最新2018重庆中考数学模拟题(含答案)
人教版2018-2019学年度九年级中考数学试卷含答案
人教版2018-2019学年度九年级中考数学模拟试卷含答案一.选择题(共10小题,满分40分,每小题4分)1.﹣2017的倒数是()A.B.﹣C.2017 D.﹣20172.已知25x=2000,80y=2000,则等于()A.2 B.1 C.D.3.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013 km B.9.5×1012 km C.95×1011 km D.9.5×1011 km4.下面图中所示几何体的左视图是()A.B. C. D.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人7.我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.9% C.10% D.11%8.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5 B.6 C.7 D.89.如图①,在正方形ABCD中,点P从点D出发,沿着D→A方向匀速运动,到达点A后停止运动.点Q从点D出发,沿着D→C→B→A的方向匀速运动,到达点A后停止运动.已知点P的运动速度为a,图②表示P、Q两点同时出发x秒后,△APQ的面积y与x的函数关系,则点Q的运动速度可能是()A. a B. a C.2a D.3a10.如图,AB为⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是()A.2B.3 C.3D.3二.填空题(共4小题,满分20分,每小题5分)11.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=.12.已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m的取值范围是.13.有一个三角形纸片ABC,∠C=36°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得的两纸片均为等腰三角形,则∠A的度数可以是.14.如图,在直角坐标系中,点A(2,0),点B(0,1),过点A的直线l垂直于线段AB,点P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180°,使点C落在点D处.若以A,D,P为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标为.三.解答题(共2小题,满分16分,每小题8分)15.(8分)化简:(1﹣)÷16.(8分)有一石拱桥的桥拱是圆弧形,如下图所示,正常水位下水面宽AB=60m,水面到拱项距离CD=18m,当洪水泛滥时,水面宽MN=32m时,高度为5m的船是否能通过该桥?请说明理由.四.解答题(共2小题,满分16分,每小题8分)17.(8分)在如图所示的网格中,每个小方格的边长都是1.(1)分别作出四边形ABCD关于y轴、原点的对称图形;(2)以原点O为中心,将△ABD顺时针旋转90°,试画出旋转后的图形,并求旋转过程中△ABD扫过图形的面积.18.(8分)学之道在于悟.希望同学们在问题(1)解决过程中有所悟,再继续探索研究问题(2).(1)如图①,∠B=∠C,BD=CE,AB=DC.①求证:△ADE为等腰三角形.②若∠B=60°,求证:△ADE为等边三角形.(2)如图②,射线AM与BN,MA⊥AB,NB⊥AB,点P是AB上一点,在射线AM 与BN上分别作点C、点 D 满足:△CPD为等腰直角三角形.(要求:利用直尺与圆规,不写作法,保留作图痕迹)五.解答题(共2小题,满分20分,每小题10分)19.(10分)随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME 与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF 的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).20.(10分)如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.21.(12分)向阳中学为了解全校学生利用课外时间阅读的情况,调查者随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表(图).根据图表信息,解答下列问题:频率分布表(1)填空:a=,b=,m=,n=;(2)将频数分布直方图补充完整;(3)阅读时间不低于5小时的6人中,有2名男生、4名女生.现从这6名学生中选取两名同学进行读书宣讲,求选取的两名学生恰好是两名女生的概率.七.解答题(共1小题,满分12分,每小题12分)22.(12分)已知抛物线的顶点为(1,﹣4),且经过点B(3,0).(Ⅰ)求该抛物线的解析式及抛物线与x轴的另一个交点A的坐标;(Ⅱ)点P(m,1)为抛物线上的一个动点,点P关于原点的对称点为P′.①当点P′落在该抛物线上时,求m的值;②当P′落在第二象限内,P′A取得最大值时,求m的值.23.(14分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b的式子表示).参考答案与试题解析1.解:﹣2017的倒数是﹣.故选:B.2.解:∵25x=2000,80y=2000,∴25x=25×80,80y=25×80,∴25x﹣1=80,80y﹣1=25,∴(80y﹣1)x﹣1=80,∴(y﹣1)(x﹣1)=1,∴xy﹣x﹣y+1=1,∴xy=x+y,∵xy≠0,∴=1,∴+=1.故选:B.方法二:25x=2000∴25xy=2000y=(25×80)y=25y•80y=25y•25x=25x+y,∴xy=x+y,∴+=1,故选:B.3.解:9500 000 000 000km用科学记数法表示是9.5×1012 km,故选:B.4.解:图中所示几何体的左视图是.故选:B.5.解:∵解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤2,在数轴上表示为:,故选:A.6.解:A、本次抽样调查的样本容量是=5000,正确;B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误;故选:D.7.解:设平均每次下调的百分率为x,由题意,得6000(1﹣x)2=4860,解得:x1=0.1,x2=1.9(舍去).答:平均每次下调的百分率为10%.故选:C.8.解:∵l1∥l2∥l3,AB=5,AC=8,DF=12,∴,即,可得;DE=6,故选:B.9.解:本题采用筛选法.首先观察图象,可以发现图象由三个阶段构成,即△APQ的顶点Q所在边应有三种可能.当Q的速度低于点P时,当点P到达A时,点Q还在DC 上运动,之后,因A、P重合,△APQ的面积为零,画出图象只能有一个阶段构成,故A、B错误;当Q的速度是点P速度的2倍,当点P到点A时,点Q到点B.之后,点A、P重合,△APQ的面积为0.期间△APQ面积的变化可以看成两个阶段,与图象不符,C错误.故选:D.10.解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC是直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3,故选:C.11.解:∵①=1;②=3=1+2;③=6=1+2+3;④=10=1+2+3+4,∴=1+2+3+4+…+28=406.12.解:整理方程得:x2﹣2x﹣m=0∴a=1,b=﹣2,c=﹣m,方程有两个不相等的实数根,∴△=b2﹣4ac=4+4m>0,∴m>﹣1.13.解:由题意知△ABD与△DBC均为等腰三角形,①BC=CD,此时∠CDB=∠DBC=(180°﹣∠C)÷2=72°,∴∠BDA=180°﹣∠CDB=180°﹣72°=108°,AB=AD时,∠ABD=108°(舍去);或AB=BD,∠A=108°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=36°;②BC=BD,此时∠CDB=∠C=36°,∴∠BDA=180°﹣∠CDB=180°﹣36°=144°,AB=AD时,∠ABD=144°(舍去);或AB=BD,∠A=144°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=18°;③CD=BD,此时∠CDB=180°﹣2∠C=108°,∴∠BDA=180°﹣∠CDB=180°﹣108°=72°,AB=AD时,∠A=180°﹣2∠ADB=36°;或AB=BD,∠A=72°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=54°.综上所述,∠A的度数可以是18°或36°或54°或72°.故答案为:18°或36°或54°或72°.14.解:∵点A(2,0),点B(0,1),∴直线AB的解析式为y=﹣x+1∵直线l过点A(4,0),且l⊥AB,∴直线L的解析式为;y=2x﹣4,∠BAO+∠PAC=90°,∵PC⊥x轴,∴∠PAC+∠APC=90°,∴∠BAO=∠APC,∵∠AOB=∠ACP,∴△AOB∽△PCA,∴=,∴==,设AC=m,则PC=2m,∵△PCA≌△PDA,∴AC=AD,PC=PD,∴==,如图1:当△PAD∽△PBA时,则=,则==,∵AB==,∴AP=2,∴m2+(2m)2=(2)2,∴m=±2,当m=2时,PC=4,OC=4,P点的坐标为(4,4),当m=﹣2时,如图2,PC=4,OC=0,P点的坐标为(0,﹣4),如图3,若△PAD∽△BPA,则==,PA=AB=,则m2+(2m)2=()2,∴m=±,当m=时,PC=1,OC=,P点的坐标为(,1),当m=﹣时,如图4,PC=1,OC=,P点的坐标为(,﹣1);故答案为:P(4,4),p(0,﹣4),P(,﹣1),P(,1).15.解:原式=•=•=﹣.16.解:不能通过.设OA=R,在Rt△AOC中,AC=30,CD=18,R2=302+(R﹣18)2,R2=900+R2﹣36R+324解得R=34m连接OM,在Rt△MOE中,ME=16,OE2=OM2﹣ME2即OE2=342﹣162=900,∴OE=30,∴DE=34﹣30=4,∴不能通过.(12分)17.解:(1)所画图形如下图所示,(2)如上图所示,△A′B′D′即为△ABD顺时针旋转90°后得到的图形,在旋转过程中可知:△ABD扫过图形的面积即是线段AB所扫过的扇环面积(S1)与△ABD的面积(S2)之和(S),则有:S=S1+S2=[π×OA2﹣π×OB2]+×AD×1=[π×(22+42)﹣π×(12+12)]+×2×1=+1.18.解:(1)①证明:∵∠B=∠C,BD=CE,AB=DC,∴△ABD≌DCE,∴AB=DC,∴△ADE为等腰三角形;②∵△ABD≌△DCE,∴∠BAD=∠CDE,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=∠ADE+∠EDC,又∵∠BAD=∠CDE.∴∠ADE=∠B=60°,∴等腰△ADE为等边三角形.(2)有三种结果,如图所示:19.解:∵AC∥ME,∴∠CAB=∠AEM,在Rt△ABC中,∠CAB=28°,AC=9m,∴BC=ACtan28°≈9×0.53=4.77(m),∴BD=BC﹣CD=4.77﹣0.5=4.27(m),在Rt△BDF中,∠BDF+∠FBD=90°,在Rt△ABC中,∠CAB+∠FBC=90°,∴∠BDF=∠CAB=28°,∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m),答:坡道口的限高DF的长是3.8m.20.解:(1)设反比例函数解析式为y=,把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,∴反比例函数解析式为y=;把A(3,m)代入y=,可得3m=6,即m=2,∴A(3,2),设直线AB 的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得,解得,∴直线AB 的解析式为y=x﹣1;(2)由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方;(3)存在点C.如图所示,延长AO交双曲线于点C1,∵点A与点C1关于原点对称,∴AO=C1O,∴△OBC1的面积等于△OAB的面积,此时,点C1的坐标为(﹣3,﹣2);如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,∴△OBC2的面积等于△OAB的面积,由B(﹣2,﹣3)可得OB的解析式为y=x,可设直线C1C2的解析式为y=x+b',把C1(﹣3,﹣2)代入,可得﹣2=×(﹣3)+b',解得b'=,∴直线C1C2的解析式为y=x+,解方程组,可得C2(,);如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,设直线AC3的解析式为y=x+b“,把A(3,2)代入,可得2=×3+b“,解得b“=﹣,∴直线AC3的解析式为y=x﹣,解方程组,可得C3(﹣,﹣);综上所述,点C的坐标为(﹣3,﹣2),(,),(﹣,﹣).21.解:(1)∵本次调查的总人数b=9÷0.15=60,∴a=60﹣(9+18+12+6)=15,则m==0.25、n==0.2,故答案为:15、60、0.25、0.2;(2)补全频数分布直方图如下:(3)用X、Y表示男生、A、B、C、D表示女生,画树状图如下:由树状图知共有30种等可能结果,其中选取的两名学生恰好是两名女生的结果数为12,所以选取的两名学生恰好是两名女生的概率为=.22.解:(Ⅰ)∵抛物线的顶点为(1,﹣4),∴可设抛物线解析式为y=a(x﹣1)2﹣4,∵经过点B(3,0),∴0=a(3﹣1)2﹣4,解得a=1,∴抛物线解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3,令y=0可得x2﹣2x﹣3=0,解得x=3或x=﹣1,∴点A的坐标为(﹣1,0);(Ⅱ)①由点P(m,1)在抛物线y=x2﹣2x﹣3上,有l=m2﹣2m﹣3.又点P关于原点的对称点为P′,∴P′(﹣m,﹣1).∵点P′落在抛物线y=x2﹣2x﹣3上,∴﹣l=(﹣m)2﹣2(﹣m)﹣3,即l=﹣m2﹣2m+3,∴m2﹣2m﹣3=﹣m2﹣2m+3,解得m1=,m2=﹣;②∵P′落在第二象限内,∴点P(m,1)在第四象限,即m>0,l<0.23.解:(1)∵点H是AD的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:=,故答案为:;(3)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即a:b=b:a,∴a=b;故答案为:②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:b或b.。
重庆市初三中考数学第一次模拟试卷
重庆市初三中考数学第一次模拟试卷一、选择题(本大题共12小题,共36.0分)1.下列各组数中结果相同的是()A. 与B. 与C. 与D. 与2.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A. B. C. D.3.下列计算中,错误的是()A. B.C. D.4.下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个5.某班班长统计去年1-8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A. 平均数是58B. 众数是42C. 中位数是58D. 每月阅读数量超过40的有4个月6.在半径为R的圆上依次截取等于R的弦,顺次连接各分点得到的多边形是()A. 正三角形B. 正四边形C. 正五边形D. 正六边形7.下列命题错误的是()A. 若一个多边形的内角和与外角和相等,则这个多边形是四边形B. 矩形一定有外接圆C. 对角线相等的菱形是正方形D. 一组对边平行,另一组对边相等的四边形是平行四边形8.如图是某几何体的三视图,则该几何体的表面积为()A. B. C. D.9.在排球训练中,甲、乙、丙三人相互传球,由甲开始发球(记作为第一次传球),则经过三次传球后,球仍回到甲手中的概率是()A. B. C. D.10.运算※按下表定义,例如3※2=1,那么(2※4)※(1※3)=()A. 1B. 2C. 3D. 411.如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为()A. B. C. D.12.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形=2S△BGE.ECFGA. 4B. 3C. 2D. 1二、填空题(本大题共4小题,共12.0分)13.分解因式:4ax2-ay2=______.14.如图,菱形ABCD的边长为2,∠A=60°,以点B为圆心的圆与AD、DC相切,与AB、CB的延长线分别相交于点E、F,则图中阴影部分的面积为______.15.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=上,且OA⊥OB,cos A=,则k的值为______.16.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=______.三、计算题(本大题共2小题,共12.0分)17.先化简,再求值:(-)÷,其中a=.18.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,求线段BE的长.四、解答题(本大题共5小题,共40.0分)19.计算:+tan30°+|1-|-(-)-2.20.将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E 组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男生有多少人?其中成绩合格的有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.21.某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?22.如图,△AOB中,A(-8,0),B(0,),AC平分∠OAB,交y轴于点C,点P是x轴上一点,⊙P经过点A、C,与x轴于点D,过点C作CE⊥AB,垂足为E,EC的延长线交x轴于点F,(1)⊙P的半径为______;(2)求证:EF为⊙P的切线;(3)若点H是上一动点,连接OH、FH,当点P在上运动时,试探究是否为定值?若为定值,求其值;若不是定值,请说明理由.23.如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.答案和解析1.【答案】D【解析】解:A、32=9,23=8,故不相等;B、|-3|3=27(-3)3=-27,故不相等;C、(-3)2=9,-32=-9,故不相等;D、(-3)3=-27,-33=-27,故相等,故选:D.利用有理数乘方法则判定即可.本题主要考查了有理数乘方,解题的关键是注意符号.2.【答案】A【解析】解:14420000=1.442×107,故选:A.根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.本题考查科学记数法-表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.【答案】D【解析】解:A、5a3-a3=4a3,正确,本选项不符合题意;B、(-a)2•a3=a5,正确,本选项不符合题意;C、(a-b)3•(b-a)2=(a-b)5,正确,本选项不符合题意;D、2m•3n≠6m+n,错误,本选项符合题意;故选:D.根据合并同类项法则,同底数幂的乘法法则等知识求解即可求得答案.本题考查的是合并同类项法则,同底数幂的乘法,需注意区别:同底数幂的乘法:底数不变,指数相加;幂的乘方:底数不变,指数相乘.4.【答案】C【解析】解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形.故选C.根据轴对称图形与中心对称图形的概念求解.掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.5.【答案】C【解析】解:A、每月阅读数量的平均数是=56.625,故A错误;B、出现次数最多的是58,众数是58,故B错误;C、由小到大顺序排列数据28,36,42,58,58,70,78,83,中位数是58,故C正确;D、由折线统计图看出每月阅读量超过40天的有6个月,故D错误;故选:C.根据平均数的计算方法,可判断A;根据众数的定义,可判断B;根据中位数的定义,可判断C;根据折线统计图中的数据,可判断D.本题考查的是折线统计图、平均数、众数和中位数.要注意,当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位,关键是根据折线统计图获得有关数据.6.【答案】D【解析】解:由题意这个正n边形的中心角=60°,∴n==6,∴这个多边形是正六边形,故选:D.求出正多边形的中心角即可解决问题.本题考查正多边形与圆,解题的关键是熟练掌握基本知识,属于中考常考题型.7.【答案】D【解析】解:A、一个多边形的外角和为360°,若外角和=内角和=360°,所以这个多边形是四边形,故此选项正确;B、矩形的四个角都是直角,满足对角互补,根据对角互补的四边形四点共圆,则矩形一定有外接圆,故此选项正确;C、对角线相等的菱形是正方形,故此选项正确;D、一组对边平行且相等的四边形是平行四边形;而一对边平行,另一组对边相等的四边形可能是平行四边形或是梯形,故此选项错误;本题选择错误的命题,故选:D.A、任意多边形的外角和为360°,然后利用多边形的内角和公式计算即可;B、判断一个四边形是否有外接圆,要看此四边形的对角是否互补,矩形的对角互补,一定有外接圆;C、根据正方形的判定方法进行判断;D、一组对边平行且相等的四边形是平行四边形.本题主要考查的是多边形的内角和和外角和,四点共圆问题,正方形的判定,平行四边形的判定,掌握这些定理和性质是关键.8.【答案】A【解析】解:观察该几何体的三视图发现该几何体为正六棱柱;该六棱柱的棱长为2,正六边形的半径为2,所以表面积为2×2×6+×2××6×2=24+12,故选:A.首先确定该几何体的形状,然后根据各部分的尺寸得到该几何体的表面积即可.本题考查由三视图求表面积,考查由三视图还原直观图,注意求面积时,由于包含的部分比较多,不要漏掉,本题是一个基础题.9.【答案】B【解析】解:画树状图得:∵共有8种等可能的结果,经过3次传球后,球仍回到甲手中的有2种情况,∴经过3次传球后,球仍回到甲手中的概率是:=.故选:B.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与经过三次传球后,球仍回到甲手中的情况,再利用概率公式即可求得答案.此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.10.【答案】D【解析】解:∵3※2=1,∴运算※就是找到第三列与第二行相结合的数,∴(2※4)=3,(1※3)=3,∴3※3=4.故选:D.根据题目提供的运算找到运算方法,即:3※2=1就是第三列与第二行所对应的数,按此规律计算出(2※4)※(1※3)的结果即可.本题考查了学生们的阅读理解能力,通过观察例子,从中找到规律,进而利用此规律进行进一步的运算.11.【答案】C【解析】解:∵∠ABC的平分线交CD于点F,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CBE=∠CFB=∠ABE=∠E,∴CF=BC=AD=8,AE=AB=12,∵AD=8,∴DE=4,∵DC∥AB,∴,∴,∴EB=6,∵CF=CB,CG⊥BF,∴BG=BF=2,在Rt△BCG中,BC=8,BG=2,根据勾股定理得,CG===2,故选:C.先由平行四边形的性质和角平分线的定义,判断出∠CBE=∠CFB=∠ABE=∠E,从而得到CF=BC=8,AE=AB=12,再用平行线分线段成比例定理求出BE,然后用等腰三角形的三线合一求出BG,最后用勾股定理即可.此题是平行四边形的性质,主要考查了角平分线的定义,平行线分线段成比例定理,等腰三角形的性质和判定,勾股定理,解本题的关键是求出AE,记住:题目中出现平行线和角平分线时,极易出现等腰三角形这一特点.12.【答案】B【解析】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x-k)2+4k2,∴x=,∴sin∠BQP==,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S=4S△BGE,故④错误.四边形ECFG故选:B.首先证明△ABE≌△BCF,再利用角的关系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB,解出BP,QB,根据正弦的定义即可求解;根据AA可证△BGE与△BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解.本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.13.【答案】a(2x+y)(2x-y)【解析】解:原式=a(4x2-y2)=a(2x+y)(2x-y),故答案为:a(2x+y)(2x-y).首先提取公因式a,再利用平方差进行分解即可.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.【答案】+【解析】解:设AD与圆的切点为G,连接BG,∴BG⊥AD,∵∠A=60°,BG⊥AD,∴∠ABG=30°,在直角△ABG中,BG=AB=×2=,AG=1,∴圆B的半径为,∴S△ABG=×1×=在菱形ABCD中,∠A=60°,则∠ABC=120°,∴∠EBF=120°,∴S阴影=2(S△ABG-S扇形)+S扇形FBE=2×(-)+=+.故答案为:+.设AD与圆的切点为G,连接BG,通过解直角三角形求得圆的半径,然后根据扇形的面积公式求得三个扇形的面积,进而就可求得阴影的面积.此题主要考查了菱形的性质以及切线的性质以及扇形面积等知识,正确利用菱形的性质和切线的性质求出圆的半径是解题关键.15.【答案】-4【解析】解:作AC⊥x轴于点C,作BD⊥x轴于点D.则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,∵OA⊥OB,cosA=,∴∠BOD+∠AOC=90°,tanA=,∴∠BOD=∠OAC,∴△OBD∽△AOC,∴=()2=(tanA)2=2,又∵S△AOC=×2=1,∴S△OBD=2,∴k=-4.故答案为:-4.作AC⊥x轴于点C,作BD⊥x轴于点D,易证△OBD∽△AOC,则面积的比等于相似比的平方,即tanA的平方,然后根据反比例函数中比例系数k的几何意义即可求解.本题考查了相似三角形的判定与性质,以及反比例函数的比例系数k的几何意义,正确作出辅助线求得两个三角形的面积的比是关键.16.【答案】2+或4+2【解析】解:如图1所示:作AE∥BC,延长AE交CD于点N,过点B作BT⊥EC于点T,当四边形ABCE为平行四边形,∵AB=BC,∴四边形ABCE是菱形,∵∠A=∠C=90°,∠B=150°,BC∥AN,∴∠ADC=30°,∠BAN=∠BCE=30°,则∠NAD=60°,∴∠AND=90°,∵四边形ABCE面积为2,∴设BT=x,则BC=EC=2x,故2x2=2,解得:x=1(负数舍去),则AE=EC=2,EN==,故AN=2+,则AD=DC=4+2;如图2,当四边形BEDF是平行四边形,∵BE=BF,∴平行四边形BEDF是菱形,∵∠A=∠C=90°,∠B=150°,∴∠ADB=∠BDC=15°,∵BE=DE,∴∠AEB=30°,∴设AB=y,则BE=2y,AE=y,∵四边形BEDF面积为2,∴AB×DE=2y2=2,解得:y=1,故AE=,DE=2,则AD=2+,综上所述:CD的值为:2+或4+2.故答案为:2+或4+2.根据题意结合裁剪的方法得出符合题意的图形有两个,分别利用菱形的判定与性质以及勾股定理得出CD的长.此题主要考查了剪纸问题以及勾股定理和平行四边形的性质等知识,根据题意画出正确图形是解题关键.17.【答案】解:原式=[-]÷=•=,当a=时,原式===5-2.【解析】先根据分式混合运算顺序和运算法则化简原式,再将a的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.18.【答案】解:根据作法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理DF∥AE,∴四边形AEDF是平行四边形,而EA=ED,∴四边形AEDF为菱形,∴AE=DE=DF=AF=4,∵DE∥AC,∴BE:AE=BD:CD,即BE:4=6:3,∴BE=8.【解析】根据作法得到MN是线段AD的垂直平分线,则AE=DE,AF=DF,所以∠EAD=∠EDA,加上∠BAD=∠CAD,得到∠EDA=∠CAD,则可判断DE∥AC,同理DF∥AE,于是可判断四边形AEDF是平行四边形,加上EA=ED,则可判断四边形AEDF为菱形,所以AE=DE=DF=AF=4,然后利用平行线分线段成比例可计算BE 的长.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定与性质和平行线分线段成比例.19.【答案】解:原式=2+×+-1-4=2+1+-1-4=3-4.【解析】依据二次根式的性质、特殊锐角三角函数值、绝对值的性质、负整数指数幂的性质进行化简,然后再进行计算即可.本题主要考查的是实数的运算,熟练掌握二次根式的性质、特殊锐角三角函数值、绝对值的性质、负整数指数幂的性质是解题的关键.20.【答案】解:(1)∵A组占10%,有5人,∴这部分男生共有:5÷10%=50(人);∵只有A组男人成绩不合格,∴合格人数为:50-5=45(人);(2)∵C组占30%,共有人数:50×30%=15(人),B组有10人,D组有15人,∴这50人男生的成绩由低到高分组排序,A组有5人,B组有10人,C组有15人,D组有15人,E组有5人,∴成绩的中位数落在C组;∵D组有15人,占15÷50=30%,∴对应的圆心角为:360°×30%=108°;(3)成绩优秀的男生在E组,含甲、乙两名男生,记其他三名男生为a,b,c,画树状图得:∵共有20种等可能的结果,他俩至少有1人被选中的有14种情况,∴他俩至少有1人被选中的概率为:=.【解析】(1)根据题意可得:这部分男生共有:5÷10%=50(人);又由只有A组男人成绩不合格,可得:合格人数为:50-5=45(人);(2)由这50人男生的成绩由低到高分组排序,A组有5人,B组有10人,C组有15人,D组有15人,E组有5人,可得:成绩的中位数落在C组;又由D组有15人,占15÷50=30%,即可求得:对应的圆心角为:360°×30%=108°;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他俩至少有1人被选中的情况,再利用概率公式即可求得答案.此题考查了树状图法与列表法求概率以及直方图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】解:(1)设新建1个地上停车位需要x万元,新建1个地下停车位需y万元,根据题意,得,解得:.答:新建1个地上停车位需要0.1万元,新建1个地下停车位需0.5万元.(2)设建m(m为整数)个地上停车位,则建(50-m)个地下停车位,根据题意,得:12<0.1m+0.5(50-m)≤13,解得:30≤m<32.5.∵m为整数,∴m=30,31,32,共有3种建造方案.①建30个地上停车位,20个地下停车位;②建31个地上停车位,19个地下停车位;③建32个地上停车位,18个地下停车位.【解析】(1)设新建1个地上停车位需要x万元,新建1个地下停车位需y万元,根据题意列出方程就可以求出结论;(2)设建m个地上停车位,则建(50-m)个地下停车位,根据题意建立不等式组就可以求出结论本题考查了二元一次方程组的运用及解法,一元一次不等式及不等式组的运用及解法.在解答中要注意实际问题中未知数的取值范围的运用.22.【答案】5【解析】解:(1)连接PC,∵AC平分∠OAB,∴∠BAC=∠OAC,∵PA=PC,∴∠PCA=∠PAC,∴∠BAC=∠ACP,∴PC∥AB,∴△OPC∽△OAB,∴,∵A(-8,0),B(0,),∴OA=8,OB=,∴AB=,∴=,∴PC=5,∴⊙P的半径为5;故答案为:5;(2)证明:连接CP,∵AP=CP,∴∠PAC=∠PCA,∵AC平分∠OAB,∴∠PAC=∠EAC,∴∠PCA=∠EAC,∴PC∥AE,∵CE⊥AB,∴CP⊥EF,即EF是⊙P的切线;(3)是定值,=,连接PH,由(1)得AP=PC=PH=5,∵A(-8,0),∴OA=8,∴OP=OA-AP=3,在Rt△POC中,OC===4,由射影定理可得OC2=OP•OF,∴OF=,∴PF=PO+OF=,∵=,==,∴,又∵∠HPO=∠FPH,∴△POH∽△PHF,∴,当H与D重合时,.(1)连接PC,根据角平分线的定义得到∠BAC=∠OAC,根据等腰三角形的性质得到∠PCA=∠PAC,等量代换得到∠BAC=∠ACP,推出PC∥AB,根据相似三角形的性质即可得到结论;(2)连接CP,根据等腰三角形的性质得到∠PAC=∠PCA,由角平分线的定义得到∠PAC=∠EAC,等量代换得到∠PCA=∠EAC,推出PC∥AE,于是得到结论;(3)连接PH,由(1)得AP=PC=PH=5,根据勾股定理得到OC== =4,根据射影定理得到OF=,根据相似三角形的判定和性质即可得到结论.本题考查了角平分线的定义,平行线的判定和性质,切线的判定,相似三角形的判定和性质,射影定理,正确的作出辅助线是解题的关键.23.【答案】解:(1)由题意可得,解得a=1,b=-5,c=5;∴二次函数的解析式为:y=x2-5x+5,(2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,设对称轴交x轴于Q.则,∵MQ=,∴NQ=2,B(,);∴ ,解得,∴,D(0,),同理可求,,∵S△BCD=S△BCG,∴①DG∥BC(G在BC下方),,∴=x2-5x+5,解得,,x2=3,∵x>,∴x=3,∴G(3,-1).②G在BC上方时,直线G2G3与DG1关于BC对称,∴=,∴=x2-5x+5,解得,,∵x>,∴x=,∴G(,),综上所述点G的坐标为G(3,-1),G(,).(3)由题意可知:k+m=1,∴m=1-k,∴y l=kx+1-k,∴kx+1-k=x2-5x+5,解得,x1=1,x2=k+4,∴B(k+4,k2+3k+1),设AB中点为O′,∵P点有且只有一个,∴以AB为直径的圆与x轴只有一个交点,且P为切点,∴O′P⊥x轴,∴P为MN的中点,∴P(,0),∵△AMP∽△PNB,∴,∴AM•BN=PN•PM,∴1×(k2+3k+1)=(k+4-)(),∵k>0,∴k==-1+.【解析】(1)根据已知列出方程组求解即可;(2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,求出直线l的解析式,再分两种情况分别分析出G点坐标即可;(3)根据题意分析得出以AB为直径的圆与x轴只有一个交点,且P为切点,P为MN的中点,运用三角形相似建立等量关系列出方程求解即可.此题主要考查二次函数的综合问题,会中学数学一模模拟试卷一、 选择题( 本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应的位置上) 1. 63a a ÷结果是 ( )A .3aB .2aC . 9aD .3a -2.在函数y =x 的取值范围 ( ) A .1x ≤ B .1x ≥ C .1x < D . 1x >3.江苏省占地面积约为107200平方公里.将107200用科学记数法表示应为( )A .0.1072×106B .1.072×105C .1.072×106D .10.72×1044.如图,∠1=50°,如果AB ∥DE ,那么∠D 的度数为( ) A . 40° B . 50° C . 130° D . 140°5、若一个多边形的内角和与它的外角和相等,则这个多边形是( )A .三角形B .四边形C .五边形D .六边形6. 若1=x 是方程052=+-c x x 的一个根,则这个方程的另一个根是 ( )A .-2B .2C .4D .-57. 已知一个圆锥的侧面积是10πcm 2,它的侧面展开图是一个圆心角为144°的扇形,则这个圆锥的底面半径为 ( )A . 45cm BC . 2 cm D.8. 如图,在楼顶点A 处观察旗杆CD 测得旗杆顶部C 的仰角为30°,旗杆底部D 的俯角为45°.已知楼高9AB = m ,则旗杆CD 的高度为( )A. (9+mB. (9+mC.D.C(第4题)1ABDEADEF第10题9. 如图,在矩形ABCD 中,AB =3,BC =5,以B 为圆心BC 为半径画弧交AD 于点E ,连接CE ,作BF ⊥CE ,垂足为F ,则tan ∠FBC 的值为( )10. 如图,△ABC 是边长为4cm 的等边三角形,动点P 从点A 出发,以2cm /s 的速度沿A →C →B运动,到达B 点即停止运动,过点P 作PD ⊥AB 于点D ,设运动时间为x (s ),△ADP 的面积为y (cm 2),则能够反映y 与x 之间函数关系的图象大致是( )A .B .C .D .二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应的位置上)11.在实数范围内分解因式:1642-m = .12. 已知a -2b =-5,则8-3a +6b 的值为 . 13. 一组数据2、3、4、5、6的方差等于 .14.抛物线241y x x =-+的顶点坐标为 第15题 15.如图,A 、B 、C 是⊙O 上的三点,∠AOB =100°,则∠ACB = 度. 16. 如图,在△ABC 中,AC >AB ,点D 在BC 上,且BD =BA ,∠ABC 的平分线BE 交AD 于点E ,点F 是AC 的中点,连结EF .若四边形DCFE 和 △BDE 的面积都为3,则△ABC 的面积为 .17. 如图,在边长为10 的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是第16题 第17题 第18题18. 如图,一次函数与反比例函数的图像交于A (1,12)和B (6,2)两点,点P 是线段AB 上一动点(不与点A 和B 重合),过P 点分别作x 、y 轴的垂线PC 、PD 交反比例函数图像于点M 、N ,则四边形PMON 面积的最大值是 .三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(本题满分5分)计算:101()2cos60(2)2π--︒+-20.(本题满分5分)解不等式组:1123(2)4x x x ⎧-<⎪⎨⎪--≤⎩21.(本题满分6分) 先化简,再求值:121a a a a a --⎛⎫÷- ⎪⎝⎭,其中a.22.(本题满分6分) 如图,在△ABC 中,AD 平分∠BAC ,且BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F .(1)求证:AB =AC ;(2)若AD =,∠DAC =30°,求△ABC 的周长.23.(7分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题: (1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A 种支付方式所对应的圆心角为 度. (3)若该超市这一周内有1600名购买者,请你估计使用A 和B 两种支付方式的购买者共有多少名?ABDCF E24.(本题满分8分)在地铁入口处检票进闸时,3个进闸通道A、B、C中,可随机选择其中的一个通过.(1)如果你经过此进闸口时,选择A通道通过的概率是;(2)求两个人经过此进闸口时,选择不同通道通过的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程.)25. (本题满分8分) 如图1,线段AB=12厘米,动点P从点A出发向点B运动,动点Q从点B出发向点A运中学数学一模模拟试卷一.选择题(满分24分,每小题3分)1.下列计算正确的是()A.﹣=B.()﹣1=﹣C.÷=2 D.3﹣=3 2.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.4.如果关于x的方程(a﹣5)x2﹣4x﹣1=0有两个实数根,则a满足的条件是()A.a≠5 B.a≥1 C.a>1且a≠5 D.a≥1且a≠55.如图,AB是半圆O的直径,C是OB的中点,过点C作CD⊥AB,交半圆于点D,则与的长度的比为()A.1:2 B.1:3 C.1:4 D.1:56.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm7.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x 人,女孩有y人,则下列方程组正确的是()A.B.C.D.8.如图,一次函数y1=ax+b和反比例函数y2=的图象相交于A,B两点,则使y1>y2成立的x取值范围是()A.﹣2<x<0或0<x<4 B.x<﹣2或0<x<4C.x<﹣2或x>4 D.﹣2<x<0或x>4二.填空题(满分24分,每小题3分)9.分解因式:x2﹣9x=.10.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.11.已知关于x,y的方程组的解满足x+y=5,则k的值为.12.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是.13.如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O 于D,连接BE.设∠BEC=α,则sinα的值为.14.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是.15.已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,AD为BC边上的高,动点P在AD上,从点A出发,沿A→D方向运动,设AP=x,△ABP的面积为S1,矩形PDFE的面积为S 2,y=S1+S2,则y与x的关系式是.三.解答题17.(6分)解不等式组并写出它的整数解.18.(6分)解分式方程:﹣1=.19.(6分)在边长为1的小正方形组成的网格中建立如图所示的平面直角坐标系,△ABC 为格点三角形(顶点是网格线的交点).(1)画出△ABC先向上平移2个单位长度,再向左平移3个单位长度得到的△A1B1C1;(2)以点O为位似中心,在第一象限画出△ABC的位似图形△A2B2C2,使△A2B2C2与△ABC的位似比为2:1.20.(6分)重庆市物价局发出通知,从2011年2月18日起降低部分抗生素药品和神经系统类药品最高零售价格,共涉及162个品种,某药房对售出的抗生素药品A、B、C、D、E 的销量进行统计,绘制成如下统计图:(1)补全折线统计图;。
2018年重庆市中考数学试卷(a卷)(答案+解析)
2018年重庆市中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面。
都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.(4分)2的相反数是()A.﹣2 B.﹣12C.12D.22.(4分)下列图形中一定是轴对称图形的是()A.B.C.D.直角三角形四边形平行四边形矩形3.(4分)为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工4.(4分)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.185.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm6.(4分)下列命题正确的是()A.平行四边形的对角线互相垂直平分B.矩形的对角线互相垂直平分C.菱形的对角线互相平分且相等D.正方形的对角线互相垂直平分7.(4分)估计(2√30﹣√24)•√16的值应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间8.(4分)按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=﹣4,y=﹣2 C.x=2,y=4 D.x=4,y=29.(4分)如图,已知AB 是⊙O 的直径,点P 在BA 的延长线上,PD 与⊙O 相切于点D ,过点B 作PD 的垂线交PD 的延长线于点C ,若⊙O 的半径为4,BC =6,则P A 的长为( )A .4B .2√3C .3D .2.510.(4分)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E 点处测得旗杆顶端的仰角∠AED =58°,升旗台底部到教学楼底部的距离DE =7米,升旗台坡面CD 的坡度i =1:0.75,坡长CD =2米,若旗杆底部到坡面CD 的水平距离BC =1米,则旗杆AB 的高度约为( )(参考数据:sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.6)A .12.6米B .13.1米C .14.7米D .16.3米11.(4分)如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数y =k x(k >0,x >0)的图象上,横坐标分别为1,4,对角线BD ∥x 轴.若菱形ABCD 的面积为452,则k 的值为( )A .54B .154C .4D .512.(4分)若数a 使关于x 的不等式组{x−12<1+x35x −2≥x +a有且只有四个整数解,且使关于y 的方程y+ay−1+2a1−y=2的解为非负数,则符合条件的所有整数a 的和为( )A .﹣3B .﹣2C .1D .2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的的横线上。
2018重庆市数学中考模拟试卷及答案
2018重庆市数学中考模拟试卷及答案2018年九年级数学中考模拟试卷一、选择题:1.如图,两条宽度都是1的纸条交叉叠在一起,且它们的夹角为α,则它们重叠部分(图中阴影部分)面积是()A. B. C.D.12.下列方程是一元二次方程的一般形式的是()A.(x﹣1)2=16B.3(x﹣2)2=27C.5x2﹣3x=0D. x2+2x=83.已知反比例函数的图象过点(2,3),那么下列四个点中,也在这个函数上的是( )A.(-6,1)B.(1,6)C.(2,-3)D.(3,-2)4.如图,下列图形全部属于柱体的是( )A.B.C. D.5.若△ABC∽△DEF,且AB∶DE=2∶3,则AB与DE边上的高h与h2之比为( )1A.2:3 B.3:2 C.4:9 D.9:46.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A. B. C. D.7.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1B.2C.3D.48.下列说法:①所有等腰三角形都相似;②有一个底角相等的两个等腰三角形相似;③有一个角相等的等腰三角形相似;④有一个角为60 o的两个直角三角形相似,其中正确的说法是()A.②④B.①③C.①②④D.②③④9.若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形10.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()A. B.4 C.8 D.411.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A. =B. C. D.12.已知二次函数y=x2﹣(m﹣1)x﹣m,其中m>0,它的图象与x轴从左到右交于R和Q两点,与y轴交于点P,点O是坐标原点.下列判断中不正确的是()A.方程x2﹣(m﹣1)x﹣m=0一定有两个不相等的实数根B.点R的坐标一定是(﹣1,0)C.△POQ是等腰直角三角形D.该二次函数图象的对称轴在直线x=﹣1的左側二、填空题:13.如图,直线l∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C;过点B的直线DE分别交l1、l3于1点D、E.若AB=2,BC=4,BD=1.5,则线段BE的长为.14.方程3(x-5)2=2(x-5)的根是15.若△ADE∽△ACB,且=,若四边形BCED的面积是2,则△ADE的面积是.16.a、b、c是实数,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,则b、c 的大小关系是b c(用“>”或“<”号填空)17.正比例函数y=mx(m>0)的图象与反比例函数y2=kx-1(k≠0)的图象交于点A(n,4)和点B,AM1⊥y轴,垂足为M.若△AMB面积为8,则满足y1>y2的实数x取值范围是.18.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=1.5S△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)三、解答题:19.解方程:x2﹣2=﹣2x20.如图,在边长为2的圆内接正方形ABCD中,AC是对角线,P为边CD的中点,延长AP交圆于点E.(1)∠E= 度;(2)写出图中现有的一对不全等的相似三角形,并说明理由;(3)求弦DE的长.21.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=-200x2+400x刻画;1.5小时后(包括1.5小时)y与x 可近似地用反比例函数y=kx-1 (k>0)刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.22.“校园安全”受到全社会的广泛关注,某校政教处对部分学生就校园安全知识的了解程度,进行了随机抽样调查,并根据学生的成绩划分为A(熟悉)、B(基本了解)、C(略有知晓)、D (知之甚少)四个等次,绘制成如图所示的两幅统计图.请根据以上信息回答下列问题:(1)分别求出统计图中m,n的值;(2)估计该校2350名学生中为A(熟悉)和B(基本了解)档次的学生共有多少人;(3)从被调查的“熟悉”档次的学生中随机抽取2人,参加市举办的校园安全知识竞赛,请用列表或画树状图的方法求获A等级的小明参加比赛的概率.23.某校九年级数学兴趣小组为了测得该校地下停车场的限高CD(CD⊥AE),在课外活动时间测得下列数据:如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米,地面B点(与E 点在同一水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)1.2米,试求该校地下停车场的高度AC及限高CD(≈1.73,结果精确到0.1米)24.某农户计划利用现有的一面墙(墙长8米),再修四面墙,建造如图所示的长方体水池,培育不同品种的鱼苗.他已备足可以修高为1.5m、长18m的墙的材料准备施工,设图中与现有一面墙垂直的三面墙的长度都为xm,即AD=EF=BC=xm.(不考虑墙的厚度)(1)若想水池的总容积为36m3,x应等于多少?(2)求水池的总容积V与x的函数关系式,并直接写出x的取值范围;(3)若想使水池的总容积V最大,x应为多少?最大容积是多少?四、综合题:25.(1)自主阅读:在三角形的学习过程,我们知道三角形一边上的中线将三角形分成了两个面积相等三角形,原因是两个三角形的底边和底边上的高都相等,在此基础上我们可以继续研究:如图1,AD∥BC,连接AB,AC,BD,CD,则S△ABC=S△BCD.证明:分别过点A和D,作AF⊥BC于F.DE⊥BC于E,由AD∥BC,可得AF=DE,又因为S△ABC=×BC×AF,S△BCD=.所以S△ABC=S△BCD由此我们可以得到以下的结论:像图1这样.(2)问题解决:如图2,四边形ABCD中,AB∥DC,连接AC,过点B作BE∥AC,交DC延长线于点E,连接点A和DE的中点P,请你运用上面的结论证明:S▱ABCD=S△APD(3)应用拓展:如图3,按此方式将大小不同的两个正方形放在一起,连接AF,CF,若大正方形的面积是80cm2,则图中阴影三角形的面积是 cm2.26.在平面直角坐标系中,二次函数y=mx2﹣(m+n)x+n(m<0)的图象与y轴正半轴交于A点.(1)求证:该二次函数的图象与x轴必有两个交点;(2)设该二次函数的图象与x轴的两个交点中右侧的交点为点B,若∠ABO=45°,将直线AB向下平移2个单位得到直线l,求直线l的解析式;(3)在(2)的条件下,设M(p,q)为二次函数图象上的一个动点,当﹣3<p<0时,点M关于x轴的对称点都在直线l的下方,求m的取值范围.参考答案1.A2.C3.B4.C5.A6.C7.B8.A9.D10.D11.A.12.D13.答案为:314.答案为:x1=5,x2=__.15.答案为:1.6.16.答案为:<.17.答案为:﹣2<x<0或x>2.18.答案为:①③④.19.解得:x1=﹣1+,x2=﹣1﹣;20.【解答】解:(1)∵∠ACD=45°,∠ACD=∠E,∴∠E=45°.(2)△ACP∽△DEP,理由:∵∠AED=∠ACD,∠APC=∠DPE,∴△ACP∽△DEP.(3)∵△ACP∽△DEP,∴.∵P为CD边中点,∴DP=CP=1,∵AP=,AC=,∴DE=.21.22.解:(1)∵D有12人,占30%,∴共有:12÷30%=40(人),∴n%=0.4×100%=40%,∴m%=1﹣20%﹣40%﹣30%=10%,∴m=10,n=40;(2)2350×(10%+20%)=705(人);(3)分别用A,B,C表示另外三人,画树状图得:∵共有12种等可能的结果,获A等级的小明参加比赛的有6种情况,∴获A等级的小明参加比赛的概率为:0.5.23.【解答】解:连接AC,∵∠ABE=90°,∠E=30°,∴AB=0.5AE=8,∴AC=8﹣1.2=6.8,∴CD=AC•sin∠EAB=6.8×≈5.9,答:地下停车场的高度AC为6.8米,限高CD约为5.9米.24.【解】(1)∵AD=EF=BC=x,∴AB=18-3x∴水池的总容积为1.5x(18-3x)=36即,解得x=2或4答x应为2或4(2)由(1)知V与x的函数关系式为:V=1.5x(18-3x)=-4.5x2+27xx的取值范围是(3)V=-4.5x2+27x=-(x-3)2+由二次函数的性质知:当时,总容积V最大=4025.【解答】解;(1)利用图形直接得出:同底等高的两三角形面积相等;故答案为:同底等高的两三角形面积相等;(2)∵AB∥CE,BE∥AC,∴四边形ABEC为平行四边形,∴△ABC和△AEC的公共边AC上的高也相等,∴S△ABC=S△AEC,∴S梯形ABCD=S△ACD+S△ABC=S△ACD+S△AEC=S△AED;(3)设正方形ABCD的边长为a,正方形DGFE的边长为b,∵S△ACF=S四边形ACEF﹣S△CEF=S△AFG+S正方形DEFG+S△ADC﹣S△CEF=×b×(a﹣b)+b×b+×a×a﹣×b×(b+a)=ab﹣b2+b2+a2﹣b2﹣ab=a2,∴S△ACF=S正方形ABCD=×80cm2=40cm2;故答案为:40.26.【解答】解:(1)令mx2﹣(m+n)x+n=0,则△=(m+n)2﹣4mn=(m﹣n)2,∵二次函数图象与y轴正半轴交于A点,∴A(0,n),且n>0,又∵m<0,∴m﹣n<0,∴△=(m﹣n)2>0,∴该二次函数的图象与轴必有两个交点;(2)令mx2﹣(m+n)x+n=0,解得:x1=1,x2=,由(1)得<0,故B的坐标为(1,0),又因为∠ABO=45°,所以A(0,1),即n=1,则可求得直线AB的解析式为:y=﹣x+1.再向下平移2个单位可得到直线l:y=﹣x﹣1;(3)由(2)得二次函数的解析式为:y=mx2﹣(m+1)x+1.∵M(p,q)为二次函数图象上的一个动点,∴q=mp2﹣(m+1)p+1.∴点M关于轴的对称点M′的坐标为(p,﹣q).∴M′点在二次函数y=﹣m2+(m+1)x﹣1上.∵当﹣3<p<0时,点M关于x轴的对称点都在直线l的下方,当p=0时,q=1;当p=﹣3时,q=12m+4;结合图象可知:﹣(12m+4)<2,解得:m>﹣.∴m的取值范围为:-<m<0.。
重庆市2018年中考数学试题(含解析)
2018年重庆市中考数学试卷(A 卷)答案及解析一、选择题 (本大题12个小题,每小题4分,共48分。
)1.2的相反数是 A .2- B .12-C .12D .2【答案】A【解析】根据一个数的相反数就是在这个数的前面添加上“-”即可求解 【点评】本题考查了相反数的定义,属于中考中的简单题2.下列图形中一定是轴对称图形的是A.B.C.D.【答案】D【解析】A40°的直角三角形不是对称图形;B 两个角是直角的四边形不一定是轴对称图形;C 平行四边形是中心对称图形不是轴对称图形;D 矩形是轴对称图形,有两条对称轴【点评】此题主要考查基本几何图形中的轴对称图形和中心对称图形,难度系数不大,考生主要注意看清楚题目要求。
3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是 A.企业男员工 B.企业年满50岁及以上的员工 C.用企业人员名册,随机抽取三分之一的员工 D.企业新进员工【答案】C【解析】A 调查对象只涉及到男性员工;B 调查对象只涉及到即将退休的员工;D 调查对象只涉及到新进员工【点评】此题主要考查考生对抽样调查中科学选取样本的理解,属于中考当中的简单题。
4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A .12B .14C .16D .18【答案】C 【解析】40°直角三角形四边形平行四边形矩形∵第1个图案中的三角形个数为:2+2=2×2=4;第2个图案中的三角形个数为:2+2+2=2×3=6;第3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。
2018年重庆市中考数学试卷---全面解析版 精品
2018年重庆市中考数学试卷---全面解析版一.选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1、在-6,0,3,8这四个数中,最小的数是(A)A、-6B、0C、3D、8考点:有理数大小比较.专题:计算题.分析:根据正数大于0,0大于负数,正数大于负数,两负数绝对值大的反而小,解答即可.解答:解:∵8>3>0>-6,∴最小的数是-6.故选A.点评:本题考查了有理数大小的比较,熟记:正数大于0,0大于负数,正数大于负数,两负数绝对值大的反而小.2、计算(a3)2的结果是(C)A、aB、a5C、a6D、a9考点:幂的乘方与积的乘方.专题:计算题.分析:根据幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)计算即可.解答:解:(a3)2=a3×2=a6.故选C.点评:本题考查了幂的乘方,注意:①幂的乘方的底数指的是幂的底数;②性质中“指数相乘”指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加”的区别.3、下列图形中,是中心对称图形的是(B)A、B、C、D、考点:中心对称图形.专题:数形结合.分析:根据中心对称图形的定义来判断:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解答:解:A、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;B、将此图形绕某一点旋转180度正好与原来的图形重合,所以这个图形是中心对称图形;C、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;D、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形.故选B.点评:本题主要考查中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.4、如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于(D)A、60°B、50°C、45°D、40°考点:平行线的性质.分析:根据三角形的内角和为180°,即可求出∠D的度数,再根据两直线平行,内错角相等即可知道∠BAD 的度数.解答:解:∵∠C=80°,∠CAD=60°,∴∠D=180°-80°-60°=40°,∵AB∥CD,∴∠BAD=∠D=40°.故选D.点评:本题考查了三角形的内角和为180°,以及两直线平行,内错角相等的性质,难度适中.5、下列调查中,适宜采用抽样方式的是(A)A、调查我市中学生每天体育锻炼的时间B、调查某班学生对“五个重庆”的知晓率C、调查一架“歼20”隐形战机各零部件的质量D、调查广州亚运会100米参赛运动员兴奋剂的使用情况考点:全面调查与抽样调查.专题:应用题.分析:调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析.普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式;当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.解答:解:A、调查我市中学生每天体育锻炼的时间,适合抽样调查,B、调查某班学生对“五个重庆”的知晓率,采用全面调查,C、调查一架“歼20”隐形战机各零部件的质量,采用全面调查,D、调查广州亚运会100米参赛运动员兴奋剂的使用情况,采用全面调查,故选A.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查;对于精确度要求高的调查,事关重大的调查往往选用普查,比较简单.6、如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于(B)A、60°B、50°C、40°D、30°考点:圆周角定理.分析:在等腰三角形OCB中,求得两个底角∠OBC、∠0CB的度数,然后根据三角形的内角和求得∠COB=100°;最后由圆周角定理求得∠A的度数并作出选择.解答:解:在△OCB中,OB=OC(⊙O的半径),∴∠OBC=∠0CB(等边对等角);∵∠OCB=40°,∠C0B=180°-∠OBC-∠0CB,∴∠COB=100°;又∵∠A= ∠C0B(同弧所对的圆周角是所对的圆心角的一半),∴∠A=50°,故选B.点评:本题考查了圆周角定理:同弧所对的圆周角是所对的圆心角的一半.解题时,借用了等腰三角形的两个底角相等和三角形的内角和定理.7、已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是(D)A、a>0B、b<0C、c<0D、a+b+c>0考点:二次函数图象与系数的关系.专题:数形结合.分析:根据抛物线的开口方向判断a 的正负;根据对称轴在y 轴的右侧,得到a ,b 异号,可判断b 的正负;根据抛物线与y轴的交点为(0,c),判断c 的正负;由自变量x=1得到对应的函数值为正,判断a+b+c 的正负.解答:解:∵抛物线的开口向下,∴a <0;又∵抛物线的对称轴在y 轴的右侧, ∴a ,b 异号, ∴b >0;又∵抛物线与y 轴的交点在x 轴上方, ∴c >0,又x=1,对应的函数值在x 轴上方, 即x=1,y=ax 2+bx+c=a+b+c >0; 所以A ,B ,C 选项都错,D 选项正确. 故选D .点评:本题考查了抛物线y=ax 2+bx+c (a≠0)中各系数的作用:a >0,开口向上,a <0,开口向下;对称轴为x=-,a ,b 同号,对称轴在y 轴的左侧;a ,b 异号,对称轴在y 轴的右侧;抛物线与y 轴的交点为(0,c ),c >0,与y 轴正半轴相交;c <0,与y 轴负半轴相交;c=0,过原点.8、为了建设社会主义新农村,我市积极推进“行政村通畅工程”.张村和王村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成了两村之间的道路改造.下面能反映该工程尚未改造的道路里程y (公里)与时间x (天)的函数关系的大致图象是(D )A 、B 、C 、D 、考点:函数的图象.专题:数形结合.分析:根据y随x的增大而减小,即可判断选项A错误;根据施工队在工作了一段时间后,因暴雨被迫停工几天,即可判断选项B错误;根据施工队随后加快了施工进度得出y随x的增大减小得比开始的快,即可判断选项C、D的正误.解答:解:∵y随x的增大而减小,∴选项A错误;∵施工队在工作了一段时间后,因暴雨被迫停工几天,∴选项B错误;∵施工队随后加快了施工进度,∴y随x的增大减小得比开始的快,∴选项C错误;选项D正确;故选D.点评:本题主要考查对函数图象的理解和掌握,能根据实际问题所反映的内容来观察与理解图象是解答此题的关键.9、下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑥个图形中平行四边形的个数为(C)A、55B、42C、41D、29考点:规律型:图形的变化类.专题:规律型.分析:由于图②5个=1+2+2,图③11个=1+2+3+2+3,图④19=1+2+3+4+2+3+4,由此即可得到第⑥个图形中平行四边形的个数.解答:解:∵图②平行四边形有5个=1+2+2,图③平行四边形有11个=1+2+3+2+3,图④平行四边形有19=1+2+3+4+2+3+4,∴图⑥的平行四边形的个数为1+2+3+4+5+6+2+3+4+5+6=41.故选C.点评:本题是一道根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.10、如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE 对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(C)A、1B、2C、3D、4考点:翻折变换(折叠问题);全等三角形的判定与性质;勾股定理.专题:几何综合题.分析:根据翻折变换的性质和正方形的性质可证△ABG≌△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由于S△FGC=S△GCE-S△FEC,求得面积比较即可.解答:解:①正确.因为AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴△ABG≌△AFG;②正确.因为:EF=DE= CD=2,设BG=FG=x,则CG=6-x.在直角△ECG中,根据勾股定理,得(6-x)2+42=(x+2)2,解得x=3.所以BG=3=6-3=GC;③正确.因为CG=BG=GF,所以△FGC是等腰三角形,∠GFC=∠GCF.又∠AGB=∠AGF,∠AGB+∠AGF=180°-∠FGC=∠GFC+∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④错误.过F作FH⊥DC,∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴= ,EF=DE=2,GF=3,∴EG=5,∴△EFH∽△EGC,∴相似比为:= = ,∴S△FGC=S△GCE-S△FEC= ×3×4- ×4×(×3)= ≠3.故选C.点评:本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.二.填空题:(本大题6个小题,每小题4分,共24分)11、据第六次全国人口普查结果显示,重庆常住人口约为2880万人.将数2880万用科学记数法表示为万.考点:科学记数法—表示较大的数.专题:数字问题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将2880万用科学记数法表示为2.88×103.故答案是:2.88×103.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12、如图,△ABC中,DE∥BC,DE分别交边AB、AB于D、E两点,若AD:AB=1:3,则△ADE与△ABC 的面积比为.考点:相似三角形的判定与性质.分析:根据相似三角形的面积比等于相似比的平方直接得出答案.解答:解:∵△ABC中,DE∥BC,∴△ADE∽△ABC,相似比为AD:AB=1:3,∴△ADE与△ABC的面积比为:1:9.故答案为:1:9.点评:此题主要考查了相似三角形的性质,根据相似比性质得出面积比是解决问题的关键.13、在参加“森林重庆”的植树活动中,某班六个绿化小组植树的棵数分别是:10,9,9,10,11,9.则这组数据的众数是.考点:众数.专题:计算题.分析:众数是一组数据中出现次数最多的数据,有时众数可以不止一个.解答:解:在这一组数据中9是出现次数最多的,故众数是9;故答案为9.点评:本题为统计题,考查众数定义.如果众数的概念掌握得不好,就会出错.14、在半径为的圆中,45°的圆心角所对的弧长等于.考点:弧长的计算.专题:计算题.分析:根据弧长公式l= 把半径和圆心角代入进行计算即可.解答:解:45°的圆心角所对的弧长= =1.故答案为1.点评:本题考查了弧长公式:l= (n为圆心角的度数,R为半径).15、有四张正面分别标有数学-3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数学记为a,则使关于x的分式方程有正整数解的概率为.考点:概率公式;解分式方程.专题:计算题.分析:易得分式方程的解,看所给4个数中,能使分式方程有整数解的情况数占总情况数的多少即可.解答:解:解分式方程得:x= ,能使该分式方程有正整数解的只有0(a=1时得到的方程的根为增根),∴使关于x的分式方程有正整数解的概率为.故答案为:.点评:考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到使分式方程有整数解的情况数是解决本题的关键.16、某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了朵.考点:三元一次方程组的应用.专题:应用题.分析:题中有两个等量关系:甲种盆景所用红花的朵数+乙种盆景所用红花的朵数+丙种盆景所用红花的朵数=2900朵,甲种盆景所用紫花的朵数+丙种盆景所用紫花的朵数=3750朵.据此可列出方程组,设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y盆、z盆,用含x的代数式分别表示y、z,即可求出黄花一共用的朵数.解答:解:设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y盆、z盆.由题意,有,由①得,3x+2y+2z=580③,由②得,x+z=150④,把④代入③,得x+2y=280,∴2y=280-x⑤,由④得z=150-x⑥.∴4x+2y+3z=4x+(280-x)+3(150-x)=730,∴黄花一共用了:24x+12y+18z=6(4x+2y+3z)=6×730=4380.故黄花一共用了4380朵.点评:本题考查了三元一次方程组在实际生活中的应用.解题的关键是发掘等量关系列出方程组,难点是将方程组中的其中一个未知数看作常数,用含有一个未知数的代数式表示另外两个未知数,然后代入所求黄花的代数式.二.解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤)17、|-3|+(-1)2018×(π-3)0- + .考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:先算出-3的绝对值是3,-1的奇数次方仍然是-1,任何数(0除外)的0次方都等于1,然后按照常规运算计算本题.解答:解:原式=3+(-1)×1-3+4=3点评:本题考查了绝对值、零指数幂、负整数指数幂、立方根的运算.18、解不等式2x-3<,并把解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.专题:计算题.分析:先去分母,再去括号、移项、合并同类项,系数化为1,求出不等式的解集,再在数轴上表示出来即可.解答:解:3(2x-3)<x+16x-9<x+15x<10x<2∴原不等式的解集为x<2,在数轴上表示为:点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.19、如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.考点:全等三角形的判定与性质;平行线的判定.专题:证明题.分析:根据已知条件得出△ACB≌△DEF,即可得出∠ACB=∠DFE,再根据内错角相等两直线平行,即可证明BC∥EF.解答:证明:∵AF=DC,∴AC=DF,又∵AB=DE,∠A=∠D,∴△ACB≌△DEF,∴∠ACB=∠DFE,∴BC∥EF.点评:本题考查了两直线平行的判定方法,内错角相等,两直线平行,难度适中.20、为进一步打造“宜居重庆”,某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示.请在答题卷的原图上利用尺规作图作出音乐喷泉M的位置.(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)考点:作图—应用与设计作图.专题:作图题.分析:易得M在AB的垂直平分线上,且到C的距离等于AB的一半.解答:解:作AB的垂直平分线,以点C为圆心,以AB的一半为半径画弧交AB的垂直平分线于点M即可.点评:考查设计作图;得到点M是AB的垂直平分线与以点C为圆心,以AB的一半为半径的弧的交点是解决本题的关键.四.解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤21、先化简,再求值:,其中x满足x2-x-1=0.考点:分式的化简求值.专题:计算题.分析:先通分,计算括号里的,再把除法转化成乘法进行约分计算.最后根据化简的结果,可由x2-x-1=0,求出x+1=x2,再把x2=x+1的值代入计算即可.解答:解:原式= ×= ×= ,∵x2-x-1=0,∴x2=x+1,∴= =1.点评:本题考查了分式的化简求值.解题的关键是注意对分式的分子、分母因式分解,除法转化成下乘法.22、如图,在平面直角坐标系x0y中,一次函数y=kx+b(k≠0)的图象与反比例函数(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点B的坐标为(6,n).线段OA=5,E为x轴上一点,且sin∠AOE= .(1)求该反比例函数和一次函数的解析式;(2)求△AOC的面积.考点:反比例函数综合题.专题:综合题.分析:(1)过点A作AD⊥x轴于D点,由sin∠AOE= ,OA=5,根据正弦的定义可求出AD,再根据勾股定理得到DO,即得到A点坐标(-3,4),把A(-3,4)代入y= ,确定反比例函数的解析式为y=- ;将B(6,n)代入,确定点B点坐标,然后把A点和B点坐标代入y=kx+b(k≠0),求出k和b.(2)先令y=0,求出C点坐标,得到OC的长,然后根据三角形的面积公式计算△AOC的面积即可.解答:解:(1)过点A作AD⊥x轴于D点,如图,∵sin∠AOE= ,OA=5,∴sin∠AOE= = = ,∴AD=4,∴DO= =3,而点A在第二象限,∴点A的坐标为(-3,4),将A(-3,4)代入y= ,得m=-12,∴反比例函数的解析式为y=- ;将B(6,n)代入y=- ,得n=-2;将A(-3,4)和B(6,-2)分别代入y=kx+b(k≠0),得,解得,∴所求的一次函数的解析式为y=- x+2;(2)在y=- x+2中,令y=0,即- x+2=0,解得x=3,∴C点坐标为(0,3),即OC=3,∴S△AOC= •AD•OC= •4•3=6.点评:本题考查了点的坐标的求法和点在图象上,点的横纵坐标满足图象的解析式;也考查了正弦的定义、勾股定理以及三角形面积公式.23、为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.考点:条形统计图;扇形统计图;列表法与树状图法.专题:计算题;图表型.分析:(1)根据留守儿童有4名的占20%,可求得留守儿童的总数,再求得留守儿童是2名的班数;(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,列出树状图可得出来自一个班的共有4种情况,则所选两名留守儿童来自同一个班级的概率.解答:解:(1)该校班级个数为4÷20%=20(个),只有2名留守儿童的班级个数为:20-(2+3+4+5+4)=2(个),该校平均每班留守儿童的人数为:=4(名),补图如下:;(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,有树状图可知,共有12中等可能的情况,其中来自一个班的共有4种情况,则所选两名留守儿童来自同一个班级的概率为:= .点评:本题是一道统计题,考查了条形统计图和扇形统计图,及树状图的画法,是重点内容,要熟练掌握.24、如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.(1)求EG的长;(2)求证:CF=AB+AF.考点:梯形;全等三角形的判定与性质;直角三角形斜边上的中线;勾股定理.专题:证明题;几何综合题.分析:(1)根据BD⊥CD,∠DCB=45°,得到∠DBC=∠DCB,求出BD=CD=2,根据勾股定理求出BC=2,根据CE⊥BE,点G为BC的中点即可求出EG;(2)在线段CF上截取CH=BA,连接DH,根据BD⊥CD,BE⊥CD,推出∠EBF=∠DCF,证出△ABD ≌△HCD,得到AD=BD,∠ADB=∠HDC,根据AD∥BC,得到∠ADB=∠DBC=45°,推出∠ADB=∠HDB,证出△ADF≌△HDF,即可得到答案.解答:(1)解:∵BD⊥CD,∠DCB=45°,∴∠DBC=45°=∠DCB,∴BD=CD=2,在Rt△BDC中BC= =2 ,∵CE⊥BE,点G为BC的中点,∴EG= BC= .答:EG的长是.(2)证明:在线段CF上截取CH=BA,连接DH,∵BD⊥CD,BE⊥CE,∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°,∵∠EFB=∠DFC,(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足函数关系式p1=0.1x+1.1(1≤x≤9,且x取整数)10至12月的销售量p2(万件)与月份x满足函数关系式p2=-0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1a%.这样,在保证每月上万件配件销量的前提下,完成了1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.(参考数据:992=9901,982=9604,972=9409,962=9216,952=9025)考点:二次函数的应用;一元二次方程的应用;一次函数的应用.专题:应用题;分类讨论.分析:(1)把表格(1)中任意2点的坐标代入直线解析式可得y1的解析式.把(10,730)(12,750)代入直线解析式可得y2的解析式,;(2)分情况探讨得:1≤x≤9时,利润=P1×(售价-各种成本);10≤x≤12时,利润=P2×(售价-各种成本);并求得相应的最大利润即可;(3)根据1至5月的总利润1700万元得到关系式求值即可.解答:解:(1)设y1=kx+b,则,解得,∴y1=20x+540(1≤x≤9,且x取整数);设y2=ax+b,则,解得,∴y2=10x+630(10≤x≤12,且x取整数);(2)设去年第x月的利润为W万元.1≤x≤9,且x取整数时,W=P1×(1000-50-30-y1)=-2x2+16x+418=-2(x-4)2+450,∴x=4时,W最大=450万元;10≤x≤12,且x取整数时,W=P2×(1000-50-30-y2)=(x-29)2,∴x=10时,W最大=361万元;∵450万元>361万元,∴这个最大利润是450万元;(3)去年12月的销售量为-0.1×12+2.9=1.7(万件),今年原材料价格为:750+60=810(元)今年人力成本为:50×(1+20%)=60元.∴5×[1000×(1+a%)-810-60-30]×1.7(1-0.1×a%)=1700,设t=a%,整理得10t2-99t+10=0,解得t= ,∵9401更接近于9409,∴≈97,∴t1≈0.1,t2≈9.8,∴a1≈10或a2≈980,∵1.7(1-0.1×a%)≥1,∴a≈10.答:a的整数解为10.点评:本题综合考查了一次函数和二次函数的应用;根据二次函数的最值及相应的求值范围得到一定范围内的最大值是解决本题的易错点;利用估算求得相应的整数解是解决本题的难点.26、如图,矩形ABCD中,AB=6,BC=2 ,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存大,求出对应的t的值;若不存在,请说明理由.考点:相似三角形的判定与性质;根据实际问题列二次函数关系式;等腰三角形的性质;等边三角形的性质;矩形的性质;解直角三角形.专题:代数几何综合题;动点型;分类讨论.分析:(1)当边FG恰好经过点C时,∠CFB=60°,BF=3-t,在Rt△CBF中,解直角三角形可求t的值;(2)按照等边△EFG和矩形ABCD重叠部分的图形特点,分为0≤t<1,1≤t<3,3≤t<4,4≤t<6四种情况,分别写出函数关系式;(3)存在.当△AOH是等腰三角形时,分为AH=AO=3,HA=HO,OH=OA三种情况,分别画出图形,根据特殊三角形的性质,列方程求t的值.解答:解:(1)当边FG恰好经过点C时,∠CFB=60°,BF=3-t,在Rt△CBF中,BC=2 ,tan∠CFB= ,即tan60= ,解得BF=2,即3-t=2,t=1,∴当边FG恰好经过点C时,t=1;(2)当0≤t<1时,S=2 t+4 ;当1≤t<3时,S=- t2+3 t+ ;当3≤t<4时,S=-4 t+20 ;当4≤t<6时,S= t2-12 t+36 ;(3)存在.理由如下:在Rt△ABC中,tan∠CAB= = ,∴∠CAB=30°,又∵∠HEO=60°,∴∠HAE=∠AHE=30°,∴AE=HE=3-t或t-3,1)当AH=AO=3时,(如图②),过点E作EM⊥AH于M,则AM= AH= ,在Rt△AME中,cos∠MAE═ ,即cos30°= ,∴AE= ,即3-t= 或t-3= ,∴t=3- 或t=3+ ,2)当HA=HO时,(如图③)则∠HOA=∠HAO=30°,又∵∠HEO=60°,∴∠EHO=90°,EO=2HE=2AE,又∵AE+EO=3,∴AE+2AE=3,AE=1,即3-t=1或t-3=1,∴t=2或t=4;3)当OH=OA时,(如图④),则∠OHA=∠OAH=30°,∴∠HOB=60°=∠HEB,∴点E和点O重合,∴AE=3,即3-t=3或t-3=3,t=6(舍去)或t=0;综上所述,存在5个这样的t值,使△AOH是等腰三角形,即t=3- 或t=3+ 或t=2或t=4或t=0.点评:本题考查了特殊三角形、矩形的性质,相似三角形的判定与性质,解直角三角形的有关知识.关键是根据特殊三角形的性质,分类讨论.。
[精品]2018年重庆市中考数学一模试卷与参考答案
2018年重庆市中考数学模拟试卷(一)一、选择题(本大题共12小题,每小题4分,共48分.在每小题的下面都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑)1.(4分)﹣2,0,2,﹣3这四个数中是正数的是()A.﹣2 B.0 C.2 D.﹣32.(4分)计算3a3•(﹣a2)的结果是()A.3a5B.﹣3a5C.3a6D.﹣3a63.(4分)下列图形中,是中心对称图形的是()A.B. C. D.4.(4分)下列调查中,适合采用全面调查(普查)方式的是()A.对某班50名同学视力情况的调查B.对元宵节期间市场上汤圆质量情况的调查C.对某类烟花爆竹燃放质量情况的调查D.对重庆嘉陵江水质情况的调查5.(4分)估计+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间6.(4分)已知关于x的方程3x+m+4=0的解是x=﹣2,则m的值为()A.2 B.3 C.4 D.57.(4分)在函数y=中,自变量x的取值范围是()A.x≥1 B.x≤1且x≠0 C.x≥0且x≠1 D.x≠0且x≠18.(4分)已知△ABC∽△DEF,若△ABC与△DEF的相似比为2:3,则△ABC与△DEF对应边上的中线的比为()A.2:3 B.4:16 C.3:2 D.16:49.(4分)如图,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC的大小是()A.70°B.40°C.50°D.20°10.(4分)下列图形都是由同样大小的正方形按一定的规律组成,其中第①个图形由1个小正方形组成,第②个图形由3个小正方形组成,第③个图形由7个小正方形组成,第④个图形由13个小正方形组成……那么第⑥个图形中小正方形的个数是()A.36 B.31 C.32 D.2911.(4分)如图,小明为了测量大楼AB的高度,他从点C出发,沿着斜坡面CD走52米到点D处,测得大楼顶部点A的仰角为37°,大楼底部点B的俯角为45°,已知斜坡CD的坡度为i=1:2.4.大楼AB的高度约为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.32米B.35米C.36米D.40米12.(4分)从﹣5,﹣3,﹣1,0,1,3这六个数中,随机抽一个数,记为m,若数m使关于x的不等式组的解集为x>1,且关于x的分式方程+=3有非负整数解,则符合条件的m的值的个数是()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共6小题,每小题4分,共24分.请把下列各题的正确答案填写在答题卡中对应的横线上)13.(4分)中央电视台2018年春节联欢晚会在除夕夜如约与观众见面,整台节目呈现出“喜气洋洋、欢乐吉祥”的氛围和基调,令人耳目一新,据统计,春晚播出期间,通过电视、网络、社交媒体等多终端多渠道,海内外收看春晚的观众总规模约为1131000000人次,将1131000000用科学记数法表示为.14.(4分)计算:()﹣2+=.15.(4分)某水果经销商对四月份甲、乙、丙、丁四个市场每天出售的草莓价格进行调查,通过计算发现这个月四个市场草莓的平均售价相同,方差分别为S甲2=8.5,S乙2=5.5,S丙2=9.5,S丁2=6.4,则四月份草莓价格最稳定的市场是.16.(4分)如图,直径AB为8的半圆,绕点A逆时针旋转45°,此时点B到了点B′,则图中阴影部分的面积是.17.(4分)甲、乙两人分别从相距2380米的A,B两地出发,相向而行,甲先出发5分钟,乙再出发.在整个行走过程中,甲、乙两人均保持匀速行走,两人相遇后,依然按照原速度原方向继续行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则当乙到达A地时,甲与B地的距离是米.18.(4分)如图,点E是正方形ABCD内一点,点E到点A,B和D的距离分别为1,2,,将△ADE绕点A旋转至△ABG,连接AE,并延长AE与BC相交于点F,连接GF,则△BGF的面积为.三、解答题(本大题共2小题,每小题8分,共16分.请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤)19.(8分)如图,A,B,C三点共线,AE∥BD,BE∥CD,且B是AC中点,求证:BE=CD.20.(8分)为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w<30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是,扇形统计图中B类所对应扇形圆心角的度数为度,请补全条形统计图;(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.四、解答题(本大题共4小题,每小题10分,共40分.请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤)21.(10分)计算:(1)(x+3)2﹣(2+x)(2﹣x);(2)(﹣x﹣1)÷.22.(10分)如图,在平面直角坐标系xOy中,一次函数y=ax+b(a≠0)分别与x,y轴交于点B,A,与反比例函数y=(k≠0)的图象分别交于第二、四象限内的点C,D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=2.(1)求该反比例函数与一次函数的解析式;(2)连接CO,DO,求△COD的面积.23.(10分)为了准备科技节创意销售,宏帆初2018级某同学到批发市场购买了一些甲、乙两种型号的小元件,甲型小元件的单价是6元,乙型小元件的单价是3元,该同学的创意作品每件需要的乙型小元件的个数是甲型小元件的个数的2倍,同时,为了控制成本,该同学购买小元件的总费用不超过480元.(1)该同学最多可购买多少个甲型小元件?(2)在该同学购买甲型小元件最多的前提下,用所购买的甲、乙两种型号的小元件全部制作成创意作品,在制作中其他费用共花520元,销售当天,该同学在成本价(购买小元件的费用+其他费用)的基础上每件提高2a%(10<a<50)标价,但无人问津,于是该同学在标价的基础上降低a%出售,最终,在活动结束时作品全部卖完,这样,该同学在本次活动中赚了a%,求a的值.24.(10分)在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.五、解答题(本大题共2小题,第25题10分,第26题12分,共22分.请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤)25.(10分)先阅读下列材料,然后解后面的问题.材料:一个三位自然数(百位数字为a,十位数字为b,个位数字为c),若满足a+c=b,则称这个三位数为“欢喜数”,并规定F()=ac.如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数”,∴F(374)=3×4=12.(1)对于“欢喜数”,若满足b能被9整除,求证:“欢喜数”能被99整除;(2)已知有两个十位数字相同的“欢喜数”m,n(m>n),若F(m)﹣F(n)=3,求m﹣n的值.26.(12分)如图,抛物线y=﹣x2﹣x+3交x轴于A、B两点,交y轴于点C,点Q为顶点,点D为点C关于对称轴的对称点.(1)求点D的坐标和tan∠ABC的值;(2)若点P是抛物线上位于点B、D之间的一个动点(不与B、D重合),在直线BC上有一动点E,x轴上有一动点F,当四边形ABPD的面积最大时,一动点G从点P出发以每秒1个单位的速度沿P→E→F的路径运动到点F,再沿线段FA 以每少2个单位的速度运动到A点后停止,当点F的坐标是多少时,动点G的运动过程中所用的时间最少?(3)如图2,过点Q作x轴的垂线交AC于点H,连接AQ,点R为线段AQ上一动点,连接RH,将△QRH沿RH翻折到△Q1RH且Q1在直线AQ的左侧,当△Q1RH和△ARH的重叠部分为Rt△RHS时,将此Rt△RHS绕点R逆时针旋转α(0°<α<180°),记旋转中的△RHS为△RH′S′,若直线H′S′分别与直线AQ、直线QH 交于点M、N,当△MNQ是等腰三角形时,求MQ的值.2018年重庆市中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分.在每小题的下面都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑)1.(4分)﹣2,0,2,﹣3这四个数中是正数的是()A.﹣2 B.0 C.2 D.﹣3【解答】解:正数是2,故选:C.2.(4分)计算3a3•(﹣a2)的结果是()A.3a5B.﹣3a5C.3a6D.﹣3a6【解答】解:3a3•(﹣a2)=﹣3a5.故选:B.3.(4分)下列图形中,是中心对称图形的是()A.B. C. D.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,不是轴对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.4.(4分)下列调查中,适合采用全面调查(普查)方式的是()A.对某班50名同学视力情况的调查B.对元宵节期间市场上汤圆质量情况的调查C.对某类烟花爆竹燃放质量情况的调查D.对重庆嘉陵江水质情况的调查【解答】解:A、对某班50名同学视力情况的调查,比较容易做到,适合采用全面调查,故本选项正确;B、对元宵节期间市场上汤圆质量情况的调查,调查面较广,不容易做到,不适合采用全面调查,故本选项错误;C、对某类烟花爆竹燃放质量情况的调查,破坏性调查,只能采用抽样调查,故本选项错误;D、对重庆嘉陵江水质情况的调查,无法进行普查,只能采用抽样调查,故本选项错误.故选:A.5.(4分)估计+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【解答】解:∵2<<3,∴3<+1<4,即+1在3和4之间,故选:B.6.(4分)已知关于x的方程3x+m+4=0的解是x=﹣2,则m的值为()A.2 B.3 C.4 D.5【解答】解:把x=﹣2代入方程,得:3×(﹣2)+m+4=0,解得:m=2.故选:A.7.(4分)在函数y=中,自变量x的取值范围是()A.x≥1 B.x≤1且x≠0 C.x≥0且x≠1 D.x≠0且x≠1【解答】解:由x≥0且x﹣1≠0得出x≥0且x≠1,x的取值范围是x≥0且x≠1,故选:C.8.(4分)已知△ABC∽△DEF,若△ABC与△DEF的相似比为2:3,则△ABC与△DEF对应边上的中线的比为()A.2:3 B.4:16 C.3:2 D.16:4【解答】解:∵△ABC∽△DEF,△ABC与△DEF的相似比为2:3,∴△ABC与△DEF对应边上中线的比是2:3,故选:A.9.(4分)如图,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC的大小是()A.70°B.40°C.50°D.20°【解答】解:连接BC,OB,∵PA、PB是⊙O的切线,A、B为切点,∴∠OAP=∠OBP=90°;而∠P=40°(已知),∴∠AOB=180°﹣∠P=140°,∴∠BOC=40°,∴∠BAC=∠BOC=20°(同弧所对的圆周角是所对的圆心角的一半),故选:D.10.(4分)下列图形都是由同样大小的正方形按一定的规律组成,其中第①个图形由1个小正方形组成,第②个图形由3个小正方形组成,第③个图形由7个小正方形组成,第④个图形由13个小正方形组成……那么第⑥个图形中小正方形的个数是()A.36 B.31 C.32 D.29【解答】解:∵第①个图形中小正方形的个数为1,第②个图形中小正方形的个数3=1+2,第③个图形中小正方形的个数7=1+2+4=1+2×(1+2),第④个图形中小正方形的个数13=1+2+4+6=1+2×(1+2+3),……∴第⑥个图形中小正方形的个数为1+2×(1+2+3+4+5)=31,故选:B.11.(4分)如图,小明为了测量大楼AB的高度,他从点C出发,沿着斜坡面CD走52米到点D处,测得大楼顶部点A的仰角为37°,大楼底部点B的俯角为45°,已知斜坡CD的坡度为i=1:2.4.大楼AB的高度约为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.32米B.35米C.36米D.40米【解答】解:作DE⊥AB于E,作DF⊥BC于F,∵CD的坡度为i=1:2.4,CD=52米,∴=1:2.4,∴=52,∴DF=20(米);∴BE=DF=20(米),∵∠BDE=45°,∴DE=BE=40m,在Rt△ADE中,∠ADE=37°,∴AE=tan37°•20=15(米)∴AB=AE+BE=35(米).故选:B.12.(4分)从﹣5,﹣3,﹣1,0,1,3这六个数中,随机抽一个数,记为m,若数m使关于x的不等式组的解集为x>1,且关于x的分式方程+=3有非负整数解,则符合条件的m的值的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:不等式组整理得,由关于x的不等式组的解集为x>1,得到m≤1,解方程+=3,得x=,∵x≠2,∴m≠﹣1,∵x=为非负整数解,∴m=﹣5,﹣3,1,∴符合条件的m的值的个数是3个.故选:C.二、填空题(本大题共6小题,每小题4分,共24分.请把下列各题的正确答案填写在答题卡中对应的横线上)13.(4分)中央电视台2018年春节联欢晚会在除夕夜如约与观众见面,整台节目呈现出“喜气洋洋、欢乐吉祥”的氛围和基调,令人耳目一新,据统计,春晚播出期间,通过电视、网络、社交媒体等多终端多渠道,海内外收看春晚的观众总规模约为1131000000人次,将1131000000用科学记数法表示为 1.131×109.【解答】解:将1131000000用科学记数法表示为1.131×109.故答案为:1.131×109.14.(4分)计算:()﹣2+=2.【解答】解:原式=4﹣2=2,故答案为:215.(4分)某水果经销商对四月份甲、乙、丙、丁四个市场每天出售的草莓价格进行调查,通过计算发现这个月四个市场草莓的平均售价相同,方差分别为S甲2=8.5,S乙2=5.5,S丙2=9.5,S丁2=6.4,则四月份草莓价格最稳定的市场是乙.【解答】解:∵四个市场草莓的平均售价相同,方差分别为S甲2=8.5,S乙2=5.5,S丙2=9.5,S丁2=6.4,而5.5<6.4<8.5<9.5,∴乙市场四月份草莓价格最稳定,故答案为:乙16.(4分)如图,直径AB为8的半圆,绕点A逆时针旋转45°,此时点B到了点B′,则图中阴影部分的面积是8π.【解答】解:∵AB=AB′=8,∠BAB′=60°∴图中阴影部分的面积是:S=S扇形B′AB+S半圆O′﹣S半圆O=+π×82﹣π×82=8π.故答案为:8π.17.(4分)甲、乙两人分别从相距2380米的A,B两地出发,相向而行,甲先出发5分钟,乙再出发.在整个行走过程中,甲、乙两人均保持匀速行走,两人相遇后,依然按照原速度原方向继续行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则当乙到达A地时,甲与B地的距离是40米.【解答】解:由题意可得,甲的速度为:(2380﹣2080)÷5=60米/分,乙的速度为:(2080﹣910)÷(14﹣5)﹣60=70米/分,则乙从B到A地用的时间为:2380÷70=34分钟,则乙到达A地时,甲与A地相距的路程是:60×(34+5)=2340米,则当乙到达A地时,甲与B地的距离是2380﹣2340=40米.故答案为:40.18.(4分)如图,点E是正方形ABCD内一点,点E到点A,B和D的距离分别为1,2,,将△ADE绕点A旋转至△ABG,连接AE,并延长AE与BC相交于点F,连接GF,则△BGF的面积为.【解答】解:如图,作BM⊥AF于点M,∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵△ADE绕点A顺时针旋转后得到△ABG,∴△AED≌△AGB,∠EAG=90°,∴AE=AG=1,BG=DE=,∴GE=,又∵BE=2,∴EG2+EB2=10=BG2,∴△BEG是直角三角形,∠BEG=90°,∵∠AEG=∠AGE=45°,∠BEM+∠AEG=90°,∴∠BEM=45°,∵BE=2,∴ME=MB=2,AM=AE+ME=1+2=3,又可证△AMB∽△BMF,∴,∴FM=,∴AF=AE+ME+MF=,=S△AEG+S△BEG+S△BEF﹣S△AFG由图可得,S△BGF=×1×1+××2+×(2+)×2﹣×1×=.故答案为:.三、解答题(本大题共2小题,每小题8分,共16分.请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤)19.(8分)如图,A,B,C三点共线,AE∥BD,BE∥CD,且B是AC中点,求证:BE=CD.【解答】证明:∵AE∥BD,BE∥CD,∴∠A=∠DBC,∠ABE=∠C,∵B是AC中点,∴AB=BC,在△ABE和△BCD中,,∴△ABE≌△BCD(ASA),∴BE=CD.20.(8分)为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w<30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是25,扇形统计图中B类所对应扇形圆心角的度数为72度,请补全条形统计图;(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.【解答】解:(1)该镇本次统计的小微企业总个数是:4÷16%=25(个);扇形统计图中B类所对应扇形圆心角的度数为:×360°=72°;故答案为:25,72;A类小微企业个数为:25﹣5﹣14﹣4=2(个);补全统计图:(2)分别用A,B表示2个来自高新区的,用C,D表示2个来自开发区的.画树状图得:∵共有12种等可能的结果,所抽取的2个发言代表都来自高新区的有2种情况,∴所抽取的2个发言代表都来自高新区的概率为:=.四、解答题(本大题共4小题,每小题10分,共40分.请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤)21.(10分)计算:(1)(x+3)2﹣(2+x)(2﹣x);(2)(﹣x﹣1)÷.【解答】解:(1)原式=x2+6x+9﹣(4﹣x2)=x2+6x+9﹣4+x2=2x2+6x+5;(2)原式=(﹣)•=•=﹣.22.(10分)如图,在平面直角坐标系xOy中,一次函数y=ax+b(a≠0)分别与x,y轴交于点B,A,与反比例函数y=(k≠0)的图象分别交于第二、四象限内的点C,D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=2.(1)求该反比例函数与一次函数的解析式;(2)连接CO,DO,求△COD的面积.【解答】解:(1)∵在直角△BCE中,tan∠ABO==,BE=OE+OB=4+2=6,∴EC=BE•tan∠ABO=6×=3.∴C的坐标是(﹣2,3).设反比例函数的解析式是y=.把C的坐标代入得:3=,解得:k=﹣6,则反比例函数的解析式是:y=﹣;∵B的坐标是(4,0),在直角△AOB中,tan∠ABO==,∴OA=OB•tan∠ABO=4×=2,则A的坐标是(0,2),设直线AB的解析式是y=kx+b,根据题意得:,解得:.则直线AB的解析式是:y=﹣x+2;(3)解方程组:,解得:或,则D的坐标是:(6,﹣1).∵OA=2∴S=S△OAC+S△OAD=×2×2+×2×6=2+6=8.△COD23.(10分)为了准备科技节创意销售,宏帆初2018级某同学到批发市场购买了一些甲、乙两种型号的小元件,甲型小元件的单价是6元,乙型小元件的单价是3元,该同学的创意作品每件需要的乙型小元件的个数是甲型小元件的个数的2倍,同时,为了控制成本,该同学购买小元件的总费用不超过480元.(1)该同学最多可购买多少个甲型小元件?(2)在该同学购买甲型小元件最多的前提下,用所购买的甲、乙两种型号的小元件全部制作成创意作品,在制作中其他费用共花520元,销售当天,该同学在成本价(购买小元件的费用+其他费用)的基础上每件提高2a%(10<a<50)标价,但无人问津,于是该同学在标价的基础上降低a%出售,最终,在活动结束时作品全部卖完,这样,该同学在本次活动中赚了a%,求a的值.【解答】解:(1)设该同学购买x个甲型小元件,则购买2x个乙型小元件,根据题意得:6x+3×2x≤480,解得:x≤40.答:该同学最多可购买40个甲型小元件.(2)设y=a%,根据题意得:(520+480)×(1+2y)(1﹣y)=(520+480)×(1+y),整理得:4y2﹣y=0,解得:y=0.25或y=0(舍去),∴a%=0.25,a=25.答:a的值为25.24.(10分)在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.【解答】(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴(2x+x)2+x2=22,∴x=(负根已经舍弃),∴AB=AC=(2+)•,∴BC=AB=+1.(2)作CQ⊥AC,交AF的延长线于Q,∵AD=AE,AB=AC,∠BAE=∠CAD,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠BAC=90°,FG⊥CD,∴∠AEB=∠CMF,∴∠GEM=∠GME,∴EG=MG,∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,∴△ABE≌△CAQ(ASA),∴BE=AQ,∠AEB=∠Q,∴∠CMF=∠Q,∵∠MCF=∠QCF=45°,CF=CF,∴△CMF≌△CQF(AAS),∴FM=FQ,∴BE=AQ=AF+FQ=AF=FM,∵EG=MG,∴BG=BE+EG=AF+FM+MG=AF+FG.五、解答题(本大题共2小题,第25题10分,第26题12分,共22分.请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤)25.(10分)先阅读下列材料,然后解后面的问题.材料:一个三位自然数(百位数字为a,十位数字为b,个位数字为c),若满足a+c=b,则称这个三位数为“欢喜数”,并规定F()=ac.如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数”,∴F(374)=3×4=12.(1)对于“欢喜数”,若满足b能被9整除,求证:“欢喜数”能被99整除;(2)已知有两个十位数字相同的“欢喜数”m,n(m>n),若F(m)﹣F(n)=3,求m﹣n的值.【解答】(1)证明:∵为欢喜数,∴a+c=b.∵=100a+10b+c=99a+10b+a+c=99a+11b,b能被9整除,∴11b能被99整除,99a能被99整除,∴“欢喜数”能被99整除.(2)设m=,n=(且a 1>a2),∵F(m)﹣F(n)=a1•c1﹣a2•c2=a1•(b﹣a1)﹣a2(b﹣a2)=(a1﹣a2)(b﹣a1﹣a2)=3,a1、a2、b均为整数,∴a1﹣a2=1或a1﹣a2=3.∵m﹣n=100(a1﹣a2)﹣(a1﹣a2)=99(a1﹣a2),∴m﹣n=99或m﹣n=297.∴若F(m)﹣F(n)=3,则m﹣n的值为99或297.26.(12分)如图,抛物线y=﹣x2﹣x+3交x轴于A、B两点,交y轴于点C,点Q为顶点,点D为点C关于对称轴的对称点.(1)求点D的坐标和tan∠ABC的值;(2)若点P是抛物线上位于点B、D之间的一个动点(不与B、D重合),在直线BC上有一动点E,x轴上有一动点F,当四边形ABPD的面积最大时,一动点G从点P出发以每秒1个单位的速度沿P→E→F的路径运动到点F,再沿线段FA 以每少2个单位的速度运动到A点后停止,当点F的坐标是多少时,动点G的运动过程中所用的时间最少?(3)如图2,过点Q作x轴的垂线交AC于点H,连接AQ,点R为线段AQ上一动点,连接RH,将△QRH沿RH翻折到△Q1RH且Q1在直线AQ的左侧,当△Q1RH和△ARH的重叠部分为Rt△RHS时,将此Rt△RHS绕点R逆时针旋转α(0°<α<180°),记旋转中的△RHS为△RH′S′,若直线H′S′分别与直线AQ、直线QH 交于点M、N,当△MNQ是等腰三角形时,求MQ的值.【解答】解:(1)如图1中,对于抛物线y=﹣x2﹣x+3,对称轴x=﹣,C(0,3),∵C、D关于对称轴对称,∴点D的坐标为(﹣3,3),令y=0,可得﹣x2﹣x+3=0,解得x=﹣4或,∴A(﹣4,0),B(,0),∴OC=3,OB=,∴tan∠ABC==3,(2)如图2中,设P(m,﹣m2﹣m+3),作PM∥OC交BD于M.∵直线BD的解析式为y=﹣x+,∴M(m,﹣m+),∵当△PBD的面积最大时,四边形ABPD的面积最大,S△PBD=•PM•(B x﹣D x)=•(﹣m2﹣m+)×4=﹣(m+)2+18,∵﹣<0,∴m=﹣时,△PBD的面积最大,此时p(﹣,),在y轴负半轴上取一点W,使得∠AWO=60°,作直线AW,作点P关于直线BC 的对称点P′,作P′K⊥AW于K,交直线BC于E,交AB于F.∵动点G的运动过程中所用的时间=PE+EF+=PE+EF+FK=P′E+EF+FK=P′K,根据垂线段最短可知,动点G的运动过程中所用的时间最少的路径是图中P→E→F→A;∵PP′⊥BC,交BC于T,∴直线PP′的解析式为y=x+,由,解得,∴T(﹣,),∵P′T=PT,∴P′(﹣,),∵直线AW的解析式为y=﹣x﹣4,P′K⊥AW,∴直线P′K的解析式为y=x++,令y=0,可得x=﹣(+),∴点F坐标为(﹣﹣,0).(3)如图3中,当HQ1⊥AQ时,重叠部分是直角三角形.延长Q1R交QH于K.∵Q(﹣,),H(﹣,),∴QH=,由△AQJ∽△HQS,∴==,∴==,∴SH=,QS=,易证RK⊥QH,RK∥AJ,KH=HS=,∴=,∴=,∴QR=,RS=,①如图4中,当QN=QM时,作QE平分∠AQJ,可得AE:EJ=AQ:QJ=17:15,∴EJ=×=,EQ==,由△RMS′∽△QEJ,可得=,∴=,∴RM==,∴QM=QR+RM=+.②如图5中,当NQ=NM时,由△RMS′∽△AQJ,可得=,∴=,∴RM=,∴QM=QR+RM=..③如图6中,当MQ=MN时,连接OQ,作AK⊥OQ于K.∵•OA•QJ=•OQ•AK,∴AK=,由△MRS′∽△QAK,可得=,∴=,∴MR=,∴QM=QR﹣MR=.综上所述,满足条件的QM的值为+或或.。
最新重庆市2018年中考数学一轮复习第四章三角形数学文化讲堂四练习_75含答案
数学文化讲堂(四)一海伦——秦九韶公式古希腊的几何学家海伦,约公元50年,在数学史上以解决几何测量问题而闻名.在他的著作《度量》一书中,给出了如下公式:若一个三角形的三边分别为a,b,c,记p=12(a+b+c),那么三角形的面积为:S△ABC=p(p-a)(p-b)(p-c)(海伦公式).我国南宋时期数学家秦九韶(约1202~约1261),曾提出利用三角形的三边求面积的秦九韶公式:S△ABC=1 4[a2b2-(a2+b2-c22)2].海伦公式和秦九韶公式实质上是同一个公式,所以我们一般也称此公式为海伦——秦九韶公式.(人教八下P16,北师八上P51)1. 若△ABC的三边长为5,6,7,△DEF的三边长为5,6,7,请利用上面的两个公式分别求出△ABC和△DEF的面积.2. 如图,在△ABC中,BC=5,AC=6,AB=9,求△ABC的内切圆半径.第2题图二赵爽弦图赵爽,三国吴人,是三国到南宋时期三百多年间中国杰出的数学家之一.他在注解《周髀算经》中给出的“赵爽弦图”证明了勾股定理的准确性,如图所示,四个全等的直角三角形可以围成一个大的正方形,中间空的是一个小正方形.通过对这个图形的切割、拼接、巧妙地利用面积关系证明了勾股定理.证明方法如下:设直角三角形的三边中较短的直角边为a,另一直角边为b,斜边为c,朱实面积=2ab,黄实面积=(b-a)2=b2-2ab+a2,朱实面积+黄实面积=a2+b2=大正方形面积=c2.(人教八下P30,北师八下P16)3. 如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两边长分别为3和5,则小正方形的面积为________.第3题图第4题图4. 如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于________.三泰勒斯——全等泰勒斯,公元前7至6世纪的古希腊时期的思想家、科学家、哲学家,希腊最早的哲学学派——米利都学派(也称爱奥尼亚学派)的创始人.泰勒斯是古希腊及西方第一个有记载有名字留下来的自然科学家和哲学家.5. 相传泰勒斯利用三角形全等的方法求出岸上一点到海中一艘船的距离.如图,B是观察点,船A在B的正前方,过点B作AB的垂线,在垂线上截取任意长BD,C是BD的中点,观察者从点D沿垂直于BD的DE方向走,直到点E、船A和点C在一条直线上,那么△ABC≌△EDC,从而量出DE的距离即为船离岸的距离AB,这里判定△ABC≌△EDC的方法是( )第5题图A. SASB. ASAC. AASD. SSS四 《海岛算经》《海岛算经》是中国最早的一部测量数学专著,也是中国古代高度发达的地图学的数学基础.由刘徽于三国魏景元四年所撰,《海岛算经》共九问,都是用表尺重复从不同位置测望,取测量所得的差数,进行计算从而求得山高或谷深.(北师九上P 104)6. 该书中提出九个测量问题,其中一个为:有望深谷,偃矩岸上,令勾高六尺.从勾端望谷底,入下股九尺一寸.又设重矩于上,其矩间相去三丈.更从勾端望谷底,入上股八尺五寸.问谷深几何?题目的大意是:测量一个山谷AE 的深度,拿一个高AB 为6尺的矩尺△ABD 放在岸上,从B 端看谷底EG(D 在BG 上),下股AD 为9尺1寸,向上平移矩尺3丈,现从B ′端看谷底EG ,上股A ′D ′为8尺5寸,试求谷深AE.(一丈=10尺=100寸)第6题图7. 某校王老师根据《海岛算经》中的问题,编了这样一道题:如图,甲、乙两船同时由港口A 出发开往海岛B ,甲船沿北偏东60°方向向海岛B 航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C 港口接旅客,在C 港口停留0.5小时后再沿东北方向开往B 岛,B 岛建有一座灯塔,在灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔,两船看到灯塔的时间相差多少?(精确到分钟,3≈1.73,2≈1.41)第7题图答案1. 解: 当△ABC 的三边长为5,6,7时,则p =12×(5+6+7)=9,∴S △ABC =9×(9-5)×(9-6)×(9-7)=66,当△DEF 的三边长为5,6,7时,S △DEF =14[(5)2×(6)2-(5+6-72)2]=262. 2. 解:由题意得p =12×(5+6+9)=10,则 S =10×(10-5)×(10-6)×(10-9)=10 2.∵S =12r(AC +BC +AB), ∴102=12r(5+6+9), 解得r =2,故△ABC 的内切圆半径为 2.3. 1或4 【解析】分两种情况:①5为斜边时,由勾股定理得,另一直角边长=52-32=4,∴小正方形的边长=4-3=1,∴小正方形的面积=12=1;②3和5为两条直角边长时,小正方形的边长=5-3=2,∴小正方形的面积=22=4;综上所述,小正方形的面积为1或4.4. 6 【解析】设AH =x ,则AE =x +2,由四个全等的直角三角形可得DE =AH =x ,在Rt △DAE 中,由勾股定理得:AD 2=AE 2+DE 2,即102=(x +2)2+x 2,解得x =6或x =-8(舍去).5. B6. 解:∵AD ∥EG ,∴△BAD ∽△BEG ,∴BA BE =AD EG, ∴66+AE =9.1EG , ∵A ′D ′∥EG ,∴△B ′A ′D ′∽△B ′EG ,∴B ′A ′B ′E =A ′D ′EG, ∴66+30+AE =8.5EG , ∴9.1(6+AE)=8.5(36+AE),∴解得AE =419(尺),∴谷深AE 为41丈9尺.7. 解:如解图,过点B 作BD ⊥AC ,交AC 的延长线于点D ,设BD =x , 在Rt △BCD 中,第7题解图∵∠BCD =45°,∴BC =BD sin 45°=2x , 在Rt △ABD 中,∵∠ABD =60°,∴AD =BD ·tan 60°=3x ,AB =BD cos 60°=2x , ∵AC =20×1=20(海里),AC +CD =AD ,∴20+x = 3 x ,解得x =10(3+1)海里,∴AB =2x =20(3+1)海里,BC =2x =102(3+1)海里,∴t 甲=(AB -5)÷15×60=(203+20-5)÷15×60≈198.4(分钟),t乙=(AC+BC-5)÷20×60+0.5×60=[20+102(3+1)-5]÷20×60+30 ≈190.5(分钟).∵t甲>t乙,t甲-t乙≈8(分钟),∴乙船先看到灯塔,两艘船看到灯塔的时间相差约8分钟.。
2018年重庆市中考数学试卷-答案
2018年重庆市中考数学试卷-答案重庆市2018年初中学业⽔平暨⾼中招⽣考试(A 卷)数学答案解析第Ⅰ卷⼀、选择题 1.【答案】A【解析】根据题意,2(2)0+-=,∴2的相反数是-2,故选A. 【考点】相反数的概念. 2.【答案】D【解析】A 中的直⾓三⾓形不是轴对称图形;B 中的直⾓梯形不是轴对称图形;C 中的平⾏四边形是中⼼对称图形,不是轴对称图形;D 中的矩形是轴对称图形,故选D.【提⽰】判断⼀个图形是不是轴对称图形,要将这个图形沿某条直线对折,对折的两部分能完全重合,则这个图形是轴对称图形,常见的轴对称图形有线段、⾓、等腰三⾓形、菱形、矩形、正⽅形、圆、正多边形等。
【考点】轴对称图形的概念. 3.【答案】C【解析】根据题意,采取随机抽取的⽅法进⾏调查⽐较全⾯,结果也会⽐较真实有效,故选C. 【提⽰】选择抽取样本的恰当的⽅法是解答本题的关键. 【考点】调查中的样本选择. 4.【答案】C【解析】由题可知,每增加⼀个图案则增加2个三⾓形,∴第○n 个图案中有42(1)n +-个三⾓形,∴第⑦个图案中有16个三⾓形,故选C. 【考点】探索规律. 5.【答案】C【解析】根据题意可知两个三⾓形相似,设最长边为x cm ,则592.5x=,解得 4.5x =,即这个三⾓形的最长边为4.5 cm ,故选C .【提⽰】理解相似三⾓形的性质是解答本题的关键. 【考点】相似三⾓形的性质. 6.【答案】D【解析】平⾏四边形的对⾓线互相平分⽽不垂直,∴命题A 不正确;矩形的对⾓线相等且互相平分⽽不垂直,∴命题B 不正确;菱形的对⾓线互相垂直平分⽽不相等,∴命题C 不正确;正⽅形的对⾓线互相垂直平分且相等,∴命题D 正确,故选D.【提⽰】掌握特殊四边形的对⾓线的性质是解答本题的关键. 【考点】命题的判断. 7.【答案】B【解析】24255223==<∴<<,,,即在2和3之间,故选B .【考点】⼆次根式的运算、估算⽆理数. 8.【答案】C【解析】根据题意,当输⼊33x y ==,时,2021512y x y ∴+=≥,≠;当输⼊42x y =-=-,时,20,22012y x y ∴-=<≠;当输⼊24x y ==,时,20,212y x y ∴+=≥;当输⼊42x y ==,时,20,22012y x y ∴+=≥≠,故选C.【提⽰】根据y 的范围分情况求值是解答本题的关键。
2018年重庆市中考数学试卷及答案
2018年重庆市初中学业水平暨高中招生考试及答案数 学 试 题(全卷共五个大题,满分150分。
考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色签字笔完成;4.考试结束,由监考人员将试题和答题卡一并收回。
参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫- ⎪⎝⎭,对称轴为2b x a =。
一、选择题:(本大题12 个小题,每小题4分 ,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.下列四个数中,是正整数的是( ) A.-1 B.0 C.21 D.1 2下列图形中,是轴对称图形的是( )3.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,..,按此规律排列下去,第⑥个图中黑色正方形纸片的张数为( )A.11B.13C.15D.174.下列调查中,最适合采用全面调查(普查)的是( )A.对我市中学生每周课外阅读时间情况的调查B.对我市市民知晓“礼让行人”交通新规情况的调查C.对我市中学生观看电影(厉害了,我的国》情况的调查D.对我国首艘国产航母002型各零部件质量情况的调查5.制作一块m m 23⨯长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( )A.360元B.720元C.1080元D.2160元6.下列命题是真命题的是( )A.如果一个数的相反数等于这个数本身,那么这个数一定是0 。
B.如果一个数的倒数等于这个数本身,那么这个数一定是1 。
C.如果一个数的平方等于这个数本身,那么这个数定是0 。
2018年中考数学专题复习《全等三角形》模拟演练含答案
中考专题复习模拟演练:全等三角形一、选择题1.如图,某同学将一块三角形玻璃打碎成三块,现要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A. 带(1)去B. 带(2)去C. 带(3)去D. 带(1)(2)去2.已知:△ABC≌△DEF,AB=DE,∠A=70°,∠E=30°,则∠F的度数为()A. 80°B. 70°C. 30°D. 100°3.如图,在△ABC中,∠C=90°,ED⊥AB于点D,BD=BC,若AC=6 cm,则AE+DE等于( )A. 4 cmB. 5 cmC. 6 cmD. 7 cm4.如图,若△ABE≌△ACF,且AB=5,AE=3,则EC的长为()A. 2B. 3C. 5D. 2.55.如图,已知两个全等直角三角形的直角顶点及一条直角边重合,将△ABC绕点C按顺时针方向旋转到△A′CB′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD,AC于点F,G.则旋转后的图中,全等三角形共有()A. 2对B. 3对C. 4对D. 5对6.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连结CE 交AD于点F,连结BD交CE于点G,连结BE. 下列结论中:①CE=BD=2;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④CD·AE=EF·CG;一定正确的结论有()A. 1个B. 2个C. 3个D. 4个7.如图,在平行四边形ABCD中,连接对角线AC、BD,图中的全等三角形的对数()A. 1对B. 2对C. 3对D. 4对8.如图已知△ABE≌△ACD, AB=AC, BE=CD,∠B=40°,∠AEC=120°则∠DAC的度数为()A. 80°B. 70°C. 60°D. 50°9.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A. 40°B. 35°C. 30°D. 25°10.如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AC边上的高是( )A. B. C. D.二、填空题11.用直尺和圆规作一个角等于已知角得到两个角相等的依据是________12.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2 .以上结论中,你认为正确的有________.(填序号)13.如图,在由边长为1cm的小正方形组成的网格中,画如图所示的燕尾形工件,现要求最大限度的裁剪出10个与它全等的燕尾形工件,则这个网格的长至少为(接缝不计)________ .14.如图,E为正方形ABCD中CD边上一点,∠DAE=30°,P为AE的中点,过点P作直线分别与AD、BC相交于点M、N.若MN=AE,则∠AMN等于________15.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,得到如下结论:①AC⊥BD;②AO=CO= AC;③△ABD≌△CBD,其中正确的结论有________(填序号).16.如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E从A点出发以2厘米/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E 离开点A后,运动________秒时,△DEB与△BCA全等.17.在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,如图7,则∠EAB是多少度?请你说出∠EAB= ________度18.如图(1)所示,已知AB=AC,D为∠BAC的角平分线上面的一点,连接BD、CD;如图(2)已知AB=AC,D、E、F为∠BAC的角平分线上面的三点,连接BD、CD、BE、CE、BF、CF;…,依次规律,第N个图形中有全等三角形的对数是________.三、解答题19.已知,如图:AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.20.如图,两根旗杆AC与BD相距12m,某人从B点沿AB走向A,一定时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线夹角为90°,且CM=DM.已知旗杆AC的高为3m,该人的运动速度为0.5m/s,求这个人走了多长时间?21.如图1,等边△ABC中,D是AB上一点,以CD为边向上作等边△CDE,连结AE.(1)求证:AE∥BC;(2)如图2,若点D在AB的延长线上,其余条件均不变,(1)中结论是否成立?请说明理由.22.如图,在△ABC中,AD平分∠BAC,DG⊥BC且平分BC于点G,DE⊥AB于E,DF⊥AC于F.(1)证明:BE=CF;(2)如果AB=16,AC=10,求AE的长.23.将一块正方形和一块等腰直角三角形如图1摆放.(1)如果把图1中的△BCN绕点B逆时针旋转90°,得到图2,则∠GBM=________;(2)将△BEF绕点B旋转.①当M,N分别在AD,CD上(不与A,D,C重合)时,线段AM,MN,NC之间有一个不变的相等关系式,请你写出这个关系式:________;(不用证明)②当点M在AD的延长线上,点N在DC的延长线时(如图3),①中的关系式是否仍然成立?若成立,写出你的结论,并说明理由;若不成立,写出你认为成立的结论,并说明理由.24.已知矩形纸片ABCD中,AB=2,BC=3.操作:将矩形纸片沿EF折叠,使点B落在边CD上.探究:(1)如图1,若点B与点D重合,你认为△EDA1和△FDC全等吗?如果全等,请给出证明,如果不全等,请说明理由;(2)如图2,若点B与CD的中点重合,请你判断△FCB1、△B1DG和△EA1G之间的关系,如果全等,只需写出结果,如果相似,请写出结果和相应的相似比;(3)如图2,请你探索,当点B落在CD边上何处,即B1C的长度为多少时,△FCB1与△B1DG全等.参考答案一、选择题C A C B C CD A B C二、填空题11.SSS12.①③④13.2114.60°或120°15.①②③16.0,2,6,817.3518.n(n+1)三、解答题19.证明:∵AE⊥AB,BC⊥AB,∴∠EAD=∠CBA=90°,在Rt△ADE和中Rt△ABC中,,∴Rt△ADE≌Rt△ABC(HL),∴∠EDA=∠C,又∵在Rt△ABC中,∠B=90°,∴∠CAB+∠C=90°∴∠CAB+∠EDA=90°,∴∠AFD=90°,∴ED⊥AC20.解:∵∠CMD=90°,∴∠CMA+∠DMB=90°,又∵∠CAM=90°,∴∠CMA+∠ACM=90°,∴∠ACM=∠DMB,在△ACM和△BMD中,,∴△ACM≌△BMD(AAS),∴AC=BM=3m,∴他到达点M时,运动时间为3÷0.5=6(s),答:这个人从B点到M点运动了6s.21.(1)证明:∵∠BCA=∠DCE=60°,∴∠BCA﹣∠ACD=∠DCE﹣∠ACD,即∠BCD=∠ACE,∵△ABC和△DCE是等边三角形,∴BC=AC,DC=EC,在△BDC与△ACE中,,∴△DBC≌△ACE(SAS),∴∠B=∠CAE,∴∠B=∠CAE=∠BAC=60°,∴∠CAE+∠BAC=∠BAE=120°,∴∠B+∠BAE=180,∴AE∥BC(2)成立,证明如下:∵△DBC≌△ACE,∴∠BDC=∠AEC,在△DMC和△AME中,∵∠BDC=∠AEC(已证),∴∠DMC=∠EMA,∴△DMC∽△EMA,∴∠EAM=∠DCM=60°,∴∠EAC=120°,又∵∠DCA+∠CAE=∠DCE+∠ECA+CEA=180°+∠ECA,∴AE∥BC22.(1)证明:如图,连接BD、CD.∵DG⊥BC,BG=GC,∴DB=DC,∵DA平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△DEB和Rt△DFC中,,∴△DEB≌△DFC,∴BE=CF.(2)解:在Rt△ADE和rT△ADF中,,∴△ADE≌△ADF,∴AE=AF,∴AB﹣BE=AC+CF,∴2AE=AB﹣AC=16﹣10,∴AE=323.(1)45°(2)MN=AM+CN24.(1)解:全等.∵四边形ABCD是矩形,所以∠A=∠B=∠C=∠ADC=90°,AB=CD,由题意知:∠A=∠A1,∠B=∠A1DF=90°,CD=A1D,所以∠A1=∠C=90°,∠CDF+∠EDF=90°,所以∠A1DE=∠CDF,所以△EDA1≌△FDC(ASA)(2)解:△B1DG和△EA1G全等.与△B1DG相似,设FC= ,则B1F=BF= ,B1C= DC=1,△FCB所以,所以,所以△FCB1与△B1DG相似,相似比为4:3(3)解:△FCB1与△B1DG全等.设,则有,,在直角中,可得,整理得,解得 (另一解舍去),所以,当B1C= 时,△FCB1与△B1DG全等.。
2018年中考数学真题知识分类练习试卷:代数式(含答案)
代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键. 3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键. 9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n 的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】略。
2018年重庆市中考数学试卷(A卷)含答案
2018年重庆市中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面。
都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.(4分)2的相反数是()A.﹣2 B.﹣C.D.22.(4分)下列图形中一定是轴对称图形的是()A.直角三角形B.四边形C.平行四边形D.矩形3.(4分)为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工4.(4分)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个角形第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.185.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm6.(4分)下列命题正确的是()A.平行四边形的对角线互相垂直平分B.矩形的对角线互相垂直平分C.菱形的对角线互相平分且相等D.正方形的对角线互相垂直平分7.(4分)估计(2﹣)•的值应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间8.(4分)按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=﹣4,y=﹣2 C.x=2,y=4 D.x=4,y=2 9.(4分)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2C.3 D.2.510.(4分)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台坡面CD的坡度i=1:0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,则旗杆AB的高度约为()(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)A.12.6米B.13.1米C.14.7米D.16.3米11.(4分)如图,在平面直角坐标系中,菱形ABCD的顶点A,B 在反比例函数y=(k>0,x>0)的图象上,横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为,则k的值为()A.B.C.4 D.512.(4分)若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为()A.﹣3 B.﹣2 C.1 D.2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的的横线上。
人教版九年级上册数学同步作业含答案详细解析 22.2 实际问题与二次函数(2018中考模拟及真题演
人教版九年级上册数学同步作业含答案解析22.3 二次函数与实际应用 (2018模拟及中考真题演练)1.(2018乐亭县二模)运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系如下表:下列结论:①足球距离地面的最大高度为20m ;②足球飞行路线的对称轴是直线t=92 ;③足球被踢出9.5s 时落地:④足球被踢出7.5s 时,距离地面的高度是11.25m ,其中不正确结论的个数是( ) A .1B .2C .3D .4答案:B解析:B .解:设该抛物线的解析式为h=at 2+bt +c ,⎪⎩⎪⎨⎧=++=++=142480c b a c b a c ,解得⎪⎩⎪⎨⎧==-=091c b a , ∴h=﹣t 2+9t=﹣(t ﹣92 )2 + 814, ∴当t=92 时,h 取得最大值,此时h=814 ,故①错误, 该抛物线的对称轴是直线t=814 ,故②正确,当h=0时,得t=0或t=9,故③错误, 当t=7.5时,h=11.25,故④正确, 由上可得,不正确的是①③,2.(2018胶州一模)将进货价格为35元的商品按单价40元售出时,能卖出200个,已知该商品单价每上涨2元,其销售量就减少10个.设这种商品的售价为x 元时,获得的利润为y 元,则下列关系式正确的是( )A.y=(x﹣35)(400﹣5x)B.y=(x﹣35)(600﹣10x)C.y=(x+5)(200﹣5x)D.y=(x+5)(200﹣10x)答案:A解析:A.解:设这种商品的售价为x元时,获得的利润为y元,根据题意可得:y=(x﹣35)(400﹣5x),3.(2018扬州一模)一种包装盒的设计方法如图所示,ABCD是边长为80cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A、B、C、D 四点重合于图中的点O,形成一个底面为正方形的长方体包装盒.设BE=CF=xcm,要使包装盒的侧面积最大,则x应取()A.30cm B.25cm C.20cm D.15cm答案:C解析:C.解:如图,设BE=CF=x,则EF=80﹣2x,∵△EFM和△CFN都是等腰直角三角形,∴MF=22EF=40﹣ 2 x,FN= 2 FC= 2 x,∴包装盒的侧面积=4MF•FN=4• 2 x(40﹣ 2 x)=﹣8(x﹣20)2+3200,当x=20时,包装盒的侧面积最大.4.(2018繁昌县一模)某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=﹣4x+440,要获得最大利润,该商品的售价应定为()A.60元B.70元C.80元D.90元答案:C解析:C.解:设销售该商品每月所获总利润为w,则w=(x﹣50)(﹣4x+440)=﹣4x2+640x﹣22000=﹣4(x﹣80)2+3600,∴当x=80时,w取得最大值,最大值为3600,即售价为80元/件时,销售该商品所获利润最大,5.(2018连云港)已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A.点火后9s和点火后13s的升空高度相同B.点火后24s火箭落于地面C.点火后10s的升空高度为139mD.火箭升空的最大高度为145m答案:D解析:D.解:A、当t=9时,h=136;当t=13时,h=144;所以点火后9s和点火后13s的升空高度不相同,此选项错误;B、当t=24时h=1≠0,所以点火后24s火箭离地面的高度为1m,此选项错误;C、当t=10时h=141m,此选项错误;D、由h=﹣t2+24t+1=﹣(t﹣12)2+145知火箭升空的最大高度为145m,此选项正确;6.(2018沂水县一模)如图,排球运动员站在点O处练习发球,将球从D点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a (x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A.球不会过网B.球会过球网但不会出界C.球会过球网并会出界D.无法确定答案:C解析:C.解:(1)∵球与O点的水平距离为6m时,达到最高2.6m,∴抛物线为y=a(x﹣6)2+2.6过点,∵抛物线y=a (x ﹣6)2+2.6过点(0,2), ∴2=a (0﹣6)2+2.6, 解得:a=﹣160, 故y 与x 的关系式为:y=﹣160(x ﹣6)2+2.6, 当x=9时,y=﹣160(x ﹣6)2+2.6=2.45>2.43, 所以球能过球网;当y=0时,﹣160(x ﹣6)2+2.6=0, 解得:x 1=6+239 >18,x 2=6﹣239 (舍去) 故会出界.7.跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系y=ax 2+bx +c (a ≠0).如图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为( )A .10mB .15mC .20mD .22.5m答案:B解析:B .解:根据题意知,抛物线y=ax 2+bx +c (a ≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则⎪⎩⎪⎨⎧=++=++=9.57204002.464016000.54c b a c b a c解得⎪⎩⎪⎨⎧==-=0.54585.00195.0c b a ,所以x=﹣b 2a =-0.5852×(-0.0195)=15(m ). 8.如图,OABC 是边长为1的正方形,OC 与x 轴正半轴的夹角为15°,点B 在抛物线y=ax 2(a <0)的图象上,则a 的值为( )A .-23B .-23C .﹣2D .-12答案:B解析:B .解:如图,连接OB ,过B 作BD ⊥x 轴于D ; 则∠BOC=45°,∠BOD=30°; 已知正方形的边长为1,则OB= 2 ; Rt △OBD 中,OB= 2 ,∠BOD=30°,则: BD=12 OB=22 ,OD=32 OB=62 ; 故B (62 ,﹣22), 代入抛物线的解析式中,得: (62 )2a=﹣22, 解得a=﹣23;9.某鞋帽专卖店销售一种绒帽,若这种帽子每天获利y(元)与销售单价x(元)满足关系y=﹣x2+70x﹣800,要想获得最大利润,则销售单价为()A.30元B.35元C.40元D.45元答案:B解析:B.解:∵y=﹣x2+70x﹣800=﹣(x﹣35)2+425,∴当x=35时,y取得最大值,最大值为425,即销售单价为35元时,销售利润最大,10.2016年7月3日,位于中国贵州省内的射电望远镜(FAST)顺利安装最后一块反射面单元,标志着FAST主体工程完工,进入测试调试阶段.建成后的FAST是目前世界上口径最大,精度最高的望远镜.根据有关资料显示,该望远镜的轴截面呈抛物线状,口径AB为500米,最低点O到口径面AB的距离是100米,若按如图(2)建立平面直角坐标系,则抛物线的解析式是()A.y=1625x2-100 B.y=-1625x2-100C.y=1625x2D.y=-1625x2答案:A解析:A.解:观察图象可知,抛物线的顶点坐标为(0,﹣100),开口向上,a>0,只有选项A满足条件,11.某种新型礼炮的升空高度h (m )与飞行时间t (s )的关系式h=﹣52 t 2+20t +1,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为( ) A .3sB .4sC .5sD .6s答案:B解析:B . 解:h=﹣52 t 2+20t +1 =﹣52 (t ﹣4)2+41, ∵﹣52<0 ∴这个二次函数图象开口向下. ∴当t=4时,升到最高点.12.竖直上抛的小球离地面的高度 h (米)与时间 t (秒)的函数关系式为 h=﹣2t 2+mt +258,若小球经过 74秒落地,则小球在上抛的过程中,第 秒时离地面最高. 答案:.解析:37. 解:∵竖直上抛的小球离地面的高度 h (米)与时间 t (秒)的函数关系式为 h=﹣2t 2+mt +258 ,小球经过 74 秒落地, ∴t=74时,h=0, 则0=﹣2×(74 )2+74 +258 , 解得:m=127, 当t=﹣b 2a =﹣1272×(-2) =37时,h 最大, 13.如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900m (篱笆的厚度忽略不计),当AB= m 时,矩形土地ABCD 的面积最大.答案:{解析}解:(1)设AB=xm ,则BC=(900﹣3x ),由题意可得,S=AB×BC=x×(900﹣3x )=﹣(x2﹣300x )=﹣(x ﹣150)2+33750 ∴当x=150时,S 取得最大值,解析:{解析}解:(1)设AB=xm ,则BC=12(900﹣3x ),由题意可得,S=AB ×BC=x ×12 (900﹣3x )=﹣32 (x 2﹣300x )=﹣32 (x ﹣150)2+33750 ∴当x=150时,S 取得最大值,此时,S=33750, ∴AB=150m ,14.某司机驾车行驶在公路上,突然发现正前方有一行人,他迅速采取紧急刹车制动.已知,汽车刹车后行驶距离S (m )与行驶时间t (s )之间的函数关系式为S=﹣5t 2+20t ,则这个行人至少在 米以外,司机刹车后才不会撞到行人.解析:{解析}解:函数关系式为S=﹣5t 2+20t ,变形得,s=﹣5(t ﹣2)2+20,所以当t=2时,汽车滑行距离最远为:s=20m ;故这个物体至少在20米以外,司机刹车后才不会撞到物体.15.两幢大楼的部分截面及相关数据如图,小明在甲楼A 处透过窗户E 发现乙楼F 处出现火灾,此时A ,E ,F 在同一直线上.跑到一楼时,消防员正在进行喷水灭火,水流路线呈抛物线,在1.2m 高的D 处喷出,水流正好经过E ,F .若点B 和点E 、点C 和F 的离地高度分别相同,现消防员将水流抛物线向上平移0.4m ,再向左后退了 m ,恰好把水喷到F 处进行灭火.解析:110 ﹣10.解:由图形可知,点A (0,21.2)、D (0,1.2)、E (20,9.2)、点F 的纵坐标为6.2设AE 所在直线解析式为y=mx +n , 则⎩⎨⎧=+=2.9202.21n m n ,解得:⎩⎨⎧=-=2.216.0n m ,∴直线AE 解析式为y=﹣0.6x +21.2, 当y=6.2时,﹣0.6x +21.2=6.2, 解得:x=25,∴点F 坐标为(25,6.2), 设抛物线的解析式为y=ax 2+bx +c ,将点D (0,1.2)、E (20,9.2)、F (25,6.2)代入,得:⎪⎩⎪⎨⎧=++=++=2.6256252.9204002.1c b a c b a c , 解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=5656251c b a ,∴抛物线的解析式为y=﹣125 x 2+65 x +65 =﹣125 (x ﹣15)2+515 , 设消防员向左移动的距离为p (p >0),则移动后抛物线的解析式为y=﹣125 (x +p ﹣15)2+515 +25 , 根据题意知,平移后抛物线过点F (25,6.2),代入得: ﹣125 (25+p ﹣15)2+515 +25=6.2, 解得:p=﹣110 ﹣10(舍)或p=110 ﹣10,即消防员将水流抛物线向上平移0.4m ,再向左后退了(110 ﹣10)m ,恰好把水喷到F 处进行灭火,16.从地面竖直向上抛出一个小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的关系式为h=30t ﹣5t 2,那么小球从抛出至回落到地面所需要的时间是 s .答案:{解析}解:由小球高度h 与运动时间t 的关系式h=30t ﹣5t2. 令h=0,﹣5t2+30t=0解得:t1=0,t2=6小球从抛出至回落到地面所需要的时间是6秒.解析:{解析}解:由小球高度h与运动时间t的关系式h=30t﹣5t2.令h=0,﹣5t2+30t=0解得:t1=0,t2=6小球从抛出至回落到地面所需要的时间是6秒.17.如图,隧道的截面由抛物线和长方形构成.长方形的长为12m,宽为5m,抛物线的最高点C离路面AA1的距离为8m,过AA1的中点O建立如图所示的直角坐标系.则该抛物线的函数表达式为答案:y=x2+8.解析:y=-112x2+8.解:由题意可得,点C的坐标为(0,8),点B的坐标为(﹣6,5),设此抛物线的解析式为y=ax2+8,5=a×(﹣6)2+8,解得,a=-112,∴此抛物线的解析式为y=-112x2+8,18.小迪同学以二次函数y=2x2+8的图象为灵感设计了一款杯子,如图为杯子的设计稿,若AB=4,DE=3,则杯子的高CE为.解析:{解析}解:由题意可得:D点坐标为:(0,8),∵AB=4,∴B 点,横坐标为:2, 故x=2时,y=2×4+8=16, 即B (2,16), 则DC=16﹣8=8, 故CE=DC +DE=3+8=11.19.(2018天门)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF 、折线ABCD 分别表示该有机产品每千克的销售价y 1(元)、生产成本y 2(元)与产量x (kg )之间的函数关系.(1)求该产品销售价y 1(元)与产量x (kg )之间的函数关系式; (2)直接写出生产成本y 2(元)与产量x (kg )之间的函数关系式; (3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?解析:解:(1)设y 1与x 之间的函数关系式为y 1=kx +b , ∵经过点(0,168)与(180,60),∴⎩⎨⎧=+=60180168b k b ,解得:⎪⎩⎪⎨⎧=-=16853b k , ∴产品销售价y 1(元)与产量x (kg )之间的函数关系式为y 1=﹣35 x +168(0≤x ≤180); (2)由题意,可得当0≤x ≤50时,y 2=70; 当130≤x ≤180时,y 2=54;当50<x <130时,设y 2与x 之间的函数关系式为y 2=mx +n , ∵直线y 2=mx +n 经过点(50,70)与(130,54),∴⎩⎨⎧=+=+541307050n m n m ,解得⎪⎩⎪⎨⎧-==5180m n ,∴当50<x <130时,y 2=﹣15x +80. 综上所述,生产成本y 2(元)与产量x (kg )之间的函数关系式为⎪⎪⎩⎪⎪⎨⎧≤≤<<+-≤≤=)180130(54)13050(8051)500(702x x x x y y 2=;(3)设产量为xkg 时,获得的利润为W 元,①当0≤x ≤50时,W=x (﹣35 x +168﹣70)=﹣35 (x ﹣245 3)2+12005 3, ∴当x=50时,W 的值最大,最大值为3400;②当50<x <130时,W=x [(﹣35 x +168)﹣(﹣15 错误!未找到引用源。
2018年中考数学全真模拟试卷及答案(三)
2018年中考数学全真模拟试卷及答案(三)一.选择题(共10小题,每小题3分,共30分)1.纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):当北京6月15日23时,悉尼、纽约的时间分别是()A.6月16日1时;6月15日10时 B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时2.等式成立的条件是()A.x≥1 B.x≥﹣1 C.﹣1≤x≤1 D.x≥1或x≤﹣13.2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×1034.对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大5.若4x2﹣12xy+9y2=0,则的值是()A.﹣ B.﹣1 C.D.6.如图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图.则小立方体的个数可能是()A.5或6 B.5或7 C.4或5或6 D.5或6或77.如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A.msin35°B.mcos35° C.D.8.在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.如图,在平面直角坐标系系中,直线y=k1x+2与x轴交于点A,与y轴交于点C,与反比例函数y=在第一象限内的图象交于点B,连接BO.若S△OBC=1,tan∠BOC=,则k2的值是()A.﹣3 B.1 C.2 D.310.如图,直线y=与y轴交于点A,与直线y=﹣交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是()A.﹣2B.﹣2≤h≤1 C.﹣1D.﹣1二.填空题(共6小题,每小题3分,共18分)11.若|x|=|﹣2|,则x=.12.分解因式:y+y2+xy+xy2=.13.赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有人.14.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是.(填写正确结论的序号)15.如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为.16.正方形OA1B1C1、A1A2B2C2、A2A3B3C3┅按如图放置,其中点A1、A2、A3┅在x轴的正半轴上,点B1、B2、B3┅在直线y=﹣x+2上,则点A3的坐标为,则点A n的坐标为.三.解答题(共8小题,共72分)17.计算:﹣14﹣(1﹣0.5)××[2﹣(﹣3)2].18.如图,直线l1的解析表达式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2,交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积.19.如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B 处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732.)20.在一个不透明的盒子里,装有三个分别写有数字1,2,3的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于3的概率.21.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.22.某商店经销一种健身球,已知这种健身球的成本价为每个20元,市场调查发现,该种健身球每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣2x+80(20≤x≤40).设这种健身球每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该种健身球销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种健身球的销售单价不高于28元,该商店销售这种健身球每天要获得150元的销售利润,销售单价应定为多少元?23.已知:如图,AB是⊙O的直径,OC⊥AB,D是CO的中点,DE∥AB,设⊙O的半径为6cm.(1)求DE的长;(2)求图中阴影部分的面积.24.如图,已知抛物线y=+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的一个动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP 的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):当北京6月15日23时,悉尼、纽约的时间分别是()A.6月16日1时;6月15日10时 B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时【解答】解:悉尼的时间是:6月15日23时+2小时=6月16日1时,纽约时间是:6月15日23时﹣13小时=6月15日10时.故选:A.2.等式成立的条件是()A.x≥1 B.x≥﹣1 C.﹣1≤x≤1 D.x≥1或x≤﹣1【解答】解:∵,∴,解得:x≥1.故选A.3.2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×103【解答】解:5550=5.55×103,故选C.4.对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大【解答】解:“某市明天下雨的概率是75%”说明某市明天下雨的可能性较大,故选:D.5.若4x2﹣12xy+9y2=0,则的值是()A.﹣ B.﹣1 C.D.【解答】解:∵4x2﹣12xy+9y2=0,∴(2x﹣3y)2=0,∴2x=3y,∴x=y,∴==.故选:C.6.如图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图.则小立方体的个数可能是()A.5或6 B.5或7 C.4或5或6 D.5或6或7【解答】解:由俯视图易得最底层有4个小立方体,由左视图易得第二层最多有3个小立方体和最少有1个小立方体,那么小立方体的个数可能是5个或6个或7个.故选D.7.如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A.msin35°B.mcos35° C.D.【解答】解:sin∠A=,∵AB=m,∠A=35°,∴BC=msin35°,故选:A.8.在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵x2≥0,∴x2+1≥1,∴点P(﹣2,x2+1)在第二象限.故选B.9.如图,在平面直角坐标系系中,直线y=k1x+2与x轴交于点A,与y轴交于点C,与反比例函数y=在第一象限内的图象交于点B,连接BO.若S△OBC=1,tan∠BOC=,则k2的值是()A.﹣3 B.1 C.2 D.3【解答】解:∵直线y=k1x+2与x轴交于点A,与y轴交于点C,∴点C的坐标为(0,2),∴OC=2,=1,∵S△OBC∴BD=1,∵tan∠BOC=,∴=,∴OD=3,∴点B的坐标为(1,3),∵反比例函数y=在第一象限内的图象交于点B,∴k2=1×3=3.故选D.10.如图,直线y=与y轴交于点A,与直线y=﹣交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是()A.﹣2B.﹣2≤h≤1 C.﹣1D.﹣1【解答】解:∵将y=与y=﹣联立得:,解得:.∴点B的坐标为(﹣2,1).由抛物线的解析式可知抛物线的顶点坐标为(h,k).∵将x=h,y=k,代入得y=﹣得:﹣h=k,解得k=﹣,∴抛物线的解析式为y=(x﹣h)2﹣h.如图1所示:当抛物线经过点C时.将C(0,0)代入y=(x﹣h)2﹣h得:h2﹣h=0,解得:h1=0(舍去),h2=.如图2所示:当抛物线经过点B时.将B(﹣2,1)代入y=(x﹣h)2﹣h得:(﹣2﹣h)2﹣h=1,整理得:2h2+7h+6=0,解得:h1=﹣2,h2=﹣(舍去).综上所述,h的范围是﹣2≤h≤.故选A.二.填空题(共6小题)11.若|x|=|﹣2|,则x=±2.【解答】解:|x|=|﹣2|=2,x=2或x=﹣2,故答案为:2或﹣2.12.分解因式:y+y2+xy+xy2=y(1+y)(1+x).【解答】解:y+y2+xy+xy2=(y+y2)+(xy+xy2)=y(1+y)+xy(1+y)=(1+y)(y+xy)=y(1+y)(1+x).故答案为:y(1+y)(1+x).13.赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有27人.【解答】解:如图所示,89.5~109.5段的学生人数有24人,109.5~129.5段的学生人数有3人,所以,成绩不低于90分的共有24+3=27人.故答案为:27.14.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是①③⑤.(填写正确结论的序号)【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc>0,故①正确;直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=﹣1,可得b=2a,a﹣2b+4c=a﹣4a+4c=﹣3a+4c,∵a<0,∴﹣3a>0,∴﹣3a+4c>0,即a﹣2b+4c>0,故②错误;∵抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),∴抛物线与x轴的另一个交点坐标为(,0),当x=﹣时,y=0,即,整理得:25a﹣10b+4c=0,故③正确;∵b=2a,a+b+c<0,∴,即3b+2c<0,故④错误;∵x=﹣1时,函数值最大,∴a﹣b+c≥m2a﹣mb+c,∴a﹣b≥m(am﹣b),所以⑤正确;故答案为:①③⑤.15.如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为10.【解答】解:如图,设点A的坐标为(a,b),点B的坐标为(c,d),∵反比例函数y=的图象过A,B两点,∴ab=4,cd=4,∴S△AOC=|ab|=2,S△BOD=|cd|=2,∵点M(﹣3,2),∴S矩形MCDO=3×2=6,∴四边形MAOB的面积=S△AOC +S△BOD+S矩形MCDO=2+2+6=10,故答案为:10.16.正方形OA1B1C1、A1A2B2C2、A2A3B3C3┅按如图放置,其中点A1、A2、A3┅在x轴的正半轴上,点B1、B2、B3┅在直线y=﹣x+2上,则点A3的坐标为(,0),则点A n的坐标为(,0).【解答】解:∵四边形OA1B1C1是正方形,∴A1B1=B1C1.∵点B1在直线y=﹣x+2上,∴设B1的坐标是(x,﹣x+2),∴x=﹣x+2,x=1.∴B1的坐标是(1,1).∴点A1的坐标为(1,0).∵A1A2B2C2是正方形,∴B2C2=A1C2,∵点B2在直线y=﹣x+2上,∴B2C2=B1C2,∴B2C2=A1B1=,∴OA2=OA1+A1A2=1+,∴点A2的坐标为(1+,0).同理,可得到点A3的坐标为(1++,0),即A3的坐标为(,0).依此类推,可得到点A n的坐标为(1+++…+,0),而1+++…+=,故A n的坐标为(,0).故答案是:(,0),(,0)三.解答题(共9小题)17.计算:﹣14﹣(1﹣0.5)××[2﹣(﹣3)2].【解答】解:原式=﹣1﹣0.5××(2﹣9)=﹣1﹣(﹣)=.18.如图,直线l1的解析表达式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2,交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积.【解答】解:(1)由y=﹣3x+3,令y=0,得﹣3x+3=0,∴x=1,∴D(1,0);(2)设直线l2的解析表达式为y=kx+b,由图象知:x=4,y=0;x=3,,∴,∴,∴直线l2的解析表达式为;(3)由,解得,∴C(2,﹣3),∵AD=3,=×3×|﹣3|=.∴S△ADC19.如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B 处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732.)【解答】解:过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.Rt△ABF中,i=tan∠BAF==,∴∠BAF=30°,∴BF=AB=5,AF=5.∴BG=AF+AE=5+15.Rt△BGC中,∠CBG=45°,∴CG=BG=5+15.Rt△ADE中,∠DAE=60°,AE=15,∴DE=AE=15.∴CD=CG+GE﹣DE=5+15+5﹣15=20﹣10≈2.7m.答:宣传牌CD高约2.7米.20.在一个不透明的盒子里,装有三个分别写有数字1,2,3的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于3的概率.【解答】解:(1)画树状图为:共有9种等可能的结果数,其中两次取出小球上的数字相同的结果数为3,所以两次取出小球上的数字相同的概率==;(2)两次取出小球上的数字之和大于3的结果数为6,所以两次取出小球上的数字之和大于3的概率==.21.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.【解答】证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ是等边三角形.22.某商店经销一种健身球,已知这种健身球的成本价为每个20元,市场调查发现,该种健身球每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣2x+80(20≤x≤40).设这种健身球每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该种健身球销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种健身球的销售单价不高于28元,该商店销售这种健身球每天要获得150元的销售利润,销售单价应定为多少元?【解答】解:(1)根据题意可得:w=(x﹣20)•y=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,w与x的函数关系式为:w=﹣2x2+120x﹣1600;(2)根据题意可得:w=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.答:销售单价定为30元时,每天销售利润最大,最大销售利润200元.(3)当w=150时,可得方程﹣2(x﹣30)2+200=150.解得x1=25,x2=35.∵35>28,∴x2=35不符合题意,应舍去.答:该商店销售这种健身球每天想要获得150元的销售利润,销售单价定为25元.23.已知:如图,AB是⊙O的直径,OC⊥AB,D是CO的中点,DE∥AB,设⊙O 的半径为6cm.(1)求DE的长;(2)求图中阴影部分的面积.【解答】解:(1)连接OE,∵D是CO的中点,⊙O的半径为6cm,∴OD=OC=3cm,∵OC⊥AB,DE∥AB,∴∠ODE=90°,∴DE==3;(2)∵OD=OC,∠ODE=90°,∴∠OED=30°,∴∠DOE=60°,∴图中阴影部分的面积=﹣×3×3=6π﹣(cm2).24.如图,已知抛物线y=+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的一个动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP 的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.【解答】解:(1)将A(0,1),B(﹣9,10)代入函数解析式,得,解得,抛物线的解析式y=+2x+1;(2分)(2)∵AC∥x轴,A(0,1),∴x2+2x+1=1,解得x1=﹣6,x2=0(舍),即C点坐标为(﹣6,1),∵点A(0,1),点B(﹣9,10),∴直线AB的解析式为y=﹣x+1,设P(m,m2﹣2m+1),∴E(m,﹣m+1),∴PE=﹣m+1﹣(m2+2m+1)=﹣m2﹣3m,∵AC⊥PE,AC=6,(4分)=S△AEC+S△APC=AC•EF+AC•PF,∴S四边形AECP=AC•(EF+PF)=AC•EP=×6(﹣m2﹣3m)=﹣m2﹣9m=﹣(m+)2+,∵0<m<6,∴当m=﹣时,四边形AECP的面积最大值是,此时P(﹣,﹣);(6分)(3)∵y=x2+2x+1=(x+3)2﹣2,∴顶点P(﹣3,﹣2).∴PF=2+1=3,CF=6﹣3=3,∴PF=CF,PC=3,∴∠PCF=45°,同理可得∠EAF=45°,∴∠PCF=∠EAF,∵A(0,1),B(﹣9,10),∴AB==9,∴在直线AC上存在满足条件得点Q,设Q(t,1),∵以C,P,Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,=,,CQ=2,(7分)∴Q(﹣4,1);(8分)②当△CPQ∽△ACB时,则,∴=,CQ=9,(9分)∴Q(3,1);综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似,Q点的坐标为(﹣4,1)或(3,1).(10分)。
2018---2019年新九年级中考数学模拟考试题含参考答案与试题解析
2018---2019年新九年级中考数学模拟考试题含参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.﹣2016的绝对值是()A.﹣2016 B.2016 C.﹣D.【考点】绝对值.【分析】直接利用绝对值的性质求出答案.【解答】解:﹣2016的绝对值是:2016.故选:B.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.如图所示的几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形主视图.3.下列图案中,不是中心对称图形的是()A.B. C.D.【考点】中心对称图形.【分析】结合中心对称图形的概念进行求解即可.【解答】解:A、是中心对称图形,本选项错误;B、是中心对称图形,本选项错误;C、是中心对称图形,本选项错误;D、不是中心对称图形,本选项正确.故选D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.我区5月份连续五天的日最高气温(单位:℃)分别为:33,30,30,32,35.则这组数据的中位数和平均数分别是()A.32,32 B.32,33 C.30,31 D.30,32【考点】中位数;算术平均数.【分析】先把这组数据从小到大排列,找出最中间的数,即可得出这组数据的中位数,再根据平均数的计算公式进行计算即可.【解答】解:把这组数据从小到大排列为30,30,32,33,35,最中间的数是32,则中位数是32;平均数是:(33+30+30+32+35)÷5=32,故选:A.【点评】此题考查了中位数和平均数,掌握中位数的定义和平均数的计算公式是本题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.某科研小组,为了考查某水库野生鱼的数量,从中捕捞100条,作上标记后,放回水库,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该水库中有野生鱼()A.8000条B.4000条C.2000条D.1000条【考点】用样本估计总体.【分析】捕捞300条鱼,发现其中15条有标记,即在样本中,有标记的占到,而在总体中,有标记的共有100条,即可得出答案.【解答】解:根据题意,估计该水库中有野生鱼100÷=2000(条),故选:C.【点评】此题考查了用样本估计总体,掌握用样本估计总体的计算公式是解题的关键,本题体现了统计思想.6.下列多边形中,内角和是外角和的两倍的是()A.四边形B.五边形C.六边形D.八边形【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°以及多边形的外角和等于360°列方程求出边数,从而得解.【解答】解:设多边形边数为n,由题意得,(n﹣2)•180°=2×360°,解得n=6,所以,这个多边形是六边形.故选C.【点评】本题考查了多边形内角与外角,熟记公式并列方程求出多边形的边数是解题的关键.7.下列计算正确的是()A.a2•a3=a6B.(﹣m2)3=﹣m6C.b6÷b3=b2D.3a+3b=6ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、同底数幂的乘法底数不变值数相加,故A错误;B、幂的乘方底数不变指数相乘,故B正确;C、同底数幂的除法底数不变指数相减,故C错误;D、不是同类相不能合并,故D错误;故选:B.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.8.不等式组的解集是()A.x>﹣2 B.x<5 C.x<2 D.﹣2<x<5【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出选项.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<5,∴不等式组的解集为﹣2<x<5,故选D.【点评】本题考查了解一元一次不等式的应用,能灵活运用不等式的性质进行变形是解此题的关键.9.直线y=﹣x+2沿y轴向上平移2个单位后与x轴的交点坐标是()A.(4,0) B.(0,4) C.(2,0) D.(0,2)【考点】一次函数图象与几何变换.【分析】利用一次函数平移规律,上加下减进而得出答案.【解答】解:直线y=﹣x+2沿y轴向上平移2个单位,则平移后直线解析式为:y=﹣x+4,直线与x轴的交点坐标为:0=﹣x+4,解得:x=4.故选A【点评】此题主要考查了一次函数平移变换,正确记忆一次函数平移规律是解题关键.10.如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),过点P作PM∥CD交BC于M点,PN∥BC交CD 于N点,连接MN,在运动过程中,则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PE•BF;⑤线段MN的最小值为.其中正确的结论有()A.2个B.3个C.4个D.5个【考点】四边形综合题.【分析】由正方形的性质及条件可判断出①△ABE≌△BCF,即可判断出②AE=BF,∠BAE=∠CBF,再根据∠BAE+∠BEA=90°,可得∠CBF+∠BEA=90°,可得出∠APB=90°,即可判断③,由△BPE∽△BCF,利用相似三角形的性质,结合CF=BE可判断④;然后根据点P在运动中保持∠APB=90°,可得点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,最后在Rt△BCG中,根据勾股定理,求出CG的长度,再求出PG的长度,即可求出线段CP的最小值,可判断⑤.【解答】解:如图,∵动点F,E的速度相同,∴DF=CE,又∵CD=BC,∴CF=BE,在△ABE和△BCF中,∴△ABE≌△BCF(SAS),故①正确;∴∠BAE=∠CBF,AE=BF,故②正确;∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠APB=90°,故③正确;在△BPE和△BCF中,∵∠BPE=∠BCF,∠PBE=∠CBF,∴△BPE∽△BCF,∴=,∴CF•BE=PE•BF,∵CF=BE,∴CF2=PE•BF,故④正确;∵点P在运动中保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,在Rt△BCG中,CG===,∵PG=AB=,∴CP=CG﹣PG=﹣=,即线段CP的最小值为,故⑤正确;综上可知正确的有5个,故选D.【点评】本题为四边形的综合应用,涉及全等三角形、相似三角形的判定和性质、勾股定理、正方形的性质等知识点.在判定三角形全等时,关键是选择恰当的判定条件,证明△ABE≌△BCF是解题的关键.本题考查知识点较多,综合性较强,难度较大.二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题卡的相应位置)11.写出一个第二象限内的点的坐标:(﹣1 , 1 ).【考点】点的坐标.【专题】开放型.【分析】根据第二象限的点的横坐标是负数,纵坐标是正数解答.【解答】解:(﹣1,1)为第二象限的点的坐标.故答案为:﹣1,1(答案不唯一).【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.想了解某电视台对正在播出的某电视节目收视率的情况,适合采用的调查方式是抽样调查.(填“全面调查”或“抽样调查”)【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:想了解某电视台对正在播出的某电视节目收视率的情况,适合采用的调查方式是抽样调查,故答案为:抽样调查.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.13.计算: = x .【考点】分式的加减法.【专题】计算题.【分析】进行同分母分式加减运算,最后要注意将结果化为最简分式.【解答】解: ===x.故答案为x.【点评】本题考查了分式的加减运算,题目比较容易.14.分解因式:3a2﹣6a+3= 3(a﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式3,进而利用完全平方公式分解因式得出答案.【解答】解:原式=3(a2﹣2a+1)=3(a﹣1)2.故答案为:3(a﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.15.已知圆锥的侧面积为15π,底面半径为3,则圆锥的高为 4 .【考点】圆锥的计算.【专题】计算题.【分析】设圆锥的母线长为l,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•3•l=15π,然后求出l后利用勾股定理计算圆锥的高.【解答】解:设圆锥的母线长为l,根据题意得•2π•3•l=15π,解得l=5,所以圆锥的高==4.故答案为4.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边做等腰直角△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=(k<0)上运动,则k的值是﹣2 .【考点】反比例函数图象上点的坐标特征;等腰直角三角形.【分析】连结OC,作CD⊥x轴于D,AE⊥x轴于E,设A点坐标为(a,),利用反比例函数的性质得到点A与点B关于原点对称,则OA=OB,再根据等腰直角三角形的性质得OC=OA,OC⊥OA,然后利用等角的余角相等可得到∠DCO=∠AOE,则根据“AAS”可判断△COD≌△OAE,所以OD=AE=,CD=OE=a,于是C点坐标为(,a),最后根据反比例函数图象上点的坐标特征确定C点所在的函数图象解析式.【解答】解:连结OC,作CD⊥x轴于D,AE⊥x轴于E,如图,设A点坐标为(a,),∵A点、B点是正比例函数图象与双曲线y=的交点,∴点A与点B关于原点对称,∴OA=OB∵△ABC为等腰直角三角形,∴OC=OA,OC⊥OA,∴∠DOC+∠AOE=90°,∵∠DOC+∠DC O=90°,∴∠DCO=∠AOE,在△COD和△OAE中,∵,∴△COD≌△OAE(AAS),∴OD=AE=,CD=OE=a,∴C点坐标为(,﹣a),∵﹣a•=﹣2,∴点C在反比例函数y=﹣图象上.故答案为﹣2.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(本大题共9小题,共86分.请在答题卡的相应位置作答)17.计算:×(﹣2)2﹣2tan45°+(﹣2016)0.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用算术平方根定义,乘方的意义,特殊角的三角函数值,以及零指数幂法则计算即可得到结果.【解答】解:原式=2×4﹣2×1+1=8﹣2+1=7.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.先化简下列的代数式,再求值:[(2x+y)2+y(x﹣y)]÷x,其中x=1,y=1.【考点】整式的混合运算—化简求值.【分析】先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:[(2x+y)2+y(x﹣y)]÷x=(4x2+4xy+y2+xy﹣y2)÷x=(4x2+5xy)÷x=4x2÷x+5xy÷x=4x+5y,当x=1,y=1时,原式=4×1+5×1=9.【点评】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键.19.解分式方程: =.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边同时乘以x(2x﹣1),得2(2x﹣1)=3x,解得:x=2,检验:当x=2时,x(2x﹣1)≠0,则原分式方程的解为x=2.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.如图,AB⊥BD于点B,ED⊥BD于点D,AE交BD于点C,且BC=DC.求证:AB=ED.【考点】全等三角形的判定与性质;垂线.【专题】证明题.【分析】首先根据垂直可得∠ABC=∠D=90°,再有条件∠ACB=∠DCE,CB=CD,可以用ASA 证明△ABC≌△EDC,再根据全等三角形对应边相等得到结论AB=DE.【解答】证明:∵AB⊥BD,ED⊥BD,∴∠ABC=∠D=90°,在△ABC和△EDC中,∴△ABC≌△EDC(ASA)∴AB=DE.【点评】此题主要考查了全等三角形的判定与性质,解决此题的关键是找出能使△ABC≌△EDC的条件.21.2016年为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如图的调查问卷(单选).在随机调查了某市全部10000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m= 20 ;(2)该市支持选项C的司机大约有多少人?(3)若要从该市支持选项C的司机中随机选择200名,给他们签订“永不酒驾”的保证书,则支持该选项的司机小李被选中的概率是多少?【考点】概率公式;扇形统计图;条形统计图.【分析】(1)根据条形图B的人数,和扇形图B所占的百分比求出总人数,然后减去其他4组的人数,求出C的人数,用A的人数除以总人数可得m的值.(2)全市所以司机的人数×支持选项C的人数的百分比可求出结果.(3)根据(2)算出的支持C的人数,以及随机选择200名,给他们发放“请勿酒驾”的提醒标志,则可算出支持该选项的司机小李被选中的概率是多少【解答】解:(1)∵69÷23%﹣60﹣69﹣36﹣45=90(人).∴C选项的频数为90,补全图形如下:.∵m%=60÷(69÷23%)=20%.∴m=20,故答案为:20;(2)支持选项C的人数大约为:90÷300=30%,10000×30%=3000(人).答:该市支持选项C的司机大约有3000人.(3)∵该市支持选项C的司机总人数=10000×30%=3000人,∴小李被选中的概率是,答:支持该选项的司机小李被选中的概率是.【点评】本题考查认知条形统计图和扇形统计图的能力,条形统计图告诉每组里面的具体数据,扇形统计图告诉部分占整体的百分比以及概率等概念从而可求出解.22.如图,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AE于点E.(1)求证:△BEF∽△DBC.;(2)若⊙O的半径为3,∠C=32°,求BE的长.(精确到0.01)【考点】相似三角形的判定与性质;切线的性质.【分析】(1)连接OB,由切线的性质得出OB⊥AE,故可得出∠OBE=∠EBF+∠CBO=90°.再由圆周角定理得出∠CBD=∠CBO+∠OBD=90°,故∠EBF=∠OBD.根据等腰三角形的性质可知∠OBD=∠CDB,故∠EBF=∠CDB,进而可得出结论;(2)由(1)可知△BEF∽△DBC,所以∠OBE=90°,∠E=∠C.在Rt△BOE中,利用锐角三角函数的定义即可得出结论.【解答】(1)证明:连接OB.∵过点B的切线AE与CD的延长线交于点A,∴OB⊥AE,∴∠OBE=∠EBF+∠CBO=90°.∵CD为⊙O的直径∴∠CBD=∠CBO+∠OBD=90°,∴∠EBF=∠OBD.∵OB、OD是⊙O的半径,∴OB=OD,∴∠OBD=∠CDB,∴∠EBF=∠CDB.∵OE∥BD,∴∠EFB=∠CBD∴△BEF∽△DBC.(2)解:∵由(1)可知△BEF∽△DBC∴∠OBE=90°,∴∠E=∠C.∵∠C=32°,∴∠E=∠C=32°.∵⊙O的半径为3,∴OB=3.在Rt△BOE中,∠OBE=90°,∠E=32°,OB=3,∴tanE=,即tan32°=,∴BE=≈4.80.【点评】本题考查的是相似三角形的判定与性质,根据题意作出辅助线,构造出相似三角形是解答此题的关键.23. 2016年春季,建阳区某服装商店分两次从批发市场购进同一款服装,数量之比是2:3,且第一、二次进货价分别为每件50元、40元,总共付了4400元的货款.(1)求第一、二次购进服装的数量分别是多少件?(2)由于该款服装刚推出时,很受欢迎,按每件70元销售了x件;后来,由于该服装滞销,为了及时处理库存,缓解资金压力,其剩余部分的按每件30元全部售完.当x的值至少为多少时,该服装商店才不会亏本.【考点】一元一次不等式的应用;二元一次方程组的应用.【专题】应用题;一元一次不等式(组)及应用.【分析】(1)设第一、二次购进服装的数量分别为a件与b件,根据题意列出方程组,求出方程组的解得到a与b的值,即可得到结果;(2)根据题意列出不等式,求出不等式的解集即可得到结果.【解答】解:(1)设第一、二次购进服装的数量分别是a件和b件,根据题意得:,解得:,答:第一、二次购进服装的数量分别是40件和60件;(2)根据题意得:70x+30(40+60﹣x)﹣4400≥0,解得:x≥35;答:当x的值至少为35时,商店才不会亏本.【点评】此题考查了一元一次方程的应用,以及一元一次不等式的应用,弄清题意是解本题的关键.24.如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】代数几何综合题;压轴题.【分析】(1)利用待定系数法求出抛物线的解析式;(2)用含m的代数式分别表示出PE、EF,然后列方程求解;(3)解题关键是识别出当四边形PECE′是菱形,然后根据PE=CE的条件,列出方程求解;当四边形PECE′是菱形不存在时,P点y轴上,即可得到点P坐标.【解答】方法一:解:(1)将点A 、B 坐标代入抛物线解析式,得:,解得,∴抛物线的解析式为:y=﹣x 2+4x+5.(2)∵点P 的横坐标为m ,∴P (m ,﹣m 2+4m+5),E (m ,﹣ m+3),F (m ,0).∴PE=|y P ﹣y E |=|(﹣m 2+4m+5)﹣(﹣m+3)|=|﹣m 2+m+2|,EF=|y E ﹣y F |=|(﹣m+3)﹣0|=|﹣m+3|.由题意,PE=5EF ,即:|﹣m 2+m+2|=5|﹣m+3|=|m+15|①若﹣m 2+m+2=m+15,整理得:2m 2﹣17m+26=0,解得:m=2或m=;②若﹣m 2+m+2=﹣(m+15),整理得:m 2﹣m ﹣17=0,解得:m=或m=.由题意,m 的取值范围为:﹣1<m <5,故m=、m=这两个解均舍去. ∴m=2或m=.(3)假设存在.作出示意图如下:∵点E 、E′关于直线PC 对称,∴∠1=∠2,CE=CE′,PE=PE′.∵PE 平行于y 轴,∴∠1=∠3,∴∠2=∠3,∴PE=CE ,∴PE=CE=PE′=CE′,即四边形PECE′是菱形.当四边形PECE′是菱形存在时,由直线CD 解析式y=﹣x+3,可得OD=4,OC=3,由勾股定理得CD=5.过点E 作EM ∥x 轴,交y 轴于点M ,易得△CEM ∽△CDO ,∴,即,解得CE=|m|,∴PE=CE=|m|,又由(2)可知:PE=|﹣m 2+m+2|∴|﹣m 2+m+2|=|m|.①若﹣m 2+m+2=m ,整理得:2m 2﹣7m ﹣4=0,解得m=4或m=﹣;②若﹣m 2+m+2=﹣m ,整理得:m 2﹣6m ﹣2=0,解得m 1=3+,m 2=3﹣.由题意,m 的取值范围为:﹣1<m <5,故m=3+这个解舍去.当四边形PECE′是菱形这一条件不存在时, 此时P 点横坐标为0,E ,C ,E'三点重合与y 轴上,也符合题意,∴P (0,5)综上所述,存在满足条件的点P ,可求得点P 坐标为(0,5),(﹣,),(4,5),(3﹣,2﹣3) 方法二:(1)略.(2)略.(3)若E (不与C 重合时)关于直线PC 的对称点E′在y 轴上,则直线CD 与直线CE′关于PC 轴对称.∴点D 关于直线PC 的对称点D′也在y 轴上,∴DD′⊥CP ,∵y=﹣x+3,∴D (4,0),CD=5,∵OC=3,∴OD′=8或OD′=2,①当OD′=8时,D′(0,8),设P(t,﹣t2+4t+5),D(4,0),C(0,3),∵PC⊥DD′,∴KPC ×KDD′=﹣1,∴,∴2t2﹣7t﹣4=0,∴t1=4,t2=﹣,②当OD′=2时,D′(0,﹣2),设P(t,﹣t2+4t+5),∵PC⊥DD′,∴KPC ×KDD′=﹣1,∴=﹣1,∴t1=3+,t2=3﹣,∵点P是x轴上方的抛物线上一动点,∴﹣1<t<5,∴点P的坐标为(﹣,),(4,5),(3﹣,2﹣3).若点E与C重合时,P(0,5)也符合题意.综上所述,存在满足条件的点P,可求得点P坐标为(0,5),(﹣,),(4,5),(3﹣,2﹣3)【点评】本题是二次函数压轴题,综合考查了二次函数与一次函数的图象与性质、点的坐标、待定系数法、菱形、相似三角形等多个知识点,重点考查了分类讨论思想与方程思想的灵活运用.需要注意的是,为了避免漏解,表示线段长度的代数式均含有绝对值,解方程时需要分类讨论、分别计算.25.如图,在四边形ABCD中,∠D=∠BCD=90°,∠B=60°,AB=6,AD=9,点E是CD上的一个动点(E不与D重合),过点E作EF∥AC,交AD于点F(当E运动到C时,EF与AC重合),把△DEF沿着EF对折,点D的对应点是点G.设DE=x,△GEF与四边形ABCD重叠部分的面积为y.(1)求CD的长及∠1的度数;(2)若点G恰好在BC上,求此时x的值;(3)求y与x之间的函数关系式,并求x为何值时,y的值最大?最大值是多少?【考点】四边形综合题.【分析】(1)如图1,作辅助线AH⊥BC,AH的长就是CD的长,根据直角三角形中的特殊三角函数值可以求AH的长,即CD=AH=3,在直角△ACD中,求∠CAD=30°,由平行线的同位角相等可以得∠1=∠CAD=30°;(2)如图2,由对折得:Rt△FGE≌Rt△FDE,则GE=DE=x,∠FEG=∠FED=60°,从而求得直角△GEC中,EC=x,根据DE+EC=CD 列式可求得x的值;(3)分两种情形:第一种情形:当时,如图3,△GEF完全在四边形内部分,重叠部分面积就是△GEF的面积;第二种情形:当<x≤时,如图4,重叠部分是△GEF的面积﹣△MNG的面积,所以要根据特殊的三角函数值求MG、NG的长,代入面积公式即可.再根据两种情形的最大值作对比得出结果.【解答】解:(1)如图1,过点A作AH⊥BC于点H,∵在Rt △AHB 中,AB=6,∠B=60°,∴AH=AB •sinB=6×=,∵∠D=∠BCD=90°,∴四边形AHCD 为矩形,∴CD=AH=,∵, ∴∠CAD=30°,∵EF ∥AC ,∴∠1=∠CAD=30°;(2)若点G 恰好在BC 上,如图2,由对折的对称性可知Rt △FGE ≌Rt △FDE ,∴GE=DE=x ,∠FEG=∠FED=60°,∴∠GEC=60°,∵△CEG 是直角三角形,∴∠EGC=30°,∴在Rt △CEG 中,EC=EG=x ,由DE+EC=CD 得,∴x=; (3)分两种情形:第一种情形:当时,如图3,在Rt △DEF 中,tan ∠1=tan30°=,∴DF=x ÷=x ,∴y=S △EGF =S △EDF ===,∵>0,对称轴为y 轴,∴当,y 随x 的增大而增大,∴当x=时,y 最大值=×=;第二种情形:当<x ≤时,如图4,设FG ,EG 分别交BC 于点M 、N ,(法一)∵DE=x ,∴EC=,NE=2,∴NG=GE ﹣NE==,又∵∠MNG=∠ENC=30°,∠G=90°,∴MG=NG •tan30°=,∴=∴y=S △EGF ﹣S △MNG ==∵,对称轴为直线,∴当<x ≤时,y 有最大值,且y 随x 的增大而增大,∴当时, =,综合两种情形:由于<;∴当时,y 的值最大,y 的最大值为.【点评】本题是四边形的综合题,考查了折叠的性质、二次函数的最值、特殊的三角函数值及直角三角形中30°角的性质,对于求重叠部分的面积,要先把特殊位置对应的x的值求出来,再分情况进行讨论,本题难度适中.。
最新2018年重庆中考数学模拟试卷一(含答案),推荐文档
一、选择题最新 2018 年重庆中考数学模拟试卷一(含答案)9. 若(x﹣1)2=2,则代数式2x2﹣4x+5 的值为() A. 11 B. 6 C. 7 D. 810. 如图,小桥用黑白棋子组成的一组图案,第1 个图案由1 个黑子组成,第2 个图案由1 个黑子和6 个白子组成,第3 个图案由13 个黑子和6 个白子组成,按照这样的规律排列下去,则第8 个图案中1. ﹣2017 的相反数是() A. ﹣2017 B. 2017 C. ﹣ D.2.在以下奢侈品牌的标志中,是轴对称图形的是()A. B. C. D.3.(a2)3÷a4 的计算结果是() A. a B. a2 C. a4 D. a54.下列调查中不适合抽样调查的是()A.调查“华为P10”手机的待机时间B. 了解初三(10)班同学对“EXO”的喜爱程度C. 调查重庆市面上“奶牛梦工场”皇室尊品酸奶的质量D. 了解重庆市初三学生中考后毕业旅行计划5.估算的运算结果应在()A.2 到3 之间B. 3 到4 之间C. 4 到5 之间D. 5 到6 之间6.若代数式有意义,则x 的取值范围是()A. x>1 且x≠2B. x≥1C. x≠2D. x≥1 且x≠27.如图,△ABC 的三个顶点都在⊙O 上,AD 是直径,且∠CAD=56°,则∠B 的度数为()A. 44°B. 34°C. 46°D. 56°8.已知△ABC∽△DEF,S△ABC:S△DEF=1:9,若BC=1,则EF 的长为()A. 1B. 2C. 3D. 9 共有()和黑子.A. 37B. 42C. 73D. 12111.“星光隧道”是贯穿新牌坊商圈和照母ft以北的高端居住区的重要纽带,预计2017 年底竣工通车,图中线段AB 表示该工程的部分隧道,无人勘测飞机从隧道一侧的点A 出发,沿着坡度为1:2 的路线AE 飞行,飞行至分界点C 的正上方点D 时,测得隧道另一侧点B的俯角为12°,继续飞行到点E,测得点B 的俯角为45°,此时点E 离地面高度EF=700 米,则隧道BC 段的长度约为()米.(参考数据:tan12°≈0.2,cos12°≈0.98)A. 2100B. 1600C. 1500D. 154012.若数a 使关于x 的不等式组无解,且使关于x 的分式方程有正整数解,则满足条件的a 的值之积为() A. 28 B. ﹣4 C. 4 D. ﹣2二、填空题13.截止5 月17 日,检察反腐力作《人民的名义》在爱奇艺上的点播量约为6820 000 000 次,请将6820 000 000用科学记数法表示为.14. 计算:= .15.如图,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE⊥OA 交弧AB 于点E,以点O 为圆心,OC 的长为半径作弧CD 交OB 于点D,若OA=4,则阴影部分的面积为.16.“一带一路”国际合作高峰论坛于5 月14 日在北京开幕,学校在初三年级随机抽取了50 名同学进行“一带一路”知识竞答,并将他们的竞答成绩绘制成如图的条形统计图,本次知识竞答成绩的中位数是分.20. 巴蜀中学2017 春季运动会的开幕式精彩纷呈,主要分为以下几个类型:A 文艺范、B 动漫潮、C 学院派、D 民族风,为了解未能参加运动会的初三学子对开幕式类型的喜好情况,学生处在初三年级随机抽取了一部分学生进行调查,并将他们喜欢的种类绘制成如下统计图,请你根据统计图解答以下问题:17.5 月13 日,周杰伦2017“地表最强”世界巡回演唱会在奥体中心盛大举行,1 号巡逻员从舞台走往看台,2 号巡逻号从看台走往舞台,两人同时出发,分别以各自的速度在舞台与看台间匀速走动,出发1分钟后,1 号巡逻员发现对讲机遗忘在出发地,便立即返回出发地,拿到对讲机后(取对讲机时间不计)立即再从舞台走往看台,结果1 号巡逻员先到达看台,2 号巡逻员继续走到舞台,设2 号巡逻员的行驶时间为x(min),两人之间的距离为y(m),y 与x 的函数图象如图所示,则当1 号巡逻员到达看台时,2 号巡逻员离舞台的距离是米.(1)请补全折线统计图,并求出“动漫潮”所在扇形的圆心角度数.18.正方形ABCD 中,F 是AB 上一点,H 是BC 延长线上一点,连接FH,将△FBH 沿FH 翻折,使点B 的对应点E 落在AD 上,EH 与CD 交于点G,连接BG 交FH 于点M,当GB 平分∠CGE 时,BM= ,AE=8,则S 四边形EFMG= .三、解答题19.如图,EF∥AD,∠1=∠2,∠BAC=87°,求你∠AGD 的度数.(2)据统计,在被调查的学生中,喜欢“文艺范”类型的仅有2 名住读生,其余均为走读生,初二年级欲从喜欢“文艺范”的这几名同学中随机抽取两名同学去观摩“文明礼仪大赛”视频,用列表法或树状图的方法求出所选的两名同学都是走读生的概率.21.化简下列各式:(1)(b+2a)(2a﹣b)﹣3(2a﹣b)2;(2).四、解答题22.如图,在平面直角坐标系xOy 中,一次函数y=kx+b 的图象与反比例函数(m≠0)的图象交于二、四象限内的A、B 两点,与x 轴交于C 点,点B 的坐标为(12,n),OA=10,E 为x 轴负半轴上一点,且tan∠AOE= .(1)求该反比例函数和一次函数的解析式;(2)延长AO 交双曲线于点D,连接CD,求△ACD 的面积.23.“父母恩深重,恩怜无歇时”,每年5 月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80 个礼盒最多花费7680 元,请求出每个礼盒在花店的最高标价;(用不等式解答)(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程中,“大众点评”网上的购买价格比原有价格上涨m%,购买数量和原计划一样:“美团”网上的购买价格比原有价格下降了m 元,购买数量在原计划基础上增加15m%,最终,在两个网站的实际消费总额比原计划的预算总额增加了m%,求出m 的值.24.如图,在△ABC 中,AB=AC,∠BAC=90°,AH⊥BC 于点H,过点C 作CD⊥AC,连接AD,点M为AC 上一点,且AM=CD,连接BM 交AH 于点N,交AD 于点E.(1)若AB=3,AD= ,求△BMC 的面积;(2)点E 为AD 的中点时,求证:AD= BN .25.对于一个三位正整数t,将各数位上的数字重新排序后(包括本身),得到一个新的三位数(a≤c),在所有重新排列的三位数中,当|a+c﹣2b|最小时,称此时的为t 的“最优组合”,并规定F(t)=|a﹣b|﹣|b﹣c|,例如:124 重新排序后为:142、214、因为|1+4﹣4|=1,|1+2﹣8|=5,|2+4﹣2|=4,所以124为124 的“最优组合”,此时F(124)=﹣1.(1)三位正整数t 中,有一个数位上的数字是另外两数位上的数字的平均数,求证:F(t)=0;(2)一个正整数,由N 个数字组成,若从左向右它的第一位数能被1 整除,它的前两位数能被2 整除,前三位数能被3 整除,…,一直到前N 位数能被N 整除,我们称这样的数为“善雅数”.例如:123 的第一位数1 能披1 整除,它的前两位数12 能被2 整除,前三位数123 能被3 整除,则123 是一个“善雅数”.若三位“善雅数”m=200+10x+y(0≤x≤9,0≤y≤9,x、y 为整数),m 的各位数字之和为一个完全平方数,求出所有符合条件的“善雅数”中F(m)的最大值.26.如图1,在平面直角坐标系中,抛物线与x 轴交于点A、B 两点(点A 在点B 的左侧),与y 轴交于点C,过点C 作CD∥x 轴,且交抛物线于点D,连接AD,交y 轴于点E,连接AC.(1)求S△ABD的值;(2)如图2,若点P 是直线AD 下方抛物线上一动点,过点P 作PF∥y 轴交直线AD 于点F,作PG∥AC 交直线AD 于点G,当△PGF 的周长最大时,在线段DE 上取一点Q,当PQ+ QE 的值最小时,求此时PQ+ QE 的值;(3)如图3,M 是BC 的中点,以CM 为斜边作直角△CMN,使CN∥x 轴,MN∥y 轴,将△CMN 沿射线CB 平移,记平移后的三角形为△C′M′N′,当点N′落在x 轴上即停止运动,将此时的△C′M′N′绕点C′逆时针旋转(旋转度数不超过180°),旋转过程中直线M′N′与直线CA 交于点S,与y 轴交于点T,与x 轴交于点W,请问△CST 是否能为等腰三角形?若能,请求出所有符合条件的WN′的长度;若不能,请说明理由.2.在以下奢侈品牌的标志中,是轴对称图形的是(C )A. B. C. D.3.(a2)3÷a4 的计算结果是(B )A. aB. a2C. a4D. a54.下列调查中不适合抽样调查的是(B )A.调查“华为P10”手机的待机时间B. 了解初三(10)班同学对“EXO”的喜爱程度C. 调查重庆市面上“奶牛梦工场”皇室尊品酸奶的质量D. 了解重庆市初三学生中考后毕业旅行计划5.估算的运算结果应在(D )A. 2 到3 之间B. 3 到4 之间C. 4 到5 之间D. 5 到6 之间6.若代数式有意义,则x 的取值范围是(D )A. x>1 且x≠2B. x≥1C. x≠2D. x≥1 且x≠27.如图,△ABC 的三个顶点都在⊙O 上,AD 是直径,且∠CAD=56°,则∠B 的度数为(B )一、选择题二圣学校 2018 年中考数学模拟试卷一(第三周) A. 44° B. 34° C. 46° D. 56°8.已知△ABC∽△DEF,S△ABC:S△DEF=1:9,若BC=1,则EF 的长为(C )A. 1B. 2C. 3D. 91. ﹣2017 的相反数是(B )A. ﹣2017B. 2017C. ﹣D.9. 若(x﹣1)2=2,则代数式2x2﹣4x+5 的值为(C )A. 11B. 6C. 7D. 810.如图,小桥用黑白棋子组成的一组图案,第1 个图案由1 个黑子组成,第2 个图案由1 个黑子和6 个白子组成,第3 个图案由13 个黑子和6 个白子组成,按照这样的规律排列下去,则第8 个图案中共有(C )和黑子.A. 37B. 42C. 73D. 121解:第1、2 图案中黑子有1 个,第3、4 图案中黑子有1+2×6=13 个,第5、6 图案中黑子有1+2×6+4×6=37 个,第7、8 图案中黑子有1+2×6+4×6+6×6=73 个.11.“星光隧道”是贯穿新牌坊商圈和照母ft以北的高端居住区的重要纽带,预计2017 年底竣工通车,图中线段AB 表示该工程的部分隧道,无人勘测飞机从隧道一侧的点A 出发,沿着坡度为1:2 的路线AE 飞行,飞行至分界点C 的正上方点D 时,测得隧道另一侧点B 的俯角为12°,继续飞行到点E,测得点B 的俯角为45°,此时点E 离地面高度EF=700 米,则隧道BC 段的长度约为(C )米.(参考数据:tan12°≈0.2,cos12°≈0.98)A. 2100B. 1600C. 1500D. 1540解:由题意得,∠EBF=45°,EF=700 米,∴BF=EF=700 米,∵AE 的坡度为1:2,∴AF=2EF=1400 米,∴AB=1400+700=2100 米,设CD=x 米,∵AE 的坡度为1:2,∴AC=2CD=2x 米,∵∠DBC=12°,tan12°≈0.2=,∴BC=5CD=5x 米,则7x=2100,解得,x=300 米,∴AC=600 米,BC=1500 米;12.若数a 使关于x 的不等式组无解,且使关于x 的分式方程有正整数解,则满足条件的a 的值之积为(B )A. 28B. ﹣4C. 4D. ﹣2 解:不等式组整理得:,由不等式组无解,得到3a﹣2≤a+2,解得:a≤2,分式方程去分母得:ax+5=﹣3x+15,即(a+3)x=10,由分式方程有正整数解,得到x= ,即a+3=1,2,10,解得:a=﹣2,2,7.综上,满足条件a 的为﹣2,2,之积为﹣4,二、填空题13.截止5 月17 日,检察反腐力作《人民的名义》在爱奇艺上的点播量约为6820 000 000 次,请将6820 000 000 用科学记数法表示为_6.82×10914. 计算:=﹣5.15.如图,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE⊥OA 交弧AB 于点E,以点O 为圆心,OC 的长为半径作弧CD 交OB 于点D,若OA=4,则阴影部分的面积为连接OE、AE,∵点C 为OA 的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO 为等边三角形,∴S 扇形AOE=∴S 阴影=S 扇形AOB-S 扇形COD-(S 扇形AOE-S△COE)=== .16.“一带一路”国际合作高峰论坛于5 月14 日在北京开幕,学校在初三年级随机抽取了50 名同学进行“一带一路”知识竞答,并将他们的竞答成绩绘制成如图的条形统计图,本次知识竞答成绩的中位数是47.5 分.17.5 月13 日,周杰伦2017“地表最强”世界巡回演唱会在奥体中心盛大举行,1 号巡逻员从舞台走往看台,2 号巡逻号从看台走往舞台,两人同时出发,分别以各自的速度在舞台与看台间匀速走动,出发1 分钟后,1 号巡逻员发现对讲机遗忘在出发地,便立即返回出发地,拿到对讲机后(取对讲机时间不计)立即再从舞台走往看台,结果1 号巡逻员先到达看台,2 号巡逻员继续走到舞台,设2 号巡逻员的行驶时间为x(min),两人之间的距离为y(m),y 与x 的函数图象如图所示,解:过B 作BP⊥EH 于P,连接BE,交FH 于N,则∠BPG=90°,∵四边形ABCD 是正方形,∴∠BCD=∠ABC=∠BAD=90°,AB=BC,∴∠BCD=∠BPG=90°,∵∠EGB=∠CGB,BG=BG,∴△BPG≌△BCG,∴∠PBG=∠CBG,BP=BC,∴AB=BP,∵∠BAE=∠BPE=90°,BE=BE,∴Rt△ABE≌Rt△PBE(HL),∴∠ABE=∠PBE,∴∠EBG=∠EBP+∠GBP= ∠ABC=45°,由折叠得:BF=EF,BH=EH,∴FH 垂直平分BE,∴△BNM 是等腰直角三角形,∵BM= ,∴BN=NM= =,∴BE= ,∵AE=8,∴DE=12﹣8=4,由勾股定理得:AB== =12,设BF=x,则EF=x,AF=12﹣x,由勾股定理得:x2=82+(12﹣x)2,x= ,∴BF=EF= ,∵△ABE≌△PBE,∴EP=AE=8,BP=AB=12,同理可得:PG= ,Rt△EFN 中,FN= = ,∴S 四边形EFMG=S△EFN+S△EBG﹣S△BNM= FN•EN+ EG•BP﹣BN•NM= ××则当1 号巡逻员到达看台时,2 号巡逻员离舞台的距离是米.解:由图象可得2 号巡逻员的速度为1000÷12.5=80m/min,1 号巡逻员的速度为(1000﹣800)+ (8+ )×12﹣×= .÷1﹣80=200﹣80=120m/min,设两车相遇时的时间为x min,可得方程:80x+120(x﹣2)=800+200,解得:x=6.2,∴x =6.2,∴2 号巡逻员的路程为6.2×80=496m,1 号巡逻员到达看台时,还需要= min,∴2 号巡逻员离舞台的距离是1000﹣80×(6.2+ )= m,18.正方形ABCD 中,F 是AB 上一点,H 是BC 延长线上一点,连接FH,将△FBH 沿FH 翻折,使点B 的对应点E 落在AD 上,EH 与CD 交于点G,连接BG 交FH 于点M,当GB 平分∠CGE 时,BM= ,AE=8,则S 四边形EFMG= .19.如图,EF∥AD,∠1=∠2,∠BAC=87°,求你∠AGD 的度数.解:∵EF∥AD,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补),∵∠BAC=87°,∴∠AGD=93°.20.巴蜀中学2017 春季运动会的开幕式精彩纷呈,主要分为以下几个类型:A 文艺范、B 动漫潮、C 学院派、D 民族风,为了解未能参加运动会的初三学子对开幕式类型的喜好情况,学生处在初三年级随机抽取了一部分学生进行调查,并将他们喜欢的种类绘制成如下统计图,请你根据统计图解答以下问题:×== = .22.如图,在平面直角坐标系xOy 中,一次函数y=kx+b 的图象与反(1)请补全折线统计图,并求出“动漫潮”所在扇形的圆心角度数.(2)据统计,在被调查的学生中,喜欢“文艺范”类型的仅有2 名住读生,其余均为走读生,初二年级欲从喜欢“文艺范”的这几名同学中随机抽取两名同学去观摩“文明礼仪大赛”视频,用列表法或树状图的方法求出所选的两名同学都是走读生的概率.解:(1)被调查的学生数为;20÷50%=40 人,A 文艺范人数=40×12.5%=5 人,B 动漫潮人数=40﹣5﹣5﹣20=10 人,补全折线统计图如图所示,“动漫潮”所在扇形的圆心角度数=360°×=90°;(2)设2 名住读生为A1,A2,走读生为B1,B2,B3画树状图如图所示,由树状图得知,所有等可能的情况有20 种,其中所选两位同学恰好都是都是走读生的情况有6 种,∴所选的两名同学都是走读生的概率= = .21.(1)(b+2a)(2a﹣b)﹣3(2a﹣b)2;(2).解:(1)原式=4a2﹣b2﹣12a2+12ab﹣3b2=﹣8a2+12ab﹣4b2;(2)原式=比例函数(m≠0)的图象交于二、四象限内的A、B 两点,与x轴交于C 点,点B 的坐标为(12,n),OA=10,E 为x 轴负半轴上一点,且tan∠AOE= .(1)求该反比例函数和一次函数的解析式;(2)延长AO 交双曲线于点D,连接CD,求△ACD 的面积.解:(1)如图,过A 作AF⊥x 轴于F,∵OA=10,tan∠AOE= ,∴可设AF=4a,OF=3a,则由勾股定理可得:(3a)2+(4a)2=102,解得a=2,∴AF=8,OF=6,∴A(﹣6,8),代入反比例函数,可得m=﹣48,∴反比例函数解析式为:,把点B(12,n)代入,可得n=﹣4,∴B(12,﹣4),设一次函数的解析式为y=kx+b,则,解得:,∴一次函数的解析式为;(2)在一次函数中,令y=0,则x=6,即C(6,0),∵A(﹣6,8)与点D 关于原点成中心对称,∴D(6,﹣8),∴CD⊥x轴,∴S△ACD=S△ACO+S△CDO= CO×AF+ CO×CD= ×6×8+ ×6×8=48.23.“父母恩深重,恩怜无歇时”,每年5 月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80 个礼盒最多花费7680 元,请求出每个礼盒在花店的最高标价;(用不等式解答)(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程中,“大众点评”网上的购买价格比原有价格上涨m%,购买数量和原计划一样:“美团”网上的购买价格比原有价格下降了m 元,购=120×0.8a(1﹣25%)×2(1+ m%),即72a(1+ m%)+a(72﹣m)(1+15m%)=144a(1+ m%),整理得:0.0675m2﹣1.35m=0,m2﹣20m=0,解得:m1=0(舍),m2=20.答:m 的值是20.24.如图,在△ABC 中,AB=AC,∠BAC=90°,AH⊥BC 于点H,过点C 作CD⊥AC,连接AD,点M为AC 上一点,且AM=CD,连接BM 交AH 于点N,交AD 于点E.(1)若AB=3,AD= ,求△BMC 的面积;买数量在原计划基础上增加15m%,最终,在两个网站的实际消费总额比原计划的预算总额增加了m%,(2)点E 为AD 的中点时,求证:AD= BN .求出m 的值.解法一:设标价为x 元,列不等式为0.8x•80≤7680,解出即可;解法二:根据单价=总价÷数量先求出1 个礼盒最多花费,再除以折扣可求出每个礼盒在花店的最高标价;(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a 个礼盒,表示在“大众点评”网上的购买实际消费总额:120a(1﹣25%)(1+ m%),在“美团”网上的购买实际消费总额:a[120(1﹣25%)﹣m](1+15m%);根据“在两个网站的实际消费总额比原计划的预算总额增加了m%”列方程解出即可.试题解析:(1)解:解法一:设标价为x 元,列不等式为0.8x•80≤7680,x≤120;解法二:7680÷80÷0.8=96÷0.8=120(元).答:每个礼盒在花店的最高标价是120 元;(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a 个礼盒,由题意得:120×0.8a(1﹣25%)(1+ m%)+a[120×0.8(1﹣25%)﹣m](1+15m%)解:(1)如图1 中,在△ABM 和△CAD 中,∵AB=AC,∠BAM=∠ACD=90°,AM=CD,∴△ABM≌△CAD,∴BM=AD= ,∴AM= =1,∴CM=CA﹣AM=2,∴S△BCM= •CM•BA= ×23=3.(2)如图2 中,连接EC、CN,作EQ⊥BC 于Q,EP⊥BA 于P.∵AE=ED,∠ACD=90°,∴AE=CE=ED,∴∠EAC=∠ECA,∵△ABM≌△CAD,∴∠ABM=∠CAD,∴∠ABM=∠MCE,∵∠AMB=∠EMC,∴∠CEM=∠BAM=90°,∵△ABM∽△ECM,∴,∴,∵∠AME=∠BMC,∴△AME∽△BMC,∴∠AEM=∠ACB=45°,∴∠AEC=135°,易知∠PEQ=135°,∴∠PEQ=∠AEC,∴∠AEQ=∠EQC,∵∠P=∠EQC=90°,∴△EPA≌△EQC,∴EP=EQ,∵EP⊥BP,EQ⊥BC∴BE 平分∠ABC,∴∠NBC=∠ABN=22.5°,∵AH 垂直平分BC,∴NB=NC,∴∠NCB=∠NBC=22.5°,∴∠ENC=∠NBC+∠NCB=45°,∴△ENC 的等腰直角三角形,∴NC= EC,∴AD=2EC,∴2NC= AD,∴AD= NC,∵BN=NC,∴AD= BN.25.对于一个三位正整数t,将各数位上的数字重新排序后(包括本身),得到一个新的三位数(a≤c),在所有重新排列的三位数中,当|a+c﹣2b|最小时,称此时的为t 的“最优组合”,并规定F (t)=|a﹣b|﹣|b﹣c|,例如:124 重新排序后为:142、214、因为|1+4﹣4|=1,|1+2﹣8|=5,|2+4﹣2|=4,所以124 为124 的“最优组合”,此时F(124)=﹣1.(1)三位正整数t 中,有一个数位上的数字是另外两数位上的数字的平均数,求证:F(t)=0;(2)一个正整数,由N 个数字组成,若从左向右它的第一位数能被1 整除,它的前两位数能被2 整除,前三位数能被3 整除,…,一直到前N 位数能被N 整除,我们称这样的数为“善雅数”.例如:123 的第一位数1 能披1 整除,它的前两位数12 能被2 整除,前三位数123 能被3 整除,则123 是一个“善雅数”.若三位“善雅数”m=200+10x+y(0≤x≤9,0≤y≤9,x、y 为整数),m 的各位数字之和为一个完全平方数,求出所有符合条件的“善雅数”中F(m)的最大值.(1)证明:∵三位正整数t 中,有一个数位上的数字是另外两数位上的数字的平均数,∴重新排序后:其中两个数位上数字的和是一个数位上的数字的2 倍,∴a+c﹣2b=0,即(a﹣b)﹣(b﹣c)=0,∴F(t)=0;∵(2)∵m=200+10x+y 是“善雅数”,∴x 为偶数,且2+x+y 是 3 的倍数,∵x<10,y<10,∴2+x+y<30,∵m 的各位数字之和为一个完全平方数,∴2+x+y=32=9,∴当x=0 时,y=7,当x=2 时,y=5,当x=4 时,y=3,当x=6 时,y=1,∴所有符合条件的“善雅数”有:207,225,243,261,∴所有符合条件的“善雅数”中F(m)的最大值是=|2﹣3|﹣|3﹣4|=0.26.如图1,在平面直角坐标系中,抛物线与x 轴交于点A、B 两点(点A 在点B 的左侧),与y 轴交于点C,过点C 作CD∥x 轴,且交抛物线于点D,连接AD,交y 轴于点E,连接AC.(1)求S△ABD的值;(2)如图2,若点P 是直线AD 下方抛物线上一动点,过点P 作PF∥y 轴交直线AD 于点F,作PG∥AC 交直线AD 于点G,当△PGF 的周长最大时,在线段DE 上取一点Q,当PQ+ QE 的值最小时,求此时PQ+ QE 的值;(3)如图3,M 是BC 的中点,以CM 为斜边作直角△CMN,使CN∥x 轴,MN∥y 轴,将△CMN 沿射线CB 平移,记平移后的三角形为△C′M′N′,当点N′落在x 轴上即停止运动,将此时的△C′M′N′绕点C′逆时针旋转(旋转度数不超过180°),旋转过程中直线M′N′与直线CA 交于点S,与y 轴交于点T,与x 轴交于点W,请问△CST 是否能为等腰三角形?若能,请求出所有符合条件的WN′的长度;若不能,请说明理由.解:(1)令y=0,则,解得x= 或,∴A(,0),B(,0),C(0,),∵CD∥AB,∴S△DAB=S△ABC= •AB•OC= × ×= .(2)如图2 中,设P(m,).∠BWN′=∠OCK,∴tan∠BWN′=tan∠OCK= = ,∵BN′= ,∴WN′=.②如图4 中,当TC=TS 时,易证∠BWN′=∠OAC,∴tan∠BWN′=tan∠OAC= = ,∴WN′=;③如图5 中,当TS=TC 时,延长N′B 交直线AC 于Q,作BG⊥AQ 于G,QR⊥AB 于R.∵A(,0),D(,),∴直线AD 的解析式为,∵PF∥y 轴,∴F(m,),∵PG⊥DE,∴△PGF 的形状是相似的,∴PF 的值最大时,△PFG 的周长最大,∵PF= ﹣()= ,∴当m= = 时,PF 的值最大,此时P(,),作P 关于直线DE 的对称点P′,连接P′Q,PQ,作EN∥x 轴,QM⊥EN 于M,∵△QEM∽△EAO,∴= ,∴QM= QE,∴PQ+ EQ=PQ+QM=P′Q+QM,∴当P′、Q、M 共线时,PQ+ EQ 的值最小,易知直线PP′的解析式为,由,可得G(,),∵PG=GP′,∴P′(,),∴P′M= = ,∴PQ+ EQ 的最小值为.(3)①如图3 中,当CS=CT 时,作CK 平分∠OCA,作KG⊥AC 于G.易知KO=KG,∵= = = = ,∴OK= = ,易证∵TS=TC,∴∠TSC=∠TCS=∠ACO,∵∠TSC+∠SQN′=90°,∠ACO+∠OAC=90°,∴∠BQA=∠OAC=∠BAQ,∴BA=BQ,∴AG=GQ,设AQ=a,则易知BG=a,BQ=AB= a,∵•AQ•BG= •AB•QR,∴QR= a,BR= a,∴tan∠WBN′=tan∠QBR= =,∴WN′=.④如图6 中,当CS=CT 时,由①可知,在Rt△BN′W 中,tan∠N′BW= = ,∴N′W=.综上所述,满足条件的WN′的长为或或或.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018重庆中考模拟题五一、选择题,每小题4分,共48分。
1、—4的相反数是( )A 、6B 、—6C 、61 D 、61- 2、计算32)2(y x -的正确结果是( )A 、366y x -B 、368y x -C 、368y x D 、358y x -3、化简40的正确结果是( )A 、20B 、202C 、102D 、1044、如图,已知AB//CD ,直线EF 与AB 、CD 分别交于点G 、H ,︒=∠=∠3521,∠P=90°,则∠3的度数是( )A 、35°B 、45°C 、50°D 、55°第4题图 第8题图 第9题图 5、下列调查中,适宜采用抽样调查的是( )A 、了解重庆市中学生的课余爱好B 、检查“神舟”飞船的各零部件C 、调查某校九年级一班的同学收看“最强大脑”的情况D 、调查七年级一班做家务的时间6、解分式方程01213=+--x x 的正确结果是( ) A 、5=x B 、5-=x C 、3=x D 、3-=x7、若一个多边形的每一个外角都是40°,则这个多边形的内角的度数是( ) A 、1080° B 、1440° C 、1260° D 、1080°8、如图,PA 、PB 是⊙O 的切线,A 、B 是切点,AC 是⊙O 的直径,∠P=40°,则∠BAC 的大小是( )A 、70°B 、50°C 、40°D 、20°9、如图,下列图案均是由长度相同的火柴按一定的规律拼搭而成,围成的每个小正方形面积为12cm .第一个图案面积为22cm ,第二个图案面积为42cm ,第三个图案面积为72cm ,…依此规律,第8个图案面积为( )A 、342cm B 、35 2cm C 、362cm D 、372cm10、某校八年级同学到距离学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往目的地。
如图,a ,b 分别表示步行和骑车的同学前往目的地所走的路程y (千米)与所用时间x (分钟)之间的函数图象,则下列判断错误的是( )A .骑车的同学比步行的同学晚出发30分钟B .步行的速度是6千米/小时C .骑车同学从出发到追上步行同学用了20分钟D .骑车同学和步行的同学同时到达目的地第10题图 第11题图 第12题图11、如图,以AD 为直径的半圆经填写点E 、B ,点E 、B 是半圆的三等分点,弧 BE 的长为π32,则图中阴影部分的面积为( )A 、π32 B 、π34C 、332-πD 、334-π12、如图,在平面直角坐标系xOy 中,直线kx y =与双曲线xmy =相交于A 、B 两点,C 是第一象限内的双曲线上与点A 不重合的一点,连接CA 并延长交y 轴于点P ,连接BP ,BC 。
若点A 坐标 (2,3),△PBC 的面积是24,则点C 坐标为( ) A 、(3,1) B 、(3,2) C 、(6,2) D 、 (6,1) 二、填空题,每小题4分,共24分。
13、在2017年的政府工作报告中,区长种及灵指出涪陵区率先在全市贫困区县中实现脱贫摘帽,城镇常住居民人均可支配收入达到31300元。
请将31300用科学记数法表示为 .14、计算:01)14.3()21(π---= .15、已知△ABC~△DEF , BC 边上的高与EF 边上的高之比为2:3,则△ABC 与△DEF 的面积的比为 .16、如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AC=8,则EF= .第16题图 第18题图17、有五张正面分别标有数字—2、—1、0、1、2的不透明卡片,它们除数字不同外其余全部相同,现将它们背面向上,洗匀后从中任取一张,将卡片上的数字记为a ,则a 使关于x 的一元一次方程8)1(=+-a x a 有整数解,且方程的整数解能与2,6组成三角形的概率是 .18、如图,四边形ABCD 中,AD//BC ,AD=AB=2,∠B=120°,∠ADC=150°,现以对角线AC 为边向点D 一侧作等边△ACE ,则四边形ABCE 的面积= 。
三、解答题,每小题7分,共14分。
19、解不等式组:⎪⎩⎪⎨⎧-<--+≥+-xx x x 8)1(31132320、现在的青少年由于沉迷电视、手机、网络游戏,视力日渐减退,重庆某校九年级一班班主任为了了解可能影响学生视力下降的原因,对本班进行了一个“最喜爱的娱乐”调查,每个学生在A (看电视)、B (玩手机)、C (玩网络游戏)、D (其它)四种类型中只能选一项,并根据调查结果绘制成如下两幅不完整的统计图,请根据这两幅统计图解答下列问题:(1)扇形统计图中C 所占的百分比为 ,该班学生由于玩网络游戏而视力下降的学生有 人。
(2)为了让学生深刻认识保护视力的重要性,学校组织“保护视力 健康人生”的演讲比赛,班主任从选择D 类型的学生中随机抽选两名学生参加比赛。
已知D 类型中有女生3人,其余的为男生。
请求出刚好抽到的学生全部为女生的概率。
四、解答题,每小题10分,共40分。
21、计算:(1)先化简,再求值:)1(3)1()2(422---++x x x x ,其中3=x ;(2)计算:1)12122(2222+÷+----+x xx x x x x x x 。
22、如图,在□ABCD 中,E 、F 分别是BC 、AD 上的一点,BE=DF 。
(1)求证:AE=CF 。
(2)若B BCD ∠=∠2,求∠B 的度数。
23、如图,我市某中学在创建“特色校园”的活动中,将学校的办学理念做成了宣传牌(CD ),放置在教学楼的顶部(如图所示),该中学数学活动小组的同学在山坡坡脚A 处测得宣传牌底D 的仰角为60°,沿坡AB 向上走到B 处测得宣传牌顶部C 的仰角为45°.已知山坡AB 的坡度为3:1=i ,AB=10米,AE=15米.(1)求点B 距水平面AE 的高度BH ;(2)求宣传牌CD 的高度.(结果精确到0.1米.参考数据:414.12≈,732.13≈)24、阅读材料,解答相应的问题:如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”,否则,称这个正整数为“非慧数”。
例如:1514;1224;734;813;523;312222222222222=-=-=-=-=-=-… 因此:3,5,8,……都是“智慧数”;而1,2,4……都是“非智慧数”。
对于“智慧数”,有如下结论:①设k 为正整数(2≥k ),则12)1(22-=--k k k ,∴除1以外,所有的奇数都是“智慧数”; ②设k 为正整数(3≥k ),则22)2(--k k = ,∴ 都是“智慧数”; (1)补全材料中空缺的部分;(2)求出所有大于5而小于20的“非智慧数”;(3)求出从1开始的正整数中从小到大排列的第100个“智慧数”。
五、解答题,每小题12分,共24分。
25、如图,在△ABC 中,点D 为BC 边的中点,以D 为顶点的∠EDF 的两边分别与AB 、AC 交于点E 、F ,且∠EDF 与∠A 互补。
(1)如图①,若AB=AC ,且∠A=90°,证明:DE=DF ;(2)如图②,若AB=AC ,那么(1)中的结论是否成立?请说明理由.(3)如图③,若n m AC AB ::=,探索线段DE 与DF 的数量关系,并证明你的结论。
26、如图,在平面直角坐标系中,已知抛物线c bx ax y ++=2与x 轴交于O 点、A 点,B 为抛物线上一点,C 为y 轴上一点,连接BC ,且BC//OA ,已知点O (0,0),A (6,0),B (3,m ),AB=53。
(1)求B 点坐标及抛物线的解析式。
,(2)M 是CB 上一点,过点M 作y 轴的平行线交抛物线于点E ,求DE 的最大值;(3)坐标平面内是否存在一点F ,使得以C 、B 、D 、F 为顶点的四边形是菱形?若存在,求出符合条件的点F 坐标;若不存在,请说明理由。
参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ABCDABCDDDDD二、填空题:13、41013.3⨯ 14、1 15、4:9 16、2 17、5118、3912、由点A (2,3)知双曲线为x y 6=,直线为x y 23=; 解方程组⎪⎪⎩⎪⎪⎨⎧==x y xy 236得⎩⎨⎧==3211y x ,⎩⎨⎧-=-=3211y x (正比例函数与反比例函数的两个交点关于原点对称))3,2(--∴B ;设C 为(a a 6,),设直线BC 为11b x k y +=,则有⎪⎩⎪⎨⎧=+-=+-a b ak b k 6321111解得⎪⎪⎩⎪⎪⎨⎧-==36311a b a k , 则直线BC 为363-+=a x a y ,则D (0,36-a); 设直线 AC 为22b x k y +=,则有⎪⎩⎪⎨⎧=+=+a b ak b k 6322222,解得⎪⎪⎩⎪⎪⎨⎧+=-=36311a b ak 则直线AC 为363++-=a x a y ,则P (0,36+a); 则PD =36+a -(36-a )=6,2426226=+⨯=+=∆∆∆aS S S PDC PDB PBC ,解得6=a ,,6(C ∴1)。
18、解:如图,连接DE ,作A F ⊥DB 。
由AD//BC ,可得∠ADB=∠DBC ;由AD=AB ,可得∠ADB=∠ABD ,︒=︒⨯=∠=∠∴6012021DBC ABD ,∴△ABD 是等边三角形,∴∠ADB=60°, ∴∠BDC=150°—60°=90°, ∴BC=2DB=4, ∴DC=32,由AE=AC ,∠EAD=∠CA ,AD=AB 可证△EA D ≌△CAB ,∴ED=BC=4,∠ADE=∠ABC=120°, ∴E 、D 、C 三点共线,∴EB=6,又AF=323260sin =⨯=︒⋅AB , 392326236=⨯+⨯=+=∴∆∆CBE ABE ABCE S S S (特别注意,只要求出DE=4后,还可以只求出ADB S ∆和C DB S ∆,用比例去求ADE S ∆和C DE S ∆。
三、解答题19、12≤<-x 20、(1)20%,8(2)21126)2(==女P 21、(1)36104622+=++x x (2)11-+x x 22、(1)SAS 证全等(2)︒=∠60B 23、(1)BH=5 (2)2.7 24、(1))1(444-=-k k(2)除去奇数:7,9,11,13,15,17,19,除去4的正整数倍数8,12,16, 则“非智慧数”有6,10,14,1825、(1)连接AD 。