体中的重要一种,它有两个本质的特征:①②2.棱锥有一个面是多边形,其余各面都是三角形,但是也要注意“有一个面是多边形,其余各面都是三角形的几何体是棱锥吗?。

如右图所示,此多面体有一个面是四边形,其余各面是三角形,但它不是棱锥!3.棱锥的分类:(1)按底面多边形的边数分为三棱锥、四棱锥、五棱锥等,其中三棱锥又叫(2)正棱锥:4.正棱锥的性质:(1)(2)5.棱锥的表示:(1)用顶点和底面各顶点的字母表示棱锥:如三棱锥P-ABC,四棱锥P-ABCD.(2)用对角面表示:如右图中的四棱锥可以用P-AC表示!研习点2.棱台及第一文库网相关概念1.定义:2.相关概念:(画一个三棱台和四棱台并且标出下面相关概念的位置)(1)棱台的下底面、上底面:(2)棱台的侧面:(3)棱台的侧棱:(4)棱台的高:3.棱台的`分类:(1)按底面多边形的边数分为三棱台、四棱台、五棱台等;(2)正棱台:4.正棱台的性质:(1)(2)(3)5.棱台的表示:棱台可用表示上、下底面的字母来命名,如右图中的棱台,可以记作棱台ABCD-A’B’C’D’,或记作棱台AC’,下底面为ABCD,上底面为A’B’C’D’,棱台的高为OO’. 探究解题新思路基础拓展型题型1:概念判断题例1.设有四个命题:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体。

以上四个命题中,真命题的个数是( )(A)1 (B)2 (C)3 (D)4拓展·变式:棱台不具有的性质是( )(A)两底面相似(B)侧面都是梯形(C)侧棱长都相等(D)侧棱延长后交于一点题型2.考查棱柱间的关系1、已知集合A={正方体},B={长方体},C={正四棱柱},D={平行六面体},E={四棱柱},F={直平行六面体},则( )【研析】几种常见棱柱间的关系如下图所示:2.、有四个命题:①各侧面是全等的等腰三角形的四棱锥是正四棱锥,②底面是正多边形的棱锥是正棱锥;③棱锥的所有侧面可能都是直角三角形;④四棱锥中侧面最多有四个直角三角形。

苏教版三年级认识棱柱和棱锥教案

苏教版三年级认识棱柱和棱锥教案

苏教版三年级认识棱柱和棱锥教案
一。

教学目标
1.了解什么是棱柱和棱锥;
2.能够辨认出不同形状的棱柱和棱锥;
3.能够描述和比较棱柱和棱锥的特征。

二。

教学准备
1.教具:棱柱和棱锥的模型,纸板、剪刀、胶水;
2.PPT和投影仪。

三。

教学过程
步骤一:导入新知
1.准备一些立体图形的图片或模型,引导学生观察并讨论它们的特点;
2.使用PPT展示图片,并引导学生回答相关问题,激发学生对立体图形的兴趣。

步骤二:讲解棱柱和棱锥的定义和特征
1.通过PPT讲解棱柱和棱锥的定义和形状特征,重点强调它们
的边和顶的构成;
2.展示不同形状的棱柱和棱锥的图片,引导学生观察并比较它
们的特征。

步骤三:实践操作
1.让学生根据提供的模型或纸板,动手制作自己的棱柱和棱锥;
2.学生制作完成后,将作品展示给全班,同时描述自己制作的
棱柱和棱锥的特征。

步骤四:总结与反思
1.让学生观察所有制作的棱柱和棱锥,找出它们的共同特点和
不同之处;
2.引导学生总结棱柱和棱锥的共同点和区别,并进行讨论。

四。

教学评价
1.教师观察学生在制作和描述过程中的表现和准确性;
2.学生可以用手绘图形或写描述的方式,记录自己所做的棱柱
和棱锥。

五。

课后拓展
1.学生可在家中观察日常生活中的棱柱和棱锥,记录并描述它们;
2.教师可以安排一些相关的游戏或小活动,进一步加深学生对棱柱和棱锥的理解。

8.3.1棱柱、棱锥、棱台的表面积与体积 2023-2024学年人教版数学高一 教学案

8.3.1棱柱、棱锥、棱台的表面积与体积 2023-2024学年人教版数学高一 教学案

8.3.1 棱柱、棱锥、棱台的表面积与体积一、导入新课,板书课题本节进一步认识简单几何体的表面积和体积;表面积表示几何体表面的大小;体积表示几何体所占空间的大小;出示板书:【棱柱、棱锥、棱台的表面积与体积】二、出示目标,明确任务1.了解多面体的表面积2.了解棱柱、棱锥、棱台的表面积3.了解棱柱、棱锥、棱台的体积三、学生自学,独立思考(3min)(打开课本阅读114页-115页内容,思考以下问题)1.找出你阅读内容中的知识点2.找出你阅读内容中的重点3.找出你阅读内容中的困惑点、疑难问题四、自学指导,紧扣教材自学指导一(5min)阅读至课本114页例1,思考并完成以下问题1.多面体的表面积就是围成多面体各个面的面积的和。

2.棱柱、棱锥、棱台的表面积就是围成它们的各个面的面积的和。

3.例1中,四面体P-ABC的各棱长均为a(1)四面体P-ABC的四个面式是全等的等边三角形(2)PBC的面积为多少?(3)四面体P-ABC的表面积为多少?自学指导二(5min)阅读至课本115页例2,思考并完成以下问题1.完成以下表格2.思考:观察棱柱、棱锥、棱台的体积公式,它们之间有什么关系?(从结构特征来解释)3.阅读例2,完成以下问题(1)漏斗由_______和_______两部分组成;(2)V长方体ABCD-A’B’C’D’的体积为多少?(3)V棱锥P-ABCD的体积为多少?(4)漏斗的容积为多少?五、自学展示,精讲点拨1.学生口头回答自学指导问题,教师点拨并板书(答案见PPT)2.书面检测:课本116页练习1题精讲点拨自学指导13.先判断出是正三角形.,求得一个正三角形的面积,再求出四个正三角形的面积。

即求出了四面体的表面积。

自学指导22.观察所给出的体积公式,并结合图形,得出圆柱、圆锥、圆台,它们之间的关系。

3.漏斗可以看成长方体和棱锥俩部分组成,分别求出两部分的体积并相加,即求出了漏斗的容积导入新课,板书课题上节课我们学习了棱柱、棱锥、棱台的表面积和体积的求法,那么这节课我们学习圆柱、圆锥、圆台、球的表面积和体积的求法。

棱柱与棱锥教案 中职

棱柱与棱锥教案 中职

棱柱与棱锥教案中职教案标题:棱柱与棱锥教案教学目标:1. 了解棱柱和棱锥的基本定义和特征;2. 能够识别和区分棱柱和棱锥;3. 掌握计算棱柱和棱锥的表面积和体积的方法;4. 能够应用所学知识解决实际问题。

教学准备:1. 教师准备:黑板、彩色粉笔、投影仪、计算器;2. 学生准备:教科书、笔记本、铅笔、直尺、计算器。

教学过程:一、导入(5分钟)1. 引入课题:教师展示一些日常生活中的物体,如水杯、冰棍等,让学生观察并思考这些物体是否属于棱柱或棱锥。

2. 学生回答问题,并简单说明自己的观察结果。

二、概念讲解(15分钟)1. 教师通过投影仪展示棱柱和棱锥的定义和示意图,解释它们的基本特征。

2. 教师讲解棱柱和棱锥的分类和常见例子,帮助学生更好地理解概念。

三、比较与区分(15分钟)1. 教师列举一些具体的物体,让学生判断它们是属于棱柱还是棱锥,并简要说明理由。

2. 学生分组进行讨论和比较,然后向全班汇报自己的判断结果。

四、计算表面积和体积(20分钟)1. 教师通过示例演示如何计算棱柱和棱锥的表面积和体积,包括公式的推导和具体计算步骤。

2. 学生跟随教师的示范,完成一些练习题,巩固计算方法。

五、应用实例(15分钟)1. 教师给出一些与棱柱和棱锥相关的实际问题,如计算某个建筑物的体积或表面积等。

2. 学生个别或小组合作解决问题,并向全班展示自己的解题过程和答案。

六、总结与拓展(10分钟)1. 教师对本节课的内容进行总结,并强调重点和难点。

2. 教师提供一些拓展问题,让学生进行思考和讨论,拓宽对棱柱和棱锥的理解。

七、作业布置(5分钟)1. 教师布置相关的课后作业,包括练习题和思考题。

2. 学生将作业写在笔记本上,并在下节课前完成。

教学反思:本节课通过引入、概念讲解、比较与区分、计算表面积和体积、应用实例等环节,全面而系统地让学生了解和掌握棱柱和棱锥的概念、特征和计算方法。

同时,通过实际问题的应用,培养学生的解决问题的能力和思维能力。

棱柱棱锥棱台的表面积和体积教案

棱柱棱锥棱台的表面积和体积教案

教案:棱柱、棱锥和棱台的表面积和体积一、教学目标1.理解棱柱、棱锥和棱台的概念;2.掌握计算棱柱、棱锥和棱台的表面积和体积的方法;3.能够应用所学知识解决实际问题。

二、教学内容1.棱柱的定义及性质;2.棱锥的定义及性质;3.棱台的定义及性质;4.计算棱柱、棱锥和棱台的表面积公式;5.计算棱柱、棱锥和棱台的体积公式;6.实际问题应用。

三、教学方法1.演示法:通过示意图、实物模型等形式展示各种几何体,帮助学生理解概念。

2.讲解法:结合示例,详细讲解计算表面积和体积的公式及步骤。

3.练习法:设计一系列练习题,让学生巩固所学知识。

4.讨论法:引导学生思考并讨论如何应用所学知识解决实际问题。

四、教学过程第一步:引入1.利用图片或实物模型展示棱柱、棱锥和棱台,引导学生观察并描述它们的特点。

2.引导学生思考如何计算这些几何体的表面积和体积。

第二步:讲解概念和性质1.讲解棱柱的定义:底面为多边形,侧面是连接底面相对顶点的线段。

2.讲解棱锥的定义:底面为多边形,侧面是连接底面顶点与一个点(称为顶点)的线段。

3.讲解棱台的定义:底面为多边形,顶面为平行于底面的同样形状的多边形,侧面是连接底面边与顶面相对顶点的线段。

4.通过示意图或实物模型展示各种几何体,并帮助学生理解其性质。

第三步:计算表面积公式1.计算棱柱表面积:底面积加上所有侧面积之和。

公式为S=2B+Pℎ,其中B为底面积,P为底边周长,ℎ为高度。

2.计算棱锥表面积:底面积加上侧面积。

公式为S=B+L,其中B为底面积,L为侧面积。

3.计算棱台表面积:底面积加上顶面积加上所有侧面积之和。

公式为S=B1+B2+L,其中B1和B2分别为底面和顶面的面积,L为侧面积。

第四步:计算体积公式1.计算棱柱体积:底面积乘以高度。

公式为V=Bℎ,其中B为底面积,ℎ为高度。

2.计算棱锥体积:底面积乘以高度再除以3。

公式为V=1Bℎ,其中B为底3面积,ℎ为高度。

3.计算棱台体积:(上底面积加下底面积加平行截面的乘积)乘以高度再除以(B1+B2+√B1⋅B2)ℎ,其中B1和B2分别为上下底的3。

教案-棱柱与棱锥

教案-棱柱与棱锥

【教学过程】*揭示课题9.5.1 棱柱与棱锥*情境导入【知识回顾】在九年制义务教育阶段,我们学习过直棱柱、圆柱、圆锥、球等几何体.(1)(2)(3)(4)图9−55象直棱柱(图9−55(1))那样,由若干个平面多边形围成的封闭的几何体叫做多面体,围成多面体的各个多边形叫做多面体的面,两个面的公共边叫做多面体的棱,棱与棱的交点叫做多面体的顶点,不在同一个面上的两个顶点的连线叫做多面体的对角线.像圆柱(图9−55(2))、圆锥(图9−55(3))、球(图9−55(4))那样的封闭几何体叫做旋转体.【观察】图9−56观察图9−56所示的多面体,可以发现它们具如下特征:(1)有两个面互相平行,其余各面都是四边形;(2)每相邻两个四边形的公共边互相平行.*引入新知有两个面互相平行,其余每相邻两个面的交线都互相平行的多面体叫做棱柱,互相平行的两个面,叫做棱柱的底面,其余各面叫做棱柱的侧面.相邻两个侧面的公共边叫做棱柱的侧棱.两个底面间的距离,叫做棱柱的高.图9−56所示的四个多面体都是棱柱.表示棱柱时,通常分别顺次写出两个底面各个顶点的字母,中间用一条短横线隔开,例如,图9−56(2)所示的棱柱,可以记作棱柱1111ABCD A B C D -,或简记作棱柱1AC .经常以棱柱底面多边形的边数来命名棱柱,如图9−56所示的棱柱依次为三棱柱、四棱柱、五棱柱.侧棱与底面斜交的棱柱叫做斜棱柱,如图9−56(2);侧棱与底面垂直的棱柱叫做直棱柱,如图9−56(1);底面是正多边形的直棱柱叫做正棱柱,如图9−56(3)和(4),分别为正四棱柱和正五棱柱.正棱柱有下列性质:(1)侧棱垂直于底面,各侧棱长都相等,并且等于正棱柱的高;(2)两个底面中心的连线是正棱柱的高. [想一想]如果直四棱柱的侧面都是全等的矩形,它是不是正四棱柱?如果四棱柱的底面是正方形,它是不是正四棱柱?正棱柱所有侧面的面积之和,叫做正棱柱的侧面积.正棱柱的侧面积与两个底面面积之和,叫做正棱柱的全面积.图9−57观察正棱柱的表面展开图(图9−57),可以得到正棱柱的侧面积、全面积计算公式分别为S ch =正棱柱侧 (9.1)2S ch S =+底正棱柱全(9.2)其中,c 表示正棱柱底面的周长,h 表示正棱柱的高,S 底表示正棱柱底面的面积.可以得到正棱柱的体积计算公式为(公式推导略)V S h 底正棱柱 (9.3)其中, 底S 表示正棱柱的底面的面积,h 是正棱柱的高.*例题讲解例1 已知一个正三棱柱的底面边长为4 cm ,高为5 cm ,求这个正三棱柱的侧面积和体积.*练习强化1.已知正方体的棱长是2cm ,则它的表面积是 ,体积是 。

数学上册教案认识棱柱与棱锥

数学上册教案认识棱柱与棱锥

数学上册教案认识棱柱与棱锥一、教学目标通过本节课的学习,学生应能够:1. 理解并区分棱柱和棱锥的特征;2. 掌握棱柱和棱锥的性质和基本要素;3. 运用所学知识解决数学问题。

二、教学重难点1. 重点:棱柱和棱锥的定义和特点;2. 难点:解决有关棱柱和棱锥的实际问题。

三、教学准备黑板、粉笔、教具模型、实物样本、习题册。

四、教学过程Step 1 引入新知教师出示一些日常生活中的物体,询问学生是否认识它们,以及它们之间是否有共同点。

通过学生回答,引导出“棱柱”和“棱锥”两个概念。

Step 2 棱柱的认识与性质1. 定义:教师向学生介绍棱柱的定义,即一个多边形在一个平面内,沿着它的一条边移动所得到的图形。

示意图并画在黑板上。

2. 特点:a. 底面:是一个多边形。

b. 侧面:是延长棱柱底面的边。

c. 顶点:顶面的中心点。

d. 高度:棱柱顶面和底面的距离。

3. 示例:教师拿着一个长方体模型,询问学生它是否符合棱柱的定义和特点,引导学生发现长方体是一种特殊的棱柱。

Step 3 棱锥的认识与性质1. 定义:教师向学生介绍棱锥的定义,即一个多边形在一个平面内,以一个顶点为基准,沿着它的边移动所得到的图形。

示意图并画在黑板上。

2. 特点:a. 底面:是一个多边形。

b. 侧面:是棱锥基准点和底面边之间的连线。

c. 顶点:基准点。

d. 高度:棱锥顶点到底面的垂直距离。

3. 示例:教师拿着一个圆锥模型,询问学生它是否符合棱锥的定义和特点,引导学生发现圆锥是一种特殊的棱锥。

Step 4 检查与巩固教师出示几个实物样本,要求学生根据所学知识判断它们是棱柱还是棱锥,并用正确的术语描述其特点。

鼓励学生之间互相提问和讨论。

Step 5 拓展应用提供一些有关棱柱和棱锥的实际问题,让学生运用所学知识解决问题。

例如:1. 如果一个棱柱的底面是一个正方形,边长为4cm,高度为6cm,求其体积和表面积。

2. 一座棱锥的底面是一个正三角形,边长为8cm,高度为10cm,求其体积和表面积。

高三数学 第64课时 棱柱与棱锥教案 教案

高三数学 第64课时 棱柱与棱锥教案  教案

课题:棱柱与棱锥教学目标:了解棱柱、棱锥的概念,掌握棱柱、正棱锥的性质,绘画直棱柱、正棱锥的直观图.教学重点:掌握棱柱、正棱锥的性质及性质的运用(一)主要知识及主要方法:1.有两个面互相平行,其余各面的公共边互相平行的多面体叫做棱柱.侧棱与底面垂直的棱柱叫做直棱柱.底面是正多边形的直棱柱叫正棱柱.2.棱柱的各侧棱相等,各侧面都是平行四边形;长方体的对角线的平方等于由一个顶点出发的三条棱的平方和.3.一个面是多边形,其余各面是有一个公共顶点的三角形的多面体叫做棱锥.底面是正多边形并且顶点在底面上的射影是正多边形的中心的棱锥叫做正棱锥.4.棱锥中与底面平行的截面与底面平行,并且它们面积的比等于对应高的平方比.在正棱锥中,侧棱、高及侧棱在底面上的射影构成直角三角形;斜高、高及斜高在底面上的射影构成直角三角形.5.三棱锥的顶点在底面三角形上射影位置常见的有:①侧棱长相等⇒外心;②侧棱与底面所成的角相等⇒外心;②侧面与底面所成的角相等⇒内心;④顶点到底面三边的距离相等⇒内心;⑤三侧棱两两垂直⇒垂心;⑥相对棱两两垂直⇒垂心.6.求体积常见方法有:①直接法(公式法);②转移法:利用祖暅原理或等积变化,把所求的几何体转化为与它等底、等高的几何体的体积;③分割法求和法:把所求几何体分割成基本几何体的体积;④补形法:通过补形化归为基本几何体的体积;⑤四面体体积变换法;⑥利用四面体的体积性质:(ⅰ)底面积相同的两个三棱锥体积之比等于其底面积的比;(ⅱ)高相同的两个三棱锥体积之比等于其底面积的比;(ⅲ)用平行于底面的平面去截三棱锥,截得的小三棱锥与原三棱锥的体积之比等于相似比的立方. (二)典例分析:问题1.()1(05全国Ⅱ文)下面是关于三棱锥的四个命题:①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥.②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥.④侧棱与底面所成的角相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥. 其中,真命题的编号是(写出所有真命题的编号)()2(06某某文)如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题...是 .A 等腰四棱锥的腰与底面所成的角都相等.B 等腰四棱锥的侧面与底面所成的二面角都相等或互补 .C 等腰四棱锥的底面四边形必存在外接圆 .D 等腰四棱锥的各顶点必在同一球面上()3(04全国)下面是关于四棱柱的四个命题:① 若有两个侧面垂直于底面,则该四棱柱为直四棱柱;② 若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱; ③ 若四个侧面两两全等,则该四棱柱为直四棱柱;④ 若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱. 其中,真命题的编号是(写出所有真命题的编号).()4(06某某文)如右图,已知正三棱柱111ABC A B C -的底面边长为1,高为8,一质点自A 点出发,沿着三棱柱 的侧面绕行两周..到达1A 点的最短路线的长为1C1AACB问题2.三棱柱111ABC A B C -中,AB =,BC 、AC 、1AA 的长均为a ,点1A 在底面ABC上的射影O 在AC 上.()1求AB 与侧面11ACC A 所成的角;()2若O 点恰是AC 的中点,求此三棱柱的侧面积; ()3求此三棱柱的体积.问题3.已知正四面体P ABC -的棱长为4,用一个, 求截面与底面之间的距离.问题4.如图所示,三棱锥P ABC -中,PA a =,2AB AC a ==,PAB PAC ∠=∠60BAC =∠=︒,求三棱锥P ABC -的体积.(要求用四种不同的方法)ABC1A1B1COPABCPAC(三)课后作业:1.一个正三棱锥与一个正四棱锥,它们的棱长都相等,把这个正三棱锥的一个侧面重合在正四棱锥的一个侧面上,这个组合体可能是.A 正四棱锥 .B 正五棱锥 .C 斜三棱柱 .D 正三棱柱2.如果三棱锥S ABC -的底面是不等边三角形,侧面与底面所成的二面角相等,且顶点S 在底面的射影为O ,O 在ABC △内,那么O 是ABC △的.A 垂心 .B 重心 .C 外心 .D 内心3.如图,在直三棱柱111ABC A B C -中,AB AC ==16BB BC ==,E 、F 为侧棱1AA 上的两点,且3EF =,则多面体11BB C CEF 的体积等于PA BCPA BCPABCABC1A1B1CEF4.过棱锥高的三等分点作两个平行于底面的截面,它们将棱锥的侧面分成三部分的面积的比(自上而下)为5.在三棱锥S ABC -中,60ASB ASC BSC ∠=∠=∠=︒,则侧棱SA 与侧面SBC 所成的角的大小是6.三棱锥一条侧棱长是16cm ,和这条棱相对的棱长是18cm ,其余四条棱长都是17cm ,求棱锥的体积.7.平行六面体1111ABCD A B C D -的底面是矩形,侧棱长为2cm ,点1C 在底面ABCD 上的射影H 是CD 的中点,1C C 与底面ABCD 成60︒角,二面角11A C C D --为30︒,求该平行六面体 的表面积和体积.ABCD H 1A1B1C1D8.(07届高三某某市三检)正三棱柱111ABC A B C -的底面边长为4,侧棱长为2,过正三棱柱111ABC A B C -底面上的一条棱AB 作一平面与底面成60︒的平面角,则该平面与平面111A B C 所截得的线段长等于9.(08届高三某某中学第四次月考)在直四棱柱1111ABCD A B C D -中,2AB AD ==,DC =1AA =AD DC ⊥,AC BD ⊥垂足为E .()1求证:1BD A C ⊥;()2求异面直线AD 与1BC 所成的角.(四)走向高考:10.(07某某)在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是(写出所有正确结论的编号..). ①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.11.(04春)两个完全相同的长方体的长、宽、高分别为5cm ,4cm ,3cm , 把它们重叠在一起组成一个新长方体,在这些新长方体中,最长的对角线的长度是.A 77cm .B 72cm .C 55cm .D 102cmACD E1A1B1C1D12.(05某某)有两个相同的直三棱柱,高为a2,底面三角形的三边长分别为3a 、4a 、5a (0a >).用它们 拼成一个三棱柱或四棱柱,在所有可能的情况中,全面积 最小的是一个四棱柱,则a 的取值X 围是13.(06某某春)正四棱锥底面边长为4,侧棱长为3,则其体积为14.(07全国Ⅰ)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为15.(07某某)正三棱锥P ABC -高为2,侧棱与底面所成角为45︒,则点A 到侧面PBC 的距离是2a4a3a 5a 2a4a3a5a。

小学三年级数学教案认识棱柱和棱锥

小学三年级数学教案认识棱柱和棱锥

小学三年级数学教案认识棱柱和棱锥教案:认识棱柱和棱锥【教学目标】1. 了解棱柱和棱锥的定义;2. 能够识别和描述棱柱和棱锥的特点;3. 学会区分棱柱和棱锥。

【教学准备】1. 小黑板/白板和粉笔/马克笔;2. 益智玩具或模型,包括棱柱和棱锥的模型。

【教学过程】一、导入(5分钟)老师可以用一个有趣的问题或绘图来引起学生的兴趣,比如:"同学们,你们有没有看过尖尖的冰棍,或者玩过积木?今天我们要学习的课程与这些东西有关,猜猜我们要学的是什么?"二、认识棱柱(15分钟)老师在黑板上绘制一个棱柱,并向学生介绍棱柱的定义:"同学们,这是一个棱柱。

我们可以看到它有两个底面,底面上的边都是直线,而且两个底面是平行的。

看它的侧面,有若干个多边形相连,且都是平行的,这些边就是棱。

那么请你们告诉我,棱柱有哪些特点?"让学生提出自己的观察结果,引导他们理解棱柱的特点。

三、认识棱锥(15分钟)老师在黑板上绘制一个棱锥,并向学生介绍棱锥的定义:"同学们,这是一个棱锥。

棱锥只有一个底面,底面上的边都是直线。

向上延伸出来的线段连接到一个顶点,看它的侧面,从顶点到底面的每一条线段都是一条棱。

请你们告诉我,棱锥有哪些特点?"同样地,鼓励学生提出自己的观察结果,加深他们对棱锥的理解。

四、比较和总结(10分钟)让学生站起来,找一个伙伴,对比并讨论棱柱和棱锥的相同点和不同点。

然后,邀请几组学生分享他们的观察结果。

五、巩固练习(15分钟)1. 将课桌上的物品分类,问学生分类的依据,并让他们识别棱柱和棱锥。

2. 给学生看一些图形,让他们快速判断是棱柱还是棱锥,并说出理由。

六、拓展延伸(15分钟)老师使用益智玩具或模型,例如由塑料积木搭建的棱柱和棱锥,让学生用手触摸、观察,体验棱柱和棱锥的特点。

鼓励他们用自己的话描述模型。

【课堂小结】总结课堂重点,回顾棱柱和棱锥的定义和特点。

【作业布置】布置练习册上有关棱柱和棱锥的练习。

棱柱、棱锥、棱台学习教案

棱柱、棱锥、棱台学习教案

棱柱、棱锥、棱台学习教案。

引入教导棱柱、棱锥、棱台时,我们要以多样的引入方式使学生进入主题,在学生的思维安排中启发对于这些几何形体的认知。

例如,当引入棱柱的时候,我们可以给学生展示一个装有不同颜色饼干的长方体(棱柱),让学生用立体图像帮助他们描述长方体。

我们可以要求学生想象自己是小农民,在采摘苹果的时候发现了一个长方形的饮料瓶,他们怎么描述它的形状和特征。

展示在展示棱柱、棱锥、棱台的时候,我们需要提供给学生充足的时间来观察这些几何形体。

例如,当展示棱锥的形状时,我们可以用类比的方法来让学生理解这种形状。

“蒲公英”其实也是一种棱锥形状,学生们可以用“蒲公英”的形状来帮助他们描述棱锥。

我们可以要求学生拿出一些不同形状的模型块,用这些模型块造出不同形状的棱锥,并让他们能够用具体实际的操作来理解这种形状。

探究在探讨几何形体的性质时,我们可以利用多种方式来帮助学生看到形状的不同侧面。

例如,在展示棱柱的时候,我们可以给学生们一份棱柱表,带他们了解这些棱柱相互之间的不同点。

我们也可以让学生在实际生活中寻找具有棱柱形状的物品,如蜡烛、笔筒、水杯等,并让他们发现这些物体的共同特征。

评估我们需要评估学生是否实现彻底的理解和熟练的技能,这可以通过多种方式达到。

例如,我们可以通过布置棱柱、棱锥、棱台的习题,来检验学生的掌握情况,也可以通过让学生用棱柱、棱锥、棱台作为材料制作一些实用的东西,来考察他们的实践能力。

总结在教学中,我们需要引导学生理解几何形体的本质,并寻找与学生的生活和经验相关的例子。

当学生理解了这些几何形体的概念和性质时,我们需要让他们在实际中将所掌握的知识转化成技能。

在这个过程中,我们需要提供充足的练习和评估,以确保学生能够顺利掌握这些知识和技能。

一二年级数学教案:认识棱柱和棱锥

一二年级数学教案:认识棱柱和棱锥
艺术:棱柱和棱锥在雕塑、绘画等领域也有应用,如罗马柱、尖顶等
数学中的棱柱和棱锥应用
计算体积:棱柱和棱锥的体积计算公式在数学中有着广泛的应用,可以用于求解各种几何形状的体积。
图形变换:棱柱和棱锥的图形变换是计算机图形学中的重要概念,可以用于制作各种复杂的3D模型和动画。
解析几何:棱柱和棱锥在解析几何中有着重要的地位,可以用于研究各种曲线和曲面的性质和形状。
棱柱和棱锥的底面可以是任意多边形
棱柱和棱锥的侧面数量与底面边数相等
棱锥是由一个多边形和其外接球心所组成的几何体
棱柱和棱锥的几何特征
棱柱:底面为多边形,侧面为平行四边形的几何体
棱锥:底面为多边形,侧面为三角形,顶点在底面的射影为底面中心的几何体
棱柱和棱锥的分类
棱柱的分类:按照底面多边形的边数,棱柱可以分为三棱柱、四棱柱、五棱柱等
计算机图形学:棱柱和棱锥在三维建模、游戏设计、电影特效等领域的应用,用于构建逼真的三维场景和模型
05
教学建议与注意事项
教学方法与步骤建议
小组讨论:让学生分组讨论棱柱和棱锥的特点和异同点,促进交流与合作。
练习巩固:布置相关练习题,让学生通过实际操作巩固所学知识。
实物模型展示:使用棱柱和棱锥的实物模型,帮助学生直观理解其结构。
特殊棱柱和棱锥:例如正方体是特殊的四棱柱,正四面体是特殊的三棱锥
Hale Waihona Puke 分类依据:棱柱和棱锥的分类依据主要是底面多边形的边数和顶点的数量
棱锥的分类:按照顶点数和底面多边形的边数,棱锥可以分为三棱锥、四棱锥、五棱锥等
03
棱柱和棱锥的面积与体积
棱柱和棱锥的表面积计算
棱柱的表面积计算公式:2lw + 2lh + 2wh,其中l为棱长,w为底面周长,h为高。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【教学过程】
*揭示课题
9.5.1 棱柱与棱锥
*情境导入
【知识回顾】
在九年制义务教育阶段,我们学习过直棱柱、圆柱、圆锥、球等几何体.
(1)(2)(3)(4)
图9−55
象直棱柱(图9−55(1))那样,由若干个平面多边形围成的封闭的几何体叫做多面体,围成多面体的各个多边形叫做多面体的面,两个面的公共边叫做多面体的棱,棱与棱的交点叫做多面体的顶点,不在同一个面上的两个顶点的连线叫做多面体的对角线.
像圆柱(图9−55(2))、圆锥(图9−55(3))、球(图9−55(4))那样的封闭几何体叫做旋转体.
【观察】
图9−56
观察图9−56所示的多面体,可以发现它们具如下特征:
(1)有两个面互相平行,其余各面都是四边形;
(2)每相邻两个四边形的公共边互相平行.
*引入新知
有两个面互相平行,其余每相邻两个面的交线都互相平行的多面体叫做棱柱,互相平行
的两个面,叫做棱柱的底面,其余各面叫做棱柱的侧面.相邻两个侧面的公共边叫做棱柱的侧棱.两个底面间的距离,叫做棱柱的高.
图9−56所示的四个多面体都是棱柱.
表示棱柱时,通常分别顺次写出两个底面各个顶点的字母,中间用一条短横线隔开,例如,图9−56(2)所示的棱柱,可以记作棱柱1111ABCD A B C D -,或简记作棱柱1AC .
经常以棱柱底面多边形的边数来命名棱柱,如图9−56所示的棱柱依次为三棱柱、四棱柱、五棱柱.
侧棱与底面斜交的棱柱叫做斜棱柱,如图9−56(2);侧棱与底面垂直的棱柱叫做直棱柱,如图9−56(1);底面是正多边形的直棱柱叫做正棱柱,如图9−56(3)和(4),分别为正四棱柱和正五棱柱.
正棱柱有下列性质:
(1)侧棱垂直于底面,各侧棱长都相等,并且等于正棱柱的高;
(2)两个底面中心的连线是正棱柱的高. [想一想]
如果直四棱柱的侧面都是全等的矩形,它是不是正四棱柱?如果四棱柱的底面是正方形,它是不是正四棱柱?
正棱柱所有侧面的面积之和,叫做正棱柱的侧面积.正棱柱的侧面积与两个底面面积之和,叫做正棱柱的全面积.
图9−57
观察正棱柱的表面展开图(图9−57),可以得到正棱柱的侧面积、全面积计算公式分别为
S ch =正棱柱侧 (9.1)
2S ch S =+底正棱柱全
(9.2)
其中,c 表示正棱柱底面的周长,h 表示正棱柱的高,S 底表示正棱柱底面的面积.
可以得到正棱柱的体积计算公式为(公式推导略)
V S h 底正棱柱 (9.3)
其中, 底S 表示正棱柱的底面的面积,h 是正棱柱的高.
*例题讲解
例1 已知一个正三棱柱的底面边长为4 cm ,高为5 cm ,求这个正三棱柱的侧面积和体积.
*练习强化
1.已知正方体的棱长是2cm ,则它的表面积是 ,体积是 。

2.已知正三棱柱的底面积边长为6cm ,高为9cm ,求它的侧面积、表面积和体积。

*情境导入
观察图9−60所示的多面体,可以发现它们具如下特征:有一个面是多边形,其余各面都是三角形,并且这些三角形有一个公共顶点.
【实验】
准备好同底等高的正三棱锥与正三棱柱形容器,将正三棱锥容器中装满沙子,然后
倒入正三棱柱形状的容器中,发现:连续倒三次正好将正三棱柱容器装满.
*引入新知
具备上述特征的多面体叫做棱锥.多边形叫做棱锥的底面(简称底),有公共顶点的三角形
(3)
图9−60
面叫做棱锥的侧面,各侧面的公共顶点叫做棱锥的顶点,顶点到底面的距离叫做棱锥的高.底面是三角形、四边形、……的棱锥分别叫做三棱锥、四棱锥、…….通常用表示底面各顶点的字母来表示棱锥.例如,图9−60(2)中的棱锥记作:棱锥S ABCD -.
底面是正多边形,其余各面是全等的等腰三角形矩形的棱锥叫做正棱锥.图9−60中(1)、(2)分别表示正三棱锥、正四棱锥.
正棱锥有下列性质: (1)各侧棱的长相等;
(2)各侧面都是全等的等腰三角形.各等腰三角形底边上的高都叫做正棱锥的斜高; (3)顶点到底面中心的连线垂直与底面,是正棱锥的高;
(4)正棱锥的高、斜高与斜高在底面的射影组成一个直角三角形; (5)正棱锥的高、侧棱与侧棱在底面的射影也组成一个直角三角形. 【想一想】
四棱锥P-ABCD 中,如果棱锥的侧棱长相等,那么它是不是正四棱锥?如果棱锥的底面是正方形,那么它是不是正四棱锥?
图9−61
观察正棱锥的表面展开图(图9−61),可以得到正棱锥的侧面积、全面积(表面积)计算公式分别为 h c S '=
2
1
正棱锥侧 (9.4) 底正棱锥全S h c S +'=
2
1
. (9.5) 其中,c 表示正棱锥底面的周长,h '是正棱锥的斜高,底S 表示正棱锥的底面的面积,h 是正棱锥的高.
由实验表明,对于同底等高的棱锥与棱柱,棱锥的体积是棱柱体积的三分之一.即
h S V 底正棱锥3
1
=
. (9.6) 其中, 底S 表示正棱锥的底面的面积,h 是正棱锥的高. *例题讲解
例1 如图9−62,正三棱锥P-ABC 中,点O 是底面中心,PO =12 cm ,斜高PD =13 cm .求它的侧面积、体积(面积精确到0.12cm ,体积精确到13cm ).
*练习强化
1.设计一个正四棱锥形的冷水塔顶,高是0.85cm ,底面边长是1.5cm ,制造这种塔顶至少需要多少平方米铁板?冷水塔顶的容积是多少立方米? *归纳小结
正棱柱的侧面积、全面积、体积公式,正棱锥的侧面积、全面积、体积公式?
结论:
S ch =正棱柱侧; 2S ch S =+底正棱柱全; V S h =底正棱柱;
h c S '=
21正棱锥侧; 底正棱锥全S h c S +'=2
1
; h S V 底正棱锥3
1
=
.。

相关文档
最新文档