总结公务员考试中数量关系方法及公式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总结公务员考试中数量关系方法及公式
阅读须知:数学运算部分是困扰广大考生的重点、难点,通常耗费时间多正确率提升慢,效果不明显。但通过细心总结还是有章可循,以下是网络上有关数学运算的总结,考生们可以参考本文中的方法,配以大量练习实现突破。本文涉及内容仅作为学习交流,不可用于商业传播用,请考生们切记。
数量关系公式(解题加速100%)
1.两次相遇公式:单岸型 S=(3S1+S2)/2 两岸型 S=3S1-S2
例题:两艘渡轮在同一时刻垂直驶离H 河的甲、乙两岸相向而行,一艘从甲岸驶向乙岸,另一艘从乙岸开往甲岸,它们在距离较近的甲岸720 米处相遇。到达预定地点后,每艘船都要停留10 分钟,以便让乘客上船下船,然后返航。这两艘船在距离乙岸400 米处又重新相遇。问:该河的宽度是多少?
A. 1120 米
B. 1280 米
C. 1520 米
D. 1760 米
典型两次相遇问题,这题属于两岸型(距离较近的甲岸720 米处相遇、距离乙岸400 米处又重新相遇)代入公式3*720-400=1760选D
如果第一次相遇距离甲岸X米,第二次相遇距离甲岸Y米,这就属于单岸型了,也就是说属于哪类型取决于参照的是一边岸还是两边岸
2.漂流瓶公式:T=(2t逆*t顺)/ (t逆-t顺)
例题:AB两城由一条河流相连,轮船匀速前进,A――B,从A城到B城需行3天时间,而从B城到A城需行4天,从A城放一个无动力的木筏,它漂到B 城需多少天?
A、3天
B、21天
C、24天
D、木筏无法自己漂到B城
解:公式代入直接求得24
3.沿途数车问题公式:发车时间间隔T=(2t1*t2)/ (t1+t2 )车速/人速=(t1+t2) / (t2-t1)
例题:小红沿某路公共汽车路线以不变速度骑车去学校,该路公共汽车也以不变速度不停地运行,没隔6分钟就有辆公共汽车从后面超过她,每隔10分钟就遇到迎面开来的一辆公共汽车,公共汽车的速度是小红骑车速度的()倍?
A. 3
B.4
C. 5
D.6
解:车速/人速=(10+6)/(10-6)=4 选B
4.往返运动问题公式:V均=(2v1*v2)/(v1+v2)
例题:一辆汽车从A地到B地的速度为每小时30千米,返回时速度为每小时2 0千米,则它的平均速度为多少千米/小时?()
A.24
B.24.5
C.25
D.25.5
解:代入公式得2*30*20/(30+20)=24选A
5.电梯问题:能看到级数=(人速+电梯速度)*顺行运动所需时间(顺)
能看到级数=(人速-电梯速度)*逆行运动所需时间(逆)
6.什锦糖问题公式:均价A=n /{(1/a1)+(1/a2)+(1/a3)+(1/an)}
例题:商店购进甲、乙、丙三种不同的糖,所有费用相等,已知甲、乙、丙三种糖
每千克费用分别为4.4 元,6 元,6.6 元,如果把这三种糖混在一起成为什锦糖,那么这种什锦糖每千克成本多少元?
A.4.8 元B.5 元C.5.3 元D.5.5 元
7.十字交叉法:A/B=(r-b)/(a-r)
例:某班男生比女生人数多80%,一次考试后,全班平均成级为75 分,而女
生的平均分比男生的平均分高20% ,则此班女生的平均分是:
析:男生平均分X,女生1.2X
1.2X 75-X 1
75 =
X 1.2X-75 1.8
得X=70 女生为84
8.N人传接球M次公式:次数=(N-1)的M次方/N 最接近的整数为末次传他人次数,第
二接近的整数为末次传给自己的次数
例题:四人进行篮球传接球练习,要求每人接球后再传给别人。开始由甲发球,并作为第一次传球,若第五次传球后,球又回到甲手中,则共有传球方式()。
A. 60种
B. 65种
C. 70种
D. 75种
公式解题:(4-1)的5次方/ 4=60.75 最接近的是61为最后传到别人次数,第二接近的是60为最后传给自己的次数
9.一根绳连续对折N次,从中剪M刀,则被剪成(2的N次方*M+1)段
10.方阵问题:方阵人数=(最外层人数/4+1)的2次方N排N列最外层有4 N-4人
例:某校的学生刚好排成一个方阵,最外层的人数是96人,问这个学校共有学生?
析:最外层每边的人数是96/4+1=25,则共有学生25*25=625
11.过河问题:M个人过河,船能载N个人。需要A个人划船,共需过河(M-A)/ (N-A)次
例题(广东05)有37名红军战士渡河,现在只有一条小船,每次只能载5人,需要几次才能渡完?()
组赛;每组前2名队员再进行淘汰赛,直到决出冠军。请问,共需安排几场比赛?() A. 48 B. 63 C. 64 D. 65
【解析】答案为B。根据公式,第一阶段中,32人被平均分成8组,每组4个人,则每组单循环赛产生前2名需要进行的比赛场次是:4×(4-1)÷2=6(场),8组共48场;第二阶段中,有2×8=16人进行淘汰赛,决出冠军,则需要比赛的场次就是:参赛选手的人数-1,即15场。最后,总的比赛场次是48+15=63(场)。
4. 某学校承办系统篮球比赛,有12个队报名参加,比赛采用混合制,即第一阶段采用分2组进行单循环比赛,每组前3名进入第二阶段;第二阶段采用淘汰赛,决出前三名。如果一天只能进行2场比赛,每6场需要休息一天,请问全部比赛共需几天才能完成?()
A. 23
B. 24
C. 41
D. 42
【解析】答案为A。根据公式,第一阶段12个队分成2组,每组6个人,则每组单循环赛产生前2名需要进行的比赛场次是:6×(6-1)÷2=15(场),2组共30场;第二阶段中,有2×3=6人进行淘汰赛,决出前三名,则需要比赛的场次就是:参赛选手的人数,即6场,最后,总的比赛场次是30+6=36(场)。又,“一天只能进行2场比赛”,则36场需要18天;“每6场需要休息一天”,则36场需要休息36÷6-1=5(天),所以全部比赛完成共需18+5=23(天)。